钙钛矿/硅叠层太阳电池中平面 a-Si:H/c-Si 异质结 底电池的钝化优化及性能提高*

陈俊帆¹⁾²⁾³⁾⁴⁾ 任慧志¹⁾²⁾³⁾⁴⁾ 侯福华¹⁾²⁾³⁾⁴⁾ 周忠信^{1)2)3)4)</sub> 任千尚¹⁾²⁾³⁾⁴⁾ 张德坤¹⁾²⁾³⁾⁴⁾ 魏长春¹⁾²⁾³⁾⁴⁾ 张晓丹^{1)2)3)4)†} 侯国付^{1)2)3)4)‡} 赵颖¹⁾²⁾³⁾⁴⁾}

1) (南开大学, 光电子薄膜器件与技术研究所, 天津 300071)

2) (天津市光电子薄膜器件与技术重点实验室, 天津 300071)

3) (薄膜光电子技术教育部工程研究中心, 天津 300071)

4) (天津市中欧太阳能光伏发电技术联合研究中心, 天津 300071)

(2018年9月25日收到; 2018年11月27日收到修改稿)

最近,旋涂法制备的钙钛矿/平面硅异质结高效叠层太阳电池引起人们广泛关注,主要原因是相比于绒 面硅衬底制备的钙钛矿/硅叠层太阳电池,其制备工艺简单、制备成本低且效率高.对于平面 a-Si:H/c-Si 异质 结电池, a-Si:H/c-Si 界面的良好钝化是获得高转换效率的关键,进而决定了钙钛矿/硅异质结叠层太阳电池的 性能.本文主要从硅片表面处理、a-Si:H 钝化层和 P 型发射极等方面展开研究,通过对硅片表面的氢氟酸 (HF)浸泡时间和氢等离子体预处理气体流量、a-Si:H 钝化层沉积参数、钝化层与 P 型发射极 (I/P) 界面富氢 等离子体处理的综合调控,获得了相应的优化工艺参数.对比研究了 p-a-Si:H 和 p-nc-Si:H 两种缓冲层材料对 I/P 界面的影响,其中高电导、宽带隙的 p-nc-Si:H 缓冲层既能够降低 I/P 界面的缺陷态,又可以增强 P 型发 射层的暗电导率,提高了前表面场效应钝化效果.通过上述优化,制备出最佳的 P-type emitter layer/a-Si:H(i)/c-Si/a-Si:H(i)/N-type layer (inip) 结构样品的少子寿命与 implied-V_{oc}分别达到 2855 μs 和 709 mV,表 现出良好的钝化效果.应用于平面 a-Si:H/c-Si 异质结太阳电池,转换效率达到 18.76%,其中开路电压达到 681.5 mV,相对于未优化的电池提升了 34.3 mV.将上述平面 a-Si:H/c-Si 异质结太阳电池作为底电池,对应的 钙钛矿/硅异质结叠层太阳电池的开路电压达到 1780 mV,转换效率达到 21.24%,证明了上述工艺优化能够 有效地改善叠层太阳电池中的硅异质结底电池的钝化及电池性能.

关键词: a-Si/c-Si 异质结,界面钝化,少子寿命,钙钛矿/硅异质结叠层太阳电池
PACS: 81.65.Cf, 81.65.Rv, 88.40.hj, 88.40.jj
DOI: 10.7498/aps.68.20181759

1 引 言

硅异质结 (SHJ) 太阳电池是在单晶硅衬底上 依次沉积本征非晶硅和掺杂非晶硅薄膜组成的一 种低成本、高效率太阳电池,具有制备工艺温度 低、开路电压高、温度系数较低等优势,近年来受 到国际著名公司和科研院所的广泛关注^[1].目前, 日本 Kaneka 公司制备的交叉指背接触硅异质结 太阳电池 (HBC)已经取得 26.63% 的世界最高效 率^[2],引领了硅异质结太阳电池的发展.基于 Kerr

© 2019 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*} 科技部国际合作项目 (批准号: 2014DFE60170)、国家自然科学基金 (批准号: 61474065, 61674084, 61474066)、高等学校学科创 新引智计划 (111 计划)(批准号: B16027)、光学信息技术科学教育部重点实验室开放基金 (批准号: 2017KFKT015) 和中央高校 基本科研业务费资助的课题.

[†] 通信作者. E-mail: xdzhang@nankai.edu.cn

[‡] 通信作者. E-mail: gfhou@nankai.edu.cn

等³³提出的库仑增强俄歇复合模型, Richte 等⁴⁴计 算得出单晶硅太阳电池的理论极限效率为 29.43%. 为了进一步突破上述效率限制, 基于光谱分割原 理, 依次利用不同禁带宽度的材料制备成光谱响应 不同的太阳电池, 并且叠加在一起来达到充分利用 太阳光谱的目的, 也就是叠层太阳电池的概念^[5,6].

近年来钙钛矿太阳电池得到了快速进展,认证效率已经高达 23.2%^[7],得益于其出色的短波段光 谱响应、高开路电压以及方便可调的带隙宽度^[8], 并且能够与晶体硅太阳电池形成良好的匹配,从而 被认为是顶电池的理想选择之一.以钙钛矿作为顶 电池和硅异质结作为底电池组成的钙钛矿/硅异质 结叠层太阳电池,是目前关注度最高的叠层电池技 术,模拟计算其极限效率高达 45.7%^[9].

钙钛矿/硅异质结叠层太阳电池多采用平面 SHJ 太阳电池作为底电池,原因在于底电池平整的 上表面便于后续钙钛矿顶电池采用旋涂工艺制 备^[9-12].虽然平面 SHJ 太阳电池的短路电流密度 通常偏低 (≤ 36 mA/cm²)^[13-15],但是平整的表面 有利于获得更好的钝化性能,可以获得高开路电 压 (V_{oc} = 738 mV)^[14]. a-Si:H/c-Si 异质结太阳电 池属于高效率的 SHJ 电池之一,其良好的界面钝 化是获得高效太阳电池的关键,其钝化性能与异质 结界面特性密切相关,进而影响叠层太阳电池的效 率.本文从硅片表面处理、a-Si:H 钝化层以及 P 型 发射极等方面入手,对平面 a-Si:H/c-Si 异质结的 钝化性能进行了研究,旨在改善界面钝化效果以及 提高底电池器件性能,以便最终获得高效率的钙钛 矿/硅异质结叠层太阳电池.

