物理学报 Acta Physica Sinica

Institute of Physics, CAS

稀土永磁体及复合磁体反磁化过程和矫顽力

李柱柏 李赟 秦渊 张雪峰 沈保根

Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets Li Zhu-Bai Li Yun Qin Yuan Zhang Xue-Feng Shen Bao-Gen 引用信息 Citation: Acta Physica Sinica, 68, 177501 (2019) DOI: 10.7498/aps.68.20190364 在线阅读 View online: https://doi.org/10.7498/aps.68.20190364 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响

Effect of inner diameter of hollow cylindrical permanent magnet on levitation force of single domain GdBCO bulk superconductor 物理学报. 2018, 67(7): 077401 https://doi.org/10.7498/aps.67.20172418

在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究 Thermomagnetic power generation of Mn1.2Fe0.8P1-xSix compounds in strong field of permanent magnet 物理学报. 2015, 64(4): 047103 https://doi.org/10.7498/aps.64.047103

利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究 Coercivity enhancement of waste Nd-Fe-B magnets by Pr70Cu30 grain boundary diffusion process 物理学报. 2018, 67(6): 067502 https://doi.org/10.7498/aps.67.20172551

Sm2Co17型永磁合金的辐照效应研究

Irradiation effect of Sm2Co17 type permanent magnets 物理学报. 2017, 66(22): 226101 https://doi.org/10.7498/aps.66.226101

电学方法调控磁化翻转和磁畴壁运动的研究进展

Progress of electrical control magnetization reversal and domain wall motion 物理学报. 2017, 66(2): 027501 https://doi.org/10.7498/aps.66.027501

温度、缺陷对磁畴壁动力学行为的影响

Influences of material defects and temperature on current-driven domain wall mobility 物理学报. 2016, 65(23): 237501 https://doi.org/10.7498/aps.65.237501

稀土永磁体及复合磁体反磁化过程和矫顽力*

李柱柏1)3)† 李赟1)2) 秦渊1)2) 张雪峰1)2) 沈保根3)

1) (内蒙古科技大学,白云鄂博矿多金属资源综合利用重点实验室,包头 014010)

2) (内蒙古科技大学理学院,包头 014010)

3) (中国科学院物理研究所, 磁学国家重点实验室, 北京 100190)

(2019年3月14日收到; 2019年6月7日收到修改稿)

稀土永磁体即使内秉性质相同,但矫顽力可能相差很大.本文以 Pr-Fe-B 磁体为例,从热激活反磁化即 反磁化临界过程探讨决定矫顽力的关键因素.Pr-Fe-B 晶粒表层缺陷区与晶粒内部耦合推动反磁化畴形核从 而去钉扎,晶粒表层缺陷区的各向异性对克服晶粒内部势垒具有贡献,因此反磁化形核场和矫顽力大大降低. 由于晶粒表层缺陷区与晶粒内部耦合,在反磁化临界过程磁畴壁尺寸稍大于理论尺寸.具有软、硬磁相结构 的 Pr-Fe-B 复合磁体,软、硬磁相晶粒之间交换耦合作用也会增大反磁化畴壁尺寸.软、硬磁交换耦合的能量 对克服硬磁相晶粒内部各向异性势垒也会有贡献,这将进一步降低磁体矫顽力.添加 Ti, Nb 高熔点金属,复 合磁体矫顽力显著提高.分析认为,这不仅仅是磁体晶粒尺寸减小的缘故.热激活尺寸减小说明磁畴壁中包 含的硬磁相晶粒表层缺陷区尺寸减小,硬磁相表面和两相界面各向异性对克服硬磁相晶粒内部势垒的贡献 减小,反磁化所需外磁场增大.

