物理学报 Acta Physica Sinica

线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响
杨晨 左冠华 田壮壮 张玉驰 张天才
Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure
Yang Chen Zuo Guan-Hua Tian Zhuang-Zhuang Zhang Yu-Chi Zhang Tian-Cai
引用信息 Citation: Acta Physica Sinica, 68, 090701 (2019) DOI: 10.7498/aps.68.20190030
在线阅读 View online: https://doi.org/10.7498/aps.68.20190030

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

共振线极化光实现原子矢量磁力仪的理论研究

Theory of atomic vector magnetometer using linearly polarized resonant light 物理学报. 2018, 67(6): 060701 https://doi.org/10.7498/aps.67.20172108

抽运-检测型非线性磁光旋转铷原子磁力仪的研究

Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation 物理学报. 2017, 66(16): 160701 https://doi.org/10.7498/aps.66.160701

基于金刚石色心自旋磁共振效应的微位移测量方法

A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center 物理学报. 2018, 67(4): 047601 https://doi.org/10.7498/aps.67.20171914

极化检测型铷原子磁力仪的研究

Research on an pump-probe rubidium magnetometer 物理学报. 2016, 65(21): 210702 https://doi.org/10.7498/aps.65.210702

磁性硅烯超晶格中电场调制的谷极化和自旋极化

Valley and spin polarization manipulated by electric field in magnetic silicene superlattice 物理学报. 2018, 67(8): 086801 https://doi.org/10.7498/aps.67.20180080

一种可用于极化3He实验的新型磁场系统

A new magnetic field system for 3He polarization 物理学报. 2018, 67(17): 176701 https://doi.org/10.7498/aps.67.20180571

线极化 Bell-Bloom 测磁系统中抽运光对 磁场灵敏度的影响^{*}

杨晨1) 左冠华1) 田壮壮1) 张玉驰2)† 张天才1)‡

(山西大学光电研究所,量子光学与光量子器件国家重点实验室,极端光学协同创新中心,太原 030006)
 2)(山西大学物理电子工程学院,太原 030006)

(2019年1月6日收到; 2019年2月25日收到修改稿)

利用适用于线极化 Bell-Bloom 测磁系统的布洛赫方程和含有自旋弛豫的速率方程, 以铯原子为研究对 象, 分析了抽运光对磁场灵敏度的影响, 并在实验上分别采用与铯原子 D₁ 线和 D₂ 线共振的线偏光作为抽运 光和探测光, 用充有缓冲气体的气室进行了实验. 实验结果与理论分析一致, 均表明只有在一定的光强范围 内, 增大抽运光光强可以提高磁场灵敏度. 且利用这一方法分析了原子的自旋弛豫对磁场灵敏度的影响. 这 项研究对于深入认识线极化的 Bell-Bloom 测磁系统, 以及如何通过优化系统实现磁场灵敏度的提高具有重 要的意义.

关键词: 磁场测量, 磁共振, 自旋弛豫, 原子极化 **PACS**: 07.55.Ge, 78.20.Ls, 76.70.Hb, 76.60.Es

1 引 言

磁场精密测量在矿产勘探、医学探测和精密测量物理等方面具有广泛的应用^[1].近几年来,随着人们对光与原子相互作用的进一步认识,国内外已经开展了大量利用原子自旋系统对磁场测量的研究.目前,国际上灵敏度最高的磁强计是利用原子的无自旋交换弛豫 (spin-exchange relaxation free, SERF)过程^[2] 实现的,即 SERF 态,其灵敏度可以达到 0.16 fT/√Hz^[3],但将原子制备到 SERF 态需要满足特定的条件,而且其只能测量近零磁场,在实际应用中受到很大的限制.