2 界面钝化理论

半导体中少数载流子的复合,在体内主要有三种复合机理,即辐射复合、陷阱辅助复合 (SRH) 和 俄歇复合.其中,半导体内的杂质和缺陷能够俘获 载流子,从而增大载流子的复合速率,所以将它们称为陷阱,对应的复合称为 SRH 复合^[16].在硅片 表面处由于出现了悬挂键,表面复合主要是 SRH 复合.钝化的目的就是尽量减少这些表面陷阱所引 起的少子复合,主要通过化学钝化和场效应钝化两 种途径来实现.

化学钝化通常在硅片制备一层薄膜 (SiO₂^[17], SiN_x^[18], Al₂O₃^[19,20], a-Si:H^[21,22]等), 依靠薄膜中的 各原子 (如 H, O, N 等) 与硅片表面的悬挂键结合, 饱和这些陷阱能级. 而场效应钝化通过调制表面势 场使载流子远离表面,从而降低硅片表面陷阱对载 流子寿命的影响(例如增加 P 型缓冲层以便提升 PN 结中 P 型发射极的导电性,提升了对载流子的 抽取能力^[23],从而降低硅片表面的载流子浓度).

根据 SRH 复合理论^[24,25],载流子通过缺陷能级进行复合的复合率 U_s可表示为

$$U_{\rm s} = \frac{np - n_{\rm i}^2}{\tau_{\rm p}(n + n_1) + \tau_{\rm n}(p + p_1)}$$
$$= \frac{(np - n_{\rm i}^2)\sigma_{\rm n}\sigma_{\rm p}v_{\rm th}}{\sigma_{\rm n}(n + n_1) + \sigma_{\rm p}(p + p_1)}D_{\rm it}, \qquad (1)$$

其中 n_i 为本征载流子浓度, $n \ \pi p \ \beta$ 别为电子和空 穴的浓度, $\tau_n \ \pi_p \ \beta$ 别为电子和空穴的寿命, $\sigma_n \ \pi$ $\sigma_p \ \beta$ 别为电子和空穴的俘获截面, v_{th} 为载流子热 运动速度 (300 K 时, 约为 107 cm/s), D_{it} 为界面 态密度. $n_1 \ \beta E_i \ \pi E_t$ 重合时导带的平衡电子浓度; $p_1 \ \beta E_i = E_t$ 重合时价带的平衡空穴浓度, 分别表 示为

$$n_1 = n_i \exp\left(\frac{E_t - E_i}{kT}\right),$$
 (2a)

$$p_1 = n_i \exp\left(\frac{E_i - E_t}{kT}\right),$$
 (2b)

其中 E_i 为本征费米能级, E_t 为缺陷能级, k 为玻尔 兹曼常数, T 为 Kelvin 绝对温度.

从 (1) 式、(2a) 式和 (2b) 式可知, 为了降低界 面态复合率 U_s, 可从两方面入手: 一是降低界面态 密度 D_{it}; 二是降低界面处自由电子或空穴的浓度. 这两者正好是化学钝化和场效应钝化理论在公式 中的体现.

有效少数载流子寿命 (少子寿命)_{τeff}与硅片体 复合和表面复合有关,考虑到硅片体复合包含三种 复合机制,它们之间的关系可表示为^[16]

$$\frac{1}{\tau_{\rm eff}} = \frac{1}{\tau_{\rm rad}} + \frac{1}{\tau_{\rm A}} + \frac{1}{\tau_{\rm SRH}} + \frac{1}{\tau_{\rm surf}}, \qquad (3)$$

其中 τ_{rad} 为辐射复合寿命, τ_A 为俄歇复合寿命, τ_{SRH} 为 SRH 复合寿命, τ_{surf} 为表面寿命,根据 Sproul^[26]的研究,对称样品(硅片正反两面有相同钝化质量)的 τ_{surf} 可表示为

$$\tau_{\rm surf} = \frac{W}{2S} + \frac{1}{D} \left(\frac{W}{\pi}\right)^2,\tag{4}$$

其中 W为电池厚度, S为表面复合速度, D为少数 载流子的扩散系数.

那么由(3)式和(4)式可知,少子寿命表达式为

$$\frac{1}{\tau_{\rm eff}} = \frac{1}{\tau_{\rm rad}} + \frac{1}{\tau_{\rm A}} + \frac{1}{\tau_{\rm SRH}} + \frac{1}{\frac{W}{2S} + \frac{1}{D} \left(\frac{W}{\pi}\right)^2}.$$
 (5)

在 SHJ 电池中, a-Si:H/c-Si 的界面特性对电 池的性能至关重要, 如果界面复合是太阳电池中载 流子的主要复合机制, 则电池的开路电压^[27]可表 示为

$$V_{\rm oc} = \frac{\Phi_{\rm B}}{q} - \frac{nkT}{q} \ln\left(\frac{qN_{\rm v}S}{J_{\rm sc}}\right), \qquad (\ 6\)$$

其中 N_v 为晶体硅侧的有效价带态密度, Φ_B 为有效 界面势垒, J_{sc} 为短路电流密度, n 为二极管品质因 子, q代表元电荷. S与界面处载流子复合率 U_s 有 关, 即

$$S = \frac{U_{\rm s}}{\Delta n}.\tag{7}$$

结合 (1) 式和 (5)—(7) 式可知, 电池的 V_{oc} 与界面 势全 Φ_{B} 及表面复合速率 S 有关. 而 SHJ 电池的界 面两边材料不同, 因此界面缺陷态密度可能更高. 减少界面态密度、降低表面复合速率是 SHJ 电池 获得高 V_{oc} 的关键. 如果测得实验 P-type emitter layer/a-Si:H(i)/c-Si/a-Si:H(i)/N-type layer (inip) 结构样品有效少子寿命 τ_{eff} (下文都用 T_{eff} 表 示) 越高, 那么表面复合速率 S 越低, 界面处载流 子复合率 U_{s} 也会越低, 界面态密度 D_{it} 越低, 实现 了 a-Si:H/c-Si 界面处的化学钝化或场效应钝化, 进而可获得优异的钝化性能, 最终达到取得高 V_{oc} 的目的. 因此, 本文通过测试 inip 结构样品的 有效少子寿命和 implied- V_{oc} (i V_{oc}) 表征其钝化性能.