关键词: 永磁体, 矫顽力, 磁畴壁, 缺陷 PACS: 75.30.Gw, 75.50.Ww, 75.60.Jk, 75.60.Lr

DOI: 10.7498/aps.68.20190364

1 引 言

稀土永磁体矫顽力源于磁体高磁晶各向异性 场^[1], 磁晶各向异性场与晶体周期性点阵结构和结 构对称性破缺密切相关.但是即使磁体内秉性质磁 晶各向异性场相同, 矫顽力可能相差很大^[2,3].一般 认为这是磁体微结构差异造成的, 因此矫顽力被认 为是结构敏感量^[4].但是如何理解微结构对矫顽力 的影响, 以及控制磁体微结构提高磁性能, 一直处 于探索过程中.实际晶体点阵结构不可能是完美 的, 磁体的缺陷如空位、间隙原子、弛豫、替代原 子, 会严重影响磁晶各向异性场.在晶粒边界点阵 结构的周期性失去, 空位等缺陷密集, 因此晶粒边 界磁晶各向异性场显著降低^[4,5].反磁化从弱各向 异性的缺陷处或软磁相开始^[6-8],但是需要越过晶 粒内部磁晶各向异性势垒^[9,10],这是反磁化畴形核 理论,实际上这也是磁畴壁去钉扎过程^[11-13].一旦 磁畴壁在内部形核,就可以在晶粒内甚至跨过多个 晶粒自由移动,直至移动到另一晶粒边界处被反转 场更高的晶粒钉扎,这时需要增大外磁场促进新的 磁畴壁形核去钉扎^[13].所以从这个层面上来说,磁 畴形核和钉扎是一致的^[11],这两个概念并不一定 矛盾^[11,13].但是形核过程是如何决定磁体矫顽力^[14], 这依然是需要清晰阐述的问题.热激活是不可逆过 程,是反磁化的临界过程^[15,16],这为研究反磁化和 矫顽力提供了途径.本文制备三种 Pr-Fe-B 磁体, 对热激活形核的磁畴壁尺寸进行对比分析,期望能 对反磁化过程和矫顽力进行更清晰深入的阐述.

* 国家自然科学基金 (批准号: 51861030, 51571126) 和国家重点基础研究发展计划 (批准号: 2016YFB0700900) 资助的课题.

[†] 通信作者. E-mail: lzbgj@163.com

^{© 2019} 中国物理学会 Chinese Physical Society

2 实验方法

在氩气保护下通过电弧熔炼制备名义成分为 Pr₁₂Fe₈₂B₆, Pr₉Fe_{85.5}B_{5.5}, Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5}母 合金.然后将母合金破为小块,将约 2.5 g的合金 小块放入石英管中,采用熔体快淬甩带方法用氩气 将石英管中合金熔体吹到旋转的铜轮上,制成快淬 条带.对于 Pr₁₂Fe₈₂B₆, Pr₉Fe_{85.5}B_{5.5}合金,铜轮表 面线速度在 20—25 m/s 的范围内调整,使磁性能 最佳.对于 Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5}合金,铜轮表面线 速度为 10 m/s 磁性能最佳.采用 X 射线衍射方法 检验薄带相组成,采用超导量子干涉仪振动磁强 计 (SQUID VSM)测量样品的磁性能、热激活反磁 化曲线,薄带平面与磁场方向平行,从宏观上样品 退磁因子忽略不计.

3 结果与讨论

图 1 为样品粉末的 X 射线衍射谱. $Pr_{12}Fe_{82}B_6$ 组成相主要为 $Pr_2Fe_{14}B$ 晶体相, 平均晶粒尺寸约 为 20—30 nm^[17]. $Pr_9Fe_{85.5}B_{5.5}$, $Pr_9Fe_{82.5}Ti_2Nb_1B_{5.5}$ 薄带在 2 θ 为 44.3°的衍射峰更强,这应为 α -Fe 的 衍射峰与 $Pr_2Fe_{14}B$ 的衍射峰叠加增强所致,因此 薄带为 $Pr_2Fe_{14}B$ 和 α -Fe 相复合结构. 2 θ 为 44.3° 的 X 射线衍射峰强度几乎相同,可以认为这两种 薄带软磁相 α -Fe 含量基本相同^[18]. 透射电镜显示 晶粒尺寸大多在 20—30 nm 之间,但 $Pr_9Fe_{85.5}B_{5.5}$ 薄带大尺寸晶粒较多, $Pr_9Fe_{82.5}Ti_2Nb_1B_{5.5}$ 薄带晶 粒稍显细小、尺寸更为一致^[18]. 图 2 为快淬薄带的

图 1 样品粉末的 X 射线衍射谱

Fig. 1. The X-ray diffraction patterns of powders for the samples.

磁滞回线, $Pr_{12}Fe_{82}B_6$ 薄带矫顽力为 13.30 kOe (1 Oe = 79.5775 A/m), 而具有 $Pr_2Fe_{14}B/\alpha$ -Fe 复合结构的 $Pr_9Fe_{85.5}B_{5.5}$ 薄带矫顽力下降到 6.07 kOe, 但添加高熔点元素 Ti, Nd 的薄带 $Pr_9Fe_{82.5}Ti_2Nb_1B_{5.5}$ 矫顽力升至 10.99 kOe.

