物理学报 Acta Physica Sinica

强三维拓扑绝缘体与磁性拓扑绝缘体的 角分辨光电子能谱学研究进展

刘畅 刘祥瑞

Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators

Liu Chang Liu Xiang-Rui

引用信息 Citation: Acta Physica Sinica, 68, 227901 (2019) DOI: 10.7498/aps.68.20191450 在线阅读 View online: https://doi.org/10.7498/aps.68.20191450 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

二维有机拓扑绝缘体的研究进展

Research progress of two-dimensional organic topological insulators 物理学报. 2018, 67(23): 238101 https://doi.org/10.7498/aps.67.20181711

拓扑半金属材料角分辨光电子能谱研究进展 Progress of ARPES study on topological semimetals 物理学报. 2019: https://doi.org/10.7498/aps.68.20191544

三维拓扑绝缘体antidot阵列结构中的磁致输运研究 Magnetotransport in antidot arrays of three-dimensional topological insulators 物理学报. 2018, 67(4): 047301 https://doi.org/10.7498/aps.67.20172346 专题: 拓扑物理前沿与应用

强三维拓扑绝缘体与磁性拓扑绝缘体的 角分辨光电子能谱学研究进展^{*}

刘畅1)2)† 刘祥瑞2)

(南方科技大学, 深圳量子科学与工程研究院, 深圳 518055)
 2)(南方科技大学物理系, 深圳 518055)
 (2019年9月23日收到; 2019年11月13日收到修改稿)

拓扑材料的发现标志着凝聚态物理学和材料科学的又一次革命.从电学属性来说,人们不再仅仅以导电性的强弱(能隙的有无)把材料划分为导体、半导体和绝缘体,而是进一步通过系统的整体拓扑不变量把材料划分为拓扑平庸的和拓扑不平庸的.拓扑绝缘体是最早发现的拓扑非平庸系统,以负能隙的体材料和无能隙的拓扑边缘态为标志.强三维拓扑绝缘体拥有连接导带和价带的狄拉克锥拓扑表面态,而引入铁磁性会使拓扑表面态打开一个特殊的磁性能隙.这些新颖的材料在自旋电子学、非线性光学等广泛的领域有潜在的应用价值,更是将来的拓扑量子计算中不可或缺的核心材料.作为应用最广泛的一种直接观察 k 空间的实验手段和表面物理的重要分析工具,角分辨光电子能谱(ARPES)在拓扑材料的研究中一直处于举足轻重的地位.从拓扑绝缘体的最初发现到现在,利用 ARPES 研究强三维拓扑绝缘体和磁性拓扑绝缘体的文章已数以千计,不胜枚举.本文试从材料分类的角度对这两类材料的部分 ARPES 研究作一综述,侧重于描述利用 ARPES 研究此类材料的一般方法和过程,力求使读者对这一领域的研究现状有一个基本的概念.本文假定读者具有ARPES 的基础知识,因此对 ARPES 的基本原理和系统构成不作讨论.

关键词: 拓扑绝缘体, 磁性拓扑绝缘体, 角分辨光电子能谱, 电子能带
 PACS: 79.60.-i, 74.25.Jb, 71.18.+y, 73.20.At
 DOI: 10.7498/aps.68.20191450

1 引 言

具有不寻常拓扑性质的凝聚态系统的发现开 启了基础凝聚态物理研究的一个新时代^[1-4]. 与平 常的绝缘材料不同的是,这些"拓扑绝缘体" (topological insulator, TI) 的体材料具有绝缘体的 电子学特征,即具有完全的能隙,而表面电子态则 具有导体的特征,即能带连续通过费米面. 这种表 面电子态的导电性受一定的对称性的保护,并因此 能"绕过"局域杂质带来的影响,从而实现某种意义 上的电流的无损传输.拓扑表面电子态是高度自旋 极化的,并且形成特殊的自旋螺旋构型,使特定自 旋的电子在拓扑绝缘体的表面只能向一个特定的 方向迁移^[5,6].近年来,以强自旋-轨道耦合系统为 代表的一大批拓扑不寻常体系在广泛深入的理论 与实验研究中被发现,其中包括碲化汞量子阱 (HgTe quantum wells)^[7,8]等二维拓扑绝缘体,锑-铋合金 (Bi_{1-x}Sb_x)和三 (硒、碲)化二铋 [Bi₂X₃ (X =Te, Se)]等强三维拓扑绝缘体^[9-12],也包括拓扑晶

© 2019 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 11674149, 11504159)、广东省自然科学基金 (批准号: 2016A030313650)、广东省"珠江人才计划"引 进创新创业团队 (批准号: 2016ZT06D348)、深圳市海外高层次人才孔雀团队 (批准号: KQTD2016022619565991)、深圳市重点 实验室 (批准号: ZDSYS20170303165926217)和深圳市科技创新委员会 (批准号: JCYJ20150630145302240, KYTDPT 20181011104202253) 资助的课题.

[†] 通信作者. E-mail: liuc@sustech.edu.cn

体绝缘体 (topological crystalline insulator, TCI)^[13-17], 拓扑近藤绝缘体 (topological Kondo insulator, TKI)^[18-21]等广义的拓扑绝缘体. 拓扑 绝缘体的存在直接导致了各种新奇的输运和磁、 电、光学性质,例如非局域输运[5-7,22-25]、量子自旋 霍尔效应[5-7,22] 等等, 使这些材料具有良好的应用 前景.现在,这个快速成长的研究领域的影响已经 从基础物理学渗透到了实用的器件设计技术.一方 面,这些特殊材料所蕴含的物理信息被认为有助于 解答诸如反物质的缺失等终极的物理学疑难:另一 方面, 拓扑绝缘体及相关的自旋电子学知识将为下 一代甚至下两代的量子计算的概念提供线索. 最 近, 文献 [26-30] 利用从晶体价带的不可约表示到 拓扑不变量和拓扑节点之间的完整映射搜索了全 部 230 个非磁性晶体空间群, 穷举了所有已发现或 未发现的强/弱拓扑绝缘体、拓扑晶体绝缘体和拓 扑半金属. 这一系列工作标志着人们对非磁性拓扑 材料的理论理解已经走过了逐一预言和核实的摸 索期,进入了撒网式大面积筛选和优化材料列表的 材料基因组学研究阶段.

由拓扑体系中的铁磁或反铁磁长程序构造的 磁性拓扑材料一直是吸引理论和实验研究的一个 重要方向.在磁性拓扑材料中,时间反演对称性的 缺失带来了崭新的物理现象.例如当铁磁序被引入 到三维拓扑绝缘体中时,原本相交于一点的狄拉克 锥拓扑表面态将打开一个磁性能隙,当费米面恰好 位于磁性能隙之中时,量子反常霍尔效应就能够被 实现.这正是文献 [31-36]发现量子反常霍尔效应 时采取的技术路线.又例如在具有反铁磁基态的拓 扑体系中,即使时间反演对称性和某些空间平移对 称性本身破缺,但其乘积可以成为一个新的 Z₂ 拓 扑不变量,支持无能隙的狄拉克锥拓扑表面态^[37]. 目前磁性拓扑体系的研究仍方兴未艾,可以预见, 磁性拓扑体系将是未来数年间拓扑材料研究的主 要着力点和突破口.

角分辨光电子能谱 (angle-resolved photoemission spectroscopy, ARPES) 是固态物理学最成功的实验手段之一. 它独特的 k 空间分辨的单电子探测能力以及简单易明的数据形式使它受到理论和实验工作者的一致青睐. 从高温超导、拓扑不寻常体系等基础研究的热点, 到太阳能电池、自旋电子学等应用研究的前沿, ARPES 技术在物理机理的探究和新材料的实验证实方面都扮演了重要的角色. 在

拓扑不寻常体系的课题中, ARPES 更一直是研究 的中坚力量. 它能够直接观测到晶体材料的体能带 和表面能带结构, 以非常直观的方式证明某一材料 是不是拓扑材料, 以及是哪一类拓扑材料. 因此, ARPES 技术往往是继理论预言和单晶生长之后, 实验研究首先使用的技术, 几乎所有种类的拓扑材 料都是由 ARPES 技术首先发现的^[9–12,14,16,20,21,38–51]. 本文试从材料分类的角度对 2008 年以来拓扑绝缘 体的部分 ARPES 研究进展作一综述, 侧重于通过 案例研究归纳出每一系列拓扑绝缘体的实验能带 特征, 以及利用 ARPES 研究此系列材料的一般方 法和过程. 限于篇幅, 本文仅讨论强三维拓扑绝缘 体和磁性拓扑绝缘体的 ARPES 研究进展, 不涉及 TCI, TKI, 弱三维拓扑绝缘体、拓扑超导体和基于 拓扑绝缘体的异质结构等.

本文的结构安排如下. 第2章介绍 ARPES 的 基本原理, 着重介绍自旋分辨 ARPES、时间分辨 ARPES 等较新的 ARPES 实验手段, 以及解释光 电效应的常用理论 (三步模型和一步模型). 第3章 讨论各类强三维拓扑绝缘体的 ARPES 研究, 以 Bi₂Se₃ 系列为重点. 第4章讨论各类磁性拓扑绝缘 体的 ARPES 研究, 以 MnBi₂Te₄ 系列为重点. 第5 章对本文内容作一小结.

2 ARPES 的基本原理

利用光电效应研究固体的电子学结构是一门 由来已久的学科. 自爱因斯坦通过光电效应证实光 的粒子性,从而确定电磁波具有波粒二象性^[52] 以 来,光电子能谱学在一个世纪间从理论研究到实验 手段均取得了革命性的突破^[53-58]. 在实验方面, 20世纪 90年代中期发明的半球形电子分析仪标 志着 ARPES 实验精度和分辨率的历史性突破. 除 普通 ARPES 实验精度和分辨率的历史性突破. 除 普通 ARPES 外,目前比较新兴的 ARPES 技术包 括圆二色性 ARPES、自旋分辨 ARPES、时间分 辨 ARPES、双光子 ARPES 等. 在理论方面,随着 第一性原理计算工具的发展以及三步模型和一步 模型的依次引入和逐步完善,大部分 ARPES 实验 数据均能得到合理的解释. 这些技术使 ARPES 成 为日益强大的凝聚态物理学和表面科学分析工具, 在拓扑材料的研究中具有举足轻重的地位.

本文假定读者具有 ARPES 的基本知识,因此 对普通 ARPES 的原理不做详细讨论,而着重介绍 几种新型的 ARPES 实验手段, 以及光电子能谱学中的三步模型和一步模型的发展.对 ARPES 基础 概念不太熟悉的读者可以参阅文献 [53-58] 以及 文献 [59] 的第 2章内容.本节的结构安排如下: 2.1节介绍圆二色性 ARPES 和自旋分辨 ARPES 的原理和基本的数据分析方法; 2.2节介绍时间分辨 (泵浦)ARPES 和双光子 ARPES 的原理和基本的数据分析方法; 2.3节粗略介绍一下三步模型; 2.4节对一步模型的核心内容作一简要介绍,并尝试说明自旋分辨 ARPES, 圆二色性 ARPES 和时间分辨 ARPES 的一步模型构建原则; 2.5节对时域能带结构, 即 Floquet 机制作一个粗略的介绍.

2.1 圆二色性 ARPES 和自旋分辨 ARPES 的基本原理

所谓圆二色性 ARPES (circular dichroic ARPES, CD-ARPES), 指的是依次使用左旋圆偏 振光 (σ^+) 和右旋圆偏振光 (σ^-) 作为入射光测量 同一 *E-k* 平面的能带结构, 分别获得光电子强度 I_{σ^+} 和 I_{σ^-} , 然后研究不同动量和束缚能下二者的 差, 换算得圆二色性信号 CD = $\frac{I_{\sigma^+} - I_{\sigma^-}}{I_{\sigma^+} + I_{\sigma^-}}$ [60]. 这种 技术在高温超导体 [61-63]、重费米子系统 [64]、石墨烯 及相关系统 [65] 的光电子能谱学研究中均有广泛的 应用. 从技术上说, 在同步辐射光源和激光光源中 实现 CD-ARPES 并不难. 导入 ARPES 仪器的原

始同步辐射光大都是线性偏振的,其偏振方向由同 步辐射电子在波荡器 (undulator) 中摆动的平面决 定,而任意偏振状态的光也可以通过调节波荡器的 状态或增加插入件等获得^[66,67]. 深紫外激光通常通 过非线性光学晶体由红外激光的高次倍频获得 ^[68-70]. 只要利用偏振片调节基频激光的偏振,就能 够调节深紫外激光的偏振.

自旋分辨 ARPES (spin-resolved ARPES, SARPES) 技术 (见图 1^[58,71,72]) 利用安装在 ARPES 电子分析仪光电子成像端的自旋分析仪直接测量 光电子的自旋,即依次测量自旋分析仪对空间中 沿 j方向 (j = x, y, z) 的两个相反方向自旋 (s_{\perp}^{j} 和 s^j) 敏感时同一 E-k 平面的能带结构, 分别获得光 电子强度 I^j 和 I^j, 换算得 j方向自旋极化强度 $P_j = (1/S_{\text{eff}}) \left(I^j_{\uparrow} - I^j_{\downarrow} \right) / \left(I^j_{\uparrow} + I^j_{\downarrow} \right)^{[73]}$. 式中 Sherman 函数 Seff 由仪器参数决定,其值一般为 0.2-0.3^[73]. 目前比较成熟的自旋分析仪可以分为两代. 第一代 的 Mott 探测仪 (图 1(b)^[71])利用被高电压加速的 高能光电子在重金属 (例如 Au) 表面反射时自旋-轨道相互作用引致的微弱自旋极化响应实现光电 子自旋的测量, 其测量效率较低 [58,71,74-80]. 第二代 SARPES 技术称为甚低能电子衍射 (very low energy electron diffraction, VLEED) ($\bigotimes 1(c)^{[72]}$). 它利用自旋极化电子和铁磁薄膜的交换相互作用, 令光电子在预先磁化好的铁磁薄膜 (例如 Fe(001)-

图 1 自旋分辨 ARPES 原理及示意图^[58,71,72] (a) Mott 自旋分析仪的原理示意图^[58]; (b) Mott 自旋分析仪的设计示意图^[71]; (c) 加入两个互相垂直的 VLEED 自旋分析仪的一个 ARPES 系统 (东京大学 Shin-Kondo 小组)^[72], 其中 VLEED 的设计来自广岛 大学 Okuda 小组

Fig. 1. Principles and skematics of spin-resolved $ARPES^{[58,71,72]}$: (a) Principle of the spin-selective exchange interaction used in a Mott spin detector^[58]; (b) design skematics of a Mott spin detector^[71]; (c) skematics of an ARPES system equipped with two parallelly arranged VLEED spin detectors^[72], the design of which were adapted from Team of Okuda in Hiroshima University.

p(1 × 1)-O) 表面反射. 这种极化反射的自旋探测 效率是 Mott 探测仪的 100 倍以上^[72,81-88].

2.2 时间分辨 ARPES 和双光子 ARPES 的基本原理

普通的 ARPES 技术探测的是系统稳恒态时 位于费米面以下的占据态电子学结构,但不能探 测系统的非占据态能带以及从激发态向稳恒态 弛豫的过程.时间分辨 ARPES (time-resolved ARPES, trARPES) 技术 (图 2^[89,90])弥补了这个缺 陷^[68,69,72,77,78,88–96]. 它的原理是利用超快激光泵浦 技术分别生成百飞秒 (100 fs)级的激发光脉冲和 探测光脉冲,激发光把样品从基态激发到激发态, 而 (通常能量比较高的)探测光则完成光电效应, 以普通 ARPES 方法记录不同动量、能量的光电 流.激发光和探测光到达样品的时间差由压电晶体 等精确调节.由于泵浦 ARPES 的时间尺度 Δt 和 能量分辨率 ΔE 受海森伯不确定性原理 $\Delta E \cdot \Delta t \gtrsim \hbar/2$ 所限,为了使能量分辨率不至于太差 (例如达 到 10 meV 量级),用于泵浦 ARPES 的光脉冲不 能太短 (例如不能短于 $\hbar/(2 \times 10 \text{ meV}) = 30 \text{ fs}).$

与上述 trARPES 不同, 在时间-角分辨双光子 光电效应 (time- and angle-resolved two-photon photoemission, TR & AR 2PPE)^[55-58,97,98]中, 光 电子在被发射前要吸收两个能量低于样品功函数 的光子 (γ₁ 和 γ₂). 第一个光子 (γ₁) 被低于样品费 米能级 *E*_F 的电子吸收并使其激发至中间态 (该中 间态可以是杂质能级等), 第二个光子 (γ₂) 被位于 中间态的同一个电子再次吸收并使其进一步激发 到真空能级 *E*_{vac} 之上, 继而发生光电子发射. 由此, 中间态的色散关系便可以通过测量这些光电子的 动能和动量获得. 通过调节 γ₁ 和 γ₂ 之间的时间延 迟, 也可以实现亚飞秒级的时间分辨率. 激发光 γ₁ 在样品中产生非平衡的电子分布, 延时的探测光

图 2 时间分辨 ARPES 原理及示意图^[89,90] (a) 时间分辨 ARPES 原理图^[89]; (b) 时间分辨 ARPES 的一种设计^[90], 利用掺钛蓝 宝石激光器发出的 800 nm 基频红外激光作为激发光, 再利用基于气体谐振腔的高次谐波发生器生成基频激光的高阶倍频光, 并 以之作为探测光

Fig. 2. Principles and skematics of time-resolved ARPES^[89,90]: (a) Principles of time-resolved ARPES^[89]; (b) design example of a time-resolved ARPES system^[90], using the 800 nm inferred radiation from a Ti:sapphire laser as the pump beam and its high hamonics produced by a gas jet as the probe beam.

γ₂ 监测中间态的弛豫动力学,如粒子数衰减或载 流子局域化等.

2.3 三步模型

Berglund 和 Spicer^[99] 在 1964 年提出了描述 光电效应的第一个模型——三步模型 (three-step model),把入射光激发固体中的电子、电子输运到 晶体表面和电子透过表面势垒出射到真空看作三 个接续的、可以分开描述的过程.三步模型中用到 的近似手段有费米黄金公式 (Fermi's golden rule)中的 δ 函数能级跃迁形式,以及所谓的"瞬时 近似 (sudden approximation)",即忽略光电子在 晶体中输运的过程中晶格的弛豫以及光电子对晶 格的影响.根据三步模型,ARPES 实际测得的光 电子强度 $I(\mathbf{k},\omega)$ 是光电效应矩阵元 $I_0(\mathbf{k},\omega,\mathbf{A})$,费 米分布函数 $f(\omega)$ 和单电子谱函数 $A(\mathbf{k},\omega)$ 的乘积,

 $I(\boldsymbol{k},\omega) = I_0(\boldsymbol{k},\omega,\boldsymbol{A}) f(\omega) A(\boldsymbol{k},\omega),$

上式中的谱函数 $A(\mathbf{k},\omega)$ 包含了能带结构 $\epsilon_{\mathbf{k}}$ 和自能 $\Sigma(\mathbf{k},\omega) \equiv \Sigma'(\mathbf{k},\omega) + i\Sigma''(\mathbf{k},\omega)$ 的信息^[59],

$$\begin{split} &A\left(\boldsymbol{k},\omega\right) \\ &= -\frac{1}{\pi}\frac{\boldsymbol{\Sigma}^{\prime\prime}\left(\boldsymbol{k},\omega\right)}{\left[\omega-\epsilon_{\boldsymbol{k}}-\boldsymbol{\Sigma}^{\prime}\left(\boldsymbol{k},\omega\right)\right]^{2}+\left[\boldsymbol{\Sigma}^{\prime\prime}\left(\boldsymbol{k},\omega\right)\right]^{2}}, \end{split}$$

而自能的实部 $\Sigma'(\mathbf{k},\omega)$ 和虚部 $\Sigma''(\mathbf{k},\omega)$ 分别与能 量 的 重 整 化 和 准 粒 子 能 态 的 寿 命 相 关 . 在 ARPES 数据中,自能的虚部对能带结构的影响表 现为能带在动量、能量方向上的展宽,自能的实部 对能带结构的影响表现为在特定能量尺度以下能 带的束缚能相对于无相互作用模型中能带的束缚 能的偏离 (也就是能带出现弯折 (kink)等).当自 能 和 矩 阵 元 随 动 量 \mathbf{k} 的 变 化 足 够 缓 慢 时, ARPES 测得的光电子强度在动量方向的线型 (MDC 线型) 为标准的洛伦兹线型,其中心点位于 $k = k_{\rm F} + [\omega - \Sigma'(\omega)] / v_{\rm F}^0$,其半高全宽 (full width half maximum, FWHM)等于 2 $\Sigma''(\omega) / v_{\rm F}^0$ (式中 $v_{\rm F}^0$ 为能带垂直于费米面方向的费米群速度)^[59].

光电效应矩阵元 *I*₀(*k*,ω,*A*)对 *I*(*k*,ω)的影响 十分复杂,有时是决定性的.影响矩阵元大小的因 素有入射光的能量和偏振 (包括线偏振和圆偏振 等),被激发的光电子在晶体中从属的电子轨道,电 子所在的原子层,以及表面效应等等.对矩阵元的 计算一般会利用下节介绍的一步模型完成.

2.4 一步模型

完整的光电效应过程涉及到不同能量、偏振的 入射光对不同轨道、不同原子层的电子的复杂相互 作用,对它的理论理解实际上超出了三步模型的范 畴,而必须运用"一步模型 (one-step model)"来解 释.一步模型把三步模型中的三个接续过程看成单 一的量子相干过程,并考虑所有的多重散射效应. 在一步模型里,费米黄金公式和瞬时近似仍然有 效.模型的核心公式如下^[100]:

$$I(\epsilon_{\rm f}, k_{\parallel}) = -\frac{1}{\pi\hbar} {\rm Im} \langle \epsilon_{\rm f}, k_{\parallel} | \boldsymbol{G}_2^+ \mathcal{H}_{\rm int} \boldsymbol{G}(E_{\rm I}) \mathcal{H}_{\rm int}^{\dagger} \boldsymbol{G}_2^- | \epsilon_{\rm f}, k_{\parallel} \rangle, \quad (1)$$

式中 $I(\epsilon_{\rm f}, k_{\parallel})$ 是以出射光电子的能量 $\epsilon_{\rm f}$ 和面内动量 k_{\parallel} 描述的光电子强度 (ARPES 信号强度), $|\epsilon_{\rm f}, k_{\parallel}\rangle$ 是 Pendry^[101]在 1976年引入的一个时间反转低能 电子衍射态 (time-reversed low energy electron diffraction state, TR-LEED state), 它和光电子末 态 $|\phi_{\rm f}\rangle$ 的关系是

其中传输算符 (格林函数) G₂[±]可由多重散射理论获 得^[101,102]. *H*_{int}是入射电磁波与晶体中电子相互作 用的哈密顿量,

$$\mathcal{H}_{\text{int}} = rac{e}{2mc} \left(oldsymbol{A} \cdot oldsymbol{p} + oldsymbol{p} \cdot oldsymbol{A}
ight) - e \Phi + rac{e^2}{2mc^2} oldsymbol{A} \cdot oldsymbol{A},$$

式中 ϕ 和 A 是电磁场的标量势和矢量势, $p = -i\hbar\nabla$ 是动量算符. 在库仑规范下 $\nabla \cdot A = 0, \ \phi = 0, A \cdot A$ 项通常可被忽略, 且 $A \approx A_0$ (随坐标缓慢变化的电磁波矢量势), 因此

$$\mathcal{H}_{\text{int}} \approx \frac{e}{mc} \boldsymbol{A}_0 \cdot \boldsymbol{p}.$$

G(*E*₁)(在动量表象下记为**G**(*k*, *E*₁))是系统的初态格林函数,即考虑电子与晶体中所有准粒子的相互作用后,包含自能的格林函数,它和谱函数 *A*(*k*, *E*₁)(见 2.3 节)的关系是

$$A\left(\boldsymbol{k},E_{\mathrm{I}}\right)=-\frac{1}{\pi}\mathrm{Im}G\left(\boldsymbol{k},E_{\mathrm{I}}\right).$$

在零温下, G(k, E₁)退化为单电子初态格林函数 G⁺₁, 其值也可由多重散射理论获得.