3 实验

3.1 实验材料与设备

实验采用〈111〉晶向的区熔 (Fz) N 型双面 抛光单晶硅片作为衬底, 其电阻率为 2—10 Ω·cm, 厚度为 (275 ± 10) µm. 以本征 a-Si:H 作为钝 化层,改变氢稀释率 $R_{\rm H}$ ($R_{\rm H} = [{\rm H}_2]/[{\rm SiH}_4]$),在 衬底温度 160 ℃、沉积压强 1.0 Torr (1 Torr≈ 133.322 Pa)、辉光功率密度 25 mW/cm² 实验条件 下,通过等离子体化学气相沉积 (PECVD)系统获 得.发射材料 p-nc-SiO_x:H 采用 H₂/SiH₄/TMB/ CO₂ 为源气体,在沉积压强 1.98 Torr、辉光功率 13 W、衬底温度 190 ℃ 条件下通过 PECVD 系统 制备.通过 PECVD 沉积本征层与掺杂层而获得 inip 结构样品,采用美国 Sinton 公司 WCT-120 型

少数载流子寿命测试仪测试其少子寿命与 iVoc. 采 用电子束蒸发技术制备透明导电氧化物 (ITO), 其 反射率与透过率采用型号为 Varian-Cary 5000 的 紫外-可见光-近红外分光光度计进行测试.采用日 本 Wacom 公司 WXS-156S-L2 型双光源太阳模拟 器测试平面 a-Si:H/c-Si 太阳电池的光态 J-V曲线, 测试条件为室温 25 ℃,光谱 AM1.5, 功率密度 100 mW/cm². 采用日本 Asahi Spectra 公司的 HAL-320型太阳光谱模拟器在充有氮气的手套箱 中测试钙钛矿/硅异质结叠层太阳电池的光态 J-V曲线, 测试温度为 25 ℃, 湿度小于 10%. 平面 a-Si:H/c-Si 太阳电池和钙钛矿/硅异质结叠层太阳 电池均采用 PV Measurement 公司 QEX10 型的 量子效率系统测试外量子效率 (EQE), 通过标准 AM1.5 光谱与 EQE 曲线进行积分, 从而获得电池 的短路电流密度.

3.2 样品制备

硅片的清洗,首先将切好的硅片放在去离子水中进行超声处理 15 min,然后采用 RCA 方法清洗、再经过浓 H₂SO₄ 与 H₂O₂ 混合溶液以及浓度 5% 的氢氟酸^[28]处理,最后快速放入 PECVD 设备的真空腔室中沉积相应的薄膜.以上清洗的每一步都用去离子水对硅片清洗 2—3 min.

洗净的硅片放入 PECVD 设备之前, 需经过 5%的 HF 溶液处理, 以便去除其表面的氧化层. 再 用氮气吹干,放入反应腔室.然后通入足量的氢气, 利用辉光放电产生的原子氢预处理硅片表面,去除 残留氧化物和氟化物,同时又能钝化硅片表面的缺 陷^[29,30]. 钝化层是 SHJ 电池中最关键的一层, 其钝 化性能与光吸收分别影响电池的 Voc 和 Jsc^[31]. 对 于 a-Si:H/c-Si 异质结太阳电池的钝化层,本文通 过改变 SiH₄ 流量 (Φ (SiH₄)) 与 H₂ 的流量 (Φ (H₂)) 以及氢稀释比 ($R_{\rm H} = [H_2]/[SiH_4]$) 来提高钝化层的 质量[32],同时调整其厚度来实现钝化、光吸收以及 载流子输运之间的平衡^[29].同时, a-Si:H/c-Si 硅异 质结太阳电池中本征 a-Si:H 钝化层的引入会使得 电池的串联电阻增加,填充因子下降[33].因而,需 要通过改善掺杂层实现场效应钝化,降低串联电 阻,提升开路电压和填充因子.P型掺杂层作为 SHJ 太阳电池的发射极,同时影响钝化性能、串联 电阻以及光利用率^[34]. 对于 P 型发射极, 本文从两 方面来改善异质结界面钝化效果以及 SHJ 电池器 件性能:一方面,在钝化层与 p-nc-SiO_x:H 层之间 增加富氢等离子体处理过程[35],弥补两者接触的界 面缺陷.由于此过程有少量的 SiH₄加入,相当于生 长了一层超薄缓冲层,调控钝化层与 p-nc-SiO_x:H 层之间最佳的带隙匹配,便于载流子的迁 移与输运,进而能够获得高的开路电压^[36].另一方 面,p-nc-SiO_x:H薄膜生长的初期先形成孵化层,而 后生成纳米晶粒^[37],导致其纵向导电性较差.本文 拟在沉积 p-nc-SiO_x:H 之前增加一层超薄的 P 型 缓冲层 (非晶硅或者微晶硅),期望减小孵化层厚 度,同时改善导电性与透过性.

本文在单晶硅片上双面沉积本征 a-Si:H 钝化 层,正反面分别沉积 P 型和 N 型的 nc-SiO_x:H 掺 杂层,从而获得 inip 结构样品,再测试其少子寿命 和 i V_{oc}.测试后在 inip 结构样品的正反面采用电子 束蒸发 ITO,在受光面蒸发 Ag/Al 混合的栅线电极,而背面则蒸发全 Al 电极,即形成完整的 a-Si:H/c-Si 硅 异质结电池.利用上述的平面 a-Si:H/c-Si 硅 异质结电池为底电池(受光面未蒸发金属电极,背部蒸发全 Al 电极),在其上使用旋涂法制备钙钛 矿顶电池,然后在叠层电池受光面蒸发 Au 栅线 电极.

4 结果与讨论

4.1 硅片的表面预处理

4.1.1 不同 HF 处理时间对 inip 结构样品钝化性 能的影响

Wang 等^[38]对绒面硅片的异质结电池进行了研究,浓度 1%的 HF 处理最佳时间为 60 s. HF 清洗硅片起到双重作用,去除表面的自然氧化层,获得疏水表面,同时 H+钝化硅表面的悬挂键^[39].对于平面硅片而言,为了获得最佳的氢氟酸 (5%)处理时间,将处理后的硅片样品放入 PECVD 系统中沉积本征层和掺杂层,然后测试 inip 结构样品对应的少子寿命 *T*eff 与 i *V*oc,结果如图 1 所示.