Bell 和 Bloom^[4,5] 在 20 世纪 60 年代就提出, 利用振幅调制的光场与磁场中的原子相互作用, 当 **DOI:** 10.7498/aps.68.20190030

调制频率ω_m等于原子极化在磁场中的进动频率时, 即可实现磁共振. 抽运光为圆偏光时, 原子极化的 进动频率等于拉莫尔进动频率ω_L^[5-7]; 当抽运光为 线偏光时, 原子极化的进动频率为拉莫尔进动频率 的两倍^[4,8–10]. 利用原子的磁共振现象, 可以实现 对非零磁场的测量. 当抽运光为线偏光时, 磁场灵 敏度δ*B*可表示为^[11]

$$\delta B = \frac{1}{\gamma} \cdot \frac{\Delta \omega}{SNR},\tag{1}$$

其中 γ 为旋磁比,对于铯原子 $\gamma = 2\pi \times 3.5 \text{ GHz/T};$ $\Delta \omega$ 为磁共振线宽,即磁共振谱线的半高半宽; SNR 为磁共振 ($\omega_m = 2\omega_L$)时的信噪比.

Bell-Bloom 结构的测磁系统^[11-15] 目前已可以 实现对 μT 量级^[16],以至地磁环境下^[17]的磁场测 量,可得到的最高的磁场灵敏度为 70 fT/√Hz^[16],

- † 通信作者. E-mail: yczhang@sxu.edu.cn
- ‡ 通信作者. E-mail: tczhang@sxu.edu.cn

© 2019 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划 (批准号: 2017YFA0304502) 和国家自然科学基金 (批准号: 11634008, 11674203, 11574187, 61227902) 资助的课题.

是一种重要的测量磁场的方法.

由 (1) 式确定的磁场灵敏度取决于磁共振线 宽和磁共振时的信噪比. 2004 年, Julsgaard 等^[18] 指出磁共振线宽不仅取决于原子自旋弛豫率的大 小, 还与抽运光有关. 在一定的噪声环境下, 磁共 振时的信噪比取决于原子的极化程度, 即原子在基 态各个磁子能级布居数的差异. 早在 1987 年, Avila 等^[19] 就用含有光抽运过程和自发辐射的速 率方程分析了不同抽运频率和偏振对原子基态布 居数的影响.

原子极化在磁场中进动时,光抽运过程和原子 自旋弛豫对原子极化的影响可用布洛赫方程^[20,21] 描述.因此,若在速率方程中引入原子的自旋弛豫, 结合布洛赫方程,即可深入分析抽运光对磁场灵敏 度的影响.

本文以刘维尔方程^[15,22,23]为基础,建立含有原 子自旋弛豫的速率方程.将速率方程与线极化时原 子的布洛赫方程相结合,以铯原子为研究对象,对 线偏振的抽运光的频率分别对应直接抽运 (D₁线 $6^{2}S_{1/2} F = 4 - 6^{2}P_{1/2} F' = 3$)与间接抽运 (D₁线 $6^{2}S_{1/2} F = 3 - 6^{2}P_{1/2} F' = 4$)时,抽运光光强对磁 场灵敏度的影响进行了分析.与此同时,利用与 D₂线共振的线偏光作为探测光,以充有缓冲气体 的铯原子气室为实验对象,通过在不同抽运频率下 改变抽运光的光强,对磁场灵敏度进行测量.实验 结果与理论分析一致.

本文首先介绍了 Bell-Bloom 结构测量磁场的 基本原理,并建立含自旋弛豫的速率方程;然后, 介绍了实验装置及实验结果;最后,对结果进行了 分析和讨论.

2 理论分析

2.1 Bell-Bloom 测磁系统的原理

图 1 为线极化的 Bell-Bloom 测磁系统基本原 理图. 抽运光振幅调制的频率为ω_m,偏振沿 z 轴方 向,使原子在无磁场时的极化方向为 z. 磁场 B 沿 x 轴方向,使得原子在 yoz 平面内进动. 探测光的 偏振方向为 y,可以实现对原子极化沿着 y 轴方向 的探测. 若原子的自旋弛豫率为r₀,光场的调制频 率为ω_m,且光强在 0—2I₀ 变化,当探测光很弱时 (远低于其饱和光强)其抽运效应可以忽略,在旋转 坐标系下,原子极化 P 在磁场中随时间 t 演化的 布洛赫方程^[24]应表示为

$$\frac{\mathrm{d}\tilde{P}}{\mathrm{d}t} = \mathrm{i}\left(\omega_{\mathrm{m}} - 2\omega_{\mathrm{L}}\right)\tilde{P} - \left(R_{0} + r_{0}\right)\tilde{P} + \frac{R_{0}P_{0}}{2},\quad(2)$$