为了直接求得光电流 (即 ARPES 信号强度) $I(\epsilon_{\rm f}, k_{\parallel})$ 的值, 有必要把 (1) 式在位置表象下列出,

$$egin{aligned} &I\left(\epsilon_{\mathrm{f}},k_{\parallel}
ight) \ &= -rac{1}{\pi\hbar}\mathrm{Im}\int\mathrm{d}m{r}\int\mathrm{d}m{r}'\Psi_{\mathrm{f}}^{*}\left(m{r}
ight)\mathcal{H}_{\mathrm{int}}m{G}_{1}^{+}\left(m{r},m{r}'
ight)\mathcal{H}_{\mathrm{int}}^{*}\Psi_{\mathrm{f}}\left(m{r}'
ight). \end{aligned}$$

利用多重散射理论求解 G_2^{\pm} 和 G_1^{+} 本身非常 复杂,这里仅仅指出在半无限大固体模型(固体和 真空的界面为xOy平面)中,ARPES信号强度 $I(\epsilon_f, k_{\parallel})$ 可以分解为单原子散射贡献 $I^{atom}(\epsilon_f, k_{\parallel})$, 原子层内散射贡献 $I^{intra}(\epsilon_f, k_{\parallel})$,初态的原子层间散 射贡献 $I^{inter}(\epsilon_f, k_{\parallel})$ 和固体-真空界面散射贡献 $I^{surf}(\epsilon_f, k_{\parallel})$ 这四项之和,

$$\begin{split} I\left(\epsilon_{\rm f}, k_{\parallel}\right) &= I^{\rm atom}\left(\epsilon_{\rm f}, k_{\parallel}\right) + I^{\rm intra}\left(\epsilon_{\rm f}, k_{\parallel}\right) \\ &+ I^{\rm inter}\left(\epsilon_{\rm f}, k_{\parallel}\right) + I^{\rm surf}\left(\epsilon_{\rm f}, k_{\parallel}\right) \end{split}$$

在本文中,自旋分辨 ARPES 获得的自旋极化 强度 **p** 需要使用一步模型解释.由于自旋本质上是 相对论行为,要计算 **p** 的大小,必须把上述的形式 推广为描述完全相对论性电子的"相对论一步模型 (relativistic one-step model)".在这个模型中,光 电流以自旋密度矩阵 ρ 描述,

$$\rho(\epsilon_{\rm f}, k_{\parallel}) = -\frac{1}{\pi} \operatorname{Im} \int d\mathbf{r} \int d\mathbf{r}' \Psi_{\rm f}^{\dagger}(\mathbf{r}) U^{\dagger} \mathcal{H}_{\rm int} \mathbf{G}_{1}^{+}(\mathbf{r}, \mathbf{r}') \mathcal{H}_{\rm int}^{\dagger} U \Psi_{\rm f}(\mathbf{r}'),$$

式中 $U = -i\sigma_{y} K$ 是相对论时间反演算符, 而 $\Psi_{\rm f}^{\dagger}(\mathbf{r})$
是一个时间反转自旋极化低能电子衍射态 (time-

是一个时间反转目旋极化做能电子衍射态 (time-reversed spin-polarized LEED state, TR-SPLEED state),

$$\Psi_{\mathrm{f}}^{\dagger}(\mathbf{r}) = \langle \mathbf{r} | \mathbf{G}_{2}^{+} U | \epsilon_{\mathrm{f}}, k_{\parallel} \rangle.$$

在相对论一步模型中,格林函数 G[±]₂和 G⁺₁都 是 4 × 4 的矩阵,而相互作用哈密顿量也相应修 改为

$$\mathcal{H}_{\text{int}} \approx - \boldsymbol{\alpha} \cdot \boldsymbol{A}_0,$$

式中 A_0 仍然是随坐标缓慢变化的电磁波矢量势, 而 α 由张量积 $\alpha_k = \sigma_1 \otimes \sigma_k$ (k = 1, 2, 3)定义 $(\sigma \equiv [\sigma_k]$ 是泡利自旋矩阵). 在此模型中, 光电流 I 和自旋极 化矢量 p分别为

$$I = \mathrm{tr}\left(\rho\right), \qquad \quad \boldsymbol{p} = \frac{\mathrm{tr}\left(\boldsymbol{\sigma}\rho\right)}{\mathrm{tr}\left(\rho\right)}.$$

而自旋密度矩阵 $\rho(\epsilon_f, k_{\parallel})$ 仍然由类似的四项贡献之 和求得:

$$\begin{split} \rho\left(\epsilon_{\rm f},k_{\parallel}\right) &= \rho^{\rm atom}\left(\epsilon_{\rm f},k_{\parallel}\right) + \rho^{\rm intra}\left(\epsilon_{\rm f},k_{\parallel}\right) \\ &+ \rho^{\rm inter}\left(\epsilon_{\rm f},k_{\parallel}\right) + \rho^{\rm surf}\left(\epsilon_{\rm f},k_{\parallel}\right). \end{split}$$

除自旋 ARPES 外,本文涉及的技术还有时间 分辨 ARPES 和双光子 ARPES. 对它们的一步模 型研究更为复杂,目前仍然处于起始阶段.目前比 较统一的观点是,非平衡系统的光电子能谱学理论 需要引入有限温度下的 Keldysh 格林函数方法.该 方法的要点如下述^[103]:

在激发光激发系统之前 $(t = -\infty)$,系统处于 由哈密顿量 \mathcal{H} 所确定的温度为 T,本征态为 $|\Psi_n\rangle$ 的 稳恒态,其正则系综分布函数

$$\rho_n = \frac{\exp\left[-E_n/k_{\rm B}T\right]}{\sum_n \exp\left[-E_n/k_{\rm B}T\right]} \equiv \mathcal{Z}^{-1} \exp\left[-E_n/k_{\rm B}T\right],$$

式中z为正则系综配分函数, E_n 是能量本征值. 受 到激发光影响后, 系统的哈密顿量演化为 $\mathcal{H}_{pump}(t)$, 而本征态从 $t = -\infty$ 时的 $|\Psi_n\rangle$ 演化到 $t = t_0$ (探测 光开始影响系统的前一刻) 时的 $|\Psi_n^I(t_0)\rangle$, 其演化 规律为

$$\left|\Psi_{n}^{\mathrm{I}}\left(t_{0}\right)\right\rangle = U\left(t_{0},-\infty\right)\left|\Psi_{n}\right\rangle,$$

其中U(t',t)是描述含时演化的幺正算符,

$$U(t',t) = \mathcal{T}_t \left\{ \exp\left[-\frac{\mathrm{i}}{\hbar} \int_t^{t'} \mathrm{d}t_1 \mathcal{H}_{\text{pump}}(t_1)\right] \right\},\,$$

式中 T_t 是所谓时间排序算符, 而 $|\Psi_n^I(t_0)\rangle$ 可被看作 系统已受激发光影响, 但未受探测光影响时的 "初态".

受到哈密顿量为 $\mathcal{H}_{\text{probe}}(t)$ 的探测光影响后, 初 态 $|\Psi_n^{\text{I}}(t_0)\rangle(t=t_0)$ 向末态 $|\Psi_n^{\text{F}}(t)\rangle(t>t_0)$ 演化, 演 化规律与从 $t=-\infty$ 向 $t=t_0$ 的激发光演化类似,

$$\begin{split} |\Psi_{n}^{r}(t)\rangle &= U(t,t_{0})|\Psi_{n}^{1}(t_{0})\rangle,\\ \hat{U}(t',t) &= \mathcal{T}_{t}\left\{\exp\left[-\frac{\mathrm{i}}{\hbar}\int_{t}^{t'}\mathrm{d}t_{1}(\mathcal{H}_{\mathrm{pump}}(t_{1})+\mathcal{H}_{\mathrm{probe}}(t_{1}))\right]\right\}\\ &- \pi\mathrm{tk}\bar{\mu}\bar{\mu}\mathrm{d}\mu, \ \mathrm{Ke}\,\bar{\mathrm{m}}\,\hat{\mathbb{m}}\,\hat{\mathrm{m}}\,\hat{\mathrm{m}}\,\hat{\mathrm{m}}\,\hat{\mathrm{$$

 $\hbar k_{\rm e}$ t

$$J_{d} \simeq \frac{1}{m_{e}} c_{k_{e}; R_{d}} c_{k_{e}; R_{d}},$$
示函样品表面的小休和

式中 $c^{\dagger}_{\mathbf{k}_{e};\mathbf{R}_{d}}$ 在远离样品表面的小体积 \mathbf{R}_{d} 处创生一 个动量为 \mathbf{k}_{e} ,在动量表象下以波函数 $\phi_{\mathbf{k}_{e};\mathbf{R}_{d}}(\mathbf{k})$ 描 述的波包形式的电子.最终,系统在时间 t 的光电 流 (时间分辨 ARPES 信号) 为

$$\left\langle \boldsymbol{J}_{\mathrm{d}}\right\rangle (t) = \sum\nolimits_{n} \rho_{n} \left\langle \boldsymbol{\varPsi}_{n}^{\mathrm{F}}\left(t\right) \right| \boldsymbol{J}_{\mathrm{d}} \left| \boldsymbol{\varPsi}_{n}^{\mathrm{F}}\left(t\right) \right\rangle$$

一般来说, 〈J_d〉(t)的计算是极为复杂的. 但考虑到泵浦 ARPES 中激发光的强度一般较大, 而探测光的强度相对较小, 可以考虑用微扰理论

 $-\mathbf{E}$

<u>^</u>

(perturbation theory) 处理探测光, 把计算复杂程 度降至目前计算能力可以胜任的水平. 在一级微扰 下, 探测光演化算符 Û (t', t)可以近似为

$$\hat{U}(t',t) \simeq U(t',t) - \frac{i}{\hbar} \int_{t}^{t'} dt_1 U(t',t_1) \mathcal{H}_{\text{probe}}(t_1) U(t_1,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 U(t',t_1) \mathcal{H}_{\text{probe}}(t_1) U(t_1,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 U(t',t_1) \mathcal{H}_{\text{probe}}(t_1) U(t',t_1) \mathcal{H}_{\text{probe}}(t_1) U(t',t_1) \mathcal{H}_{\text{probe}}(t_1) U(t',t_1) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 U(t',t_1) \mathcal{H}_{\text{probe}}(t,t) U(t',t_1) \mathcal{H}_{\text{probe}}(t,t) U(t',t_1) \mathcal{H}_{\text{probe}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 U(t',t_1) \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 \mathcal{H}_{\text{probe}}(t,t) \mathcal{H}_{\text{probe}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt_1 \mathcal{H}_{\text{prob}}(t,t) + \frac{i}{\hbar} \int_{t'}^{t'} dt' dt_1 \mathcal{H}_{\text{prob}$$

综合以上各式,可以得到 $\langle J_d \rangle$ (t)的形式表达式

$$\begin{split} \left\langle \boldsymbol{J}_{\mathrm{d}} \right\rangle(t) &= \frac{1}{\hbar^{2}} \int_{t_{0}}^{t} \mathrm{d}t_{2} \int_{t_{0}}^{t} \mathrm{d}t_{1} \sum_{n} \rho_{n} \\ &\times \left\langle \Psi_{n} \right| U\left(-\infty, t_{2}\right) \mathcal{H}_{\mathrm{probe}}\left(t_{2}\right) U\left(t_{2}, t\right) \\ &\times \boldsymbol{J}_{\mathrm{d}} U\left(t, t_{1}\right) \mathcal{H}_{\mathrm{probe}}\left(t_{1}\right) U\left(t_{1}, -\infty\right) \left| \Psi_{n} \right\rangle \end{split}$$

更进一步,电子从晶体中从以(ν,**k**_{||})描述的占 据态被探测光激发至以(ν',**k'**_{||})描述的非占据态所 形成的光电流 〈**J**_d〉(t)的表达式为(具体的推导和 假设见文献 [103])

 $\left< \boldsymbol{J}_{\mathrm{d}} \right> (t)$

$$=\frac{\hbar\boldsymbol{k}_{\mathrm{e}}}{m_{\mathrm{e}}}\sum_{\boldsymbol{\nu},\boldsymbol{\nu}',\boldsymbol{k}_{\parallel},\boldsymbol{k'}_{\parallel}}\phi_{\boldsymbol{k}_{\mathrm{e}};\boldsymbol{R}_{\mathrm{d}}}^{*}\left(\boldsymbol{k}\left(\boldsymbol{\nu}\right)\right)\phi_{\boldsymbol{k}_{\mathrm{e}};\boldsymbol{R}_{\mathrm{d}}}\left(\boldsymbol{k}'\left(\boldsymbol{\nu}'\right)\right)\boldsymbol{P}\left(t\right),$$

而P(t)可以用 Keldysh 小格林函数 (lesser Green's function) 表达:

$$\begin{split} P\left(t\right) &= -\operatorname{i}\frac{1}{\hbar^{2}}\sum_{\nu_{1},\nu_{2}}M_{\mathbf{q}}^{*}\left(\nu_{2},\nu_{\mathrm{e}};\boldsymbol{k}_{\mathrm{e}\parallel}\right)M_{\mathbf{q}}\left(\nu_{1},\nu_{\mathrm{e}};\boldsymbol{k}_{\mathrm{e}\parallel}\right)\\ &\times \int_{t_{0}}^{t}\mathrm{d}t_{2}\int_{t_{0}}^{t}\mathrm{d}t_{1}s\left(t_{2}\right)s\left(t_{1}\right)\\ &\times\exp\left[\mathrm{i}\omega\left(t_{2}-t_{1}\right)\right]G_{\nu_{1}\boldsymbol{k}_{\mathrm{e}\parallel},\nu_{2}\boldsymbol{k}_{\mathrm{e}\parallel}}^{<}\left(t_{1},t_{2}\right). \end{split}$$

式中 $M_{\mathbf{q}}(\nu,\nu';\mathbf{k}_{\parallel}) \equiv \langle \nu',\mathbf{k'}_{\parallel} | [ie\hbar A_{\mathbf{q}}(\mathbf{r}) \exp(i\mathbf{q}\cdot\mathbf{r}) / m_{\mathbf{e}}c] \cdot \nabla |\nu,\mathbf{k}_{\parallel}\rangle$ 是单电子矩阵元, $A_{\mathbf{q}}(\mathbf{r}) \pi s(t)$ 分别 描述探测光在空间和时间上的分布, 而

$$\begin{split} & G^{<}_{\nu_{1}\boldsymbol{k}_{\mathrm{e}\parallel},\nu_{2}\boldsymbol{k}_{\mathrm{e}\parallel}}(t_{1},t_{2}) \\ \equiv & \mathrm{i} \sum_{n} \rho_{n} \langle \Psi_{n} | c^{\dagger}_{\nu_{2}\boldsymbol{k}_{\mathrm{e}\parallel}}(t_{2}) c_{\nu_{1}\boldsymbol{k}_{\mathrm{e}\parallel}}(t_{1}) | \Psi_{n} \rangle \end{split}$$

是 Keldysh 双时间变量非稳恒态小格林函数,其 中 $c_{\nu \mathbf{k}_{\parallel}}^{\dagger}$ 创建一个单电子能带哈密顿量 $\mathcal{H}_{0}(\nu, \mathbf{k}_{\parallel})$ 的 本征态电子(\mathcal{H}_{0} 计入样品表面的影响).

2.5 时域周期势场中的能带—— Floquet 机制

类似于空间周期性势场中电子形成的动量轴 上的 Bloch 能带结构,电子在遇到时间周期性势场 时,也会在能量轴上形成重复的本征态. Bloch 机 制告诉我们,当哈密顿量满足 H(r+R) = H(r), 即势场以某一空间格点 **R** 为周期时,单电子薛定 谔方程的解 $\psi(\mathbf{r})$ 满足 $\psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u(\mathbf{r}), 且 u(\mathbf{r})$ 是 满足 $u(\mathbf{r} + \mathbf{R}) = u(\mathbf{r})$ 的周期函数. 类似地,当哈密 顿量具有时域周期性 (称为 Floquet 哈密顿量)

$$H\left(t+T\right) = H\left(t\right)$$

时,系统的瞬时本征态 (Floquet 本征态) $|\psi(t)\rangle$ 满足^[104]

$$\left|\psi\left(t\right)\right\rangle = \mathrm{e}^{-\mathrm{i}\epsilon\left(t\right)t}\left|\phi\left(t\right)\right\rangle,$$

且 $|\phi(t)\rangle$ 是以 T为周期的函数: $|\phi(t+T)\rangle = |\phi(t)\rangle$. 结合含时薛定谔方程的一般演化规律

$$\begin{split} \left|\psi\left(t\right)\right\rangle &=\mathcal{T}_{t}\mathrm{exp}\left[-\mathrm{i}\int_{t_{0}}^{t}\mathrm{d}t'\mathcal{H}\left(\boldsymbol{k},t'\right)\right]\left|\psi\left(t_{0}\right)\right\rangle \\ &\equiv\mathcal{U}_{\mathbf{k}}\left(t,t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle \end{split}$$

可以看出,在 Floquet 势场的驱动下,本征态在一 个完整周期的作用下只比原来的本征态多出一个 相位:

$$\mathcal{U}_{\boldsymbol{k}}\left(t_{0}+T,t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle=\mathrm{e}^{-\mathrm{i}\epsilon\left(t_{0}\right)T}\left|\psi\left(t_{0}\right)\right\rangle$$

也就是说,系统的任一本征态在能量轴上移动 $\epsilon_T = 2n\pi\hbar/T (n \in \mathbb{Z})$ 后仍为系统的一个本征态.在 ARPES 测量中,这些新的时域本征态会以镜像能 带的形式出现,其能量间隔等同于哈密顿量的能量 周期.在激光泵浦 ARPES 中,该能量间隔等于激 发光的能量.

3 强三维拓扑绝缘体的 ARPES 研究

强三维拓扑绝缘体 (strong three-dimensional topological insulator, 以下简称为强 TI 或直接称 为 TI) 是 ARPES 实验观察到的第一类拓扑不寻 常凝聚态体系.理论上,三维拓扑绝缘体的拓扑属 性可以用 4 个取值为 0 或 1 的 Z₂ 拓扑数 (v₀; v₁ v₂ ν₃) 描述 (具体定义见文献 [2]). 如果主拓扑数 ν₀ = 1, 这体系就称为强 TI. 三维的强 TI 不能被看作二 维 TI 的堆叠, 而是一种全新的物态. 它最典型的 能带特征是所谓"狄拉克锥拓扑表面态 (topological surface state, TSS)". 在 E-k 能带结构图中, 每个 狄拉克锥由两条贯穿整个由能量反转体能态构成 的带隙的表面态组成. 这两条表面能带在交点附近 形成线性的 X 型, 时间反演对称性保证其交点(称 为"狄拉克点")处不打开能隙. 在体能隙两侧, 拓 扑表面态渐近地与体能态接合. 由于自旋-动量锁 定效应,这两条表面能带都是高度自旋极化的,不 同于通常自旋简并的体能态. 忽略 kp 模型的高阶 项时,每一条斜率相同的线性能带的自旋都指向狄 拉克锥在面内的圆形横截面的前切线方向. 换句话 说,在过狄拉克点的 E-k 能带图中,两条能带的自 旋均垂直于 E-k面, 且极化方向刚好相反. 另外, 在布里渊区中,有一类高对称点在时间反演算符作 用下不变,称为"时间反演不变动量 (time reversal invariant momenta, TRIM)", 例如 户点 (上横线 表示投影平面的二维布里渊区中的高对称点,下 同),四方晶格的*x*点和*n*点,六角晶格的*n*点等. 在拓扑绝缘体中, 狄拉克点位于 TRIM 点的狄拉 克锥的个数必定是奇数,或者说两个 TRIM 点之 间通过费米面 (或任一等能面)的狄拉克能带必定 为奇数条.任意的掺杂或扰动必定伴随着偶数个狄 拉克锥的同时产生或湮灭,使锥的总个数维持为奇 数. 上述特征均可以用 ARPES 和自旋分辨 ARPES 明确地直接观察到^[2].

3.1 $Bi_{1-x}Sb_x$ 和几种单质拓扑绝缘体

虽然 Bi_2Se_3 系列的拓扑绝缘体只在 Γ 点有一 个狄拉克锥,满足 TI 的最简模型,但历史上第一 个被 ARPES 实验证实的强三维 TI 是 Bi 和 Sb 两 种元素构成的合金 Bi1-aSbx 这一拓扑不寻常体系 在 2008 年由普林斯顿大学 Hsieh 等 [9,10] 发现 (见 图 3(a) 和图 3(b)^[10]). 由图 3(a) 可见, 材料在 F和 应这两个 TRIM 点之间有 5 条拓扑表面态通过费 米面,因而满足 TI 奇数条狄拉克能带的要求.更 进一步, 自旋分辨的 ARPES (SARPES) 证实其中 三个能带的自旋极化方向是"一下两上"(图 3(b)), 大致满足自旋-动量锁定的要求. $Bi_{1-x}Sb_x$ 的拓扑能 带相对比较复杂,不利于研究其拓扑量子输运性 质,因而后续的研究不算太多.就 ARPES 研究来 说, 文献 [105] 详细讨论了 0 < x < 0.6 范围内 $Bi_{1-x}Sb_x$ 的表面能带,指出它们都是三维 TI, 且修 正了文献 [9,10] 的细节能带问题. 文献 [106] 使用 效率更高的 VLEED 自旋探测器对 Bi1-"Sbx 拓扑 表面态的自旋极化作了进一步的分析,其结论支持 此材料的拓扑不寻常性, 等等.

文献 [10] 也利用 SARPES 讨论了 Sb 单质 (相当于 x = 1) 的能带和拓扑性, 指出其 \bar{r} 点附近 类似 Rashba 劈裂的 W 型能带是一个变形的狄拉 克锥, 其自旋极化方向也满足自旋-动量锁定的要 求 (图 3(c)—图 3(f)). 除 Sb 外, ARPES 实验发现的 元素单质 TI 还有 α-Sn^[107–110]、少层的 Bi 薄膜^[111–113], 以及 Bi 单质 (沿 (111) 表面解理)^[114,115]等.在这 一方向,一个比较有趣的结果是理论计算和 ARPES 指认了熟知的金、银、铜等贵金属表面的 双抛物线 Shockley 表面电子态是拓扑不寻常的, 也就是说这些常见的金属都是单质 TI^[116].最近, Bi 单晶体材料被确认为所谓"高阶拓扑绝缘体", 其二维表面态虽不受拓扑保护,但样品棱角处的一 维边缘态受到局域的时间反演对称性以及全局的 三重旋转和空间反演对称性保护^[117].

也有不少文献研究单质拓扑绝缘体的单层或 少层薄膜. 这些薄膜由分子束外延 (molecular beam epitaxy, MBE) 等技术在不同的衬底上生 长.可以想象,当体系的厚度越薄,其上下表面的 耦合就会变得越强,最终使表面态打开能隙,使体 系产生拓扑相变而成为普通绝缘体 (详见 3.2.8 节 对 Bi₂Se₃系列 TI 薄膜的讨论). 但在很多情况下, 用以生长薄膜的衬底对薄膜的影响不可忽略.例 如 Bian 等^[118]利用 ARPES 研究了在 Si(111) 表 面生长的 8 层 (4 个双层)Sb 薄膜的拓扑性质,发 现表面态能隙并未打开,和悬空的8层Sb的计算 结果不符. 这表示硅衬底对这个样品的拓扑性质起 了决定性的作用. Ohtsubo 等^[108]和 Takayama 等^[119] 分别对 α-Sn 和双层 Bi 这两种单质拓扑绝缘体进 行了普通 ARPES 和自旋分辨 ARPES 测量, 指出 α-Sn 在层数在某个范围内 (例如 30 层和 34 层) 时 才是 TI, 太薄和太厚时均不是; 而 Bi 表面态的自 旋极化 P 高度依赖于层数. 上海交通大学 Miao 等[120] 研究生长在 Bi2Te3 表面的双层 Bi 薄膜, 发现体系 的狄拉克点在能量方向上有一定的拉长,形成单粒 子能带理论不允许的"无穷费米速度"的竖直色散 关系,并指出此现象来源于 Bi₂Te₃ 衬底与双层 Bi中狄拉克准粒子的耦合.

值得注意的是, 研究者还在岛状生长的拓扑绝 缘体的边缘利用 ARPES 找到了纯一维的金属性 边缘态的色散信号. Takayama 等^[121]在 Si(111) 表面生长的, 面积小于 ARPES 入射光斑大小的 Bi 岛状结构的 ARPES 谱中, 在原本没有任何信 号的位置发现了很弱的 Rashba 形的能带, 且这种 能带在 k_x方向完全没有色散. 这项研究证实 ARPES 不仅对二维表面态敏感, 也具有一维边缘态的 k空 间分辨能力.

图 3 ARPES 实验发现的第一类强三维拓扑绝缘体—— $\operatorname{Bi}_{1-x}\operatorname{Sb}_x \operatorname{\widehat{c}} \oplus \operatorname{ARPES}$ (a) $\operatorname{Bi}_{1-x}\operatorname{Sb}_x \overline{\Gamma} - \overline{M}$ 方向能带结构. 数字 1—5标示 5个拓扑表面态; (b) 图 (a) 中绿色虚线标示的动量分布曲线 (MDC) 的自旋极化情况. Spin up (Spin down) 表示极化 方向朝向图 (a) 的前 (后) 方; (c) 自旋分辨 ARPES 测量的实验仪器布局; (d) Sb 单晶 $\overline{\Gamma} - \overline{M}$ 方向能带结构. (e), (f) 图 (d) 中白 色虚线标示的 MDC 的自旋极化情况. Up/down 的意义同图 (b)

Fig. 3. The first 3 D topological insulators, $\operatorname{Bi}_{1-x}\operatorname{Sb}_x$ and Sb, discovered by $\operatorname{ARPES}^{[10]}$: (a) ARPES band structure along $\overline{\Gamma} - \overline{M}$ for $\operatorname{Bi}_{1-x}\operatorname{Sb}_x$. Numbers mark the five topological surface states; (b) spin polarization along the green dashed line in Fig.(a). Up/down represents a polarization out of/into the page; (c) experimental geometry of the spin-ARPES setup; (d) ARPES band structure along $\overline{\Gamma} - \overline{M}$ for Sb; (e), (f) spin polarization along the white dashed line in Fig.(d).