由图 1 可见, 在相同的钝化层和掺杂层条件下, 随着 HF 处理时间的延长, 对应 inip 结构样品的少子寿命和 i V_{oc} 呈现先增后减的趋势. 当 HF 处理时间为 90 s 时, 对应 inip 结构样品的少子寿命最高, 说明此时除去原氧化层和 H+化学钝化达到最佳, 结合本文第 2 节内容可知, 硅片表面的态密度 D_{it} 达到最低, 从而改善了其化学钝化性能. 当 HF 处理时间过短时, 硅表面氧化物去除较少, 且仍然存在大量界面态, 溶液中的 H+不足以钝化硅 片表面的悬挂键, 致使钝化性能偏低. 当 HF 处理 时间过长时,硅片表面微结构遭到破坏,会出现一定的缺陷态,从而导致钝化性能偏低^[40].此外,绒 面硅片和平面硅片最佳处理时间的差异可能与两 者不同的表面有密切关系.

4.1.2 不同氢气流量的氢等离子体预处理对 inip 结构样品钝化性能的影响

硅片经过最佳的 HF 处理时间 (90 s) 后, 在沉 积钝化层之前, 需要对硅片表面进行预氢处理. 采 用氢等离子体处理硅片表面, 去除 HF 处理过程 中残留的氟化物, 钝化硅片表面悬挂键, 增加反应 前驱物的扩散系数, 改善后续沉积的 a-Si:H 薄膜 微结构^[41]. Wang 等^[42]对绒面硅片的异质结电池进 行了研究, 氢等离子体处理过程的最佳氢气流量 为100 sccm (1 sccm = 1 mL/min).将经HF 处理90 s 后的平面硅片送入 PECVD 设备中, 通过改变氢气 流量对其进行氢等离子体处理, 再沉积本征层和掺 杂层, 测试对应 inip 结构样品的少子寿命与 iV_{oc}, 结果如图 2 所示.

图 1 inip 结构样品的少子寿命与 i V_{oc} 随 HF 处理时间的变化

Fig. 1. The effective minority carries lifetime and $i V_{oc}$ of inip samples with various hydrofluoric acid treatment time.

图 2 inip 结构样品的少子寿命与 i V_{oc} 随等离子体处理 过程 H₂ 流量的变化

Fig. 2. The effective minority carrier lifetimes and iV_{oc} of inip samples with different H₂ flow rates for hydrogen pretreatment.

由图 2 可见, 在相同钝化层与掺杂层条件下, 随着氢气流量的增加, 对应 inip 结构样品的少子 寿命与 i V_{oc} 先增加后减小. 当氢气流量为 120 sccm, 氢预处理 60 s 时, 相应 inip 结构样品的少子寿命 与 i V_{oc} 达到最大值, 表明该条件下硅片表面的氧 化物和氟化物将近完全去除, 其表面的缺陷态密 度 D_{it} 达到最低^[43], 改善了其化学钝化性能, 钝化 性能达到最佳. 而当氢气流量偏低时, inip 结构样 品的少子寿命与 i V_{oc} 偏低, 硅片表面的氧化物和 氟化物去除不完全, 其表面缺陷态密度偏高, 导致 钝化性能较差. 当氢气流量偏高时, 硅片表面上产 生额外的应变与缺陷, 不利于表面后续的钝化层的 沉积^[31].

4.2 钝化层的优化

4.2.1 不同氢稀释率对 inip 结构样品钝化性能的 影响

钝化层作为平面 SHJ 电池中至关重要的一层, 需要进一步探索优异的钝化性能.本课题组此前的 研究在氢稀释率 $R_{\rm H} = 5$ 时钝化性能达到最佳, a-Si:H/c-Si 硅异质结太阳电池能够取得一个较好 的电池性能,开路电压达到 700 mV^[44].此外, Fujjwara 和 Kondo^[45]固定 P 型发射极的厚度,通 过改变钝化层厚度研究其对 SHJ 电池性能的影响, 在钝化层度 4 nm 时电池性能达到最佳.本文通过 微调氢稀释率以及硅烷和氢气各自的流量制备了 不同特性的钝化层,然后沉积掺杂层,测试相应 inip 结构样品的少子寿命与 i $V_{\rm oc}$ 结果如图 3 所示.

由图 3 可知,保持钝化层厚度 4 nm 以及其他 各层工艺不变,当 $R_{\rm H} = 5([{\rm H}_2]/[{\rm SiH}_4] = 100/20)$ 时,相应 inip 结构样品的少子寿命与 i $V_{\rm oc}$ 达到最

图 3 三组不同钝化条件下, 对应 inip 结构样品的少子 寿命与 i V_{oc}

Fig. 3. Effective minori ty carrier lifetime and ${\rm i}\,V_{\rm oc}$ of inip samples with different ${\rm H}_2$ and ${\rm SiH}_4$ flow rates.

佳,说明此时硅片表面的悬挂键被 H 原子充分饱 和,钝化层薄膜微结构特性较好^[46].由本文第 2 节 可知,硅片表面的界面态密度 D_{it} 最低,界面复合 率 U_s 最低,实现了优异的化学钝化性能.当 $R_H =$ 3 ([H₂]/[SiH₄] = 60/20),即 $\Phi_{(SiH_4)}$ 为 20 sccm 时, $\Phi_{(H_2)}$ 从 100 sccm 降低到 60 sccm,此时钝化层中 较少的 H 原子不足以饱和硅片表面的悬挂键.当 $R_H = 5$ ([H₂]/[SiH₄] = 100/20),即 $\Phi_{(H_2)}$ 为 60 sccm 时, $\Phi_{(SiH_4)}$ 从 20 sccm 降至 12 sccm,此时 H 原子 不足以饱和硅片表面的悬挂键.总之,这两组实验 条件下,钝化层薄膜微结构特性较差,对应的 inip 结构样品的钝化性能较差.

4.2.2 不同钝化层沉积时间对 inip 结构样品钝化 性能的影响

适当厚度的钝化层对于平面 SHJ 电池的性能 至关重要,将通过串联电阻、钝化性能及光吸收分 别影响填充因子、开路电压及短路电流密度.本实 验采用 4.2.1 节提到的 $R_{\rm H} = [{\rm H}_2]/[{\rm SiH}_4] = 100/20$ 的钝化条件,沉积时间分别为 30, 35, 40, 45 和 50 s, 测试相应 inip 结构样品的少子寿命与 i $V_{\rm oc}$, 结果如 图 4 所示.

Fig. 4. Effective minority carrier lifetime and iV_{oc} of inip samples with different deposition time of passivation layer.