式中 $\tilde{P} = Pe^{i\omega_m t} = \tilde{P}_y + i\tilde{P}_z$ 表示旋转坐标系下的原 子极化; P_0 表示没有磁场和光场调制时原子的极 化; $\omega_L = \gamma B$ 即为原子的拉莫尔进动频率; R_0 为光 强 I_0 对应的抽运速率,与抽运光光强 I_0 成正比,

$$R_0 = \alpha I_0, \tag{3}$$

其中 α 为抽运速率与光强的比值. 当抽运光频率 ω 固定时, α 为定值. 当抽运光频率与原子共振时 (即如图 2(a) 中所示, $\omega = \omega_0$ 时), α 有最大值.

图 1 线极化的 Bell-Bloom 测磁系统基本原理图 Fig. 1. Bell-Bloom configuration with linearly polarized pump beam.

由图 1 可以看出, 当探测光为偏振沿 y 轴方向的线偏光时, 则可探测原子极化沿着 y 轴方向的分量 P_y . 若抽运光光强 I_0 为定值, 用锁相探测的办法, 对调制频率不同时 P_y 的同相信号 P_y (in)进行 探测, 即可得到磁共振谱线:

$$P_y(in) = \frac{R_0 P_0}{2} \cdot \frac{R_0 + r_0}{\left(R_0 + r_0\right)^2 + \left(\omega_{\rm m} - 2\omega_{\rm L}\right)^2}.$$
 (4)

由 (4) 式可知, 磁共振谱线具有洛伦兹线型, 其半高半宽即为原子的磁共振线宽:

$$\Delta \omega = R_0 + r_0 = \alpha I_0 + r_0. \tag{5}$$

磁共振 $(\omega_m = 2\omega_L)$ 时, (4) 式的信号有最大值:

$$P_y^{\max} = \frac{R_0 P_0}{2} \cdot \frac{1}{\Delta \omega}.$$
 (6)

由 (6) 式可知, 若固定探测光的光强, 则探测信号 在磁共振时的 *SNR* 与原子极化 P_0 成正比. 以铯原 子为例, 若探测光与基态 $6^2S_{1/2}F = 4$ 的原子共振, 则 P_0 取决于该基态各个磁子能级的粒子数分布.

2.2 含自旋弛豫的速率方程

抽运光与原子相互作用,导致原子在基态各个

磁子能级上分布不均匀,由此可以实现原子的极化.这一过程可以用速率方程^[25]来描述.

如图 2(a) 所示, 铯原子 D₁ 线基态与激发态之 间的拉比振荡频率为 $\Omega_{\rm R}$, $|a\rangle$ 和 $|c\rangle$ 表示基态的两个 磁子能级, $|b\rangle$ 为激发态的一个磁子能级. 抽运光与 原子共振, 频率为 ω_0 , 即 $|a\rangle$ 与 $|b\rangle$ 之间的频率差. 在 抽运光的作用下, 原子由 $|a\rangle$ 跃迁至 $|b\rangle$. 若 $|b\rangle$ 的自发 辐射率为 Γ_0 , $|a\rangle$ 与 $|b\rangle$ 之间的偶极矩阵元为 η , $|c\rangle$ 与 $|b\rangle$ 之间的偶极矩阵元为 θ , 则原子由 $|b\rangle$ 自发辐射至 $|a\rangle$ 和 $|c\rangle$ 的速率分别为 $\eta^2\Gamma_0$ 和 $\theta^2\Gamma_0$.