3.2 Bi₂Se₃ 系列拓扑绝缘体

真正典型的、满足 TI 最简模型且激发了爆炸 式研究 浪潮的强三维 TI 是 Bi₂Se₃ 系列,包括 Bi₂Se₃, Bi₂Te₃和 Sb₂Te₃这三种化合物 (Sb₂Se₃是 否为 TI 存在争议).这些化合物都是以五个原子层 (quintuple layer)为一个基本重复单元,单元之间 以极弱的范德瓦尔斯力结合的准二维层状材料,非 常适于 ARPES,STM 等表面物理技术的研究. 2009年,斯坦福大学 Chen 等^[11]以及普林斯顿大 学 Xia 等^[12]和 Hsieh 等^[122,123]几乎同时利用 ARPES 指出此类化合物的拓扑不寻常属性.他们 发现这一类化合物仅在 Γ 点呈现一个狄拉克锥拓 扑表面态,满足最简单的拓扑绝缘体"氢原子模 型".在较大的能量范围内, Bi₂Se₃ 的狄拉克锥形状 比较像 X 形,而 Bi₂Te₃ 的狄拉克锥有严重的扭曲, 但在靠近狄拉克点处,二者均趋于线性的 X 形,满 足狄拉克准粒子有效质量为零的要求.与前二者不 同, Sb₂Te₃ 的体材料是一个天然的 p 型半导体,其 狄拉克点位于体价带内部^[124]. SARPES 进一步确 认了狄拉克锥的自旋-轨道锁定行为, 从而确定无 疑地指出这些化合物都是强三维 TI(图 4^[11,12,122,125]).

确定了这些材料的拓扑性质以后,科学家们利用 ARPES 对其电子学性质进行了极为详尽的探讨,主要的研究方向有以下几个: 3.2.1 节,研究狄拉克锥在远离狄拉克点时因体能带的影响产生的变形; 3.2.2 节,对材料进行体掺杂或表面掺杂,调控载流子浓度和费米面的位置; 3.2.3 节,对材料进行掺杂,研究其拓扑性质的变化和对称性破缺带来的新颖物理现象,例如类似量子阱的新狄拉克锥拓扑态和长程磁序导致的狄拉克锥能隙等; 3.2.4 节,精确测定狄拉克锥中每点的 k-E 位置和洛伦茨线型的宽度,通过分析自能的实部和虚部研究狄拉克

电子与声子的相互作用等; 3.2.5 节,利用 CD-ARPES 和 SARPES研究狄拉克锥和体能态的自 旋构型,详细分析入射光子能量、入射光子偏振等 对 CD-ARPES 和自旋信号的影响,梳理出研究 TI 自旋构型的一般方法; 3.2.6 节,利用 trARPES, 双光子 ARPES (two photon angle resolved photoemission, 2PPE)等时域光电子能谱技术详 细研究体系的非平衡态动力学弛豫过程; 3.2.7 节,利用 trARPES 技术研究 TI 在随时间周期变化的 势场中的能带结构,构造 Floquet 拓扑绝缘体; 3.2.8 节,通过 MBE 等方法生长 TI 的单层或少层 薄膜,研究其电子学性质和拓扑属性,等等.下面

图 4 Bi₂Se₃和Bi₂Te₃单晶的最初几个 ARPES 研究^[11,12,122] (a) Bi₂Se₃和Bi₂Te₃的晶体结构^[11]; (b) Bi₂Se₃和Bi₂Te₃的体和表面 布里渊区^[124]; (c) Bi₂Te₃的狄拉克锥 (沿两个高对称方向)^[11]. SSB: 拓扑表面态; BCB: 体导带; BVB: 体价带; (d) Bi₂Se₃的狄拉克 锥 (沿两个高对称方向)^[12]; (e) Bi₂Te₃ 狄拉克锥及其形成的费米面^[122]; (f) 图 (e) 能带的自旋极化情况^[122]

Fig. 4. The first ARPES studies on Bi_2Se_3 and Bi_2Te_3 single crystals^[11,12,122]: (a) Crystal structures of Bi_2Se_3 and $Bi_2Te_3^{[11]}$; (b) bulk and surface Brillouin zone of Bi_2Se_3 and $Bi_2Te_3^{[124]}$; (c) Dirac cone of Bi_2Te_3 (along two high symmetry directions)^[11]. SSB: topological surface state; BCB: bulk conduction band; BVB: bulk valence band. (d) Dirac cone of Bi_2Se_3 (along two high symmetry directions)^[12]; (e) the Fermi surface made by the Dirac cone of $Bi_2Te_3^{[122]}$; (f) spin polarization of the bands in Fig.(e)^[122].

图 5 Bi₂Se₃系列 TI 狄拉克锥的六角变形^[11,127-129] (a) (Bi_{1-δ}Sn_δ)₂Te₃ 材料的雪花形费米面,上图材料为 Bi₂Te₃ ($\delta = 0$),下图材 料为 $\delta = 0.67\%^{[11]}$; (b) Bi₂Se₃ 的等能面形变,上图位于费米面,下图位于费米面以下 150 meV^[127]; (c) 利用 CD-ARPES 导出的费 米面自旋极化 s_z分量. sin3 θ 周期性清晰可见^[128]; (d) 量子阱表面态存在时自旋极化的分布^[129]

Fig. 5. Hexagongal warping of the Dirac cones in the Bi₂Se₃-class TIs^[11,127-129]: (a) Snowflake-like Fermi surfaces of (Bi_{1.6}Sn_b)₂Te₃. Top: Bi₂Te₃($\delta = 0$); bottom: $\delta = 0.67\%^{[11]}$; (b) constant energy contours of Bi₂Se₃. Top: $E = E_F$; bottom: $E = -150 \text{ meV}^{[127]}$; (c) s_z component of the spin polarization vector, extracted from CD-ARPES data. The sin3 θ periodicity is clearly visible^[128]; (d) distribution of the spin polarization vector in the presence of quantum well states^[129].

分述这几个方向的研究进展,并在 3.2.9 节作一 小结.

3.2.1 利用 ARPES 研究狄拉克锥远离 Γ 点时产生的变形

仔细观察文献 [11, 122] 中 Bi₂Te₃ 的费米面, 可以发现它的狄拉克锥的 k_x-k_y 横截面并不是一个 完美的圆. 当等能面远离狄拉克点时, 圆形的横截 面首先变成一个圆角的正六边形, 再进一步变化为 雪花状的曲面. 2009 年麻省理工学院的 Fu^[126] 首先在理论上用 k·p 模型的高阶项解释了这一现 象, 指出这个费米面的扭曲可以导致狄拉克能带 z方向的自旋极化, 并且使各向同性条件下被禁止 的背散射能够在一定程度上发生. 其后, ARPES 接连观察到了 Bi₂Se₃ 的费米面六角变形^[127] 和狄 拉克锥以 120° 为周期的 z方向自旋极化^[128], 完美 证实了 k·p 模型的正确性 (图 5^[11,127–129]). 这种具 有 sin3θ 周期性的面外自旋在量子阱表面态 (见 3.2.3 节) 形成后仍能被观察到^[129].

3.2.2 利用体掺杂或表面掺杂调控 Bi₂Se₃ 系列拓扑材料的费米面

由于 Bi₂Se₃ 系列材料的天然费米面高于导带 底,这类拓扑材料的进一步应用要求利用体或表面 的空穴掺杂把费米面移到体能隙中,以实现特征的 拓扑量子输运.事实上, Bi₂Se₃系列材料的几篇开 创性论文中对体掺杂和表面掺杂的材料已有讨论. 文献 [11] 中利用 ARPES 研究了 Sn 体掺杂对 Bi₂Te₃ 费米面的调控,指出 Sn 是一种有效的空穴掺杂, 能使原来位于导带的费米面下移到体能隙中,实现 真正的体绝缘态. 文献 [122] 指出 Ca 体掺杂也能 使 Bi₂Te₃ 的费米面下移, 使费米面位于狄拉克点 或更低的位置,实现全局的空穴掺杂.除此以外, 对体掺杂 TI 的研究也有不少, 例如文献 [123] 指 出 Mn 可以实现 Bi₂Te₃ 的空穴掺杂和体绝缘性, 文献 [127] 指出 1% 的 Mg 体掺杂可令 Bi₂Se₃ 的费 米面降至狄拉克点等. 文献 [122] 同时提到了 NO2 对Bi2-rCarSe3的表面掺杂可使费米面下移, 文献 [130] 提到 Te 对 Bi₂Se₃ 的体掺杂也有类似效果, 等等. Cu和Sr掺杂的Bi₂Se₃系列TI不但能调控费米 面,还能够实现超导.这方面的研究有很多(例如 文献 [131,132] 等等), 但由于本文不涉及拓扑超导 体的讨论,这里先略过这些研究.

3.2.3 利用掺杂研究 Bi₂Se₃ 系列材料拓扑 性质的变化和对称性破缺带来的新 颖物理现象

除了有效调控费米面以外, TI 的体掺杂和表面掺杂带来的物理现象非常丰富. 第一, 由于全局拓扑性质在微扰下不变, 杂质的引入不改变 TI 的

拓扑不寻常性,但会使材料的体能带呈现出类似量 子阱的新狄拉克锥拓扑态. 文献 [133] 是最早研究 这一现象的论文之一. 文中指出 Fe 对 Bi₂Se₃ 的表 面掺杂令费米面升高,使费米面更深入体导带中. 这时候,体导带发生了新的变化,一对或几对类似 Rashba 劈裂能带的新的表面态出现,但总的拓扑 不寻常的狄拉克锥数目维持为一,两个 TRIM 点之 间通过费米面的能带个数维持为奇数. 文献 [129,134] 进一步指出 K, CO, Rb 等原子团对 TI 的表面掺 杂,甚至简单地把 TI 放置在超高真空环境中一段 较长的时间,也能导致同一现象.这两篇论文对这 个现象给出了一个简单的定量解释,认为费米面 在 TI 晶体表面发生了向下的弯曲, 弯曲处连同表 面势垒构成了一个类似半导体表面 p 掺杂时出现 的量子阱, 使 Rashba 分裂的电子形成二维电子气 禁锢于其中[135],于是形成了新的表面能带.这些表 面能带成对出现,因此不影响体系的总体拓扑性 (图 6^[129,133]). 这个现象充分说明了 TI 的全局拓扑 性质不受杂质或扰动的影响. 后续的研究对这方面 也有跟进,例如中科院物理所 Chen 等^[136]把 Bi₂Se₃ 系列 TI 在大气中放置一段可观的时间后进行 ARPES 测量,发现 TI 表面态的拓扑性完全不受影响,且 观察到了 Rashba 表面态的形成. 文献 [137]利用 水蒸气的表面覆盖模拟 TI 样品表面在大气中的退 化,也观察到了 Rashba 表面态的形成. 文献 [138] 指出 Cu, In, Mn 等表面掺杂都会导致 TI 的费米 面上升和二维电子气的产生,但只有 Mn 掺杂到一 定量时, TI 的狄拉克锥重新变得清晰,等等.

第二,由于 TI 的狄拉克点受时间反演对称性 保护,因此可以想象当破缺时间反演的磁性杂质在 样品中引入长程磁序后,TI 的拓扑性将被破坏,表 现在狄拉克点打开一个磁序造成的能隙,使整个体 系变成磁性拓扑绝缘体.虽然引入磁性和非磁性的 杂质都能使狄拉克锥打开能隙,使无质量的狄拉克

图 6 对 Bi₂Se₃系列 TI 的表面掺杂引入新的量子阱表面能带^[129,133] (a) 新表面能带的形成过程. 随着 Fe 掺杂原子的增加, 量子阱能带逐对生成. 每对新能带在两个 TRIM 点间增加两条通过费米面的能带^{[133}; (b) 钾掺杂 Bi₂Se₃ 中观察到的同一现象, 及其定量计算解释^[129]; (c) 解释此现象的物理图像^[129]

Fig. 6. Introduction of quantum well surface states to the Bi_2Se_3 -class TIs by surface deposition^[129,133]: (a) Formation of the new surface bands^[133]. Pairs of quantum well states are form progressively with increasing surface Fe dosage. Each pair of new states adds two Fermi-crossing bands between two TRIMs; (b) same phenomenon as (a) observed in K-doped Bi_2Se_3 , compared with ab initio calculation results^[129]; (c) physical explanation of this phenomenon^[129].

准粒子获得质量,但只有磁性杂质破坏系统的时间 反演对称性,从而实现量子反常霍尔效应. 文献 [139] 系统地考察了稀释的磁性和非磁性杂质对 Bi₂Se₃ 的费米面高度、Rashba 二维电子气的形成和狄拉 克锥的六角变形的影响,指出磁性和非磁性杂质对 狄拉克表面态的作用非常类似. 但是,由于这份文 献没有利用自旋分辨 ARPES 观测 Γ 点的面外自 旋极化,所以实际上并不清楚这些磁性杂质在样品 表面是否形成了长程磁序.由于磁性拓扑绝缘体非 常重要且是目前研究的热点,本文将在第4章详述.

3.2.4 通过分析自能的实部和虚部研究狄 拉克电子的多体相互作用

根据光电效应三步模型 (2.3 节), ARPES 单 电子谱函数 $A(\mathbf{k},\omega)$ 包含了自能 $\Sigma(\mathbf{k},\omega) \equiv \Sigma'(\mathbf{k},\omega) +$ i $\Sigma''(\mathbf{k},\omega)$ 的信息^[59], 而自能的实部 $\Sigma'(\mathbf{k},\omega)$ 和虚部 $\Sigma''(\mathbf{k},\omega)$ 分别与能量的重整化和准粒子能态的寿 命相关. 当自能随 k缓慢变化时, ARPES MDC 线 型的半高全宽近似等于 2 $\Sigma''(\omega) / v_{\rm F}^0$, 即自能虚部 $\Sigma''(\omega) = {\rm FWHM} \cdot v_{\rm F}^0/2$. 当电子-声子耦合强度较大 时 (例如在 Mo(110) 表面和铜基高温超导体中), 通过费米面的能带在电声耦合能 ω_{ph} 附近会出现 一个明显的弯折, 使能带靠近费米面时群速度减 小, 有效质量增加^[59].

文献 [140] 是利用自能虚部研究 TI 拓扑表面 态的准粒子耦合模式的第一份文献,给出 Bi₂Se₃ 的狄拉克电子如图 7(a)的自能虚部测量值,并分 析了不同的带间准粒子散射通道 (如电子空穴对的 生成、电子-声子耦合和杂质散射等)对自能虚部的 贡献. 奇怪的是,这份文献中的数据并未由后续的 实验重复. 文献 [141] 再次测量了 Bi₂Se₃ 拓扑表面 态的自能虚部,得出如图 7(b)的数据. 与图 7(a) 对比可见,束缚能在 0.17 eV 附近的 Σ''尖峰并未 出现,这可能是由于文献 [141] 中拓扑表面态未受 到体能态的干扰. 最重要的是,图 7(b)中随着温度 的上升,能带的热展宽、过费米面能带的弯折和能 量的重整化均观察不到,这提示我们 TI 表面态中 的电子-声子耦合非常微弱. 事实上文献 [141] 对电 声耦合系数λ作了估算,结果表明 Bi₂Se₃ 是已知的

图 7 利用自能虚部研究 TI 中狄拉克电子的多体相互作用^[140-142] (a) Bi₂Se₃ 狄拉克电子的自能虚部随束缚能的变化曲线 (上), 以及可能的散射通道分析 (下)^[140]; (b) Bi₂Se₃ 狄拉克电子的自能虚部随束缚能的变化曲线 (上), 以及 MDC 的半高全宽 (下)^[141]. (a) 和 (b) 中的拓扑表面态均沿 $\overline{\Gamma} - \overline{K}$ 方向截取; (c) Bi₂Te₃ 狄拉克电子的自能虚部随束缚能的变化曲线, 上 (下) 图利用 MDC (EDC) 的分析得到^[142]

Fig. 7. Study of many-body interactions of the Dirac fermions in TIs by analyzing the imaginary part of the self energy^[140-142]: (a) Results of Ref. [140]. Top: Imaginary part of the self energy (Im Σ) versus binding energy (E_b) for the topological surface state (TSS) of Bi₂Se₃. Bottom: Analysis of possible scattering channels; (b) results of Ref. [141]. Top: Im Σ vs. E_b for the TSS of Bi₂Se₃. Bottom: Full width half maximum (FWHM) of the momentum distribution curves (MDCs); (c) results of Ref. [142]. Top/bottom: Im Σ vs. E_b for the TSS of Bi₂Te₃, obtained from MDC/EDC analysis. 电声耦合强度最弱的材料之一. 文献 [142] 对 Bi₂Te₃的自能虚部作了类似分析, 其 $\bar{\Gamma} - \bar{K}$ 方向的 自能虚部数据类似于文献 [141] 中 Bi₂Se₃的相应 数据 (图 7(c)). 文中强调了 Bi₂Te₃ 狄拉克锥的六 角变形对自能的影响, 指出由狄拉克锥变形导致的 各向异性增加了表面态散射通道的复杂性. 依赖于 自旋的带内散射、由平行费米面 (Fermi nesting) 导致的带内散射以及表面态到体态的带间散射对 自能都有贡献.

3.2.5 利用自旋分辨 ARPES 和圆二色性 ARPES 研究狄拉克锥和体能态的 自旋构型

拓扑绝缘体其中一个最重要的物理性质是其 狄拉克锥的自旋螺旋构型及其引致的严格背散射 的缺失,区别于例如石墨烯狄拉克锥的自旋简并性 质. 拓扑绝缘体的一切可能的自旋电子学应用都由 这种特殊的自旋纹理引致 (严格地说,在 TI 表面 态中,好量子数是赝自旋而非自旋本身,但二者直 接正比,所以以下直接用"自旋"代称赝自旋).所谓 自旋螺旋构型 (亦称"自旋-动量锁定"行为), 指的 是形成狄拉克锥的两条线性能带的自旋都指向狄 拉克锥在 k_x-k_u 面内的横截面的前切线方向. 换句 话说, 在过狄拉克点的 E-k_x或 E-k_y能带图中, 两 条准粒子群速度分别为正和负的狄拉克能带的自 旋均垂直于 E-k 面, 且极化方向刚好相反^[2-4]. 从 ARPES 角度讲, 如果不测量狄拉克能带的自旋, 则拓扑绝缘体和石墨烯类型的狄拉克锥是无法区 分的,因此要从实验上唯一确定某种材料是不是拓 扑绝缘体,对其狄拉克锥自旋的测量必不可少.

利用 ARPES 测定能带自旋的方法大体有两种. 其一是利用安装在 ARPES 电子分析仪光电子 成像端的自旋分析仪直接测量光电子的自旋 (自旋 分辨 ARPES, SARPES),即依次测量自旋分析仪 对两个相反方向自旋敏感时同— *E-k*平面的能带 结构,分别获得光电子强度 I_{\uparrow} 和 I_{\downarrow} ,换算得自旋 极化强度 $P = (I_{\uparrow} - I_{\downarrow}) / (I_{\uparrow} + I_{\downarrow})$.如果完全不考 虑光电效应过程本身的复杂性,光电子的自旋就是 材料中能带电子的自旋 (这当然是错误的,见下 述).其二是利用圆二色性 ARPES 间接推断能带 的自旋,即依次使用左旋圆偏振光 (σ ⁺)和右旋圆 偏振光 (σ ⁻) 作为入射光测量同— *E-k*平面的能带 结构,分别获得光电子强度 $I_{\sigma+}$ 和 I_{σ} ,换算得圆二 色性信号CD = $(I_{\sigma^+} - I_{\sigma^-})/(I_{\sigma^+} + I_{\sigma^-})$ (见 2.3 节). 在拓扑绝缘体中,理论认为左旋和右旋圆偏振光能 够 探测具有不同轨道角动量 (orbital angular momentum, OAM) 的光电子末态,而 OAM 与动 量的耦合方式类似于自旋与动量的耦合.更有理论 进一步推断 OAM 和自旋在拓扑绝缘体中是简单 的反平行关系^[143,144].因此,在最粗略的近似下,圆 二色性信号 CD 与自旋极化信号 P线性相关.由 于自旋分析仪获得的极化信号强度通常比普通 ARPES 低 2—3 个数量级,而 CD-ARPES 信号强 度与普通 ARPES 相当,因而不少研究者认为 CD-ARPES 测量在某种意义上可以取代 SARPES 测 量,且测量效率更高.

在 Bi₂Se₃系列拓扑绝缘体研究的前期, ARPES 实验工作通常直接利用一个或少数几个实 验配置下的 SARPES 数据说明两条狄拉克能带的 面内自旋方向相反,从而证实拓扑绝缘体的自旋-动量锁定.这种方法取得了巨大的成功,它在实验 上证实了三维拓扑绝缘体的存在,从而开辟了人类 物态认知的新纪元. 图 3(f) 和图 4(f) 给出了 SARPES 对拓扑绝缘体最早的几个测量[10,122],证实了狄拉 克锥的面内自旋螺旋纹理. 大阪大学 Souma 等^[145] 测量 Bi₂Se₃ 狄拉克锥自旋的面外分量 (s,) 并与 TlBiSe₂(见 3.3.3 节) 作对比, 指出自旋面外分量的 成因是狄拉克锥的六角变形 (3.2.1节). Bi₂Se₃ 系列 TI的 CD-ARPES 数据出现得稍晚一些. Wang 等^[128]利用基于飞行时间光电子能谱仪 (time-of-flight (TOF) spectrometer)的激光 CD-ARPES(光子能量为 6.2 eV) 研究了 Bi2Se3 拓扑表 面态的 CD 纹理. 其模型计算认为 CD 是拓扑表面 态赝自旋(S),各分量的线性函数,通过在光入射 平面与晶体 $\Gamma - M$ 方向夹角 ϕ 不同的情况下测量 CD, 可以把 (S), 的三个分量全部确定下来 (例如 $\langle S_x \rangle \propto \text{CD} (\phi = 0) + \text{CD} (\phi = \pi/3),$ (\$\$). Park \$\$[143] 利用 10 和 13 eV 的两种圆偏振入射光测量 Bi₂Se₃的拓扑表面态,认为不同的圆偏光可以激发 不同 OAM 的末态, 而 OAM 和自旋反平行. 因此 这两份文献均认为可以利用 CD-ARPES 高效地 研究 TI 表面态的自旋.

随着研究的深入,人们发现事情并没有那么简 单. Scholz 等^[146] 在不同的入射光子能量下测量 Bi₂Te₃ 的 CD 信号,发现 CD 的正负在光子能量 为 20 —100 eV 的区间中发生了几次似乎无规律

图 8 TI 拓扑表面态圆二色性信号和自旋极化信号的复杂性^[146,148,150] (a) 两份文献中 CD-ARPES 和 SARPES 的实验配置^[148,150]. 图中 p 和 π(s 和 σ) 意义相同; (b) Bi₂Te₃ 狄拉克电子的 CD 信号^[146]. 入射光子能量从 21 到 55 eV 变化过程中, CD 信号发生了两 次反转; (c) Bi₂Se₃ 自旋极化信号的三个分量随光子能量的变化^[150]; (d) Bi₂Se₃ 自旋极化信号在两种不同的线偏振入射光作用下 方向完全相反^[148]; (e) 自旋信号随入射光偏振变化的复杂响应^[148]. ± sp-pol 表示右 (左) 倾 45° 的线偏振光

Fig. 8. Complexity of the CD-ARPES and SARPES signals^[146,148,150]: (a) Experimental geometries in Refs. [148,150]. p and π (s and σ) are the same; (b) CD-ARPES signal of the Dirac fermions in Bi₂Te₃^[146]. The CD signal reverses sign for two times as the photon energy goes from 21 to 55 eV; (c) the three components of the spin polarization vector (P_x , P_y , P_z) vs. photon energy^[150]; (d) sign reversal of P under two different linearly polarized incident lights^[148]; (e) complex response of P as a function of light polarization^[148]. \pm sp-pol: 45° tilted linearly polarized light.

的反转 (图 8(b)). 很明显, CD 反转来源于光电效 应过程本身,而非狄拉克电子的初态自旋. Jozwiak 等^[147]首先利用 SARPES 研究 Bi₂Se₃ 的拓扑表面 态,发现不同的入射光子能量会令 Bi 芯能级 (core level) 的自旋极化率发生很大的变化,且在同一光 子能量下,入射光的不同线偏振方向会使自旋极化 信号发生反转;继而利用其研制的自旋分辨激光 ARPES 仪器 (光子能量为 5.99 eV)发现不仅 90° 的入射光偏振方向旋转 (从 p 偏振变成 s 偏振) 会 导致自旋信号的完全反转,而且 45° 的偏振旋转会 使测得的自旋方向沿着狄拉克锥横截面的径向 (图 8(d) 和图 8(e)),与 TI 表面态的自旋构型大相 径庭^[148]. 和 CD-ARPES 信号一样,这些变化不可能来自狄拉克电子的初态,而只能与矩阵元 $I_0(\mathbf{k},\omega,\mathbf{A})$,也就是复杂的光电效应过程有关. Zhu 等利用 21.2 eV的 σ 和 π 两种线偏振入射光研究 Bi₂Se₃ 的普通 ARPES 信号^[149] 和自旋极化信号^[150],得到与文献 [148] 类似的结论,并进一步指出这种现象来源于不同偏振的入射光对三个p轨道的不同响应,光学选择定则,以及光电子在不同原子层之间产生的干涉现象.上海交通大学Miao 等^[151] 对比了不同 TI 的 SARPES 信号,得出基本相同的结论.由于自旋信号受诸多因素的影响,文献 [148,150] 甚至指出可以利用这个性质通

图 9 虽然 CD-ARPES 和 SARPES 数据受多种参数影响,利用 SARPES 研究 TI 表面态的自旋构型仍然是可能的^[152] (a) 当入 射光能量为 50 eV 时,自旋信号不受入射光偏振的影响; (b) 当入射光能量为 6 eV 时,自旋信号随入射光偏振的反转而反转 Fig. 9. Possibility for studying the initial state spin configuration despite the complexity of CD-ARPES and SARPES signals^[152]: (a) When *hv* = 50 eV, the spin signal is unaffected by incident light polarization; (b) when *hv* = 6 eV, the spin signal changes sign as the light polarization reverses.