由图 4 可知, 在钝化层和掺杂层条件相同的情况下, 调整钝化层沉积时间, 相应 inip 结构样品的 少子寿命与 i V_{oc} 随着钝化层沉积时间的延长而增 大. 当钝化层沉积时间偏长, 虽然可以获得一个高 的开路电压, 但是钝化层偏厚, 寄生吸收严重, 削 弱了载流子的输运, 串联电阻偏大, 将导致电池填 充因子和短路电流降低. 而当钝化层沉积时间偏短 时, 钝化效果不佳, 对应电池的整体性能也较差^[32]. 因而, 选择一个最佳厚度的钝化层尤为重要.

P 型发射极的优化 4.3

I/P 界面富氢等离子体处理对 inip 结构样 4.3.1 品钝化性能的影响

p-nc-SiO_x:H因其宽带隙和低折射率的特点被 广泛作为 SHJ 太阳电池的发射极和窗口层, 旨在 提高短路电流[47]. 若要使得平面 SHJ 电池具有更 高的电流,则需要 P 型发射极具有高电导率和高 透过率,且能够与 ITO 层形成欧姆接触^[48].本文在 钝化层与 p-nc-SiO_x:H 发射极之间增加富氢等离子 体处理,一方面足量的氢原子弥补钝化层中的缺 陷,另一方面促使氢原子向 c-Si/a-Si:H 界面移动, 进一步改善钝化效果.

对于 I/P 界面, 增加富氢等离子体处理条件进 行了三组实验,相应 inip 结构样品分别标记为 1#, 2#与 3#. 其中 1#样品为先在 HF 处理过的硅片 两面进行氢等离子体预处理 (30 s), 然后沉积本征 a-Si:H 钝化层, 并在两面分别沉积 P 型和 N 型掺 杂层; 2#样品为在 HF 处理过的硅片两面进行氢 等离子体预处理 (30 s), 然后沉积本征 a-Si:H 钝化 层, 再进行富氢等离子体处理 ([H₂]/[SiH₄] = 120/ 1,60 s),最后在两面分别沉积 P 型和 N 型掺杂层; 3#样品为先在 HF 处理过的硅片两面进行氢等离 子体预处理 (30 s 和 40 s), 然后沉积本征钝化层, 再进行富氢等离子体处理 (60 s), 最后在两面分别 沉积 P 型和 N 型掺杂层. 测试这三组 inip 结构样 品的少子寿命与 i Voc, 结果如图 5 所示.

由图 5 可见,从 1#和 2#可知,增加了[H₂]/ $[SiH_4] = 120/1$ 的富氢等离子体处理后, 对应的 inip 结构样品的少子寿命与 i Voc 都增大, 钝化性能

[H₂]/[SiH₄]=120/1 (60 s) (P) [H₂]/[SiH₄]=120/1 (60 s) (P)

图 5 采用 I/P 界面富氢处理以及 c-Si 表面不同氢预处 理时间对应 inip 结构样品的少子寿命与 iV_{oc}

Fig. 5. Effective minority carrier lifetime and $i V_{oc}$ of inip samples with hydrogen-rich plasma treatment on I/P interfaces and different H₂ pretreatment on c-Si surfaces.

得到了改善,说明富氢等离子体处理使得氢原子弥 补了钝化层中存在的缺陷,且促进了氢原子向着 c-Si/i-a-Si:H 运动.从 2#与 3#可知, 3#中硅片的 光入射面氢等离子体预处理增加了 10 s, 对应样品 的少子寿命和 i Voc 都增大, 说明降温翻转过程中, 硅片正面会快速生长一层薄氧化层,氢等离子体预 处理的时间从 30 s 增加到 40 s, 能够更好地去除 其上的氧化物,便于后续钝化层的沉积,使得 inip 结构样品钝化性能得到进一步改善.

4.3.2 I/P 界面的 P 型缓冲层对 inip 结构样品钝 化性能的影响

本文中 SHJ 电池采用 p-nc-SiO_r:H 作为 P 型 发射极,虽然其具有良好的透过特性,但是暗电导 率较低 (1.5 × 10⁻⁸ S/cm). 为了获得更好的 P 型 发射极,需要在不影响透过的前提下,增加其导电 性.因此,本文拟在沉积 p-nc-SiO_r:H之前增加一 层薄的缓冲层 (p-nc-Si:H 或 p-a-Si:H), 以促进 p-nc-SiO_r:H的晶化,进而增强其导电性,并形成一 定的掺杂浓度梯度,提升内建电场对载流子的抽取 能力,降低界面处的载流子浓度(空穴或者电子), 增强场效应钝化.

通过改变氢气流量来调控 P 型掺杂层材料的 晶化率^[49,50],从而改变其导电性,以便提高 P 型缓 冲层性能.本实验通过五组不同氢气流量沉积 P型掺杂层,相应的光吸收谱、工艺条件和性能参 数如图 6 所示,旨在获取最佳的 P 型缓冲层.

由图 6 及其中的图表数据可知, 4#样品的暗 电导率最高 (约为 10⁻² S/cm), 导电性最好. 原因 在于此时 TMB 浓度相对较低, 硼原子与硅形成配

图 6 不同 H₂流量下制备的 P 型掺杂层的光吸收曲线 (图中表格给出对应的截止吸收波长、光学带隙、厚度、暗 态电导率)

Fig. 6. Light absorption spectra of P-type layers with different H_2 flow rates (cut-off absorption wavelength, optical bandgap, thickness, dark conductivity of these layers were included in the inserted table).

位键,材料缺陷态较少,晶化率较高[51].此外,它的 截止吸收波长大约 530 nm, 主要吸收光谱为绿光, 带隙最宽,该P型掺杂层材料为微晶,可适用于 P 层缓冲层促进 nc-SiO_r:H 的晶化生长. 而 1#材</sub>料的暗电导率最低 (约为 10⁻⁷ S/cm), 导电性较弱, TMB浓度相对较高,过多的硼原子并未与硅形成 配位键,从而导致材料缺陷增加,晶化率降低,电 导率也相应下降,而且其光学带隙偏低,主要吸收 波段接近红光,该P型掺杂层虽然表现为非晶结 构,但是仍可以作为缓冲层,以便促进钝化性能与 光学特性的改善.因而,当 $\phi_{(H_2)}$ 分别为 120 sccm 和 180 sccm 时, 沉积得到的 p-a-Si:H和 p-nc-Si:H可作为缓冲层.结合这两组 P缓冲层的实验 条件,并对富氢等离子体处理过程中的 $\Phi_{(H)}$ 进行 微调,测试对应的 inip 结构样品的少子寿命与 i V_{oc} (结果如图7所示),以便判断出最佳的富氢等离子 体处理与 P 型缓冲层实验条件.