原子密度矩阵 ρ៌随时间 t 的演化可以用刘维尔 方程^[23] 描述:

$$i\hbar \frac{d}{dt}\hat{\rho} = \left[\hat{H},\hat{\rho}\right] - i\hbar \left(\hat{\Gamma}\hat{\rho} + \hat{\rho}\hat{\Gamma}\right) + i\hbar\hat{\Lambda}.$$
 (7)

(7)式右侧第一项表示光与原子之间的相互作用,第二项和第三项分别表示由于|b>的自发辐射和基态的自旋弛豫引起的各个磁子能级布局数的减小和增加.其中

$$\hat{H} = \hbar\omega_{0} |b\rangle \langle b| + \hbar (\eta \Omega_{\mathsf{R}}) \cos (\omega_{0} t) (|a\rangle \langle b| + |b\rangle \langle a|),$$
(8a)

$$\hat{\Gamma} = r_0 |a\rangle \langle a| + \Gamma_0 |b\rangle \langle b| + r_0 |c\rangle \langle c|, \qquad (8b)$$

$$\hat{A} = \left(\eta^{2} \Gamma_{0} \rho_{bb} + r_{0}/n\right) |a\rangle \langle a| + \left(\theta^{2} \Gamma_{0} \rho_{bb} + r_{0}/n\right) |c\rangle \langle c|,$$
(8c)

其中 \hbar 为约化普朗克常数; n为基态磁子能级的总数, 对于铯原子n = 16.

没有抽运光时 (t = 0 时刻), 原子均匀地分布 在基态各个磁子能级, 此时, 假设原子在基态总的 布居数为 1, 则 t = 0 时刻原子在基态每个磁子能 级的布居数 $N_0 = 1/n$, 对于铯原子 $N_0 = 0.0625$. 当 线偏振的抽运光与铯原子相互作用时 (图 2(b)), 在旋波近似下由 (7) 式可以得出各个磁子能级的 布居数随时间 *t* 变化的速率方程^[25]:

$$\frac{dN_{F_{g}}^{m_{g}}}{dt} = -\frac{\beta I_{0}}{r_{0} + \Gamma_{0}} \left(\varepsilon_{F_{g},m_{g}}^{F_{e},m_{e}=m_{g}}\right)^{2} \left(N_{F_{g}}^{m_{g}} - N_{F_{e}}^{m_{e}=m_{g}}\right) + \Gamma_{0} \sum_{m_{e}=m_{g}-1}^{m_{e}=m_{g}+1} \left(\varepsilon_{F_{g},m_{g}}^{F_{e},m_{e}}\right)^{2} N_{F_{e}}^{m_{e}} + r_{0} \left(N_{0} - N_{F_{g}}^{m_{g}}\right),$$
(9a)

$$\frac{\mathrm{d}N_{F_{\mathrm{e}}}^{m_{\mathrm{e}}}}{\mathrm{d}t} = \frac{\beta I_0}{r_0 + \Gamma_0} \left(\varepsilon_{F_{\mathrm{g}},m_{\mathrm{g}}}^{F_{\mathrm{e}},m_{\mathrm{e}}=m_{\mathrm{g}}}\right)^2 \left(N_{F_{\mathrm{g}}}^{m_{\mathrm{g}}} - N_{F_{\mathrm{e}}}^{m_{\mathrm{e}}=m_{\mathrm{g}}}\right) - \Gamma_0 N_{F_{\mathrm{e}}}^{m_{\mathrm{e}}},\tag{9b}$$

$$\frac{\mathrm{d}N_{F_{\mathrm{g}}'}^{\prime m_{\mathrm{g}}'}}{\mathrm{d}t} = \Gamma_0 \sum_{m_{\mathrm{e}}=m_{\mathrm{g}}'=1}^{m_{\mathrm{e}}=m_{\mathrm{g}}'+1} \left(\varepsilon_{F_{\mathrm{g}}',m_{\mathrm{g}}'}^{F_{\mathrm{e}},m_{\mathrm{e}}}\right)^2 N_{F_{\mathrm{e}}}^{m_{\mathrm{e}}} + r_0 \left(N_0 - N_{F_{\mathrm{g}}'}^{\prime m_{\mathrm{g}}'}\right), \qquad (9c)$$