过调节外部参数来调控光电子的自旋,获得高效的 自旋光电子学器件.

由于上述效应涉及到不同能量、偏振的入射光 对 TI 不同轨道、不同原子层狄拉克电子的复杂相 互作用,对它的理论理解超出了光电子能谱学三步 模型的范畴, 而必须运用一步模型 (见 2.4 节) 来解释. 在一步模型的框架下, SARPES 信号正比于由相 对论一步模型求得的自旋极化强度 p, 而入射光偏 振对 ARPES 信号的影响体现为矢量势 A_0 的不同 取值. 由于一步模型的复杂性, 不少研究组采用不 同的简化模型来理解这一现象. 文献 [128,143,149,150] 均假定光电子末态是自旋简并的平面波,即假定 ARPES 矩阵元 $I_0 \propto \langle e^{i \boldsymbol{k} \cdot \boldsymbol{r}} | \boldsymbol{A}_0 \cdot \boldsymbol{p} | \boldsymbol{\Psi}_{TSS} \rangle$ (TSS: 拓扑 表面态), 文献 [149,150] 利用分离 kz 贡献的方法 进一步研究电子在原子层间的干涉.也有文献利用 比较完整的一步模型详细研究 CD-ARPES 和 SARPES 信号. Sánchez-Barriga 等^[152] 总结了前 人的工作并展示了新的数据(图 9),结合一步模型 计算指出虽然 TI的 CD-ARPES 和 SARPES 信 号非常丰富和复杂, 但通过 CD-ARPES 和 SARPES 研究 TSS 的初态自旋构型仍然是可能的,只是我 们应该选取 50-70 eV 的光作为入射光, 避免 6—21 eV 的光入射时入射光偏振、偶极选择定则、 光电子层间干涉,以及自旋依赖的电子散射等非初

态因素对光电流的强烈干扰.

3.2.6 利用 trARPES、2PPE 等时域光电 子能谱技术研究体系的非平衡态动 力学过程

从实验上说,并非每一类适于普通 ARPES 的 材料都能够获得令人信服的 trARPES、2PPE 等 时域光电子能谱信号. 幸运的是, Bi₂Se₃系列 TI 对此类技术十分友好, 且由于能带结构比较简 单,它们能够为时域 ARPES 提供一个研究拓扑表 面态动力学过程的很好的平台. 文献中的研究内容 主要有以下几类: A. 利用泵浦 ARPES 或 2PPE 把初态的电子激发到中间态或者激发态中,研究位 于费米面以上的非占据态能带结构: B. 精确控制 激发光和探测光到达样品的时间差并测量每一时 间差对应的能带结构,详细研究系统从激发态到平 衡态的动力学弛豫过程; C. 精确测定弛豫过程中 的能带变化 (能带的整体抖动), 研究 TI 中的准粒 子耦合行为; D. 利用同时具有时间分辨和自旋分 辨 (或 CD-ARPES) 能力的 ARPES 仪器研究 TI 非平衡态的自旋纹理.

利用 trARPES 和 2PPE 等技术,我们首先获得的信息是 TI 非占据态的电子学结构.其中比较有代表性的是 Sobota 等^[153]利用电子吸收两个 6 eV 光子的 2PPE 过程观察到的,从费米面到真

图 10 利用 trARPES 和 2PPE ARPES 研究 Bi₂Se₃ 费米面以上的电子学结构^[153,154] (a) 图中涉及的三种光电效应过程^[154]: (i) 电子连续吸收两个 6 eV 光子后发射 (对应于图 (b)), (ii) 电子同时吸收一个 1.5 eV 和一个 6 eV 光子后发射 (对应于图 (c) 的左 上两图), (iii) 普通 ARPES 过程, 对应于图 (b) 和图 (c) 的下方小图; (b) 由 6 eV + 6 eV 2 PPE 过程探测到的非占据态能带^[153]; (c) 由 1.5 eV + 6 eV 2PPE 过程探测到的能带, 其中的 X 型狄拉克锥是费米面以下的拓扑表面态的投影, 并非第二狄拉克锥^[154] Fig. 10. Studying the unoccupied electronic states of Bi₂Se₃ using trARPES and 2PPE ARPES^[153,154]: (a) Three relavant processes of photoemission^[154]. (i) An electron photoemits after absorbing two 6 eV photons consecutively (situation in Fig. (b)); (ii) An electron photoemits after simultaneously absorbing a 1.5 eV and a 6 eV photon [two upper left panels in Fig. (c)]; (iii) Normal photoemission (two lower panels in (b) and (c)); (b) unoccupied bands revealed by Process (i)^[153]; (c) bands reveals by Process (ii)^[154]. The X-shaped Dirac cone is a projection of the TSS below *E*_F, not the 2nd TSS.

空能级的近 6 eV 内的非占据态能带结构 (图 10(b), 对应于图 10(a) 的 (i) 过程). 这个结果中最引人注 目的特征是费米面以上 1.3—2.4 eV 之间, 交点位 于 1.7 eV 的 X 型能带结构. 通过和理论计算的比 对,作者确认这是 Bi₂Se₃的第二个拓扑表面态 (狄 拉克锥). 其零能隙和普通 ARPES 观察到的第一 个狄拉克锥一样由时间反演对称性保护. 值得注意 的是, 在利用 1.5 和 6 eV 两路激光共同激发的 2PPE 过程 (图 10(a) 的 (ii) 过程) 中, 也能够观察 到很类似图 10(b) 的 X 形拓扑表面态, 但这个表面 态是第一狄拉克锥在费米面上方形成的镜像,不是 第二狄拉克锥. 在第二狄拉克锥和第一狄拉克锥投 影相交的地方, ARPES 信号被共振增强 (图 10(c)^[154]). 类似的现象也在 Bi2Te3, Bi2Te2Se, Sb2Te3, Sb2Te2S 等材料中被观察到[155-158],其中文献 [157,158] 利 用能量为 0.5 eV 左右的红外激光作为激发光, 观 察到表面态自身的泵浦过程,发现狄拉克锥的两支 信号强度有明显的不同,也就是说这种过程诱发了 热电子的自旋极化流.利用红外激光作为激发光获 得的最重要的结果是实现了电子在时域周期势场 中的 Floquet 响应, 即发现了 Floquet拓扑绝缘体. 这一点将在 3.2.7 节详述.

TI 非平衡态到平衡态的动力学弛豫过程也是 trARPES 研究的重点内容.利用基于 1.5 eV 激发 光和 6 eV 探测光的泵浦 ARPES, 几个研究组测 量了两个光子到达样品的时间差不同的情况下非 占据态电子学结构的演变. Sobota 等[159] 使用的样 品是空穴掺杂的 Bi₂Se₃, 狄拉克点位于费米面以 上 (图 11(a) 和图 11(b)). 他们发现 Bi₂Se₃ 导带底 的载流子寿命很长 (10 ps 量级), 使得导带底可以 作为临时的电子库.进一步的分析表明,清空导带 底载流子的时间常数和清空表面态电子的时间常 数相同,因此导带底通过弛豫向拓扑表面态提供电 子,使表面态在长时间内保持电子填充的状态. Wang 等^[160] 使用的样品是电子掺杂的 Bi₂Se₃, 狄 拉克点位于费米面以下.他们没有观察到位于导带 底的亚稳态 (图 11(c)), 但分析了不同晶格温度下 电子温度随时间的弛豫过程,认为在低晶格温度下 声子辅助的表面态-体态耦合不明显,而在高晶格 温度下这类耦合很强.

假如对弛豫过程作高精度的分析, 会发现样品的整体能带结构 (能带的位置) 出现以时间为周期的规则抖动, 这现象由光电子和晶格声子的耦合引起. 分析这类抖动的频率可以探讨 TI 的电声耦合效应. 文献 [161] 利用这个方法分析了 Bi₂Se₃ 表面态和体态的振动模式, 发现 TI 导带底 (体态)的trARPES 信号强度会以 2.23 THz 的频率作周期性变化, 这一变化被归因于体态与 A_{1g} 声子模式的

图 11 利用 trARPES 分析 TI 非稳恒态的动力学弛豫过程^[159,160] (a), (b) 空穴掺杂 Bi₂Se₃ 的动力学弛豫过程的 (a) 实验数据和 (b) 物理图像示意^[159]. 在 $t \approx 0$ ps 时, 激发光把电子激发到很高的非占据态中;随着时间推移,电子逐渐占据较低能的能带. 在 t = 2.5—9.0 ps 这段时间内,导带底始终作为电子库向表面态供给电子; (c) 电子掺杂 Bi₂Se₃ 的动力学弛豫过程^[160]. 导带底在此 实验中不可见

Fig. 11. Studying the relaxation process of the excited state using trARPES^[159,160]: (a), (b) The trARPES result ((a)) and skematics of physical process ((b)) of dynamic relaxation process of hole-doped $Bi_2Se_3^{[159]}$; (c) dynamic relaxation process of electron-doped $Bi_2Se_3^{[160]}$.

耦合. 另一方面, TI 拓扑表面态的信号变化频率除 了 2.23 THz 外, 还有 2.05 THz 的一个 (因而信号 出现差拍现象). 这被归因于表面层晶格相比于体 晶格的微小差别造成的表面声子软化. 在 Bi₂Te₃ 中, trARPES 信号变化频率约为 1.9 THz, 且由于 狄拉克锥变形严重, $\bar{\Gamma} - \bar{K} \pi \bar{\Gamma} - \bar{M}$ 方向的能带

抖动是反相的^[162].

把时间分辨 ARPES 和 CD-ARPES 结合,可 以获得更深层次的非平衡态动力学信息. Soifer 等^[163] 利用 3.02 eV 的左旋或右旋圆偏振光作为激发光, 6 eV 的 s 线偏光作为探测光,观察到费米面以上 的广大区域均有光电流产生(表现为+*k*和-*k*的信 号强度不对称性),且这种光电流在 165 fs 内弛豫 消失.更进一步,作者对非平衡态能带图中每一个 (*k*, *E*)点的信号上升时间 (信号强度最大值对应的 泵浦时间差)进行了细致的扫描,结果显示费米面 以下能带 (占据态)加上激发光能量所对应的 (*k*, *E*)位置的上升时间较短,因而这些位置的非占据 态信号主要由直接的光学跃迁形成.通过这种分 析,我们可以标定特定时刻下光电子和光空穴对特 定光学跃迁的贡献.

把时间分辨 ARPES 和自旋分辨 ARPES 结 合,可以获得非占据态的自旋极化信息.由于被激 发光激发的非占据态 ARPES 信号很弱,且自旋分 辨 ARPES 的效率远低于普通 ARPES,因而获取 这种数据需要长时间的信号积累.文献 [164] 报道 了一组自旋分辨的 trARPES 数据,在泵浦时间差 等于 500 fs 时测得费米面以上 0.4 eV 左右存在一 个高自旋极化的区域.在这个区域里,两种自旋的 电子的弛豫时间有较大差别.利用完整的相对论一 步模型数值计算 (2.4 节)并与实验比对,作者指出 这个自旋极化区来源于一个拓扑平庸的表面共振 态.进一步的数据表明,TI 的表面态和体态甚至不 能用同一个系综来表示,而需要引入各自的电子有 效温度.因此 TI 中表面态和体态的耦合极弱.

3.2.7 利用 trARPES 构造和研究 Floquet 拓扑绝缘体

trARPES 技术的本质, 是利用局域、相干的高 强度激发光构建电磁波与晶体相互作用的场景, 继 而利用探测光引起的光电效应观察这种相互作用 对样品电子学结构的影响.可以想象, 光与晶体中 电子的相互作用不仅会使电子被激发到非占据态 然后弛豫回稳恒态, 更有可能构造完全不同于稳恒 态的新的物相.把这一方法应用到 Bi₂Se₃ 系列 TI, 最重要的结果是发现了固体中的时域能带结构, 即 Floquet-Bloch 电子态.

Floquet 定理^[165] 指出, 一个具有时间周期性 的哈密顿量 (例如波包形式的单色光)可以令固体 中的电子形成以光子能量为周期的亚稳的本征态, 就像具有空间周期性的哈密顿量 (例如晶体)可以 令电子形成以晶格常数为周期的本征态 (Bloch 态) 一样 (见 2.5 节). 具体到 Bi₂Se₃ 系列 TI, 当激发光 的光子能量小于 TI 的体能隙 (约 300 meV), 且激 发光与探测光时间差很小 (例如小于 500 fs) 时, 可

以观察到 TI 的体态和拓扑表面态在能量轴上以光 子能量为间隔重复出现. Wang 等^[166]2013 年首次 观察到这个现象,并在2016年以更高的数据质量 重复了这一结果^[167] (图 12(b) 和图 12(c)). 除了探 测到狄拉克锥的镜像以外,还在特定的不同级镜像 的交叉点观察到动力学能隙的打开,从而把 Floquet 能带和图 10(c) 的狄拉克锥投影区别开来. 这种能 隙的有无与入射光子的偏振和电子动量的方向有 关,特别是能隙的大小正比于入射光强度的开方. 此外, 文献 [167] 详细研究了入射光的不同偏振 对+k_r和-k_r两个相反动量方向上镜像能带强度的 不对称性的影响(图 12(d)),指出除了热电子的自 旋极化流^[157,158]外, Volkov 机制对 Floquet 能带的 影响不可忽略.所谓 Volkov 机制,指的是入射光 对光电子的末态 (真空能级)的调制作用,区别于 Floquet 机制中入射光对光电子的初态 (就是通常 的能带结构)的调制效应 (图 12(a)). 只有同时引 入两个机制的理论计算才能定量解释实验测得的 镜像能带强度的不对称性.

3.2.8 利用 ARPES 研究 TI 少层薄膜的电 子学性质和拓扑属性

TI 的单层或少层薄膜的物理性质和拓扑属性 与 TI 单晶体材料有巨大的区别,因此利用 ARPES 研究 TI 薄膜有特殊的意义.这些薄膜可 以生长在绝缘衬底上,以模拟悬空 (free standing) 的少层 TI 的电子学行为,也可以生长在各种不同 功能材料的衬底上,以研究其形成的异质结构的物 理性质,例如构造 TI 和超导体的异质结可用于研 究拓扑超导体以及 Majorana 费米子等等.由于篇 幅所限,本文仅介绍利用 ARPES 研究近似于悬空 的 TI 薄膜的几个工作.

首先, TI 薄膜的厚度对其拓扑属性有重要的 影响. 原则上, 当样品的厚度下降至只有数个原子 层时, 本来互不相干的, 局域在样品上下表面的拓 扑表面态波函数会发生可观的交叠, 形成电子隧穿 的通路, 使拓扑表面态打开能隙, 从而使 TI 的拓 扑性质发生全局的突变, 成为普通的能带绝缘体. 清华大学 Zhang 等^[168]利用 ARPES 首先在 Bi₂Se₃ 薄膜 (生长于双层石墨烯覆盖的 6 H-SiC(0001) 衬 底上) 中观察到 6 层以下薄膜的能隙打开, 证实 6 层以下的 Bi₂Se₃ 是拓扑平庸的体系 (图 13(a)), 继而在 Sb₂Te₃ 薄膜 (生长于 Si(111)-7 × 7 衬底

图 12 利用 trARPES 构造和研究 Floquet 拓扑绝缘体^[166,167] (a) 时域能带结构的两种形成机制: Floquet 机制和 Volkov 机制 (见正文)^[167]; (b) 对 Floquet 拓扑绝缘体的首次观测^[166]; (c) 图 (b) 数据的高精度重复^[167]; (d) p 偏振 (左二图) 和 s 偏振 (右二 图) 入射光对不同动量方向 (一、三图为 k_x , 二、四图为 k_y) 的 Floquet 能带的影响^[167]. p 偏振时 k_y 方向能带产生 Floquet 能隙, 而 s 偏振时 k_x 方向能带产生 Floquet 能隙 (红色箭头标示能隙位置)

Fig. 12. Realization of Floquet TI by trARPES^[166,167]: (a) Skematics of the Floquet and Volkov mechanisms^[167]; (b) the first experimental observation of a Floquet $TI^{[166]}$; (c) a higher quality reproduction of data in Fig. (b)^[167]; (d) influence on the Floquet bands at different momenta under differently polarized light^[167]. Floquet gap (red arrows) appears along k_y/k_x under p/s-polarized light.

图 13 Bi₂Se₃系列 TI 少层薄膜的拓扑相变^[168,169]. 从图中可以看到, 6 QL 以下的 Bi₂Se₃和 5 QL 以下的 Sb₂Te₃ 是拓扑平庸的 (a) Bi₂Se₃ 少层薄膜的 ARPES 能带结构. 完整的狄拉克锥在 6 QL 样品中形成^[168]; (b) Sb₂Te₃ 少层薄膜的二次微分 ARPES 能带 结构 (上) 和第一性原理计算结果 (下)^[169]. 结合实验和理论, 可以看出完整的狄拉克锥在 5 QL 样品中形成

Fig. 13. Topological phase transition on few-layer TI films^[168,169]. Bi₂Se₃/Sb₂Te₃ films thinner than 6 QL/5 QL are topologically trivial: (a) ARPES band structure on few layer Bi₂Se₃ films. A well-defined Dirac cone is not present for films thinner than 6 QL^[168]; (b) ARPES band structure (top) and first principles calculation results (bottom) on few layer Sb₂Te₃ films^[169]. A Dirac cone forms in 5 QL and thicker samples.

上)中以同样方法证实 5 层以下的 Sb₂Te₃ 是拓扑 平庸的 (图 13(b))^[169]. Neupane 等^[170] 利用自旋分 辨 ARPES 指出 Bi₂Se₃ 薄膜的拓扑能带的螺旋形 面内自旋极化早在 3 层时便出现,并随着层数的增 加而增强.在完整狄拉克锥最终形成时 (6 层),自 旋极化达到最大值. Landolt 等^[171] 同样利用自旋 分辨 ARPES 指出当厚度小于 6 层时, Bi₂Se₃ 薄膜 带隙上方的能带是类似 Rashba 分裂的抛物线能 带,且其内外圈的自旋极化强度随层数有较大的 变化.

第二, TI 薄膜中的原子掺杂、衬底的性质等也 对其电子学结构的调控起到关键作用. 在引入掺杂 的前提下, TI 薄膜的电子学结构能够被连续调节. 例如在 (Bi_{1-x}Sb_x)₂Te₃ 薄膜中改变 *x* 的值可以在保 持体系拓扑性质不变的基础上调控费米能和狄拉 克点的位置^[172,173];在 Bi₂Se₃薄膜中引人铬 (Cr) 原子可以使狄拉克点打开非磁性能隙^[174];在 Bi₂Se₃薄膜中引入铟 (In)原子能够使狄拉克锥从 完全闭合连续调节到打开 1.3 eV 的大能隙^[175];在 Bi₂Se₃薄膜中引入碲 (Sb)和铅 (Pb)原子可以有 效调节费米面的位置^[176],等等.在不引入掺杂原子 的情况下,改变 MBE 生长的条件也能够方便地调 控 TI 薄膜的能带结构. Wang 等^[177]在不同温度 的 Si(111)-7 × 7 衬底上生长 Bi₂Te₃薄膜,通过 ARPES 发现薄膜的费米面 (正相关于电子浓 度)随衬底温度的升高而单调下降.当衬底温度足 够高时,电子型的 Bi₂Te₃薄膜转变为空穴型.

3.2.9 小结

Bi₂Se₃系列 TI 是迄今为止被研究得最多、最 深入的拓扑材料. 仅仅利用 ARPES 这一实验工

具,人们就在这个系列的材料中获得了极为丰富的 物理信息. 它们是 TI 中的"氢原子", 拥有最简单 的单个 广点狄拉克锥的能带结构, 另一个 广点狄拉 克锥隐藏在导带深处,不影响输运性质.受到体态 的影响, 狄拉克锥在远离狄拉克点时会产生六角变 形. 它们的载流子种类和浓度, 以及狄拉克点能隙 的开合可以由体掺杂、表面掺杂、制成二维薄膜等 方法精确调控. 它们的拓扑表面态是高度自旋极化 的,自旋方向大致重合于锥的横截面的切线方向. 入射光子的能量和偏振等对光电子的自旋有重要 的影响,但适当选取入射光参数能够在最大程度上 复现电子初态的自旋构型. 它们是已知的电子-声 子耦合强度最低的材料之一,电子自能的虚部随束 缚能和温度的变化极弱,但电声耦合的信号可以由 时间分辨 ARPES 测得. 利用时间分辨 ARPES, 人们还在 Bi₂Se₃ 中发现了电子的时域能带结构. 从 2008 年至今, 对 Bi₂Se₃ 系列 TI 的 ARPES 研 究跨越十载而历久弥新. 这些研究造就了当今凝聚 态物理一个罕见的科研热潮,也在很大程度上指引 了拓扑材料应用的方向.

3.3 其他含 Bi 的三元和四元拓扑绝缘体

虽然 Bi₂Se₃ 系列 TI 是最简单的三维拓扑绝 缘体,在物理上极为重要,但要在未来的电子学器 件上直接应用它们,仍然不太容易.影响 Bi₂Se₃系 列 TI 应用前景的一个重要因素在于它们的体能隙 不够大,也就是说即使通过掺杂或者栅压使它们的 费米能处于体导带和体价带之间,成为真正的体绝 缘体, 它们的体载流子浓度仍然过高, 绝缘性仍然 不够好. 这样一来, 纯粹的表面态输运仍会受到体 能态的影响,使器件的性能降低.于是,自拓扑材 料面世以来,人们就致力于在230个空间群中,在 几万种已知和未知的材料中寻找 TI, 力求改进 Bi₂Se₃系列的固有缺陷,引领拓扑材料的实用性研 究.在Bi₂Se₃系列TI被发现后不久,人们就找到 了一系列含 Bi 的三元或四元化合物, 具有与 Bi₂Se₃ 类似的层状结构和不寻常的拓扑属性. 下面我们归 纳一下利用 ARPES 研究这些 TI 的总体情况.

3.3.1 Bi₂Te₂Se 系列拓扑绝缘体

在含 Bi 的三元或四元 TI 中, 与 Bi₂Se₃ 系列 TI 在晶体结构和电子学结构上最相似的是 Bi₂Te₂Se 系列拓扑绝缘体,包括 Bi₂Te₂Se, Bi₂Se₂Te 等,比较准确的通式是 Bi_{2-x}Sb_xTe_{3-y}Se_y(Bi₂Te₂Se 中 x = 0, y = 1; Bi₂Se₂Te 中 x = 0, y = 2),本文 称之为 Bi₂Te₂Se 系列 TI. 日本大阪大学 Ren 等^[178] 和 Taskin 等^[179] 合成了这些材料并测量了它们的 输运性质,指出其低温纵向电阻率最高达到 10 Ω ·cm 量级,比 Bi₂Se₃ 系列的 < 10 m Ω ·cm^[180] 高 三个数量级. 同一小组的 ARPES 测量表明它们都 是像 Bi₁Se₃一样的单狄拉克锥 TI,而且其费米面 位置随 (x, y) 值的变化而连续变化,使良好的体绝 缘性和能带的精细调控成为可能^[181].

普林斯顿大学 Ji 等 ^[182] 和 Neupane 等 ^[183] 对 这些化合物进行了比较系统的 ARPES 研究 (图 14), 同样发现它们是单狄拉克锥 TI((Bi, Sb)₂Te₂S 也是 ^[184,185]), 而 Bi₂Se₂S 则是拓扑平庸的普通绝缘 体. 其 \bar{r} 点处的体能隙在 0.25 — 0.3 eV 之间,稍 大于Bi₂Se₃ 的0.2 eV 和Bi₂Te₃ 的0.15 eV.Bi₂Te₂Se 的能隙较大,约为 0.3 eV,但它的狄拉克点与体价 带顶比较接近 (图 14(c)); Bi₂Se₂Te 的能隙约为 0.25 eV,小于 Bi₂Te₂Se,但它的狄拉克点能量显著 高于体价带顶,所以狄拉克点的量子输运比较容易 探测 (图 14(f))^[183].