由图 7 可见,对比 1#和 2#可知,当钝化层沉 积时间为 40 s时,2#中增加了 p-a-Si:H 缓冲层, 与 p-nc-SiO_x:H 构成 P 型复合层,对应 inip 结构样 品的少子寿命反而降低,说明该 P 型复合层并未

图 7 不同 P 型缓冲层及富氢等离子体处理微调下,对 应 inip 结构样品的少子寿命与 i V_{oc}(1# 无 P 型缓冲层; 2# P 型非晶硅作为缓冲层; 3# P 型微晶硅作为缓冲层; 4# 增加富氢处理的 H₂ 流量, P 型微晶硅作为缓冲层)(黄色、 白色区域钝化层沉积分别为 40 和 35 s)

Fig. 7. The effective minority carrier lifetime and iV_{oc} of inip samples with different P-type buffer layers and hydrogen-rich plasma treatments (1# without P-type buffer layer; 2# P-type amorphous silicon as the buffer layer; 3# P-type microcrystalline silicon as the buffer layer; 4# increasing the flow of rich hydrogen treatment of H₂, P-type microcrystalline silicon as the buffer layer)(The deposition time of passivation layer is 40 and 35 s in yellow and white areas, respectively). 对 c-Si 形成很好的场钝化,体现在 P 型非晶硅中 过多的硼原子并未与硅原子形成配位键,增加了材 料的缺陷,降低了材料的晶化与导电性,场钝化效 果不佳.对比1#与3#可知,1#中 inip 结构样品 的钝化层厚度要高于 3#, 结合图 4 可知, 少子寿 命与 i V_{oc} 也高于 3#. 然而, 3#中 inip 结构样品的 少子寿命与 i Voc 却高于 1#. 原因在于 3#中增加 了 p-nc-Si:H 缓冲层, 一方面保护了本征 a-Si:H 钝 化层免受后续 p-nc-SiO_x:H 沉积过程的高功率轰 击,另一方面提高了 P 型复合层的晶化率与导电 性,从而增强了发射极的场效应钝化.对比3#和 4#可知, 4#中的 inip 结构样品增加了富氢等离子 体处理过程的 $\Phi_{(H_2)}$,高氢稀释辉光也会对本征 a-Si:H 薄膜有一定的刻蚀作用, 会使得钝化层微结 构变差. 综上所述, 富氢等离子体处理最佳的实验 条件为 $H_2/SiH_4 = 120/1$, 而缓冲层 p-nc-Si:H 与 p-nc-SiO_x:H构成 P型复合发射极,两者结合能够 得到更好的场钝化效果.

4.4 平面 a-Si:H/c-Si 异质结电池的制备及 应用

本文采用未经钝化改善和钝化改善后的两种 工艺条件,制备出两组 inip 结构样品.分别测试对 应的少子寿命与 iV_{oc},而后在样品的双面蒸上 ITO,受光面蒸发 Ag/Al 金属栅线,背面全覆盖金 属 Al,结构示意图如图 8(a) 和图 8(b)所示.最后 测试它们对应电池的 *J-V*特性以及 EQE,结果如 图 8(c) 和图 8(d) 所示.

由图 8(c) 可知, 经过硅片表面处理、钝化层工 艺参数以及 P 型发射极的优化, 对应 inip 结构样 品的少子寿命由原来的 1120 µs 增加到 2855 µs, iV_{oc}也相应增加了17mV,说明经过上述三方面的 优化,确实改善了电池的钝化性能,能够取得较高 的开路电压. 而从图 8(d) 中的 J-V曲线可以看出, inip 结构样品钝化性能改善后, 对应的电池的开路 电压提升了 34.3 mV, 同时短路电流密度与填充因 子也分别增加了 0.32 mA/cm², 0.23%, 说明 inip 结构样品优异的钝化性能,能够减少寄生电阻吸 收,增加光吸收和光透过,降低串联电阻,改善电 池的开路电压、填充因子和短路电流密度,进而提 高转换效率. 而结合图 8(c) 和图 8(d) 可知, 未改 善钝化的 inip 结构样品的 iVoc 与其对应电池的 Voc 相比, 相差了 44.8 mV, 而钝化改善后的 inip 结构样品的 iV_{oc} 比其对应电池的 V_{oc} 要低 27.5 mV, 后者相差较少,说明钝化改善后的a-Si:H/c-Si 异质

图 8 采用未经钝化改善和钝化改善后的工艺条件制备平面 a-Si:H/c-Si 异质结太阳电池 (a) 和 (b) 为电池结构示意图; (c) 少 子寿命与 i V_{oc}; (d) *J-V*特性与 EQE

Fig. 8. (a) and (b) device-structure, (c) effective minority carrier lifetime and iV_{oc} , (d) J-V characteristics and EQE of planar a-Si:H/c-Si heterojunction cells with (without) passivation improvement.

结电池钝化性能确实提升了, 且受后续 ITO 以及 金属电极接触影响相对较小. 另外, 本实验中 P 型 复合层增强了 PN 结的内建电场, 从而提高了载流 子的抽取能力, 一定程度上改善了电池的钝化且改 善了短路电流密度. 此外, 从 EQE 曲线可以看出, 短波段 450 nm 附近曲线没有向下凹陷, 且 700— 1100 nm 的波段光谱响应好. 短波段响应好, 可能 是较宽的 P 型微晶硅带隙与 p-nc-SiO_x:H 带隙匹 配, 形成一定的折射率梯度, 而红外光谱响应也有 改善, 可能与背部的 ITO 的光电特性以及金属电 极的背部反射相关.

将上述最佳的平面 a-Si:H/c-Si 异质结太阳电 池作为底电池, 旋涂法制备的钙钛矿太阳电池作为 顶电池, 组成钙钛矿/硅异质结叠层太阳电池, 其 相应的 *J-V*特性曲线与 EQE 响应如图 9(a) 和 图 9(b) 所示.