图 2 样品在温度 300 K 的磁滞回线

为探索这些磁体矫顽力差异的原因, 对不同温 度下磁体矫顽力进行测试, 可以获得矫顽力和磁晶 各向异性场之间的关系^[19,20]. 从图 3 可以看出, 矫 顽力和硬磁相磁晶各向异性场成线性关系, 符合 Kronmüller 公式 $\mu_0H_c(T)/J_s(T) = a_K a_{ex} \mu_0 H_N^{min}(T)/$ $J_s(T) - N_{eff}^{[19]}, H_N^{min}$ 为各向同性磁体反磁化的理 论形核场, 即磁晶各向异性场的 1/2, 数值上为 $H_N^{min} = K_1/J_s, K_1$ 为磁晶各向异性常数, J_s 为饱和 磁化强度, 取值于文献 [20]. 图 3 说明硬磁相晶粒 磁晶各向异性场是获得高矫顽力的基础, 反磁化畴 形核和位移需要越过硬磁相晶粒内部磁晶各向异 性场势垒^[12]. 微结构因子 a_K 表示硬磁相晶粒表层

图 3 样品的 $\mu_0 H_c/J_s = \mu_0 H_N^{\min}/J_s$ 之间的关系 Fig. 3. The dependences of $\mu_0 H_c/J_s$ on $\mu_0 H_N^{\min}/J_s$ for all samples.

由于缺陷造成的各向异性降低对矫顽力的影响; a_{ex}表示晶粒之间交换耦合作用对矫顽力的影响; N_{eff}为退磁因子,反映磁体内部偶极作用对矫顽力 降低的程度.由图3可知,磁体矫顽力差异主要体 现在因子a_Ka_{ex}上.Pr₁₂Fe₈₂B₆薄带基本为单相,可 认为a_{ex} = 1^[19].Pr₉Fe_{85.5}B_{5.5}和Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5} 复合磁体中因为软磁相α-Fe含量基本相同, a_{ex}可 认为是一样的^[19].所以Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5}复合磁体 a_K比Pr₉Fe_{85.5}B_{5.5}大得多,说明Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5} 硬磁相晶粒边界得到优化^[19],这也是矫顽力增加 的原因.因此,尽管反磁化需要越过硬磁相晶粒内 部磁晶各向异性场势垒,由于晶粒边界和内部耦合 以及软、硬磁相晶粒之间交换耦合作用对磁反转越 过势垒具有推动作用,晶粒表层缺陷区的特性及软 磁相对反磁化形核过程和矫顽力的影响很关键^[14].

虽然反磁化过程基本清晰,但对晶粒边界和内 部耦合是如何决定磁反转场和矫顽力问题还需进 一步研究. 在外场小于磁反转场的情况下磁反转是 可逆的,当越过晶粒内部磁晶各向异性场势垒才能 实现不可逆的反磁化[10,12]. 反磁化的热激活源于热 扰动通过激活体积越过势垒的不可逆反磁化[15,16], 研究热激活可以探索反磁化临界过程的磁反转场 和矫顽力. 图 4 为薄带在温度 300 K 磁场保持 1200 s 测量的热激活反磁化曲线. 首先, 将样品在正方向 饱和磁化,然后负方向加一约为矫顽力大小的磁场 并保持 1200 s. 由于热扰动, 即使外磁场并没有增 加,一些反转场稍高的磁矩会发生反转.保持磁场 1200 s之后, 以较慢速度 10 Oe/s 增加磁场, 这时 磁体磁矩较稳定,只有磁场升到一定值时才出现显 著的磁反转,这段磁场增加值就是热扰动的后效 场,也就是热扰动场.如图4所示,可通过对反磁 化曲线做切线来获得热扰动场 H_f^[17].