其中 $\beta = \Omega_{\rm R}^2/I_0$; $N_{F_g}^{m_g}$, $N_{F_e}^{m_e}$ 和 $N_{F'_g}^{'m'_g}$ 分别表示参 与抽运的基态磁子能级 $|F_g, m_g\rangle$, 激发态磁子能 级 $|F_e, m_e\rangle$ 和不参与抽运的基态磁子能级 $|F'_g, m'_g\rangle$ 的布居数; $\varepsilon_{F_g,m_g}^{F_e,m_e}$ 和 $\varepsilon_{F'_g,m'_g}^{F_e,m_e}$ 分别表示 $|F_g, m_g\rangle$ 与 $|F_e, m_e\rangle$ 以及 $|F'_g, m'_g\rangle$ 与 $|F_e, m_e\rangle$ 之间的偶极矩阵 元, F_g , F_e 和 F'_g 表示各个能级的总角动量量子数, m_g, m_e 和 m'_g 表示各个能级的磁量子数.

利用 (9a)—(9c) 式,可以得出直接抽运 (对应 $6^{2}S_{1/2} F = 4 - 6^{2}P_{1/2} F' = 3$ 的跃迁)及间接抽运 (对应 $6^{2}S_{1/2} F = 3 - 6^{2}P_{1/2} F' = 4$ 的跃迁)时,各

图 2 抽运光与铯原子相互作用 (a) 光与铯原子相互作用; (b) 线偏振的抽运光与铯原子相互作用

Fig. 2. Interaction between pump light and cesium atoms: (a) Light-atom interaction; (b) interaction between linearly polarized pump light and cesium atoms.

个基态磁子能级布居数随时间 t 的变化,在特定参数下的数值计算结果见图 3,其中 $\beta = (2\pi)^2 \times 7 \times 10^9 (\text{Hz})^2 \times \text{m}^2/\text{W}$, $\Gamma_0 = 2\pi \times 4.5 \text{ MHz}$, $r_0 = 2\pi \times 60 \text{ Hz}$. 当 $I_0 = 0.5 \text{ W/m}^2$ 时,直接抽运的情况如图 3(a)所示,原子在 $6^2\text{S}_{1/2} F = 3$ 各个磁子能级的布居数之和为 0.59;在基态 $6^2\text{S}_{1/2} F = 4$ 的磁子能级的布居数之和为 0.59;在基态 $6^2\text{S}_{1/2} F = 4$ 的磁子能级的布居数之和为 0.21,占到原子该基态总布居数的 51%.当 $I_0 = 10 \text{ W/m}^2$ 时,间接抽运的情况如图 3(b)所示,最终原子在 $6^2\text{S}_{1/2} F = 3$ 各个磁子能级的布居数之和为 0.015,原子在 $6^2\text{S}_{1/2} F = 4$ 各个磁子能级上布居数分别为 0.069 ($m_F = \pm 1$), 0.097 ($m_F = \pm 3$), 0.120 ($m_F = \pm 2$), 0.136 ($m_F = \pm 1$)和 0.141 ($m_F = 0$).

若用基态 $6^2S_{1/2} F = 4$ 两个磁子能级 $m_F = 4$ 与 $m_F = 0$ 之间的粒子数差 ΔN 表示原子的极化 P_0 , 由 (6) 式可知, 磁共振时的信号幅值为

$$P_y^{\max} = \frac{\alpha I_0}{2\left(\alpha I_0 + r_0\right)} \Delta N. \tag{10}$$

若探测光的光强保持不变,利用 (1) 式,可定 义与δ*B*呈正相关的约化磁场灵敏度:

$$\delta B_0 = \frac{\Delta \omega}{P_y^{\text{max}}}.$$
(11)

直接抽运与间接抽运时,磁共振时的信号幅值 P^{max}与约化磁场灵敏度δB₀随抽运光光强I₀的变 化趋势如图4所示.从图4可以看出,直接抽运 (图4(a))与间接抽运(图4(b))时,约化磁场灵敏 度随抽运光光强的变化均呈先减小后增大的趋势.