由图 9(a) 和图 9(b) 可知, 钙钛矿/硅异质结 叠层太阳电池的开路电压达到了 1780 mV, 这与 作为底电池的平面 a-Si:H/c-Si 异质结太阳电池优 异的钝化性能密切相关.此外,结合图 8(d)可知, 叠层太阳电池的填充因子相对于底电池降低了 1.36%,这可能与顶电池串联电阻较大有关.而 EQE 曲线中顶、底短路电流密度偏低,相对单一的 顶、底电池损失严重,这与串联电阻偏大直接相关, 可能主要受顶与底电池接触缺陷、后续 ITO 及金 属电极接触的影响.综上所述,采用钝化性能优化 的工艺条件,制备出转换效率为 18.76% 的平面 a-Si:H/c-Si 异质结太阳电池,运用于钙钛矿/硅异 质结叠层太阳电池中,能够取得的最佳叠层电池效 率为 21.24%.

5 结 论

本文从硅片的表面处理、钝化层的改善以及 P型发射极的优化三方面入手,对平面 a-Si:H/c-Si 异质结太阳电池钝化性能进行了研究.得出相应 的优化条件分别为: HF 处理时间 90 s,氢预处理 通入 $\Phi_{(H_2)} = 120$ sccm (沉积时间分别为 30 和 40 s),

图 9 钙钛矿/硅异质结叠层太阳电池 (a) J-V曲线; (b)EQE曲线

Fig. 9. (a) J-V characteristics and (b) EQE of perovskite/silicon heterojunction tandem solar cell.

氢稀释比例 $R_{\rm H} = [{\rm H}_2]/[{\rm SiH}_4] = 100/20$,最佳钝化 层厚度 4 nm、I/P 界面增加富氢等离子体处理条 件为[{\rm H}_2]/[{\rm SiH}_4] = 120/1 (沉积时间为 60 s). 上述 优化工艺改善了电池的化学钝化性能. 此外研究还 发现高电导、宽带隙的 P 型微晶硅缓冲层与 p-nc-SiO_x:H 能构成优异的 P 型复合层,增强其导电性 且形成一定掺杂浓度梯度,提升内建电场对载流子 的抽取能力,降低界面处的载流子 (空穴或者电 子)浓度,可进一步提高场效应钝化效果. 采用上 述钝化改善工艺条件,制备出的平面 a-Si:H/c-Si 异质结电池效率为 18.76%. 将其应用于钙钛矿/硅 异质结太阳电池中,获得的开路电压高为 1780 mV, 转换效率为 21.24% 的叠层太阳电池. 为高效的平 面 a-Si:H/c-Si 异质结太阳电池和钙钛矿/硅异质 结叠层太阳电池的研究提供了一定的指导作用.

参考文献

- Jia X P 2011 Power Technology 35 127 (in Chinese) [贾旭平 2011 电源技术 35 127]
- [2] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37
- [3] Kerr M J, Cuevas A, Campbell P 2003 Prog. Photovoltaics Res. Appl. 11 97
- [4] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovoltaics 3 1184
- [5] Kurtz S, Geisz J 2010 Opt. Express 18 A73
- [6] Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll E, Droz C, Bailat J 2004 Prog. Photovoltaics Res. Appl. 12 113
- [7] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J 2018 Nat. Energy 3 682
- [8] Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U

2017 Adv. Energy Mater. 7 1602761

- [9] Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C, Topič M 2015 Opt. Express 23 A263
- [10] Mailoa J P, Bailie C D, Johlin E C, Johlin, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105
- [11] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 *Energy Environ. Sci.* 9 81
- [12] Werner J, Weng C H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B, Ballif C 2015 J. Phys. Chem. Lett. 7 161
- [13] Ding K, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi RRL 6 193
- [14] Zhang H, Nakada K, Miyajima S, Konagai M 2015 Phys. Status Solidi RRL 9 225
- [15] Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A, Kittisontirak S, Chinnavornrungsee P, Phatthanakun R, Sriprapha K 2017 *Thin Solid Films* 628 107
- [16] Wang W J, Li H L, Zhou C L, Zhao L 2014 Technology for Manufacturing Crystalline Silicon Solar Cells (Beijing: China Machine Press) p90 (in Chinese) [王文静, 李海玲, 周春兰, 赵 雷 2014 晶体硅太阳电池制造技术(北京: 机械工业出版社) 第 90页]
- [17] Zhao J, Wang A, Green M A 1999 Prog. Photovoltaics Res. Appl. 7 471
- [18] Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 166
- [19] Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers H F W, Wolf S D, Beaucarne G 2006 Sol. Energy Mater. Sol. Cells 90 3438
- [20] Hoex B, Heil S B S, Langereis E, Sanden M C M V D, Kessels W M M 2006 Appl. Phys. Lett. 89 042112
- [21] Fuhs W, Niemann K, Stuke J 1974 AIP Conf. Proc. 20 345
- [22] Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S, Okamoto H 1983 Appl. Phys. Lett. 43 644
- [23] Ren Q S, Li S Z, Zhu S J, Ren H Z, Yao X, Wei C C, Yan B J, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 185 124
- [24] Shockley W, Read Jr W T 1952 Phys. Rev. 87 835
- [25] Hall R N 1952 Phys. Rev. 87 387

- [26] Sproul A B 1994 J. Appl. Phys. 76 2851
- [27] Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergman R B, Werner J H 2000 J. Appl. Phys. 87 2639
- [28] Yang J, Chen J H, Shen Y J, Chen J W, Xu Y, Mai Y H 2017 Acta Energiae Solaris Sin. 1 201 (in Chinese) [杨静, 陈 剑辉, 沈艳娇, 陈静伟, 许颖, 麦耀华 2017 太阳能学报 38 201]
- [29] Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijin: Science Press) pp130-208 (in Chinese) [沈文忠, 李正平 2014 硅基异质结太阳电池物理与 器件(北京: 科学出版社) 第130-208页]
- [30] Wang T H, Iwaniczko E, Page M R, Wang Q, Levi D H, Yan Y, Xu Y, Branz H M 2005 MRS Online Proceedings Library Archive. 862 183
- [31] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96
- [32] Wang F Y 2016 Ph.D. Dissertation (Tianjin: Nankai University)(in Chinese) [王奉友 2016 博士学位论文 (天津:南 开大学)]
- [33] Garcia-Belmonte G, García-Cañadas J, Mora-Seró I, Bisquert J, Voz C, Puigdollers J, Alcubilla R 2006 *Thin Solid Films* 514 254
- [34] Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Proceedia 15 118
- [35] Meng F Y, Shen L L, Shi J H, Zhang L P, Liu J N, Liu Y C, Liu Z X 2015 Appl. Phys. Lett. 107 96
- [36] Cuony P, Alexander D T, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Söderström T, Hessler-Wyser A, Hébert C, Ballif C 2012 Adv. Mater. 24 1182
- [37] Ding K, Aeberhard U, Smirnov V, Holländer B, Finger F,