热稳定性不但与温度相关,也与物质体积相 关.物质体积越小,热稳定性越差,热扰动场越大^[21]. 可通过公式 $d_{active} = \sqrt[3]{v}$, $v = k_{B}T/(H_{f}M_{s})[k_{B} =$ 1.38 × 10⁻²³ J/K, T = 300 K, $M_{s} = 1.55$ T] 计算 出热激活尺寸 d_{active} ^[15,16,20]. Pr₁₂Fe₈₂B₆, Pr₉Fe_{85.5}B_{5.5}, Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5} 薄带热激活尺寸分别为 5.47, 6.25, 4.80 nm (见图 4 插图),与 Pr₂Fe₁₄B 磁体理 论磁畴壁尺寸 3.70 nm 在同一数量级 (根据 $\delta_{m} = \pi\sqrt{A/K}$, A 为交换耦合常数,为 7.8 × 10⁻¹² J/m, K为磁晶各向异性常数,在温度为 300 K 时等于 5.6 MJ/m³)^[20],这符合在硬磁相晶粒磁畴壁形核反 磁化理论. 由于晶粒表层缺陷区和内部耦合推动反 磁化畴从边界到内部形核,热激活尺寸 dactive 稍微 大于理论磁畴壁尺寸δ_m,小于晶粒尺寸^[22,23],实际 上为反磁化临界过程磁畴壁尺寸^[23].反磁化过程 是外磁场以及磁体偶极作用克服硬磁相晶粒内部 磁晶各向异性势垒的过程. 但是晶粒表层也具有较 小的各向异性场,由于表层和内部的耦合作用,晶 粒表层各向异性对克服晶粒内部势垒也有贡献,所 以反磁化所需外磁场就减小,磁体矫顽力降低.相 对于 Pr₁₂Fe₈₂B₆ 薄带, Pr₉Fe_{85.5}B_{5.5} 热激活尺寸增 加,这说明在反磁化临界过程中更多的硬磁相表层 缺陷区和软磁相包含在这个磁畴壁内,其他研究也 说明软磁相的存在使得热激活体积增大[24]. 软磁 相的交换耦合能和硬磁相晶粒表层缺陷区的各向 异性能对克服晶粒内部势垒的贡献增大,所以磁反 转所需外磁场减小,矫顽力进一步降低.添加 Ti, Nb后,热激活尺寸减小,这应归结为硬磁相晶粒 表层缺陷区的特性发生变化^[25],很可能硬磁相晶 粒表层缺陷区尺寸减小,从硬磁相到软磁相各向异 性的过渡更急剧[11,23],反磁化过程晶粒表面各向异 性的能量就下降,为克服晶粒内部势垒所需外磁场 就升高,磁体矫顽力增强.如图3所示, ProFes25Ti2 Nb1B5.5 薄带微结构因子aK比 Pr9Fe85.5B5.5 大得多 也证明 Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5} 硬磁相晶粒边界得到 优化,缺陷较少^[26],这样缺陷区的尺寸就会减小. 一些研究也发现,软、硬磁相界面原子扩散会降低 复合磁体矫顽力^[27-29], 而在界面加 Ta 等元素, 阻

图 4 温度 300 K 磁场保持 1200 s 样品的热激活后的磁行 为, 插图为热激活不可逆过程的激活尺寸和理论磁畴壁尺寸 Fig. 4. The magnetization behaviors of thermal activation for 1200 s of waiting time at temperature of 300 K, and the inset shows the activation size of thermal activation and the ideal domain wall size.

止 Fe 原子扩散破坏硬磁相的晶体结构,软硬磁界 面更加清晰^[30],磁体矫顽力显著升高,这应归结于 硬磁相晶粒表层缺陷区尺寸减小,反磁化过程中表 层缺陷区各向异性对克服硬磁相晶粒内部势垒的 贡献减弱.

软、硬磁相晶间交换耦合作用对克服硬磁相晶 粒内部势垒也有贡献. Henkel 点可检验纳米晶各 向同性磁体晶间交换耦合作用的强弱,可由公式 所示). M_r(H)为热退磁磁体正方向加磁场 H 后将 磁场降到零的剩磁, Mr 是饱和磁化后的剩磁, M_d(H)为磁体饱和磁化、加反方向磁场 H 后将磁 场降到零的剩磁. 正δm 值说明晶粒之间存在很强 的交换耦合作用. $Pr_{12}Fe_{82}B_6$ 薄带 δm 值最大, 但 $Pr_9Fe_{85}B_6$ 薄带的 δm 最大值下降. 对于各向同性磁 体, δm 值主要反映硬磁相晶粒反磁化的一致性^[13]. 而在复合磁体中,由于软磁相的存在,硬磁相晶粒 之间反磁化过程就变得不一致,所以δm最大值下 降[13]. 但反磁化曲线并没有出现台阶, 说明软、硬 磁相交换耦合作用良好,交换耦合能会促进克服硬 磁相晶粒内部各向异性势垒,因此磁体矫顽力降 低. δm负值增大,这可能是由于晶粒尺寸分布不 均匀造成的,磁体内部不规则区域磁偶极作用更容 易增大. 在外磁场的作用下这些不规则区域更容易 首先反磁化,所以 PrgFe85B6 薄带退磁因子 Neff 增 大. 依据前面推测, 如果硬磁相晶粒表层缺陷区尺 寸较大、各向异性过渡较为平缓,虽然矫顽力降低, 但交换耦合长度增加[32],所以即使软磁相晶粒较 大也能良好耦合. Ti, Nb 弱磁性元素添加并没有 $(φ \delta m$ 降低,反而有所升高,这应归结为晶粒较为