3 实验系统与结果

在实验上搭建了抽运光和探测光均为线偏光 的原子测磁系统,如图 5 所示.

实验系统包括如下四个部分. 第一, 原子气室 部分:所用的铯原子气室为 20 mm × 20 mm × 20 mm 的立方形气室, 并在气室中充入约 20 Torr (1 Torr ≈ 133.322 Pa)的氦气作为缓冲气体. 待 测磁场沿着 x轴方向,由一对亥姆霍兹线圈 (HC)产生.上述装置全部置于磁屏蔽筒 (magnetic shield)中. 第二, 激光系统部分: 抽运光和探测光 的偏振分别沿着 z轴方向和 y轴方向. 抽运光的频

图 3 铯原子基态 $6^2S_{1/2} F = 4 \pi 6^2S_{1/2} F = 3$ 各个磁子能级的布居数随时间的演化 (a) $I_0 = 0.5 \text{ W/m}^2$ 时,直接抽运的情况; (b) $I_0 = 10 \text{ W/m}^2$ 时,间接抽运的情况

Fig. 3. Evolution of the populations in each Zeeman sublevels with time of cesium atoms's ground state $6^2 S_{1/2} F = 4$ and $6^2 S_{1/2} F = 3$: (a) Results of direct pump with the pump intensity $I_0 = 0.5 \text{ W/m}^2$; (b) results of indirect pump with the pump intensity $I_0 = 10 \text{ W/m}^2$.

图 4 磁共振时,信号幅度 P_y^{max} 与约化磁场灵敏度 δB_0 随抽运光光强 I_0 的变化 (a) 直接抽运, $\alpha = 2\pi \times 103 \text{ Hz} \times \text{m}^2/\text{W}$; (b) 间接抽运, $\alpha = 2\pi \times 1 \text{ Hz} \times \text{m}^2/\text{W}$

Fig. 4. Signal amplitude P_y^{max} and relative sensitivity δB_0 change along with the pump intensity I_0 under the condition of magnetic resonance: (a) Direct pump with $\alpha = 2\pi \times 103 \text{ Hz} \times \text{m}^2/\text{W}$; (b) indirect pump with $\alpha = 2\pi \times 1 \text{ Hz} \times \text{m}^2/\text{W}$.

图 5 实验装置图 (SAS, 饱和吸收谱; VNDF, 连续可变衰减片; HWP, 半波片; PBS, 偏振分束器; HR, 高反镜; GTP, 格兰泰勒 棱镜; WP, 渥拉斯顿棱镜; EO-AM, 电光振幅调制器; BPD, 平衡探测器; LIA, 锁相放大器; AC, 交流电源; DC, 直流电源; HC, 亥 姆霍兹线圈; OSC, 示波器; SA, 频谱分析仪; P, 光的偏振方向)

Fig. 5. Experimental setup. SAS, saturated absorption spectrum; VNDF, variable neutral density filter; HWP, half wave plate; PBS, polarization beam splitter; HR, high reflectivity mirror; GTP, Glan-Tylor prism; WP, Wollaston prism; EO-AM, electro-optical amplitude modulator; BPD, balanced photodetector; LIA, lock-in amplifier; AC, alternating current power supply; DC, direct current power supply; HC, Helmholtz coils; OSC, oscilloscope; SA, spectrum analyzer; P, direction of light polarization.