除了能隙略大以外, Bi₉Te₉Se 系列 TI 相比 Bi₂Se₃系列也有其他的相同点与不同点. Shikin 等^[186] 利用 CD-ARPES 和 SARPES 研究 Bi2Te24Se06, 发现 CD 信号和自旋极化信号在狄拉克锥的两支 上均相反,和 Bi₂Se₃系列一样. Neupane 等^[187]利 用 CD-ARPES 研究 Bi2Te2Se, 发现它的 CD 信号 随着入射光子能量的变化发生正负交替,也和 Bi₂Se₃系列一样. 值得注意的是, Bi₂Te₂Se 和其他 TI 对红外激发光的响应有很大的区别. Neupane 等^[188] 利用 1.47 eV 的激发光和 5.9 eV 的探测光组成的 泵浦 ARPES 研究几类 TI 的非平衡电子态,发现 其他 TI(例如 (Bi1-rSbr)2Te3 和 GeBi2Te4) 的弛豫 过程在几个 ps 内即趋于结束, 表现为费米面以上 的 ARPES 信号趋于消失;但 Bi2Te2Se 的弛豫过 程时长达到 100 ps 量级, 而且在激发光脉冲接触 样品 4 μ s (= 4 × 10⁶ ps) 后, 尽管弛豫已经完成, 但费米面以上 100 meV 以内的电子态仍然非常清 晰.也就是说,Bi₂Te₂Se的拓扑电子态的寿命比其 他 TI长六个数量级以上. 出现这种现象的原因, 文章认为是电子热扩散的维度不一样.由于其他 TI 的绝缘性不够好, 电子的热扩散主要是三维的, 因此弛豫时间很短; Bi2Te2Se 的绝缘性较好, 所以

Fig. 14. ARPES band structure of Bi_2Te_2Se and $GeBi_2Te_4^{[183]}$: (a) Crystal structure, (b) bulk and surface states by ab initio calculations, and (c) ARPES bands along two high symmetry directions, of Bi_2Te_2Se ; (d)–(f) Same as (a)–(c) but for $GeBi_2Te_4$. It is clear that both compounds are 3 D TIs with a single Dirac cone at $\overline{\Gamma}$.

热扩散主要由表面态电子参与,这一弛豫过程由于 维度的限制而非常缓慢. 异质结构^[194].

3.3.2 GeBi₂Te₄ 系列拓扑绝缘体

与 Bi2Te2Se系列几乎同时被发现的 Ge(Pb)Bi2Te4系列 TI 也被研究得比较多. 这一 类 TI 的通式可以写成 AB_2X_4 , $A_2B_2X_5$, AB_4X_7 , AB_6X_{10} \\$ (A = Ge, Pb; B = Bi, Sb; X, X' = Se, Te), 其中的 $AB_{2n+2}X_{3n+4}$ (n = 0, 1, 2, ...) 系列 由 AB₂X₄ 七重层和 B₂X₃ 五重层这两种结构单元 交替组成. 它们与下文将要详述的 MnBi2Te4 系列 磁性 TI(见 4.2 节) 具有完全一样的晶体结构, 二 者的主要区别有:1) 本系列 TI 没有磁性原子 Mn, 因而不具备磁性; 2) 本系列 TI 的 2, 2, 5 相、3, 2, 6相等单晶 (如 Ge2Bi2Te5) 已被合成^[189-192]; 3) 除 了含 Te 的系统外, 含 Se 的 PbBiSe 系列化合物也 已被合成. PbBi₂Se₄ 的少层薄膜可利用分子束外 延方法生长^[193], 但通过 Bridgman 方法生长的单 晶并不形成 PbBi₂Se₄ 七重层或 Pb₂Bi₂Se₅ 九重层 之类, 而是形成通式为 $[(PbSe)_5]_n[(Bi_2Se_3)_3]_m$ 的复 杂结构 (n, m = 1, 2, ...), 可以被看作一种天然的

理论计算 (如文献 [195]) 和 ARPES 测量均说 明,这个系列的绝大部分化合物是像 Bi₂Se₃一样 的单狄拉克锥 TI. Neupane 等^[183]给出了真空解理 和钾原子表面掺杂后 GeBi₂Te₄ 的 ARPES 能带 结构 (图 14(f)); 广岛大学 Okamoto 等^[196]利用 SARPES 测量了它的能带自旋; Sterzi 等^[197]利用 p和s线偏振入射光分别测量能带并把所得数据相 减,以此研究它的能带宇称反转,所得结果均证实 了 GeBi₂Te₄ 的强三维 TI 属性. Muff 等^[198]利用 ARPES 和 SARPES 证实了 GeBi4-aSbaTe7 的拓 扑属性并指出 x 值的变化会引起费米能 (载流子浓 度)的变化,且在某一x值区间,样品表面和体材 料的载流子属性相反. Souma 等^[199] 和 Kuroda 等^[200] 分别给出了 $Pb(Bi_{1-x}Sb_{x})_{2}Te_{4}$ 为强三维 TI 的 ARPES 证据, 广岛大学 Okuda 等^[201] 利用 ARPES 和 SARPES 研究 PbBi₄Te₇ 的能带结构和自旋纹 理,得出与 Bi₂Se₃ 系列 TI 类似的结果.不过由于 PbBi₄Te₇具有两个不同的解理面,而拓扑表面态 的空间分布主要集中在 PbBi₂Te₄ 层, 所以当样品

在 Bi₂Te₃ 层解理时, 表面态隐藏在一个五重层以 下,因而作者称之为"隐藏的拓扑表面态". Shvets 等^[202] 利用 ARPES 和 SARPES 指出 Se 掺 杂的 PbBi₂Te_{4-x}Se_x在 x = 2, 2.6 时也是 TI. 根据 文中的理论计算, Se 含量越多, 体系的体能隙越 大. PbBi₂Se₄(未成功生长)的体能隙可以达到约 300 meV. Nakayama 等^[203] 成功生长并利用 ARPES 研究了天然异质结构 (PbSe)₅[(Bi₂Se₃)₃]_m 的其中两个成员 (m = 1, 2), 指出相比于 Bi₂Se₃ (*m* = ∞) 来说, *m* = 2 结构的狄拉克锥打开了一 个 100 meV 量级的能隙, 而 m = 1 结构更是只有 一个抛物线形的能带通过费米能.这种变化规律 和 Bi₂Se₃ 系列 TI 的少层薄膜非常类似, 文章认为 m 值较小时 PbSe 和 Bi₂Se₃ 的界面密度比较大, 所 以由界面引致的有限尺寸效应比较明显. ARPES 观察到的能隙正是来自不同结构单元形成的界面 之间的耦合.

3.3.3 TlBiSe₂系列拓扑绝缘体

对 TI 的大能隙和体绝缘性的追求也导致 TlBiSe,系列拓扑绝缘体的发现.这一系列的通式 为 Tl BX_2 (B = Bi, Sb; X = S, Se, Te), 其最小结 构单元包含 Tl-X-B-X 四个二维的原子层, 而一个 单胞包含三个最小结构单元. 以 Sb 取代 Bi 可以调 节费米能的位置, 而变换 X 位原子可以调节体系 的自旋轨道耦合强度. 这一类 TI 最大的特点是它 们的狄拉克点几乎位于体能隙的中心,有利于拓扑 量子输运行为的探测. Kuroda 等^[204]、Sato 等^[205] 和 Chen 等^[206] 分别通过 ARPES 测得其 广点狄拉 克锥,其中 Kuroda 等^[204]的论文指出 TlBiSe₂的 狄拉克锥比 Bi₂Se₃ 的要直, 也就是说线性色散更 典型; Sato 等^[205] 的论文认为 TlBiSe₂ 的体能隙有 350 meV, 比 Bi₂Te₂Se 系 列 还 略 大 一 些; 而 Chen 等^[206] 认为其体能隙大小是 200 meV 左右. Kuroda 等^[207] 通过调节三个元素的比例有效地调 节了费米能的位置, 使体系进入体绝缘区间. Nomura 等^[208] 比较了 Pb(Bi, Sb)₂Te₄, Bi₂Te₃, Bi₂Se₃和 TlBiSe₂这几种 TI 的面外自旋极化强度, 指出它与 TI 狄拉克锥的六角变形程度呈正相关.

因为 TlBiSe₂ 系列材料的自旋轨道耦合强度 可以通过 X 元素的选择来方便地调节,且在调节 的过程中不会出现额外的结构相变,因此这个材料 是观测凝聚态体系从普通绝缘体到拓扑绝缘体的 相变的最佳选择之一. 这种拓扑相变不同于结构相 变或磁性相变,其相变前后的空间群并不产生突 变, 而是材料整体的拓扑不变量 (如主拓扑数 _い) 从普通绝缘体的零突变到 TI 的 1, 伴随着正值体 能隙的闭合和负值体能隙的打开. Xu 等^[209]利用 ARPES 和 SARPES 研究 TlBi(S1-6Se6)2 的电子学 结构, 在 δ 值变化时首次观察到拓扑相变的全过 程,并通过测量拓扑表面态在狄拉克点上下自旋螺 旋方向的反转确认体系在 $\delta \ge 0.6$ 时为三维 TI. 由图 15 可见, 当 δ 值从零开始增大 (即自旋轨道 耦合增大)时,体系的体能隙开始减小.到 $\delta =$ 0.6 时,体能隙完全闭合.此时体系恰好位于普通 绝缘体和 TI 的相变点,体能态和拓扑表面态完全 重合, 表现为体能态的两支亮度突然增强. 理论上, 这一相变点可以理解为一个相变区,系统在相变区 中依次经历狄拉克半金属-外尔半金属-狄拉克半金 属的转变. 实际上, Neupane 等 [40] 在讨论狄拉克 半金属 Cd₃As₂ 时 提到了 TlBi(S_{1- δ}Se_{δ})₂ 在 $\delta \approx 0.5$ 时也是一个狄拉克半金属,但文中没有给出这一结 论的决定性证据——狄拉克型的线性面外色散. 当 δ > 0.6 时,导带进一步下降而价带进一步上升,体 能隙由于导带和价带的杂化而重新打开,但其能量 可定义为负值. 这体现在新形成的价带变成 M 形, 而新的导带变成 W 型 (图 15(c), 最右侧小图). 这 个拓扑相变的过程伴随着能带自旋的变化,由普通 绝缘体的自旋简并变为 TI 的自旋螺旋纹理. 同一 文献的 SARPES 数据表明这种自旋纹理在狄拉克 点的上下是反向的,这与理论预言相符^[209].

Ando 小组对这一拓扑相变的后续测量揭示了 更为丰富的物理图景.文献 [210] 证实了 $\delta \approx$ 0.5 时的拓扑相变,但在 0.6 < δ < 0.9 这个区间 内,作者观察到 TlBi(S_{1- δ}Se_{δ})₂ 虽然是个 TI,但其 拓扑表面态实际上打开了一个达到 100 meV 量级 的能隙,且 δ 越靠近 0.5,能隙越大.对于这一点, 文章并未给出完整的解释,只是提到它也许可以和 高能物理中的 Higgs 质量形成机理类比.文献 [211] 对 0.6 < δ < 1 以及 δ = 0 的样品作了系统的 SARPES 测量,发现虽然狄拉克锥在 0.6 < δ < 0.9 区间中 存在能隙,但作为拓扑表面态特征的自旋动量锁定 行为在这一区间仍然存在,只是越靠近相变点,自 旋极化的程度越低. \bar{r} 点的面外自旋分量则在全区 间严格为零,表明能隙的打开和磁性无关.

图 15 TIBi(S_{1.6}Se₆)₂ 体系中的拓扑相变^[200] (a) 沿 $\bar{\Gamma} - \bar{M}$ 方向的 ARPES *k*-*E*图, 样品自左至右分别为 $\delta = 0, 0.2, 0.4, 0.6, 0.8 和 1.0(下同). 由图可见体系从一个普通绝缘体 (<math>\delta < 0.6$) 转变成一个拓扑绝缘体 ($\delta \ge 0.6$). 普通绝缘体的"轴子角参数" $\theta = 0$ 或 2π , 等价于主拓扑数 (TQN) $\nu_0 = 0$; 拓扑绝缘体的"轴子角参数" $\theta = \pi$, 等价于主拓扑数 $\nu_0 = 1$; (b) 对应样品的费米能 ARPES 扫描,箭头标示自旋取向和简并情况; (c) 对应样品的表面态和体能带色散情况 (左右两小图是能量分布曲线); (d) 对应 样品的三维能带色散图

Fig. 15. Topological phase transition in TIBi($S_{1-\delta}Se_{\delta}$)₂^[209]: (a) ARPES *k-E* maps along $\bar{\Gamma} - \bar{M}$, for $\delta = 0, 0.2, 0.4, 0.6, 0.8$ and 1.0 (left to right). The system evolves from a normal band insulator ($\delta < 0.6$) to a TI ($\delta \ge 0.6$). The axion angular parameter $\theta = 0$ or 2π for a normal insulator [equivalent to the topological quantum number (TQN) $\nu_0 = 0$], while $\theta = \pi$ for a TI; (b) ARPES maps at $E_{\rm F}$; (c) bulk and surface band dispersion (EDCs for $\delta = 0$ and 1), and (d) 3 D band dispersion maps, for corresponding values of δ .

3.3.4 小 结

Bi₂Te₂Se 系列、GeBi₂Te₄ 系列、TIBiSe₂ 系列 等几类含 Bi 的拓扑绝缘体在晶体结构和电子结构 上都与 Bi₂Se₃ 系列比较相似. 它们都具有范德华 力结合的层状结构,其拓扑不寻常属性在能带上都 表现为 \bar{r} 点的单个狄拉克锥,因而也是最简单的拓 扑绝缘体.在电子结构的细节上,这几类 TI 又有 所不同: Bi₂Te₂Se 系列 TI 体能隙较大,绝缘性能 较好; GeBi₂Te₄ 系列 TI 的相图非常复杂,蕴含的 物理图像也非常丰富. 对它们的系统性研究同时有 助于理解 MnBi₂Te₄ 系列 TI 的生长方法和能 带演化规律. TIBiSe₂ 系列 TI 狄拉克点位于锥的 正中,暴露性最好,是研究拓扑相变和拓扑输运的 最佳系统之一.可以预见,随着拓扑绝缘体的研究进入器件设计与开发阶段,这些 TI 的研究和应用将会迈上一个新的台阶.

3.4 HgTe

HgTe 是个拓扑绝缘体,这其实早就被大家所 熟知.因为 HgTe 与 CdTe 构成的异质结是第一种 被理论提出并被输运实验证实的二维拓扑绝缘体 (量子自旋霍尔绝缘体)^[7,8],所以说拓扑绝缘体的研 究奠基于 HgTe 也不为过.具体来说,当 HgTe-CdTe 异质结中 HgTe 层的厚度在一个临界值 ($d_c =$ 6.35 nm)以上时, HgTe 的两个宇称不同的能带 (Γ_6 和 Γ_8 的上半部分)会发生反转,导致全局的拓 扑相变^[7].既然 HgTe 薄膜在比较厚的时候是拓扑 的, 那么它的单晶肯定也是拓扑的. 实际上早期的 理论工作也揭示了 HgTe 体材料的拓扑不寻常性 质^[212-214], 只不过人们一直致力于研究其异质结的 二维拓扑性, 忽略了三维的情况而已. 相比于上文 说到的几类含 Bi 的 TI, HgTe 有两个显著的不同 点. 第一, 闪锌矿结构的 HgTe(空间群为 $F\overline{4}3m$, 第 216 号) 没有空间反演对称性, 而这样的拓扑材 料备受重视. 第二, 除了能量反转的两个能带外, HgTe 还有一条与拓扑无关的能带 (Γ_8 的下半部 分) 通过 Γ 点. 在晶格未受应力产生畸变的情况 下, Γ_6 和 Γ_8 的上半部分之间形成狄拉克锥, 但 Γ_8 的上下部分重合于 Γ 点, 令系统的体能隙为零. 这个能隙只有晶格受到应力时才会打开,使系统成 为真正的三维拓扑绝缘体^[215].

利用 ARPES 研究 HgTe 体材料的文献比较 少,值得提及的有 Brüne 等^[216]和 Liu 等^[217]的工 作 (笔者是后一工作的主要完成人). Brüne 等^[216] 的论文主要研究 HgTe 体材料的输运行为,指出其 拓扑表面态可以导致量子化的霍尔效应. 从文中唯 一的 ARPES *k-E* 图可以看到,在类似倒置抛物线 的 Γ_8 能带下半部分内部存在一个 Λ 型的线性能 带,这就是 HgTe 的狄拉克锥 (的下半部分). Liu 等^[217]的论文 运用多种 ARPES 技术对 HgTe 的能带做了十分系统的测量 (图 16, 图 17). 图中

图 16 HgTe 单晶的 ARPES 研究^[217] (a) 过 $\overline{\Gamma}$ 点的 ARPES *k*-*E* 图 (左) 及各能带的色散情况示意 (右). TSS: 狄拉克锥拓扑表面 态; (b) 能带的 $k_x - k_y - E =$ 维色散示意,各能带颜色同图 (a); (c) TSS 和体能态的 k_z 色散,可见 TSS 在 k_z 方向无色散,而其他能带 色散非常明显; (d) SARPES 测得的 TSS 自旋极化,可见狄拉克锥的自旋动量锁定行为

Fig. 16. ARPES on single crystal HgTe^[217]: (a) ARPES k-E map (left) and guides-for-the-eye band dispersion (right). TSS: topological surface state (Dirac cone); (b) skematic $k_x - k_y - E$ 3 D band dispersion; (c) k_z dispersion of the TSS and the bulk states. TSS has no k_z dispersion, while other bands show clear out-of-plane dispersive pattern; (d) spin polarization detected with SARPES, showing the spin-momentum lock behavior.

图 17 表面掺杂 HgTe 单晶的 ARPES 研究^[217] (a)—(e) 碱金属 Cs 当量增加时能带的变化.显然狄拉克锥的上半部分变得可见,且 *Г*s 能带上下两支之间存在能隙; (f)—(j) 对应的 CD-ARPES 信号,表明锥的上半部分具有典型的拓扑表面态特征; (k) 碱金属 K 当量增加时能带的变化; (l) 图 (k) 的能量分布曲线,显示体能隙从 290 meV 增加到 392 meV

Fig. 17. ARPES on surface-doped HgTe single crystals^[217]: (a)–(e) Band evolution as Cs dosage increases. The upper half of the Dirac cone becomes visible, and a gap exists between the upper and the lower Γ_8 band; (f)–(j) corresponding CD-ARPES signal, indicating the topological nature of the upper cone; (k) band evolution as K dosage increases; (l) EDCs of Fig. (k), showing an increase of the gap, from 290 to 392 meV.

的能带情况和文献 [216] 一致, Λ 型的狄拉克锥非 常明显. 它不能用普通的体能带第一性原理计算得 到, 而只能用 slab calculation 获得, 而且 ARPES k_z 色散测量证明这个能带在 k_z 方向没有色散 (图 16(c)), 这充分显示了它的表面性质. SARPES 测量进一 步证实它具有拓扑表面态特有的自旋动量锁定行 为, 从而证实这个 Λ 型的能带的确是拓扑不寻常的 狄拉克锥 (图 16(d)). 在 HgTe 表面掺杂碱金属原 子 (电子掺杂)可以使费米能抬升, 令狄拉克锥的 上半部分变得可见 (图 17). 有趣的是, ARPES 观 测发现费米能抬升后 Γ_8 能带的上下两半在 Γ 点并 不重合, 即形成了一个体能隙, 而费米能可以通过 调节碱金属的当量方便地放置于能隙中, 使系统处 于体绝缘区. 进一步的实验 (图 17(k) 和图 17(1)) 发现, 当掺杂原子增多时, 体能隙会增大. 对这一 现象, 文献 [217] 通过第一性原理计算指出, HgTe 表面的原子重构可能具有和应力类似的作 用, 使 Γ₈能带打开一个 100—150 meV 的本征能 隙. 根据 ARPES 数据, 可以猜想碱金属原子会进 一步扰动表面的晶格, 使能隙随着掺杂原子浓度的 增加而增加, 直至达到将近 400 meV (图 17(1)). HgTe 单晶的这些性质是此前的计算和实验没有料 想到的, 为这个体系带来了更丰富的物理内涵.

3.5 半 Heusler 化合物拓扑绝缘体

半 Heusler 化合物拓扑绝缘体和 HgTe 是一脉 相承的. 半 Heusler 化合物的通式为 XYZ, 其结构 可被看作利用第三元素填充间隙位置的闪锌矿晶 格,即用 X^{n+} 离子填充 $(YZ)^{n-}$ 闪锌矿亚晶格.其中 的 X和 Y原子具有阳离子特征,而 Z原子可被视 为阴离子.它们和 HgTe 具有相同的空间群 (F43m), 也破缺空间反演对称性^[218].这些材料的拓扑相变 机制也和 HgTe 和 CdTe 中的类似:以原子序数较 大的元素替代较小的,可使体系的自旋轨道耦合大 大增加,从而使 Γ_6 能带和 Γ_8 能带的上半部分在 点附近靠近、接触和再次分离,形成负的体能隙和 狄拉克锥拓扑表面态.2010 年斯坦福大学 Chadov 等^[219]和 Lin 等^[220]和同时发文,从第一性原理计 算指出平均原子序数比较大的一系列半 Heusler 化合物是三维 TI(图 18(a)).这一系列 TI 成员众 多,其中的晶体学、电子学和超导等参数的固有灵 活性为科学和技术探索提供了多维度的支持.

半 Heusler 化合物 TI 的 APRES 研究也相对 较少,主要原因是技术性的:由于半 Heusler 化合 物是面心立方的闪锌矿结构,不像含 Bi 的层状化 合物那样具有天然的解理面,所以它们的单晶在真 空中的解理成功率很低. 半 Heusler TI 的第一份 ARPES 文献 [221] 是笔者 2011 年时在 Kaminski 小组完成的,文中给出了 *R*PtBi (*R* = Lu, Dy, Gd) 的高分辨费米面扫描图和 *k-E* 图 (图 18(b) 和 图 18(c)). 由数据可见,实验得到的费米能在理论 计算的费米能以下,即体系具有本征的 p 型掺杂. 这些化合物有两对(四支)大致线性的能带通过费 米面. 它们明显由同一能带自旋劈裂而成, 自旋相 同的两支在费米能以上应该是分别接合的. 当时我 们没有找到过费米面狄拉克能带为奇数的确实证 据,从而未能确定系统的拓扑性质.2016年上海科 技大学 Liu 等^[222] 重新研究这个体系,发现它在费 米面以下约 0.5 eV 处有一对类似 Rashba 劈裂的 能带 (图 18(d)). 通过与理论计算的比对以及 CD-ARPES 分析, 作者认为它就是半 Heusler TI 的狄 拉克锥. 笔者基本认可这一观点, 只是觉得文中把 这个狄拉克锥看作与其旁边的能带接合比较违反 直觉,毕竟狄拉克锥的每一支都必须分别与体导带 和体价带接合,而这种接合关系可能像单晶金[116] 一样是较难测量的.

研究半 Heusler TI 电子学结构的另一种方法 是利用 MBE 生长其薄膜, 然后利用 ARPES 测量 薄膜的能带. 当薄膜足够厚时, 它的能带和单晶的 没有区别. Logan 等 [223] 利用这个方法测量了 LuPtSb 的能带结构. 理论上, LuPtSb 的体能隙非 常接近零, 就是说它处在普通绝缘体和拓扑绝缘体

图 18 半 Heusler 拓扑绝缘体的 ARPES 研究^[219,221,222] (a) 第一性原理计算给出的典型半 Heusler 化合物的体能隙 ($E_{I_6} - E_{I_8}$) 大小与体系平均原子序数 (Z)的联系^[210]. 体能隙大于零表示体系为普通绝缘体, 体能隙小于零表示体系为拓扑绝缘体. 由图可见, (Z)比较大 (即自旋轨道耦合比较大)的体系更倾向于成为拓扑绝缘体; (b) 半 Heusler TI GdPtBi 的 ARPES 费米能扫描^[221]; (c) GdPtBi 的过 $\overline{\Gamma}$ 点能带图^[221]; (d) 另一个半 Heusler TI LuPtBi 的过 $\overline{\Gamma}$ 点能带图^[222], 左图为原始数据, 右图为二次微分后的能带. TSS: 拓扑表面态

Fig. 18. ARPES on half Heusler TIs^[219,221,222]: (a) Bulk band gap $(E_{I6} - E_{I8})$ of typical half Heusler compounds as a function of the system's average atomic number $\langle Z \rangle^{[219]}$. Positive/negative gap represents normal insulator/TI. Compounds with larger $\langle Z \rangle$ (larger SOC) are prone to become TIs; (b) ARPES map at E_F on GdPtBi^[221]; (c) ARPES band dispersion on GdPtBi^[221]; (d) ARPES band dispersion on LuPtBi^[222]. Left: raw data. Right: second derivative band map.

的分界线附近. ARPES 和 SARPES 实验结果表明它和 LuPtBi一样具有狄拉克锥拓扑表面态,也就是说它其实是一个 TI 而非普通绝缘体.

3.6 小 结

本章回顾了几类主要的强三维拓扑绝缘体的 ARPES 研究. 强三维拓扑绝缘体是近来层出不穷 的拓扑材料中研究历史最长,也最为人熟知的一 类,具有非常典型的狄拉克锥拓扑表面态和自旋螺 旋纹理. 它的范围绝不仅限于文中介绍的几种. 最 近完成的对所有已知或未知单晶材料的拓扑穷 举[26-30] 表明, 拓扑绝缘体的种类极为繁多, 物理 信息极为丰富. ARPES 作为探测材料电子学结构, 特别是表面电子学结构的强大实验工具,在拓扑绝 缘体的研究中扮演着举足轻重的作用,以至于人们 在获得一个新材料的单晶,进行简单输运测量以 后,会首先进行 ARPES 测量,以确定材料的拓扑 属性和基本的能带参数. 更细致的 ARPES 表征手 段,包括对时间、空间、自旋敏感的 ARPES 技术, 则被应用于探讨拓扑绝缘体的自旋构型、非平衡弛 豫和电声耦合强度等物理信息. ARPES 独一无二 的 k 空间直接探测能力将帮助人们越来越深入地 认识拓扑材料电子学结构,并以此指导未来的拓扑 自旋电子学和拓扑量子计算的研究和应用.