Rau U 2013 Jpn. J. Appl. Phys. 52 122304

- [38] Wang L G, Wang F, Zhang X D, Wang N, Jiang Y J, Hao Q Y, Zhao Y 2014 J. Power Sources 268 619
- [39] Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M, Matsuda A 2006 Thin Solid Films 502 306
- [40] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62
- [41] Wang F Y, Zhang X D, Wang L G, Jiang Y J, Wei C C, Sun J, Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098
- [42] Wang F Y, Zhang X D, Wang L G, Fang J, Wei C C, Chen X L, Wang G C, Zhao Y 2014 Sol. Energy 108 308
- [43] Zhang Q F, Zhu M F, Liu F Z, Zhou Y Q 2007 J. Mater. Sci.- Mater. Electron. 18 33
- [44] Zhang X D, Ren Q S, Li S Z, Ren H Z, Wei C C, Hou G F, Xu S Z, Zhao Y 2017 Patent 201710878335.7
- [45] Fujiwara H, Kondo M 2007 J. Appl. Phys. 101 054516
- [46] Jiang Y J, Zhang X D, Wang F Y, Wei C C, Zhao Y 2014 RSC Adv. 4 29794
- [47] Wang F Y, Du R C, Ren Q S, Wei C C, Zhao Y, Zhang X D 2017 J. Mater. Chem.5 1751
- [48] Qiao Z, Xie X J, Hao Q Y, Wen D , Xue J M, Liu C C 2015 *Appl. Surf. Sci.* **324** 152
- [49] Descoeudres A, Barraud L, de Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506
- [50] Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D X, Jiang C S 2004 Appl. Phys. Lett. 85 1955
- [51] Ma J, Ni J, Zhang J J, Liu Q, Hou G F, Chen X L, Zhang X D, Geng X H, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 120 635

Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells^{*}

 $\begin{array}{cccc} \mbox{Chen Jun-Fan}^{1)2)3)4) & \mbox{Ren Hui-Zhi}^{1)2)3)4)} & \mbox{Hou Fu-Hua}^{1)2)3)4)} & \mbox{Zhou Zhong-Xin}^{1)2)3)4)} \\ & \mbox{Ren Qian-Shang}^{1)2)3)4)} & \mbox{Zhang De-Kun}^{1)2)3)4)} & \mbox{Wei Chang-Chun}^{1)2)3)4)} \\ \end{array}$

Zhang Xiao-Dan^{1)2)3)4)†} Hou Guo-Fu^{1)2)3)4)‡} Zhao Ying¹⁾²⁾³⁾⁴⁾

1) (Institute of Photoelectronics Thin Film Devices and Technology of Nankai University, Tianjin 300071, China)

2) (Key Laboratory of Photoelectronics Thin Film Devices and Technology of Tianjin, Tianjin 300071, China)

3) (Engineering Center of Thin Film Photoelectronics Technology of Ministry of Education, Tianjin 300071, China)

4) (Sino-Euro Joint Research Center for Photovoltaic Power Generation of Tianjin, Tianjin 300071, China)

(Received 25 September 2018; revised manuscript received 27 November 2018)

Abstract

Recently, the monolithic spin-coating perovskite/planar silicon heterojunction tandem solar cells with high performance have attracted attention mainly due to simple fabrication, low preparation cost and high efficiency, especially compared with fully textured multi-junction perovskite/silicon tandem device. As is well known, the excellent passivation of a-Si:H/c-Si interface is the key to achieving a high-efficiency planar silicon heterojunction solar cell, which further improves the performance of the corresponding tandem cell. Therefore, we investigate the elements affecting a-Si:H/c-Si interface passivation, including the c-Si surface treatment technique, a-Si:H passivation layer and P-type emitter layer and so on. In these experiments, we adjust the immersed time of diluent hydrofluoric acid and pre-deposited hydrogen plasma with different gas mixture flows. Also, the suitable deposition parameters of intrinsic a-Si:H passivation layer are regulated by varying hydrogen dilution and time, and variously slight silane content is embedded into i-a-Si:H /P-type (I/P) emitter interface by hydrogen-rich plasma treating which is for acquiring optimal experimental processing conditions to promote the chemical passivation. In addition, the p-a-Si:H and p-nc-Si:H are comparatively studied as buffer layers to further improve the I/P interface passivation by varying the hydrogen dilution in the gas mixture during deposition. It can be found that p-nc-Si:H buffer layer with high conductivity and wide bandgap can not only reduce the defect density at the I/P interface, but also increase the conductivity of P-type emitter, which further improves the field passivation effect. By the above- mentioned optimization, the highest minority carrier lifetime and implied open-circuit voltage (iV_{oc}) of the structure of P-type emitter/a-Si:H(i)/c-Si/a-Si:H(i)/Ntype layer (inip) sample can respectively reach $2855 \ \mu s$ and $709 \ mV$, which demonstrates authentically outstanding passivation performance. An efficiency of 18.76% can be obtained for the planar a-Si/c-Si heterojunction solar cell with a V_{oc} of 681.5 mV, which is 34.3 mV higher than that of the reference device. Regarding the optimized planar a-Si:H/c-Si heterojunction solar cell as the bottom cell, we also obtain an efficiency of 21.24% for perovskite/silicon heterojunction tandem solar cell with an open-circuit voltage of 1780 mV, which proves that the above strategies are very effective for improving the passivation optimization and performance of bottom cell in the tandem device.

Keywords: a-Si/c-Si heterojunction, interface passivation, minority lifetime, perovskite/silicon heterojunction tandem solar cell

PACS: 81.65.Cf, 81.65.Rv, 88.40.hj, 88.40.jj

DOI: 10.7498/aps.68.20181759

^{*} Project supported by the International Cooperation of the Ministry of Science and Technology of China (Grant No. 2014DFE60170), the National Natural Science Foundation of China (Grant Nos. 61474065, 61674084, 61474066), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), the Open Project of the Key Laboratory of Optical Information Science and Technology of the Ministry of Education of China (Grant No. 2017KFKT015), and the Fundamental Research Fund for the Central Universities, China.

 $[\]dagger\,$ Corresponding author. E-mail: xdzhang@nankai.edu.cn

[‡] Corresponding author. E-mail: gfhou@nankai.edu.cn