率锁定在铯原子 D₁线,并用一个连续可变衰减 (VNDF)调节光强. 探测光频率锁定在铯原子 D₂线 $6^{2}S_{1/2} F = 4 - 6^{2}P_{3/2} F' = 5$ 的跃迁线,光强 为 0.2 W/m² (约为饱和光强的 1%). 第三,探测部 分: 探测光经过气室后, 经渥拉斯顿棱镜 (WP)分 束,用平衡探测器 (BPD)^[26] 对其偏振变化进行探 测.将探测到的偏振信号作为锁相放大器 (LIA,型 号 SRS SR830)的信号输入 (Sig in) 进行处理, 或 直接用频谱分析仪 (SA, 型号 SRS SR770) 对信噪 比进行测量. 第四, 信号处理与测量部分: 交流信 号源 (AC, 型号 SRS DS345) 的频率为ω_m, 将其作 为锁相放大器的参考输入 (Ref in), 同时将锁相放 大器的参考输出 (Ref out) 用于驱动抽运光光路中 的电光振幅调制器 (EO-AM, 型号 Thorlabs EO- AM-NR-C1). 当交流信号源的频率在磁共振频率 $(2\omega_L)$ 附近扫描时, 锁相放大器的信号输出 (Sig out) 即为磁共振谱线. 当交流信号源的频率固定在 磁共振频率时, 用频谱分析仪对共振频率处的信噪 比进行测量, 结合 (1) 式, 即可得出磁场灵敏度 δB .

固定抽运光的光强 I_0 ,直接抽运和间接抽运得 到的磁共振谱线如图 6 所示.磁共振谱线符合洛伦 兹线型,通过洛伦兹拟合可以确定半高半宽,即磁 共振线宽 $\Delta \omega$.扫描抽运光的振幅调制频率 ω_m ,对 锁相放大器的同相输出信号进行测量可以得到磁 共振谱线.谱线可以用 (4)式给定的洛伦兹线型进 行拟合,图中的实线为实验数据,虚线为拟合曲线. 拟合曲线的中心对应磁共振频率 $2\omega_L$,可知此时磁

图 6 直接抽运与间接抽运的磁共振谱线

Fig. 6. Spectra of magnetic resonance with direct pump and indirect pump.

场大小约为 3.4μ T. 图中绿色实线与黑色虚线是直 接抽运且抽运光光强为 0.4 W/m^2 时的结果, 拟合 出的磁共振线宽为 $2\pi \times (113.5 \pm 0.1)$ Hz. 图中红 色实线与蓝色虚线是间接抽运且抽运光光强为 1.0 W/m^2 时的结果, 拟合出的磁共振线宽为 $2\pi \times (72.94 \pm 0.22)$ Hz.

在不同光功率下对磁共振谱线进行测量,可以 得到磁共振线宽 $\Delta\omega$ 随抽运光光强 I_0 的变化,结果 如图 7 所示,图中的蓝色圆点均为实验数据点,数 据点和误差棒均为五次测量结果,红色实线为利 用 (5)式拟合的结果.由图 7 可知,间接抽运时的 α 远小于直接抽运的结果,这是由于间接抽运时,抽 运光相对于基态 $6^2S_{1/2}$ F = 4 为远失谐.

图 8 为磁共振时, 信噪比 SNR 及磁场灵敏度 δB 随抽运光光强 I₀的变化, 图中的数据点和误差 棒来自五次测量的结果. 图 8(a) 为直接抽运的结 果, 可达到的最高的磁场灵敏度为 59.1 pT/√Hz; 图 8(b) 为间接抽运的结果, 可达到的最高的磁场 灵敏度为 31.7 pT/√Hz. 与图 4 的结果类似, 在直 接抽运与间接抽运时, 随着抽运光光强的增大, 磁 场灵敏度均呈先减小后增大的趋势. 由此可见, 只 有在一定的光强范围内, 增大抽运光光强可以提高 磁场灵敏度. 结合图 7 和图 8 可知, 间接抽运时, α 值较小, 且改变抽运光光强, 可达到的信噪比远大 于直接抽运的结果, 因此间接抽运可以得到更高的 磁场灵敏度.

图 7 磁共振线宽 $\Delta \omega$ 随抽运光光强 I_0 的变化 (a) 直接抽运, $\alpha = 2\pi \times (103.2 \pm 14.3)$ Hz × m²/W; (b) 间接抽运, $\alpha = 2\pi \times (0.6907 \pm 0.1318)$ Hz × m²/W

Fig. 7. Variation of magnetic resonance linewidth $\Delta \omega$ with pump intensity I_0 : (a) Direct pump, $\alpha = 2\pi \times (103.2 \pm 14.3) \text{ Hz} \times \text{m}^2 \text{W}$; (b) indirect pump, $\alpha = 2\pi \times (0.6907 \pm 0.1318) \text{ Hz} \times \text{m}^2 / \text{W}$.