4 磁性拓扑绝缘体的 ARPES 研究

相比于强三维拓扑绝缘体来说,由拓扑体系中 的铁磁或反铁磁长程序构造的磁性拓扑绝缘体的 研究目前尚处于起步阶段.在磁性拓扑材料中,时 间反演对称性的缺失将带来崭新的物理现象. 例如 当铁磁序被引入到三维拓扑绝缘体中时,原本有效 质量为零的狄拉克锥表面态将具有等效的非零质 量,狄拉克点的上下将形成磁性能隙.当费米面恰 好位于磁性能隙之中时,非局域量子输运和手性拓 扑边缘态将带来一种全新的宏观量子现象——量 子反常霍尔效应 (quantum anomalous Hall effect, QAHE). 2013年清华大学薛其坤课题组利用铁磁 掺杂的三维拓扑绝缘体在极低温下实现了 QAHE. 此结果其后被几个研究小组重复并拓展,标志着凝 聚态物理学又一里程碑式的突破[31-36]. 此后人们 又在以 MnBi₂Te₄ 为代表的化合物中发现了化学 配比的铁磁/反铁磁拓扑绝缘体,其较大的磁性能 隙把量子化的霍尔电导的实现温度提高了一个数量级.磁性拓扑体系的研究将使拓扑材料的内涵由基于 230 个空间群的非磁世界拓展到基于 1651 个磁性 (Shubnikov) 空间群的三维磁基态的海洋,其中新颖的物理现象和可能的应用价值目前尚未被充分发掘.

与上述的总体研究脉络相似,磁性拓扑绝缘体的 ARPES 研究也大致经历了两个阶段.第一个阶段的研究对象主要是磁性掺杂的拓扑绝缘体,即在 三维 TI 中以体掺杂或表面掺杂的方式引入磁性杂 质,例如 Fe, Cr, Mn 原子等.这些杂质有时会形成 长程磁序,使样品整体表现出例如磁滞回和面外自 旋极化等磁性拓扑绝缘体的特征.第二个阶段的研 究对象是化学配比的本征的磁性拓扑绝缘体化合物,以 MnBi₂Te₄ 为代表.这一族化合物的体材料 是反铁磁的,但其少层薄膜材料在层数为奇数时表 现出铁磁性.下面分别介绍这两个阶段的代表性 ARPES 研究.

4.1 磁性掺杂拓扑绝缘体的 ARPES 研究

由于预期能够实现 QAHE, 磁性掺杂的三维 TI 从一开始就引起了研究者的莫大兴趣,利用 ARPES 研究三维 TI 的几份最早的文献对磁性掺 杂就有所提及. 2010年斯坦福大学 Chen 等^[224]首 次利用 ARPES 系统地研究了磁性掺杂 TI 的能带 结构 (图 19). 他们发现在 Bi₂Se₃ 中引入少量取代 Bi位的铁磁杂质,例如Fe和Mn,能够令原来无 能隙的拓扑表面态在狄拉克点打开能隙,即令体系 表面的狄拉克准粒子具有非零的有效质量. 这个磁 性能隙的大小和杂质的浓度呈正相关.更进一步, 由于 Mn 比 Fe 少一个电子, Mn 掺杂在使狄拉克 锥打开能隙的同时也能对 Bi₂Se₃ 系统进行空穴掺 杂.当 Mn浓度在 1%的时候,系统的费米能刚好 位于狄拉克点的能隙中,实现了 QAHE 要求的体 态和表面态的绝缘.由于使用了体材料样品,本文 并未讨论由有限尺寸效应导致的能隙打开和时间 反演破缺导致的磁性能隙的异同.

2012 年普林斯顿大学 Xu 等 ^[225] 利用自旋分辨 ARPES 进一步研究铁磁掺杂和普通掺杂的 TI 薄膜的能带属性,揭示了磁性带隙的一个关键 性质: $\bar{\Gamma}$ 点带隙上下的能带具有很强的朝向样品 z方向 (面外)的自旋 (图 20). 文章首先通过 X 射 线磁圆二色性 (X-ray magnetic circular dichroism,

图 19 对磁性掺杂 TI 的首个 ARPES 研究^[224] (a) 16% Fe 体掺杂的 Bi₂Se₃ 的能带.由图可见, 狄拉克点打开了一个能隙; (b) 1% Mn 体掺杂的 Bi₂Se₃ 的能带.不仅狄拉克点具有能隙,而且样品的费米面被调节至狄拉克点中,实现了表面态的绝缘相 Fig. 19. The first ARPES study on magnetic-doped TI^[224]: (a) ARPES bands for 16% Fe bulk doped Bi₂Se₃. A gap is visible at the TSS; (b) ARPES bands for 1% Mn bulk doped Bi₂Se₃. The gap not only exist but also locates right at *E*_F, realizing an insulating phase of the surface state.

XMCD) 测得 Mn-Bi₂Se₃ 薄膜的磁滞回线, 确认 Mn 原子在薄膜表面形成了长程铁磁序, 接着利用 SARPES 分析拓扑表面态在 r 点附近的自旋分量, 发现 Mn-Bi₂Se₃ 薄膜能隙上下的能带自旋几乎完 全朝向面外 (图 20(a)), 和 Zn-Bi₂Se₃ 薄膜的普通 自旋-动量锁定行为 (r 点面外自旋为零, 图 20(b)) 形成鲜明对比. 作者把这种磁性引致的自旋构型称 为"刺猬型自旋纹理", 指出只有观察到这种纹理才 能确认磁性 TI 的存在. 但是, 这一解释也受到了 一定的质疑, 例如文献 [226] 认为 Mn-Bi₂Se₃ 的能 隙打开与系统的体材料或表面磁性均没有关联.

由于磁性掺杂的 TI 表面存在原子磁矩, 一个 微小的外磁场有可能使样品产生局部的磁化, 引 起 ARPES 能谱的改变. Shikin 等^[227]在 2018 年 指出, ARPES 的线偏振和圆偏振入射光 (来自同 步辐射光源、激光光源等) 会在磁性掺杂 TI 表面 形成一个等效的磁场, 引起样品表面的磁化. 这种 局域磁化在 ARPES 能谱上的有如下特征:1) 不 同偏振的入射光下, 狄拉克锥左右两支的 ARPES 信号强度有很大差别, 即产生了光电子的自旋极化 流.这在本文对 CD-ARPES 的讨论中已详述 (见 3.2.5节);2) 不同偏振的入射光下, 狄拉克锥整体 的面内 k 空间位置会有微小但可以测量的变化, 使 狄拉克点不再正好位于 r̄点, 而是往一侧产生0.01 Å⁻¹ 量级的偏离.这种偏离的正负与入射光能量有关, 且左旋和右旋圆偏光产生的偏离是反向的;3) 如 果入射光令样品表面产生指向面外的磁化, 则狄拉 克锥还会出现局域时间反演对称性破缺带来的磁 性能隙. 文献 [227] 对上述现象进行了细致的实验 观察和理论研究.

在 TI 的表面引入磁性原子也是一个有趣的研究方向. 清华大学 Wang 等^[228] 和汉堡大学 Schlenk 等^[229] 通过 ARPES 和 STM 测量指出, 不同于磁 性杂质的体掺杂, 仅在 Bi₂Se₃ 的表面沉积 Cr 和

图 20 磁性掺杂和非磁掺杂的 Bi₂Se₃ 薄膜的能带自旋分析^[225] (a) Mn-Bi₂Se₃ 薄膜的能带自旋. 在这个铁磁掺杂的 TI 样品中, $\bar{\Gamma}$ 点巨大的 z方向自旋分量和普通的自旋-动量锁定行为 (自旋分量沿面内切线方向) 共同构成了 "刺猬状自旋纹理"; (b) Zn-Bi₂Se₃ 薄膜的能带自旋. 在这个非磁掺杂的 TI 样品中, $\bar{\Gamma}$ 点的 z方向自旋分量为零, 体系只显示出普通的自旋-动量锁定行为 Fig. 20. SARPES analysis on magnetic (Mn) and non-magnetic (Zn) doped Bi₂Se₃ films^[225]: (a) Band spins in Mn-Bi₂Se₃ films. In this ferromagnetically doped TI, the large s_z component at $\bar{\Gamma}$ and the typical spin-momentum lock behavior comprises the "hedgehog spin texture"; (b) band spins in Zn-Bi₂Se₃ films. In this non-magnetically doped TI, $s_z = 0$ at $\bar{\Gamma}$, only the spin-momentum locking is seen.

Fe 原子并不能使狄拉克锥打开能隙, 而且通过对样品的升温退火, Fe 原子会转移至表面层以下, 使表面掺杂程度下降.

4.2 本征磁性拓扑绝缘体的 ARPES 研究

虽然人们成功地在磁性掺杂的 TI 中实现了长 程磁序,继而在极低温下实现了 QAHE,但 TI 中 的磁性杂质本质上是随机排列的,并不形成有序的 晶格结构,这对提高 QAHE 的实现温度极为不利. 实际上,研究者从一开始就意识到找到一种本征 的、化学配比的磁性拓扑绝缘体对整个拓扑材料的 研究具有基础性的意义,但由于材料搜寻的难度, 这个方向的研究一直未有实质性进展.在 2013年, 韩国延世大学的 Lee 等^[230]利用助溶剂方法第一 次合成了 MnBi₂Te₄ 的多晶粉末,证实了这个相的 存在.2017年人们利用 MBE 生长 MnSe 与 Bi₂Se₃ 构成的异质结构,发现这个结构的拓扑表面态位于 整个体系的表面,而不像别的拓扑异质结构那样位 于两种材料的分界处,才意识到 MnSe 和 Bi₂Se₃ 交替而成的层状结构是一种真正的单晶, MnBi₂Se₄, 而不是两种材料形成的异质结构[231,232]. 2018年, 人们进一步发现同样的 MBE 生长方法也适用于 MnBi₂Te₄^[233].紧接着, MnBi₂Te₄的单晶也被合 成[234-236],对这个体系的大规模实验研究的序幕由 此揭开. MnBi₂Te₄的晶体结构和 3.4节提及的 GeBi₂Te₄系列 TI 完全相同, 它的一个最小结构单 元由七个原子层组成, 自上往下分别是 Te-Bi-Te-Mn-Te-Bi-Te,称为"七重层 (septuple layer, SL)", 区别于 Bi2 Te3 的 Te-Bi-Te-Bi-Te 五重层 (quintuple laver, QL) (图 21, 文献 [234,237]), 相邻七重层之 间以范德华力结合. Mn 层位于七重层的正中, 是 体系磁性的来源.一个七重层的高度为 1.37 nm, 而 Bi₂Te₃五重层的高度约为 1.0 nm. MnBi₂Te₄ 的原胞由3个七重层以ABC堆叠构成,其c方向 长度约为 4.07 nm. 重要的是, 无论是理论预言或 是中子衍射实验均指出, MnBi₂Te₄的基态磁结构

图 21 (MnBi₂Te₄)_m(Bi₂Te₃)_n (m = 1, n = 0, 1, 2, ...) 系列磁性拓扑绝缘体以及普通拓扑绝缘体 Bi₂Te₃ 的 (a) 晶体结构^[234], (b) 理论预言的基态磁结构^[237], (c) 扫描透射电子显微镜原子分辨 HAADF STEM 图样^[237], 以及 (d) 选区电子衍射纹样^[237]. 由图 可见,此系列化合物的构成单元是交替出现的 Bi₂Te₃ 五重层 (记为 023 层) 和 MnBi₂Te₄ 七重层 (记为 124 层). Mn 原子层位于 124 七重层的正中,是体系磁性的来源. MnBi₂Te₄ 的体材料基态磁结构被中子衍射实验初步确定为面外磁矩的 A 型反铁磁 Fig. 21. (a) Crystal structures^[234], (b) predicted ground state magnetic structure^[237], (c) Atomic resolution HAADF STEM images^[237], and (d) Selected area electron diffraction (SAED) patterns^[237], of magnetic TIs (MnBi₂Te₄)_m(Bi₂Te₃)_n (m = 1, n = 0, 1, 2, ...) and 3 D TI Bi₂Te₃. This series of compounds consists of alternatively stacking Bi₂Te₃ QLs (023 layers) and MnBi₂Te₄ septuple layers (124 layers). The 0 K magnetic structure of bulk MnBi₂Te₄ is determined by neutron diffraction to be out-of-plane Atype antiferromagnetic.

是所谓 A 型的反铁磁相, 即一个 Mn 层内的每个 磁矩均指向同一个面外方向 (+z或-z), 而相邻 Mn 层的磁矩方向相反 (图 21(b)). 这一反铁磁结 构的 Neel 温度 $T_N(124) \approx 24$ K, 在此温度以上, 体系呈现顺磁性. 也就是说, MnBi₂Te₄ 是一个本 征的反铁磁拓扑绝缘体.

有趣的是,这样的磁性 TI 不止 $MnBi_2Te_4$ 一 种,而是以 $MnBi_2Te_4(124 \text{ 相})$ 为代表的一族化合 物,其通式可以用 $(MnBi_2Te_4)_m(Bi_2Te_3)_n$ (*m*, *n* = 0, 1, 2, 3, ...) 表示 (图 21). 这些化合物之中, 124 相和 $MnBi_4Te_7$ (147 相) 已被实验确定为磁性 TI, MnBi₆Te₁₀ (1, 6, 10 相) 和 MnBi₈Te₁₃ (1, 8, 13 相) 的单晶已被成功合成^[237], 而 m > 1 的各种 化合物, 以及每个最小结构单元包含多于一个 Mn 层的化合物 (例如 Mn₂Bi₂Te₅, 225 相), 应可利 用 MBE 技术逐层生长而成, 但其是否为独立的化 合物目前仍不确定. Bi₂Te₃, 124 相和 1, 6, 10 相的 空间点群为 $R\bar{3}m$, 但 147 相的点群为 $P\bar{3}m1^{[237]}$. 除 了 124 相以外, 其他诸如 147 相, 1, 6, 10 相等化合 物的基态磁结构也被预言为 A 型反铁磁, 但目前 尚无实验证实. 147 相的输运实验显示其反铁磁-顺 磁转变温度为 $T_N(147) \approx 12$ K, 低于 124 相的

图 22 MnBi₂Te₄的早期 ARPES 数据, 观察到较大的表面态能隙.图中数据的光子能量和测量温度分别为 (a) 9 eV, 17 K(右图 为二次微分分析结果)^[242]; (b) 30 和 300 K, 光子能量未标示^[243]; (c) 21.5 eV, 7 K(左) 和 47 K(右)^[244]; (d) 21.5 eV, 18 K^[235] Fig. 22. Early ARPES data on MnBi₂Te₄, observing sizable gaps at the surface state. The photon energies and measuring temperatures are (a) 9 eV, 17 K (right: 2nd derivative result)^[242]; (b) 30 and 300 K, photon energy unmarked^[243]; (c) 21.5 eV, 7 K (left) and 47 K (right)^[245]; (d) 21.5 eV, 18 K^[235].

24 K,这应该是由于 147 相中两个 Mn 层距离比 124 相中的大,因而其反铁磁耦合相对较弱.

MnBi₂Te₄等材料的基态 A 型反铁磁结构非 常重要. 在反铁磁 TI 中可以定义一个新的 Z2 拓扑 不变量,像普通 TI 中的时间反演不变量一样保护 无能隙的拓扑表面态.这个不变量通常用 $S^{i} = \mathcal{T}\tau_{1/2}^{i}$ (*i* = *a*, *b*, *c*) 表示,其中 \mathcal{T} 是时间反演 算符, $\tau^{i}_{1/2}$ 表示一个沿着 i 方向的平移, 平移量为 磁结构周期的 1/2^[37].在 MnBi₂Te₄等材料中,磁 结构周期沿着 c方向,因此只要 S^c不被破坏,它便 能保护一个无能隙的拓扑表面态. ARPES 和 STM 等实验在 (0001) 方向 (也就是垂直于 c 的平 面) 解理样品, 破坏了 S^c 对称性, 因此理论上应能 观察到像磁性体掺杂 TI 一样的带有磁性能隙的表 面态.只要把材料的费米面调节至磁性能隙之中, 便有可能实现 QAHE 或者量子自旋霍尔效应 (quantum spin Hall effect, QSHE)^[238]. 由于 MnBi₂Te₄的能隙 (100 meV 量级) 远大于磁性掺 杂 TI 的能隙 (10 meV 量级), 因此 QAHE 等宏观 量子现象的实现温度将远超磁性掺杂 TI, 使拓扑 自旋电子学器件更具实际应用的潜力.此外,这种

面内铁磁,面外反铁磁的结构还能天然地实现所谓 "轴子绝缘体 (axion insulator)"相, 表现为在霍尔 电导随磁场变化的滞回曲线中,电导过零点时出现 一个零平台, 而滞回曲线的上下两端达到量子化的 电导值 e²/h^[239-241]. 理论预言具有剩磁的奇数层 MnBi₂Te₄ 薄膜能够实现 QAHE, 而上下磁矩抵消 的偶数层 MnBi₂Te₄ 薄膜能够实现轴子绝缘相. 在 同一个材料体系中实现从 QAHE 到轴子绝缘体的 拓扑相变是非常难得的,因而这也是目前研究的一 个热点. 值得注意的是, 严格的 QAHE 指的是在无 外磁场 (B = 0) 的情况下霍尔电导仍然达到 e^2/h , 但量子输运实验中人们从来没有在奇数层 MnBi₂Te₄薄膜中看到过这个现象,量子化电导需 要在较大的外磁场 (B>5 T) 下才被观测到. 这 个情况提示我们, MnBi₂Te₄的磁结构可能不是简 单的面外 A 型反铁磁. 其细致的磁结构属性, 诸如 每个磁矩的大小、方向,磁畴的大小,以及可能的 表面磁性和体材料磁性的区别,都会对其输运性质 产生决定性的影响.

对 $MnBi_2Te_4$, $MnBi_4Te_7$ 等的 ARPES 研究目前已有不少, 这些研究也可以分为两个阶段. 第一

表 1 MnBi₂Te₄ 的 ARPES 研究小结 (截至 2019 年 7 月 22 日). 表中"能隙大小"指的是每份文献各自认为的表面态中 的 \bar{r} 点能隙大小.

文献序号	样品形态	测量温度/K	光子能量/eV	能隙大小/meV	备注
[242]	单晶	17/300	28/9	70	
[243]	单晶	30/300	未提及	~85/115	
[235]	单晶	18	21.5	100	
[244] (v1, v2)	单晶	18/40	7.25/9/11/13.75/15	50	在这篇arXiv文章的第三个版本(张贴于 2019年7月9日)里,作者加入了零能隙的数据.
[245]	单晶	7/18/47/80	21.5/79	100	
[246]	薄膜	25	21.2	0	此文献观察到了零能隙,但作者认为测量温度 不够低,测得的是无能隙的顺磁拓扑表面态.
[247]	单晶	10/300	6.3/7-40	0	张贴于2019年7月8日
[248]	单晶	7.5	7/10-22	0	张贴于2019年7月11日
[249]	单晶	10/50	13.8/47/51	0	张贴于2019年7月15日
[250]	单晶	8/60	6.36/6.7	0	张贴于2019年7月22日

Table 1. Summary of ARPES studies on MnBi₂Te₄ (as of 22 July 2019).

阶段大致从 2018 年中开始到 2019 年 5 月左右, 主要的结论是 ARPES 观察到了磁性引起的带有大能隙的拓扑表面态, 与理论和中子衍射实验得出的磁结构相符合.第二阶段特指 2019 年 7 月 (本文写作时), 4 个研究组分别在 arXiv 上张贴文章, 各自独立发现 MnBi₂Te₄的拓扑表面态能隙为零.这一发现与理论和中子实验得出的体材料磁结构和表面磁结构的又一次研究热潮.下面讨论这些研究.

表1归纳了笔者所知的2019年7月22日之前对MnBi₂Te₄的所有ARPES研究.从测得的能隙的有无上,可以明显地看出研究的两个阶段.第一阶段的ARPES数据如图22所示.可以看到,无论光子能量和测量温度是多少,这些文献都观察到约100 meV的广点能隙.这个结论看似和A型反铁磁基态符合,但能隙在124相的Neel温度以上并未闭合,这其实也是和磁结构分析相悖的.就当前的理解,这些数据要么由于ARPES矩阵元的原因而没有见到零能隙的表面态,要么是数据分析存在问题.这些文献的结论都是不正确的.

自 2019 年 7 月起,对 MnBi₂Te₄的 ARPES 研究进入了一个新的阶段. 笔者所在的南方科技大 学研究小组首先在 arXiv 上张贴论文^[247],利用激 光 ARPES ($h\nu = 6.3 \text{ eV}$)和基于低能同步辐射光 ($h\nu = 7$ —40 eV)的系统性的 ARPES 数据指出 MnBi₂Te₄的拓扑表面态能隙为零. 原来以为的带 有大能隙的表面态实际上是 MnBi₂Te₄的体能态, 带有明显的 k_z 方向色散 (图 23). 这个无能隙的拓 扑表面态非常稳定,无论在 Neel 温度以下还是以上,甚至在 300 K 的室温下仍然保持其无能隙的特征.即使在空气中解理样品,气体分子和杂质也只令样品总体被空穴掺杂,而拓扑表面态仍然是无能隙的 (图 24).该文的数据质量非常高,以无可辩驳的实验事实证明了无能隙表面态的存在.在此文张贴于 arXiv 后的三周内,又有三个各自独立的对 MnBi₂Te₄ 的 ARPES 研究在 arXiv 上张贴出来^[248–250] (分别来自牛津大学-清华大学陈宇林小组、中国科学院物理研究所钱天-丁洪小组和爱荷华州立大学 Kaminski 小组),得到与其相同的实验结论.

由于 ARPES 实验观察到了无能隙的狄拉克 锥形式的表面态,而无能隙特性又与体态的 A 型 反铁磁结构相悖,所以接下来的研究重点便是寻找 这个表面态的来源. 从图 24 看出, 这个表面态的 稳定性和普通三维 TI(例如 Bi_2Se_3 和 Bi_2Te_3) 的稳 定性不相上下,连空气解理也不能将其破坏.因此 这个表面态很有可能也是被拓扑保护的[247]. 同一 份文献用细致的对称性分析和第一性原理计算提 出该表面态有可能来源于和体材料 A 型反铁磁结 构不同的的表面磁结构,并讨论了每种表面磁结构 的形成能以及从与实验比较中得出的形成该结构 的可能性. 实验确定 MnBi₂Te₄ 的表面磁结构对磁 性拓扑绝缘体领域极为重要,这将成为自旋分辨低 能电子显微技术 (spin-polarized low energy electron microscopy, SP-LEEM)、磁圆二色性 (magnetic circular dichroism, MCD)、金刚石

图 23 MnBi₂Te₄的最新 ARPES 数据, 观察到零能隙的表面态^[247] (a) 一个典型的沿 $\bar{K} - \bar{\Gamma} - \bar{K}$ 方向的 ARPES k-E 图, 光子 能量和测量温度为 6.3 eV 和 10 K. 由图可见, 一个线性的 X 形无能隙电子态出现在导带和价带之间; (b) $\bar{\Gamma}$ 点处的 k_2 色散, 光子 能量范围为 6—20 eV. 由图可见, 价带顶的周期性色散非常清晰; (c)—(e) 经过体对称点 Γ_4 , Z_4 , Γ_5 的沿 $\bar{M} - \bar{\Gamma} - \bar{M}$ (k_2) 方向的 ARPES k-E 图 (对应光子能量分别为 7.5, 10.5 和 13.5 eV). 由图可见, 无能隙表面态没有 k_2 方向的色散, 而价带顶的束缚能由 Γ 点的 0.33 eV 变成 Z点的 0.4 eV, 从而使体能隙由 0.13 eV 变成 0.20 eV

Fig. 23. Surface and bulk electronic structure of MnBi₂Te₄^[247]: (a) A typical ARPES k-E map along $\bar{K} - \bar{\Gamma} - \bar{K} (k_y)$, taken at 10 K under photon energy $h\nu = 6.3$ eV. A linear, X-shaped, gapless state exists between the valence and the conduction bands; (b) k_z dispersion map at $\bar{\Gamma}$, taken with 6– 20 eV photons. Periodic dispersion pattern on the VBM is seen clearly. (c)–(e) k-E maps along $\bar{M} - \bar{\Gamma} - \bar{M} (k_x)$ taken at the Γ_4 , Z_4 and Γ_5 points marked in Fig. (b) (correspond to $h\nu = 7.5$, 10.5 and 13.5 eV, respectively). It is clear that the gapless state forming the Dirac cone has no k_z dispersion, while the VBM evolves from -0.33 eV (Γ) to -0.4 eV (Z), consequently changing the bulk gap from 0.13 to 0.20 eV.

NV 色心 (NV center) 或非线性光学等对表面磁性 敏感的探测技术的一个很好的研究课题.

截止至 2019 年 7 月底, MnBi₂Te₄ 系列其他化 合物 (例如 MnBi₄Te₇, MnBi₆Te₁₀等)的 ARPES 研究见于文献的并不多, 但许多研究小组已有尚未 发表或张贴的数据, 或已把其列入最近的研究计 划.目前见于 arXiv 的 MnBi₄Te₇ ARPES 数据有 两组,分别来自科罗拉多大学 Hu 等^[251]和德国 Vidal 等^[252].对比起 MnBi₂Te₄, MnBi₄Te₇ (147 相) 结构的最大特点是其一个结构单元包含有两个相 对独立的, 以范德瓦耳斯力相联系的部分, 分别是 124 层和 Bi₂Te₃ (023) 层 (即"147 = 124 + 023"). 因此当 ARPES 或 STM 测量在真空中解理样品 时, 出现表面为 124 相和 023 相的概率大致相等. 这使 147 相具有两套截止面不同的能带结构 (如此 类推,1,6,10 相将有3套不同的能带结构,等等). 上述的两篇文献均找到了这两套能带结构,也都认 为表面态存在较大的能隙,但数据的动量分辨率并 不算高,因此其细致的能带尚不能分辨.