Fig. 5. δm curves (Henkel plots) for the samples at temperature of 300 K.

细小、尺寸分布趋于一致.前面推测软、硬磁相界 面各向异性的过渡更急剧,磁体矫顽力升高,但这 样软、硬磁交换耦合长度会减小^[32].为使两相反磁 化一致,磁体内不能出现大尺寸的软磁相.

4 结 论

主要从反磁化热激活的角度分析 Pr12Fe82B6 磁体和 Pr₉Fe_{85.5}B_{5.5}, Pr₉Fe_{82.5}Ti₂Nb₁B_{5.5}软、硬磁 相复合磁体的反磁化过程和矫顽力. 热激活为克服 能量势垒的不可逆反磁化过程. 硬磁相晶粒表面缺 陷区、软磁相都可以通过耦合作用推动硬磁相晶粒 内部反磁化畴形核克服磁晶各向异性势垒,因而硬 磁相表层缺陷区各向异性能、交换耦合能对克服晶 粒内部的势垒都有贡献,导致磁体矫顽力降低.同 时由于耦合,反磁化临界过程磁畴壁尺寸都稍大于 理论尺寸. 通过热激活尺寸和矫顽力分析, 降低硬 磁相晶粒表层缺陷区尺寸,或使软、硬磁界面各向 异性急剧过渡,反磁化磁畴壁尺寸会减小,硬磁相 表层缺陷和界面对克服势垒的贡献减小,磁体矫顽 力得到增强. 期望本文的研究能对进一步理解磁体 反磁化过程、优化磁体微结构提高矫顽力提供理论 基础和实践依据.

参考文献

- [1] Herbst J F 1991 Rev. Mod. Phys. 63 819
- [2] Kou X C, Kronmüller H, Givord D, Rossignol M F 1994 *Phys. Rev. B* 50 3849
- [3] Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513
- [4] Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2002 *Phys. Rev. B* 66 184436
- [5] Kronmüller H 1987 Phys. Stat. Sol. B 144 385
- [6] Sepehri-Amin H, Ohkubo T, Shima T, Hono K 2012 Acta Mater. 60 819
- [7] Chen S L, Liu W, Zhang Z D 2005 Phys. Rev. B 72 224419
- [8] Yue M, Liu W Q, Zhang D T, Jian Z G, Cao A L, Zhang J X 2009 Appl. Phys. Lett. 94 092501
- [9] Givord D, Tenaud P, Viadieu T 1988 IEEE Trans. Magn. 24 1921
- [10] Gao R W, Zhang D H, Li H, Jiang S T, Zhou S Z, Li F B, Zhang L D 1995 J. Appl. Phys. 78 1156
- [11] Zhao G P, Wang X L, Yang C, Xie L H, Zhou G 2007 J. Appl. Phys. 101 09K102
- [12] Givord D, Rossignol M, Barthem V M T S 2003 J. Magn. Magn. Mater. 258 – 259 1
- [13] Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405
- [14] Kronmüller H, Durst K D, Sagawa M 1988 J. Magn. Magn. Mater. 74 291

- [15] Wohlfarth E P 1984 J. Phys. F: Met. Phys. 14 L155
- [16] Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 722 (in Chinese) [张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 722]
- [17] Li Z B, Shen B G, Niu E, Liu R M, Zhang M, Sun J R 2013 *Chin. Phys. B* 22 117503
- [18] Li Z B, Zhang Y, Shen B G, Zhang M, Hu F X, Sun J R 2017 J. Magn. Magn. Mater. 422 249
- [19] Bauer J, Seeger M, Zern A, Kronmüller H 1996 J. Appl. Phys. 80 1667
- [20] Zhang H W, Rong C B, Du X B, Zhang S Y, Shen B G 2004 J. Magn. Magn. Mater. 278 127
- [21] Kronmüller H, Fahnle M 2003 Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge: Cambridge University Press) p420
- [22] Zhang H W, Zhang S Y, Shen B G, Goll D, Kronmüller H 2001 Chin. Phys. 10 1169
- [23] Li Z B, Shen B G, Zhang M, Zhang Y, Hu F X, Sun J R 2015 *Appl. Phys. Lett.* **106** 042403