以 MnBi₂Te₄ 为代表的磁性拓扑绝缘体无疑 是磁性拓扑材料领域的一个新的热点和突破口.由 于其磁结构存在未曾料到的复杂性和表面-体材料 不一致的情况,对这一系列化合物中的每一个做高 分辨率的系统性的 ARPES 研究是目前首要的任 务.这些研究将确定每一个化合物、每一种解理面 的表面态能隙的有无和大小,有助于理解这些体系 的表面磁结构,从而为下一步的研究 (例如利用掺 杂调控费米面,进行输运测量等)提供依据.由于 ARPES 在这一类材料中能够给出非常丰富的物理 信息,这一方向还是很有前景的.

图 24 MnBi₂Te₄无能隙狄拉克锥的稳定性^[247].每一小图的左边为 ARPES 原始数据,右边为二次微分后的数据.所有数据均采 自 6.3 eV 激光 ARPES 系统,沿 $\bar{K} = \bar{\Gamma} = \bar{K}$ 高对称方向.每一小图测量的样品分别为 (a) 超高真空解理的样品,测量温度为 10 K(低于 Neel 温度); (b) 超高真空解理的样品,测量温度为 300 K(远高于 Neel 温度); (c) 在空气中解理然后放入真空腔的样品,测量温度为 10 K.虽然不同的解理和测量条件导致不同的表面费米能位置和载流子浓度,但狄拉克锥的无能隙性质保持不变, 且体能隙的大小 (150 meV) 未发生可观测的变化

Fig. 24. Robustness of the Dirac surface state^[247]. The figure shows ARPES raw (left) and second derivative (right) k-E maps taken with 6.3 eV laser light along $\bar{K} - \bar{\Gamma} - \bar{K} (k_y)$ for (a) a pristine sample cleaved and measured at 10 K (below T_N), (b) a pristine sample cleaved and measured at 300 K (way above T_N), and (c) a sample cleaved in air at room temperature, and measured at 10 K. Despite the overall carrier doping induced by different cleaving conditions, the gapless Dirac cone is clearly seen for all cases, along with an unchanged bulk band gap sized 150 meV.

4.3 小结

本章回顾了目前为止利用 ARPES 对磁性拓 扑绝缘体 (包括磁性掺杂的 TI 和本征磁性 TI) 电 子结构的研究.凝聚态体系的磁性和拓扑性质的耦 合与竞争一直是拓扑材料领域的一个重要的研究 方向.磁性拓扑材料特有的物理现象不仅包括 QAHE, 也包括拓扑磁电效应、磁光学 Faraday/Kerr 效应等[239]. 这一方向的内涵不仅体现在磁性拓扑 绝缘体中,也体现在磁性拓扑半金属中,例如磁性 Wevl半金属的最小模型仅包括一对手性相反的 Weyl 点, 区别于空间反演破缺的 Weyl 半金属的 两对 Weyl 点, 等等. 目前非磁拓扑体系已有相当 完备的穷举性的材料预言,而这种理论预言由于磁 空间群的丰富性和确定磁基态的难度而很难被复 制到磁性拓扑体系中.因此实验数据,特别是 ARPES 实验数据,仍然是目前确定磁性拓扑材料 性质的最佳手段.可以预见, ARPES 实验在较长 的一段时间内仍将对磁性拓扑材料的研究起到引 领作用.

5 结 论

本文对目前利用角分辨光电子能谱技术对强 三维拓扑绝缘体和磁性拓扑绝缘体的部分研究作 了一个简要的回顾.这些拓扑材料中较大的自旋轨 道耦合系数使宇称相反的体价带和体导带发生反 转和杂化,形成能量为负值的,拓扑不寻常的体能 隙. 典型的狄拉克锥拓扑表面态就出现在这个负能 隙中. 在强三维 TI / 反铁磁 TI 情形下,特定表面 的狄拉克点受时间反演对称性 / *S* 对称性保护而 不打开能隙,其对应的准粒子是无质量的狄拉克费 米子. 在铁磁性 TI 情形下,时间反演对称性和*S* 对 称性均破缺,拓扑表面态在狄拉克点打开一个有限 的能隙,其对应的准粒子是有质量的(广义)狄拉 克费米子.

强三维拓扑绝缘体和磁性拓扑绝缘体有非常 特殊的能带特征,其狄拉克准粒子只存在于样品的 表面或界面,因此 ARPES 是探测它们的首选实验 方法.利用 ARPES,人们不仅获得了强三维 TI 和 磁性 TI 基本的表面电子态的色散关系, 证实了这 些准粒子的存在,还揭示了其自旋纹理、电声耦合 和时域能谱等丰富的电子学信息. 在强三维 TI 领 域,对 Bi, Au 等单质的 ARPES 研究发现了第一 类拓扑非平庸的三维材料,也指出拓扑不寻常性在 重金属单质中非常普遍;对 Bi2Se3 系列 TI 的 ARPES 研究揭示了拓扑材料中最简单的单个广点狄拉克 锥的能带结构和清晰的自旋-动量锁定特性,也指 出它们是已知的电子-声子耦合强度最低的材料之 一. 其他类型的三维 TI 则各有特点: Bi₂Se₂Te 系 列 TI 的绝缘性比较好, TlBiSe, 系列 TI 的狄拉克 点比较靠近体能隙的中央, 半 Heusler 系列 TI 的 构成元素在大范围内可调,其结构参数和内秉物理 性质的多样性拓宽了潜在的应用范围.随着非磁拓 扑材料目录的诞生,人们意识到多达1/4的晶体材 料很可能是拓扑材料,但它们的拓扑属性仍需要 ARPES等表征手段予以最终核实.在磁性 TI领 域,对磁性掺杂的强三维 TI的 ARPES 研究证实 了狄拉克锥磁性能隙的存在,并且确认狄拉克能带 在高对称点拥有指向面外的自旋分量.对 MnBi₂Te₄ 系列本征反铁磁 TI的 ARPES 研究指出它们的表 面磁构型不同于体材料的磁构型,揭示了其磁结构 的复杂性和可调性.可以说,ARPES 在很大程度 上引领了非磁和磁性 TI 的实验研究,并仍将在指 认材料的拓扑性质和指引材料的最终应用方面起 到举足轻重的作用.

限于作者水平,文中可能存在科学上、逻辑上 和语句上的各种错误和含混之处,且有许多重要的 研究结果可能未被收录进本文中.请各位读者批评 指正.

参考文献

- $[1] Moore J \to 2010 Nature 424 194$
- [2] Hasan M Z, Kane C L 2010 $Rev.\ Mod.\ Phys.\ 82\ 3045$
- [3] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
- Bernevig B A, Hughes T L 2013 Topological insulators and topological superconductors (Princeton: Princeton University Press)
- [5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
- [6] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
- [7] Bernevig B A, Hughes T A, Zhang S C 2006 Science 314 1757
- [8] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
- [9] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970
- [10] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J, Hasan M Z 2009 *Science* 323 919
- [11] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 *Science* 325 178
- [12] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398
- [13] Fu L 2011 Phys. Rev. Lett. 106 106802
- [14] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Łusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O, Story T 2012 Nat. Mater. 11 1023
- [15] Hsieh T H, Lin H, Liu J, Duan W, Bansil A, Fu L 2012 Nat. Commun. 3 982
- [16] Xu S Y, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Denlinger J D, Wang Y J, Lin H, Wray L A, Landolt G, Slomski B, Dil J H, Marcinkova A, Morosan E, Gibson Q, Sankar R, Chou F C, Cava R J, Bansil A, Hasan M Z 2012

Nat. Commun. 3 1192

- [17] Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
- [18] Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408
- [19] Dzero M, Xia J, Galitski V, Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249
- [20] Neupane M, Alidoust N, Xu S Y, Kondo T, Ishida Y, Kim D J, Liu C, Belopolski I, Jo Y J, Chang T R, Jeng H T, Durakiewicz T, Balicas L, Lin H, Bansil A, Shin S, Fisk Z, Hasan M Z 2013 Nat. Commun. 4 2991
- [21] Xu N, Shi X, Biswas P K, Matt C E, Dhaka R S, Huang Y, Plumb N C, Radović M, Dil J H, Pomjakushina E, Conder K, Amato A, Salman Z, Paul D M, Mesot J, Ding H, Shi M 2013 *Phys. Rev. B* 88 121102
- [22] Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 *Science* 325 294
- [23] Kim D J, Thomas S, Grant T, Botimer J, Fisk Z, Xia J 2013 Sci. Rep. 3 3150
- [24] Parameswaran S A, Grover T, Abanin D A, Pesin D A, Vishwanath A 2014 Phys. Rev. X 4 031035
- [25] Gorbar E V, Miransky V A, Shovkovy I A, Sukhachov P O 2018 Phys. Rev. B 98 035121
- [26] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I, Bernevig B A 2017 Nature 547 298
- [27] Po H C, Vishwanath A, Watanabe H 2017 Nat. Commun. 8 50
- [28] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H, Fang C 2019 *Nature* 566 475
- [29] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480
- [30] Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486
- [31] Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802
- [32] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science **329** 61
- [33] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167
- [34] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H, Moodera J S 2015 *Nat. Mater.* 14 473
- [35] Liu C X, Zhang S C, Qi X L 2015 Annu. Rev. Condens. Matter Phys. 7 301
- [36] He K, Wang Y, Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329
- [37] Mong R S K, Essin A M, Moore J E 2010 Phys. Rev. B 81 245209
- [38] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677
- [39] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603
- [40] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F, Hasan M Z 2014 Nat. Commun. 5 3786
- [41] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 *Science* 343 864
- [42] Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W,

Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 *Science* **347** 294

- [43] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013
- [44] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 *Science* 349 613
- [45] Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M, Ding H 2015 *Phys. Rev. Lett.* **115** 207601
- [46] Xu S Y, Belopolski I, Sanchez D S, Neupane M, Chang G, Yaji K, Yuan Z, Zhang C, Kuroda K, Bian G, Guo C, Lu H, Chang T R, Alidoust N, Zheng H, Lee C C, Huang S M, Hsu C H, Jeng H T, Bansil A, Neupert T, Komori F, Kondo T, Shin S, Lin H, Jia S, Hasan M Z 2016 *Phys. Rev. Lett.* **116** 096801
- [47] Xu S Y, Alidoust N, Chang G, Lu H, Singh B, Belopolski I, Sanchez D S, Zhang X, Bian G, Zheng H, Husanu M A, Bian Y, Huang S M, Hsu C H, Chang T R, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S, Hasan M Z 2017 *Sci. Adv.* **3** e1603266
- [48] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556
- [49] Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H, Hasan M Z 2016 *Phys. Rev. B* 93 121113(R)
- [50] Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 *Nature* 546 627
- [51] Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090
- [52] Einstein A 1905 Ann. Phys. 17 132
- [53] Cardona M, Ley L 1978 Photoemission in Solids I (Springer-Verlag, Berlin–Heidelberg–New York)
- [54] Ghosh, P K 1983 Introduction to Photoelectron Spectroscopy (John Wiley & Sons)
- [55] Hüfner S 2003 Photoelectron Spectroscopy: Principles and Applications (Springer-Verlag, Berlin-Heidelberg-New York)
- [56] Himpsel F, Nilsson P O 2005 Focus on Photoemission and Electronic Structure. New J. Phys. 7 Deutsche Physikalische Gesellschaft & Institute of Physics
- [57] Hüfner S 2007 Very High Resolution Photoelectron Spectroscopy (Springer)
- [58] Suga S, Sekiyama A 2014 Photoelectron Spectroscopy, Bulk and Surface Electronic Structures (Springer-Verlag Berlin: Heidelberg)
- [59] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
- [60] Meier F, Zakharchenya B P 1984 Optical Orientation (Modern Problems in Condensed Matter Sciences vol 8) (Amsterdam: Elsevier)

- [61] Kaminski A, Rosenkranz S, Fretwell H M, Campuzano J C, Li Z, Raffy H, Cullen W G, You H, Olson C G, Varma C M, Höchst H 2002 Nature 416 610
- [62] Borisenko S V, Kordyuk A A, Koitzsch A, Kim T K, Nenkov K A, Knupfer M, Fink J, Grazioli C, Turchini S, Berger H 2004 Phys. Rev. Lett. 92 207001
- [63] Zabolotnyy V B, Borisenko S V, Kordyuk A A, Inosov D S, Koitzsch A, Geck J, Fink J, Knupfer M, Büchner B, Drechsler S L, Hinkov V, Keimer B, Patthey L 2007 *Phys. Rev. B* 76 024502
- [64] Vyalikh D V, Danzenbächer S, Yaresko A N, Holder M, Kucherenko Y, Laubschat C, Krellner C, Hossain Z, Geibel C, Shi M, Patthey L, Molodtsov S L 2008 *Phys. Rev. Lett.* **100** 056402
- [65] Liu Y, Bian G, Miller T, Chiang T C 2012 Phys. Rev. Lett. 107 166803
- [66] Mills D M 1990 in Advanced X-Ray/EUV Radiation Sources and Applications, Proceedings of SPIE
- [67] Dartyge E, Fontaine A, Baudelet F, Giorgetti C, Pizzini S, Tolentino H 1992 J. Phys. I 2 1233
- [68] Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z, Zhou X J 2008 *Rev. Sci. Instrum.* **79** 023105
- [69] He Y, Vishik I M, Yi M, Yang S, Liu Z, Lee J J, Chen S, Rebec S N, Leuenberger D, Zong A, Jefferson C M, Moore R G, Kirchmann P S, Merriam A J, Shen Z X 2016 *Rev. Sci. Instrum.* 87 011301
- Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D, Denlinger J D, Hussain Z, Lanzara A, Kaindl R A 2019 *Rev. Sci. Instrum.* 90 023105
- [71] Product Manual, SPECS GmBH
- [72] Kuroda K, Yaji K, Harasawa A, Noguchi R, Kondo T, Komori F, Shin S 2018 J. Vis. Exp. 136 e57090
- [73] Osterwalder J 2006 Lect. Notes Phys. 697 95
- [74] Kessler J 1976 Polarized Electrons (Springer-Verlag Berlin-Heidelberg)
- [75] Kirschner J 1985 Polarized Electrons at Surfaces (Vol. 106) (Springer Tracts in Modern Physics, Springer-Verlag Berlin-Heidelberg)
- [76] Feder R 1985 Polarized Electrons in Surface Physics (World Scientific)
- [77] Jozwiak C, Graf J, Lebedev G, Andresen N, Schmid A K, Fedorov A V, El Gabaly F, Wan W, Lanzara A, Hussain Z 2010 Rev. Sci. Instrum. 81 053904
- [78] Souma S, Takayama A, Sugawara K, Sato T, Takahashi T 2010 Rev. Sci. Instrum. 81 095101
- [79] Heinzmann U, Dil J H 2012 J. Phys. Condens. Matter 24 173001
- [80] Takayama A 2015 High-Resolution Spin-Resolved Photoemission Spectrometer and the Rashba Effect in Bismuth Thin Films (Springer Theses, Springer Japan)
- [81] Tillmann D, Thiel R, Kisker E 1989 Z. Phys. B 77 1
- [82] Bertacco R, Merano M, Ciccacci F 1998 Appl. Phys. Lett. 72 2050
- [83] Bertacco R, Marcon M, Trezzi G, Duò L, Ciccacci F 2002 *Rev. Sci. Instrum.* 73 3867
- [84] Okuda T, Takeichi Y, Maeda Y, Harasawa A, Matsuda I, Kinoshita T, Kakizaki A 2008 *Rev. Sci. Instrum.* 79 123117
- [85] Okuda T, Takeichi Y, Harasawa A, Matsuda I, Kinoshita T, Kakizaki A 2009 Eur. Phys. J. Spec. Top. 169 181
- [86] Winkelmann A, Hartung D, Engelhard H, Chiang C T, Kirschner J 2008 Rev. Sci. Instrum. 79 083303

- [87] Okuda T, Miyamaoto K, Miyahara H, Kuroda K, Kimura A, Namatame H, Taniguchi M 2011 Rev. Sci. Instrum. 82 103302
- [88] Yaji K, Harasawa A, Kuroda K, Toyohisa S, Nakayama M, Ishida Y, Fukushima A, Watanabe S, Chen C, Komori F, Shin S 2016 *Rev. Sci. Instrum.* 87 053111
- [89] [http://www.fhi-berlin.mpg.de/]
- [90] [http://qcmd.mpsd.mpg.de/]
- [91] Kanai T, Kanda T, Sekikawa T, Watanabe S, Togashi T, Chen C, Zhang C, Xu Z, Wang J 2004 J. Opt. Soc. Am. B 21 370
- [92] Koralek J D, Douglas J F, Plumb N C, Griffith J D, Cundiff S T, Kapteyn H C, Murnane M M, Dessau D S 2007 *Rev. Sci. Instrum.* 78 053905
- [93] Berntsen M H, Gotberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113
- [94] Zhou X, He S, Liu G, Zhao L, Yu L, Zhang W 2018 *Rep. Prog. Phys.* 81 062101
- [95] Puppin M, Deng Y, Nicholson C W, Feldl J, Schröter N B M, Vita H, Kirchmann P S, Monney C, Rettig L, Wolf M, Ernstorfer R 2019 *Rev. Sci. Instrum.* **90** 023104
- [96] Sie E J, Rohwer T, Lee C, Gedik N 2019 Nat. Commun. 10 3535
- [97] Schattke W, Van Hove M A 2003 Solid-State Photoemission and Related Methods: Theory and Experiment (Berlin: Wiley-VCH)
- [98] Weinelt M 2002 J. Phys. Condens. Matter 14 R1099
- [99] Berglund C N, Spicer W E 1964 Phys. Rev. 136 A1030
- [100] Braun J 1996 Rep. Prog. Phys. 59 1267
- [101] Pendry J B 1976 Surf. Sci. 57 679
- [102] Hopkinson J F L, Pendry J B, Titterington D J 1980 Comput. Phys. Commun. 19 69
- [103] Freericks J K, Krishnamurthy H R, Pruschke T 2009 Phys. Rev. Lett. 102 136401
- [104] Roy R, Harper F 2017 Phys. Rev. B 96 155118
- [105] Benia H M, Straßer C, Kern K, Ast C R 2015 *Phys. Rev. B* 91 161406(R)
- [106] Nishide A, Taskin A A, Takeichi Y, Okuda T, Kakizaki A, Hirahara T, Nakatsuji K, Komori F, Ando Y, Matsuda I 2010 Phys. Rev. B 81 041309(R)
- [107] Barfuss A, Dudy L, Scholz M R, Roth H, Höpfner P, Blumenstein C, Landolt G, Dil J H, Plumb N C, Radovic M, Bostwick A, Rotenberg E, Fleszar A, Bihlmayer G, Wortmann D, Li G, Hanke W, Claessen R, Schäfer J 2013 *Phys. Rev. Lett.* **111** 157205
- [108] Ohtsubo Y, Le Fèvre P, Bertran F, Taleb-Ibrahimi A 2013 *Phys. Rev. Lett.* **111** 216401
- [109] Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 *Phys. Rev. Lett.* **116** 096602
- [110] Barbedienne Q, Varignon J, Reyren N, Marty A, Vergnaud C, Jamet M, Gomez-Carbonell C, Lemaître A, Le Fèvre P, Bertran F, Taleb-Ibrahimi A, Jaffrès H, George J M, Fert A 2018 Phys. Rev. B 98 195445
- [111] Takayama A, Sato T, Souma S, Takahashi T 2011 Phys. Rev. Lett. 106 166401
- [112] Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blügel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801
- [113] Sun H H, Wang M X, Zhu F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y, Gao C L, Li Y Y, Liu C, Qian D, Guan D, Jia J F 2017 Nano Lett. 17 3035

- [114] Ohtsubo Y, Perfetti L, Goerbig M O, Le Fèvre P, Bertran F, Taleb-Ibrahimi A 2013 New J. Phys. 15 033041
- [115] Yao M Y, Zhu F, Han C Q, Guan D D, Liu C, Qian D, Jia J 2016 Sci. Rep. 6 21326
- [116] Yan B, Stadtmüller B, Haag N, Jakobs S, Seidel J, Jungkenn D, Mathias S, Cinchetti M, Aeschlimann M, Felser C 2015 Nat. Commun. 6 10167
- [117] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A, Neupert T 2018 Nat. Phys. 14 918
- [118] Bian G, Wang X, Liu Y, Miller T, Chiang T C 2012 Phys. Rev. Lett. 108 176401
- [119] Takayama A, Sato T, Souma S, Oguchi T, Takahashi T 2012 Nano Lett. 12 1776
- [120] Miao L, Wang Z F, Ming W, Yao M Y, Wang M, Yang F, Song Y R, Zhu F, Fedorov A V, Sun Z, Gao C L, Liu C, Xue Q K, Liu C X, Liu F, Qian D, Jia J F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 2758
- [121] Takayama A, Sato T, Souma S, Oguchi T, Takahashi T 2015 Phys. Rev. Lett. 114 066402
- [122] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nature 460 1101
- [123] Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 *Phys. Rev. Lett.* 103 146401
- [124] Pauly C, Bihlmayer G, Liebmann M, Grob M, Georgi A, Subramaniam D, RScholz M, Sánchez-Barriga J, Varykhalov A, Blügel S, Rader O, Morgenstern M 2012 *Phys. Rev. B* 86 235106
- [125] Aramberri H, Muñoz M C 2017 Phys. Rev. B 95 205422
- [126] Fu L 2009 Phys. Rev. Lett. 103 266801
- [127] Kuroda K, Arita M, Miyamoto K, Ye M, Jiang J, Kimura A, Krasovskii E E, Chulkov E V, Iwasawa H, Okuda T, Shimada K, Ueda Y, Namatame H, Taniguchi M 2010 *Phys. Rev. Lett.* **105** 076802
- [128] Wang Y H, Hsieh D, Pilon D, Fu L, Gardner D R, Lee Y S, Gedik N 2011 Phys. Rev. Lett. 107 207602
- [129] Bahramy M S, King P D C, de la Torre A, Chang J, Shi M, Patthey L, Balakrishnan G, Hofmann Ph, Arita R, Nagaosa N, Baumberger F 2012 Nat. Commun. 3 1159
- [130] Chen C, Xie Z, Feng Y, Yi H, Liang A, He S, Mou D, He J, Peng Y, Liu X, Liu Y, Zhao L, Liu G, Dong X, Zhang J, Yu L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Chen C, Xu Z, Zhou X J 2013 Sci. Rep. 3 2411
- [131] Tanaka Y, Nakayama K, Souma S, Sato T, Xu N, Zhang P, Richard P, Ding H, Suzuki Y, Das P, Kadowaki K, Takahashi T 2012 Phys. Rev. B 85 125111
- [132] Han C Q, Li H, Chen W J, Zhu F, Yao M Y, Li Z J, Wang M, Gao B F, Guan D D, Liu C, Gao C L, Qian D, Jia J F 2015 Appl. Phys. Lett. 107 171602
- [133] Wray L A, Xu S Y, Xia Y, Hsieh D, Fedorov A V, Hor Y S, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32
- [134] King P D C, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802
- [135] King P D C, Veal T D, McConville C F, Zúñiga-Pérez J, Muñoz-Sanjosé V, Hopkinson M, Rienks E D, Jensen M F,