- [24] Zhang H W, Zhang W Y, Yan A R, Shen B G 1999 Acta Phys. Sin. 48 211 (in Chinese) [张宏伟, 张文勇, 阎阿儒, 沈保 根 1999 物理学报 48 211]
- [25] Li H L, Lou L, Hou F C, Guo D F, Li W, Li X H, Gunderov D V, Sato K, Zhang X Y 2013 Appl. Phys. Lett. 103 142406
- [26] Seeger M, Köhler D, Kronmüller H 1994 J. Magn. Magn. Mater. 130 165
- [27] Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104
- [28] Zhang J, Takahashi Y K, Gopalan R, Hono K 2005 Appl. Phys. Lett. 86 122509
- [29] Si W J, Zhao G P, Ran N, Peng Y, Morvan F J, Wan X L 2015 Sci. Rep. 5 16212
- [30] Cui W B, Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530
- [31] Kelly P E, O'Grady K, Mayo P I, Chantrell R W 1989 IEEE Trans. Magn. 25 3881
- [32] Choi Y, Jiang J S, Ding Y, Rosenberg R A, Pearson J E, Bader S D, Zambano A, Murakami M, Takeuchi I, Wang Z L, Liu J P 2007 *Phys. Rev. B* **75** 104432

Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets^{*}

Li Zhu-Bai $^{1)3)\dagger}$ Li Yun $^{1)2)}$ Qin Yuan $^{1)2)}$

Zhang Xue-Feng¹⁾²⁾ Shen Bao-Gen³⁾

 (Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China)

2) (School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China)

3) (State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
(Received 14 March 2019; revised manuscript received 7 June 2019)

Abstract

The coercivities in rare earth permanent magnets even with the same intrinsic properties may differ largely. In this paper, what determines the coercivity is discussed via the investigation of thermal activation in Pr-Fe-B ribbons prepared by melt-spinning method. The thermal activation, resulting from thermal fluctuation overcoming the energy barrier under the applied field, is the critical behavior of magnetization reversal. The activation size is comparable to the theoretical domain wall size, implying that the magnetization reversal undergoes the nucleation of revered domain wall at grain outer-layer in Pr-Fe-B ribbons, and the defects near the grain boundary are critical for the magnetization reversal and coercivity. The exchange coupling between the defect region at grain outer-layer and the perfect region in the inside of grain promotes the nucleation of reversed domain and the depinning of domain wall motion. The reduced anisotropy of the defect region also contributes to the overcoming of energy barrier of magneto crystallie anisotropy in the inside of Pr-Fe-B grains by the coupling effect, so the nucleation field of reversed domain and coercivity decrease largely, and the domain wall size is a little larger than the theoretical value due to the coupling between the defect region at grain outer-layer and the perfect region in the inside of grain in the critical magnetization reversal. In $Pr_2Fe_{14}B/\alpha$ -Fe composite magnets, the exchange coupling between the soft and hard magnetic phase leads the domain wall size to increase in the critical magnetization reversal of thermal activation, and so the exchange energy plays a role in overcoming the energy barrier, resulting in the further decrease of coercivity. Via the addition of Ti and Nb element, the coercivity increases significantly. Based on the investigation of thermal activation, the size of defect region involved in the domain wall decreases, and the contribution of the anisotropy in the defect region and interface to the overcoming of energy barrier is weakened, so the applied magnetic field should be increased in the magnetization reversal. The coercivity can be enhanced by reducing the size of defect region at grain outer-layer and by making the anisotropy change abruptly at the interface between the hard and soft magnetic phase.

Keywords: permanent magnets, coercivity, domain wall, defect

PACS: 75.30.Gw, 75.50.Ww, 75.60.Jk, 75.60.Lr

DOI: 10.7498/aps.68.20190364

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51861030, 51571126) and the State Key Development Program for Basic Research of China (Grant No. 2016YFB0700900).

[†] Corresponding author. E-mail: lzbgj@163.com