Hofmann P 2010 Phys. Rev. Lett. 104 256803

- [136] Chen C, He S, Weng H, Zhang W, Zhao L, Liu H, Jia X, Mou D, Liu S, He J, Peng Y, Feng Y, Xie Z, Liu G, Dong X, Zhang J, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Chen C, Xu Z, Dai X, Fang Z, Zhou X J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 3694
- [137] Benia H M, Lin C, Kern K, Ast C R 2011 Phys. Rev. Lett. 107 177602
- [138] Noh H J, Jeong J, Cho E J, Park J, Kim J S, Kim I, Park B G, Kim H D 2015 *Phys. Rev. B* **91** 121110(R)
- [139] Valla T, Pan Z H, Gardner D, Lee Y S, Chu S 2012 Phys. Rev. Lett. 108 117601
- [140] Park S R, Jung W S, Kim C, Song D J, Kim C, Kimura S, Lee K D, Hur N 2010 Phys. Rev. B 81 041405(R)
- [141] Pan Z H, Fedorov A V, Gardner D, Lee Y S, Chu S, Valla T 2012 Phys. Rev. Lett. 108 187001
- [142] Sánchez-Barriga J, Scholz M R, Golias E, Rienks E, Marchenko D, Varykhalov A, Yashina L V, Rader O 2014 *Phys. Rev. B* **90** 195413
- [143] Park S R, Han J, Kim C, Koh Y Y, Kim C, Lee H, Choi H J, Han J H, Lee K D, Hur N J, Arita M, Shimada K, Namatame H, Taniguchi M 2012 *Phys. Rev. Lett.* 108 046805
- [144] Jung W, Kim Y, Kim B, Koh Y, Kim C, Matsunami M, Kimura S, Arita M, Shimada K, Han J H, Kim J, Cho B, Kim C 2011 Phys. Rev. B 84 245435
- [145] Souma S, Kosaka K, Sato T, Komatsu M, Takayama A, Takahashi T, Kriener M, Segawa K, Ando Y 2011 Phys. Rev. Lett. 106 216803
- [146] Scholz M R, Sánchez-Barriga J, Braun J, Marchenko D, Varykhalov A, Lindroos M, Wang Y J, Lin H, Bansil A, Minár J, Ebert H, Volykhov A, Yashina L V, Rader O 2013 *Phys. Rev. Lett.* **110** 216801
- [147] Jozwiak C, Chen Y L, Fedorov A V, Analytis J G, Rotundu C R, Schmid A K, Denlinger J D, Chuang Y D, Lee D H, Fisher I R, Birgeneau R J, Shen Z X, Hussain Z, Lanzara A 2011 Phys. Rev. B 84 165113
- [148] Jozwiak C, Park C H, Gotlieb K, Hwang C, Lee D H, Louie S G, Denlinger J D, Rotundu C R, Birgeneau R J, Hussain Z, Lanzara A 2013 Nat. Phys. 9 293
- [149] Zhu Z H, Veenstra C N, Levy G, Ubaldini A, Syers P, Butch N P, Paglione J, Haverkort M W, Elfimov I S, Damascelli A 2013 Phys. Rev. Lett. 110 216401
- [150] Zhu Z H, Veenstra C N, Zhdanovich S, Schneider M P, Okuda T, Miyamoto K, Zhu S Y, Namatame H, Taniguchi M, Haverkort M W, Elfimov I S, Damascelli A 2014 *Phys. Rev. Lett.* **112** 076802
- [151] Miao L, Wang Z F, Yao M Y, Zhu F, Dil J H, Gao C L, Liu C, Liu F, Qian D, Jia J F 2014 *Phys. Rev. B* 89 155116
- [152] Sánchez-Barriga J, Varykhalov A, Braun J, Xu S Y, Alidoust N, Kornilov O, Minár J, Hummer K, Springholz G, Bauer G, Schumann R, Yashina L V, Ebert H, Hasan M Z, Rader O 2014 Phys. Rev. X 4 011046
- [153] Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 *Phys. Rev. Lett.* **111** 136802
- [154] Sobota J A, Yang S L, Leuenberger D, Kemper A F, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2014 J. Electron. Spectrosc. Relat. Phenom. 195 249
- [155] Niesner D, Fauster T, Eremeev S V, Menshchikova T V, Koroteev Y M, Protogenov A P, Chulkov E V, Tereshchenko O E, Kokh K A, Alekperov O, Nadjafov A,

Mamedov N 2012 Phys. Rev. B 86 205403

[156] Reimann J, Güdde J, Kuroda K, Chulkov E V, Höfer U 2014 Phys. Rev. B 90 081106(R)

- [157] Kuroda K, Reimann J, Kokh K A, Tereshchenko O E, Kimura A, Güdde J, Höfer U 2017 Phys. Rev. B 95 081103(R)
- [158] Kuroda K, Reimann J, Güdde J, Höfer U 2016 Phys. Rev. Lett. 116 076801
- [159] Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S, Shen Z X 2012 Phys. Rev. Lett. 108 117403
- [160] Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, Jarillo-Herrero P, Gedik N 2012 Phys. Rev. Lett. 109 127401
- [161] Sobota J A, Yang S L, Leuenberger D, Kemper A F, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2014 Phys. Rev. Lett. 113 157401
- [162] Golias E, Sánchez-Barriga J 2016 Phys. Rev. B 94 161113(R)
- [163] Soifer H, Gauthier A, Kemper A F, Rotundu C R, Yang S L, Xiong H, Lu D, Hashimoto M, Kirchmann P S, Sobota J A, Shen Z X 2019 *Phys. Rev. Lett.* **122** 167401
- [164] Cacho C, Crepaldi A, Battiato M, Braun J, Cilento F, Zacchigna M, Richter M C, Heckmann O, Springate E, Liu Y, Dhesi S S, Berger H, Bugnon P, Held K, Grioni M, Ebert H, Hricovini K, Minár J, Parmigiani F 2015 *Phys. Rev. Lett.* 114 097401
- [165] Galitskii V M, Goreslavskii S P, Elesin V F 1969 Zh. Eksp. Teor. Fiz. 57 207 [1970 Sov. Phys. JETP 30 117]
- [166] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453
- [167] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A, Gedik N 2016 Nat. Phys. 12 306
- [168] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584
- [169] Wang G, Zhu X, Wen J, Chen X, He K, Wang L L, Ma X C, Liu Y, Dai X, Fang Z, Jia J F, Xue Q K 2010 Nano Res. 3 874
- [170] Neupane M, Richardella A, Sánchez-Barriga J, Xu S Y, Alidoust N, Belopolski I, Liu C, Bian G, Zhang D, Marchenko D, Varykhalov A, Rader O, Leandersson M, Balasubramanian T, Chang T R, Jeng H T, Basak S, Lin H, Bansil A, Samarth N, Hasan M Z 2014 Nat. Commun. 5 3841
- [171] Landolt G, Schreyeck S, Eremeev S V, Slomski B, Muff S, Osterwalder J, Chulkov E V, Gould C, Karczewski G, Brunner K, Buhmann H, Molenkamp L W, Dil J H 2014 *Phys. Rev. Lett.* **112** 057601
- [172] Zhang J, Chang C Z, Zhang Z, Wen J, Feng X, Li K, Liu M, He K, Wang L, Chen X, Xue Q K, Ma X, Wang Y 2011 *Nat. Commun.* 2 574
- [173] Kong D, Chen Y, Cha J J, Zhang Q, Analytis J G, Lai K, Liu Z, Hong S S, Koski K J, Mo S K, Hussain Z, Fisher I R, Shen Z X, Cui Y 2011 Nat. Nanotechnol. 6 705
- [174] Chang C Z, Tang P, Wang Y L, Feng X, Li K, Zhang Z, Wang Y, Wang L L, Chen X, Liu C, Duan W, He K, Ma X C, Xue Q K 2014 *Phys. Rev. Lett.* **112** 056801
- [175] Brahlek M, Bansal N, Koirala N, Xu S Y, Neupane M, Liu C, Hasan M Z, Oh S 2012 Phys. Rev. Lett. 109 186403
- [176] Zhang Y, Chang C Z, He K, Wang L L, Chen X, Jia J F, Ma X C, Xue Q K 2010 Appl. Phys. Lett. 97 194102
- [177] Wang G, Zhu X G, Sun Y Y, Li Y Y, Zhang T, Wen J, Chen X, He K, Wang L L, Ma X C, Jia J F, Zhang S B, Xue Q K 2011 Adv. Mater. 23 2929

- [178] Ren Z, Taskin A A, Sasaki S, Segawa K, Ando Y 2010 Phys. Rev. B 82 241306(R)
- [179] Taskin A A, Ren Z, Sasaki S, Segawa K, Ando Y 2011 Phys. Rev. Lett. 107 016801
- [180] Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821
- [181] Arakane T, Sato T, Souma S, Kosaka K, Nakayama K, Komatsu M, Takahashi T, Ren Z, Segawa K, Ando Y 2012 *Nat. Commun.* 3 636
- [182] Ji H, Allred J M, Fuccillo M K, Charles M E, Neupane M, Wray L A, Hasan M Z, Cava R J 2012 *Phys. Rev. B* 85 201103(R)
- [183] Neupane M, Xu S Y, Wray L A, Petersen A, Shankar R, Alidoust N, Liu C, Fedorov A, Ji H, Allred J M, Hor Y S, Chang T R, Jeng H T, Lin H, Bansil A, Cava R J, Hasan M Z 2012 Phys. Rev. B 85 235406
- [184] Annese E, Okuda T, Schwier E F, Iwasawa H, Shimada K, Natamane M, Taniguchi M, Rusinov I P, Eremeev S V, Kokh K A, Golyashov V A, Tereshchenko O E, Chulkov E V, Kimura A 2018 *Phys. Rev. B* 97 205113
- [185] Kushwaha S K, Pletikosić I, Liang T, Gyenis A, Lapidus S H, Tian Y, Zhao H, Burch K S, Lin J, Wang W, Ji H, Fedorov A V, Yazdani A, Ong N P, Valla T, Cava R J 2016 Nat. Commun. 7 11456
- [186] Shikin A M, Klimovskikh I I, Eremeev S V, Rybkina A A, Rusinova M V, Rybkin A G, Zhizhin E V, Sánchez-Barriga J, Varykhalov A, Rusinov I P, Chulkov E V, Kokh K A, Golyashov V A, Kamyshlov V, Tereshchenko O E 2014 *Phys. Rev. B* 89 125416
- [187] Neupane M, Basak S, Alidoust N, Xu S Y, Liu C, Belopolski I, Bian G, Xiong J, Ji H, Jia S, Mo S K, Bissen M, Severson M, Lin H, Ong N P, Durakiewicz T, Cava R J, Bansil A, Hasan M Z 2013 *Phys. Rev. B* 88 165129
- [188] Neupane M, Xu S Y, Ishida Y, Jia S, Fregoso B M, Liu C, Belopolski I, Bian G, Alidoust N, Durakiewicz T, Galitski V, Shin S, Cava R J, Hasan M Z 2015 *Phys. Rev. Lett.* 115 116801
- [189] Andrianov V I 1987 Kristallografiya **32** 228 ; 1987 Sov. Phys. Crystallogr. **32** 130
- [190] Karpinsky O G, Shelimova L E, Kretova M A, Fleurial J P 1998 J. Alloys Compd. 265 170
- [191] Shelimova L E, Karpinskii O G, Zemskov V S, Konstantinov P P 2000 Inorg. Mater. 36 235
- [192] Karpinskii O G, Shelimova L E, Kretova M A, Zemskov V S 2000 Inorg. Mater. 36 1108
- [193] Chatterjee A, Guina S N, Biswas K 2014 Phys. Chem. Chem. Phys. 16 14635
- [194] Shelimova L E, Karpinskii O G, Zemskov V S 2008 Inorg. Mater. 44 927
- [195] Silkin I V, Koroteev Y M, Eremeev S V, Bihlmayer G, Chulkov E V 2011 JETP Lett. 94 217
- [196] Okamoto K, Kuroda K, Miyahara H, Miyamoto K, Okuda T, Aliev Z S, Babanly M B, Amiraslanov I R, Shimada K, Namatame H, Taniguchi M, Samorokov D A, Menshchikova T V, Chulkov E V, Kimura A 2012 Phys. Rev. B 86 195304
- [197] Sterzi A, Manzoni G, Crepaldi A, Cilento F, Zacchigna M, Leclerc M, Bugnon P, Magrez A, Berger H, Petaccia L, Parmigiani F 2018 J. Electron. Spectrosc. Relat. Phenom. 225 23
- [198] Muff S, von Rohr F, Landolt G, Slomski B, Schilling A, Cava R J, Osterwalder J, Dil J H 2013 Phys. Rev. B 88 035407
- [199] Souma S, Eto K, Nomura M, Nakayama K, Sato T,

Takahashi T, Segawa K, Ando Y 2012 *Phys. Rev. Lett.* **108** 116801

- [200] Kuroda K, Miyahara H, Ye M, Eremeev S V, Koroteev Y M, Krasovskii E E, Chulkov E V, Hiramoto S, Moriyoshi C, Kuroiwa Y, Miyamoto K, Okuda T, Arita M, Shimada K, Namatame H, Taniguchi M, Ueda Y, Kimura A 2012 *Phys. Rev. Lett.* **108** 206803
- [201] Okuda T, Maegawa T, Ye M, Shirai K, Warashina T, Miyamoto K, Kuroda K, Arita M, Aliev Z S, Amiraslanov I R, Babanly M B, Chulkov E V, Eremeev S V, Kimura A, Namatame H, Taniguchi M 2013 *Phys. Rev. Lett.* **111** 206803
- [202] Shvets I A, Klimovskikh I I, Aliev Z S, Babanly M B, Sánchez-Barriga J, Krivenkov M, Shikin A M, Chulkov E V 2017 Phys. Rev. B 96 235124
- [203] Nakayama K, Eto K, Tanaka Y, Sato T, Souma S, Takahashi T, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 236804
- [204] Kuroda K, Ye M, Kimura A, Eremeev S V, Krasovskii E E, Chulkov E V, Ueda Y, Miyamoto K, Okuda T, Shimada K, Namatame H, Taniguchi M 2010 Phys. Rev. Lett. 105 146801
- [205] Sato T, Segawa K, Guo H, Sugawara K, Souma S, Takahashi T, Ando Y 2010 Phys. Rev. Lett. 105 136802
- [206] Chen Y L, Liu Z K, Analytis J G, Chu J H, Zhang H J, Yan B H, Mo S K, Moore R G, Lu D H, Fisher I R, Zhang S C, Hussain Z, Shen Z X 2010 Phys. Rev. Lett. 105 266401
- [207] Kuroda K, Eguchi G, Shirai K, Shiraishi M, Ye M, Miyamoto K, Okuda T, Ueda S, Arita M, Namatame H, Taniguchi M, Ueda Y, Kimura A 2015 *Phys. Rev. B* 91 205306
- [208] Nomura M, Souma S, Takayama A, Sato T, Takahashi T, Eto K, Segawa K, Ando Y 2014 Phys. Rev. B 89 045134
- [209] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J, Hasan M Z 2011 Science 332 560
- [210] Sato T, Segawa K, Kosaka K, Souma S, Nakayama K, Eto K, Minami T, Ando Y, Takahashi T 2011 Nat. Phys. 7 840
- [211] Souma S, Komatsu M, Nomura M, Sato T, Takayama A, Takahashi T, Eto K, Segawa K, Ando Y 2012 *Phys. Rev. Lett.* 109 186804
- [212] Chang Y C, Schulman J N, Bastard G, Guldner Y, Voos M 1985 Phys. Rev. B 31 2557(R)
- [213] Pankratov O A 1990 Semicond. Sci. Technol. 5 S204
- [214] Fu L, Kane C L 2007 Phys. Rev. B 76 045302
- [215] Han H, Zhang Y, Gao G Y, Yao K L 2013 Solid State Commun. 153 31
- [216] Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen Y L, Qi X L, Shen Z X, Zhang S C, Molenkamp L W 2011 Phys. Rev. Lett. 106 126803
- [217] Liu C, Bian G, Chang T R, Wang K, Xu S Y, Belopolski I, Miotkowski I, Cao H, Miyamoto K, Xu C, Matt C E, Schmitt T, Alidoust N, Neupane M, Jeng H T, Lin H, Bansil A, Strocov V N, Bissen M, Fedorov A V, Xiao X, Okuda T, Chen Y P, Hasan M Z 2015 *Phys. Rev. B* **92** 115436
- [218] Yan B, de Visser A 2014 *MRS Bull.* **39** 859
- [219] Chadov S, Qi X L, Kübler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541
- [220] Lin H, Wray L A, Xia Y, Xu S Y, Jia S, Cava R J, Bansil A, Hasan M Z 2010 Nat. Mater. 9 546
- [221] Liu C, Lee Y, Kondo T, Mun E D, Caudle M, Harmon B N, Bud'ko S L, Canfield P C, Kaminski A 2011 Phys. Rev. B 83 205133

- [222] Liu Z K, Yang L X, Wu S C, Shekhar C, Jiang J, Yang H F, Zhang Y, Mo S K, Hussain Z, Yan B, Felser C, Chen Y L 2016 Nat. Commun. 7 12924
- [223] Logan J A, Patel S J, Harrington S D, Polley C M, Schultz B D, Balasubramanian T, Janotti A, Mikkelsen A, Palmstrøm C J 2016 Nat. Commun. 7 11993
- [224] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2010 Science 329 659
- [225] Xu S Y, Neupane M, Liu C, Zhang D, Richardella A, Wray L A, Alidoust N, Leandersson M, Balasubramanian T, Sánchez-Barriga J, Rader O, Landolt G, Slomski B, Dil J H, Osterwalder J, Chang T R, Jeng H T, Lin H, Bansil A, Samarth N, Hasan M Z 2012 Nat. Phys. 8 616
- [226] Sánchez-Barriga J, Varykhalov A, Springholz G, Steiner H, Kirchschlager R, Bauer G, Caha O, Schierle E, Weschke E, Ünal A A, Valencia S, Dunst M, Braun J, Ebert H, Minár J, Golias E, Yashina L V, Ney A, Holý V, Rader O 2016 Nat. Commun. 7 10559
- [227] Shikin A M, Rybkina A A, Estyunin D A, Sostina D M, Voroshnin V Y, Klimovskikh I I, Rybkin A G, Surnin Y A, Kokh K A, Tereshchenko O E, Petaccia L, Di Santo G, Skirdkov P N, Zvezdin K A, Zvezdin A K, Kimura A, Chulkov E V, Krasovskii E E 2018 *Phys. Rev. B* 97 245407
- [228] Wang E, Tang P, Wan G, Fedorov A V, Miotkowski I, Chen Y P, Duan W, Zhou S Y 2015 Nano Lett. 15 2031
- [229] Schlenk T, Bianchi M, Koleini M, Eich A, Pietzsch O, Wehling T O, Frauenheim T, Balatsky A, Mi J L, Iversen B B, Wiebe J, Khajetoorians A A, Hofmann P, Wiesendanger R 2013 Phys. Rev. Lett. 110 126804
- [230] Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S, Park H H 2013 Cryst. Eng. Comm. 15 5532
- [231] Hirahara T, Eremeev S V, Shirasawa T, Okuyama Y, Kubo T, Nakanishi R, Akiyama R, Takayama A, Hajiri T, Ideta S I, Matsunami M, Sumida K, Miyamoto K, Takagi Y, Tanaka K, Okuda T, Yokoyama T, Kimura S I, Hasegawa S, Chulkov E V 2017 Nano Lett. 17 3493
- [232] Hagmann J A, Li X, Chowdhury S, Dong S N, Rouvimov S, Pookpanratana S J, Yu K M, Orlova T A, Bolin T B, Segre C U, Seiler D G, Richter C A, Liu X, Dobrowolska M, Furdyna J K 2017 New J. Phys. 19 085002
- [233] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521
- [234] Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443
- [235] Zeugner A, Nietschke F, Wolter A U B, Gaß S, Vidal R C, Peixoto T R F, Pohl D, Damm C, Lubk A, Hentrich R, Moser S K, Fornari C, Min C H, Schatz S, Kißner K, Ünzelmann M, Kaiser M, Scaravaggi F, Rellinghaus B, Nielsch K, Hess C, Büchner B, Reinert F, Bentmann H, Oeckler O, Doert T, Ruck M, Isaeva A 2019 Chem. Mater. 31 2795
- [236] Li H, Liu S, Liu C, Zhang J, Xu Y, Yu R, Wu Y, Zhang Y, Fan S 2019 arXiv: 1907.13018
- [237] Wu J, Liu F, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hosono H 2019 arXiv: 1905.02385
- [238] Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H, Liu Q 2019 *Phys. Rev. Lett.* **123** 096401

- [239] Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424
- [240] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
- [241] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 *Nat. Mater.* 16 516
- [242] Otrokov M M, Klimovskikh I I, Bentmann H, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Estyunin D, Shikin A M, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Min C H, Moser S K, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 arXiv: 1809.07389
- [243] Lee S H, Zhu Y, Wang Y, Miao L, Pillsbury T, Yi H, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H, Ke X, Graf D, Alem N, Chang C Z, Samarth N, Mao Z 2019 Phys. Rev. Research 1 012011(R)
- [244] Chen B, Fei F, Zhang D, Zhang B, Liu W, Zhang S, Wang P, Wei B, Zhang Y, Zuo Z, Guo J, Liu Q, Wang Z, Wu X, Zong J, Xie X, Chen W, Sun Z, Shen D, Wang S, Zhang Y, Zhang M, Wang X, Song F, Zhang H, Wang B 2019 arXiv: 1903.09934
- [245] Vidal R C, Bentmann H, Peixoto T R F, Zeugner A, Moser S, Min C H, Schatz S, Kißner K, Ünzelmann M, Fornari C I, Vasili H B, Valvidares M, Sakamoto K, Mondal D, Fujii J, Vobornik I, Jung S, Cacho C, Kim T K, Koch R J, Jozwiak C, Bostwick A, Denlinger J D, Rotenberg E, Buck J, Hoesch M, Diekmann F, Rohlf S, Kalläne M, Rossnagel K, Otrokov M M, Chulkov E V, Ruck M, Isaeva A, Reinert F 2019 *Phys. Rev. B* 100 121104(R)
- [246] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 *Chin. Phys. Lett.* **36** 076801
- [247] Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M, Wang Y, Hao Z, Sun H, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q, Liu C 2019 arXiv: 1907.03722
- [248] Chen Y J, Xu L X, Li J H, Li Y W, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Wang H Y, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 arXiv: 1907.05119
- [249] Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Fan W H, Rao Z C, Huang J R, Li J J, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T, Ding H 2019 arXiv: 1907.06491
- [250] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J Q, Kaminski A 2019 arXiv: 1907.09596
- [251] Hu C, Zhou X, Liu P, Liu J, Hao P, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Cao H, Liu Q, Dessau D, Ni N 2019 arXiv: 1905.02154
- [252] Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Bohorquez L T C, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, van den Brink J, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 arXiv: 1906.08394

SPECIAL TOPIC—The frontiers and applications of topological physics

Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators^{*}

Liu Chang $^{1)2)\dagger}$ Liu Xiang-Rui $^{2)}$

1) (Shenzhen Institute for Quantum Science and Engineering (SIQSE),

Southern University of Science and Technology, Shenzhen 518055, China)

2) (Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China)
 (Received 23 September 2019; revised manuscript received 13 November 2019)

Abstract

The discovery of topological materials – condensed matter systems that have nontrivial topological invariants – marked the commencement of a new era in condensed matter physics and materials science. Three dimensional topological insulators (3D TIs) are one of the first discovered and the most studied among all topological materials. The bulk material of the TIs have the characteristics of the insulator, having a complete energy gap. Their surface electronic states, on the other hand, have the characteristics of a conductor, with energy band passes continuously through the Fermi surface. The conductivity of this topological surface state (TSS) is protected by the time reversal symmetry of the bulk material. The TSS is highly spin-polarized and form a special spin-helical configuration that allows electrons with specific spin to migrate only in a specific direction on the surface. By this means, surface electrons in TIs can "bypass" the influence of local impurities, achieving a lossless transmission of spin-polarized current. The existence of TIs directly leads to a variety of novel transport, magnetic, electrical, and optical phenomena, such as non-local quantum transport, quantum spin Hall effect, etc., promising wide application prospects. Recently, several research groups have searched all 230 non-magnetic crystal space groups, exhausting all the found or undiscovered strong/weak TIs, topological crystalline insulators (TCI), and topological semimetals. This series of work marks that theoretical understanding of non-magnetic topological materials has gone through a period of one-by-one prediction and verification, and entered the stage of the large-area material screening and optimization.

Parallel to non-magnetic TIs, magnetic topological materials constructed by ferromagnetic or antiferromagnetic long range orders in topological systems have always been an important direction attracting theoretical and experimental efforts. In magnetic TIs, the lack of time reversal symmetry brings about new physical phenomena. For example, when a ferromagnetic order is introduced into a three-dimensional TI, the Dirac TSS that originally intersected at one point will open a magnetic gap. When the Fermi surface is placed just in the gap, the quantum anomalous Hall effect can be implemented. At present, the research on magnetic topology systems is still in the ascendant. It is foreseeable that these systems will be the main focus and breakthrough point of topology material research in the next few years.

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11674149, 11504159), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313650), the Foundation of Guangdong "Pearl River Talent Plan" to Introduce Innovation and Entrepreneurship Team, China (Grant No. 2016ZT06D348), the Shenzhen Overseas High-level Talents Peacock Team (Grant No. KQTD2016022619565991), the Project of Shenzhen Key Laboratory (Grant No. ZDSYS20170303165926217), and the Project of Shenzhen Science and Technology Innovation Committee (Grant Nos. JCYJ20150630145302240, KYTDPT20181011104202253).

[†] Corresponding author. E-mail: liuc@sustech.edu.cn

Angle-resolved photoemission spectroscopy (ARPES) is one of the most successful experimental methods of solid state physics. Its unique k-space-resolved single-electron detection capability and simple and easy-to-read data format make it a popular choice for both theoretists and experimentalists. In the field of topological materials, ARPES has always been an important experimental technique. It is able to directly observe the bulk and surface band structure of crystalline materials, and in a very intuitive way. With ARPES, it is incontrovertible to conclude whether a material is topological, and which type of topological material it belongs to.

This paper reviews the progress of ARPES research on TIs since 2008, focusing on the experimental energy band characteristics of each series of TIs and the general method of using ARPES to study this series of materials. Due to space limitations, this paper only discusses the research progress of ARPES for strong 3D TIs (focusing on the Bi_2Se_3 series) and magnetic TIs (focusing on the $MnBi_2Te_4$ series). Researches involving TCIs, topological Kondo insulators, weak 3D TIs, topological superconductors and heterostructures based on topological insulators will not be discussed. This paper assumes that the reader has the basic knowledge of ARPES, so the basic principles and system components of ARPES are not discussed.

Keywords: Topological Insulator, Magnetic Topological Insulator, Angle-resolved Photoemission Spectroscopy, Energy Bands

PACS: 79.60.-i, 74.25.Jb, 71.18.+y, 73.20.At

DOI: 10.7498/aps.68.20191450