图 8 磁共振时, 信噪比 SNR 与磁场灵敏度 δB 随抽运光光强 I_0 的变化 (a) 直接抽运; (b) 间接抽运 Fig. 8. Variation of SNR and sensitivity δB with the pump intensity I_0 under the condition of magnetic resonance: (a) Direct pump; (b) indirect pump.

4 分析与讨论

以上实验结果说明,由理论分析得出的磁场灵 敏度的变化趋势与实验结果基本一致.因此,可以 利用相同的办法,对自旋弛豫率r₀不同时,磁场灵 敏度随抽运光光强的变化进行系统的分析.

图 9 为抽运光频率对应间接抽运,且自旋弛豫 率r₀不同时,约化磁场灵敏度δB₀((11)式)随抽运 光光强 I₀的变化,图中参数除r₀以外,均与图 4 相 同.由图 9 可知,随着自旋弛豫率的增大,系统达 到最高的磁场灵敏度需要更大的抽运光光强.当抽 运光光强固定时,随着自旋弛豫率的增大,磁场灵 敏度降低.由此可见,可以在不减弱抽运光与原子 之间的相互作用(即不减小α和β)的情况下,通过

图 9 在自旋弛豫率 r_0 不同时,间接抽运的约化磁场灵敏 度 δB_0 随抽运光光强 I_0 的变化

Fig. 9. sensitivity δB_0 and pump intensity I_0 with indirect pump under the condition of different relaxation rate r_0 .

在气室内壁镀抗弛豫膜^[27-29],或增大磁场的均匀 区^[30,31]等手段来减小自旋弛豫率,以提高磁场灵 敏度.

5 总 结

本文利用磁场中原子的布洛赫方程及含有 自旋弛豫的速率方程,以铯原子为例,分析了当 线偏振的抽运光分别为直接抽运 (对应 D₁线 $6^{2}S_{1/2}F = 4-6^{2}P_{1/2}F' = 3$ 的跃迁)和间接抽运 (对应 D_1 线 $6^2S_{1/2}F = 3-6^2P_{1/2}F' = 4$ 的跃迁) 时的磁共振线宽、磁共振时的信噪比及磁场灵 敏度随抽运光光强的变化. 将与铯原子 D₂线 $6^2S_{1/2} F = 4 - 6^2P_{3/2} F' = 5$ 的跃迁共振且光强远 小于铯原子饱和光强的线偏光作为探测光,利用充 有 20 Torr 氦气作为缓冲气体的铯原子气室进行 实验,得到的实验结果与理论分析一致.本文还利 用相同的理论分析了原子的自旋弛豫对磁场灵敏 度的影响. 这项研究对于我们进一步的认识线极 化 Bell-Bloom 测磁系统中的动力学过程具有重要 的意义,并为通过优化原子气室参数[32],或结合使 用弱测量[33,34]及非破坏性测量[35,36]等手段进一步 提高磁场灵敏度提供了可能.

参考文献

- [1] Budker D, Romalis M V 2007 Nat. Phys. 3 227
- [2] Allred J C, Lyman R N, Kornack T W, Romalis M V 2002

Phys. Rev. Lett. 89 130801

- [3] Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110
- [4] Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 623
- [5] Bell W E, Bloom A L 1961 *Phys. Rev. Lett.* **6** 280
- [6] Wang M L, Wang M B, Zhang G Y, Zhao K F 2016 Chin. Phys. B 25 060701
- [7] Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J, Prouty M 2012 J. Opt. Soc. Am. B 29 3398
- [8] Grujić Z D, Weis A 2013 Phys. Rev. A 88 012508
- [9] Mateos I, Patton B, Zhivun E, Budker D, Wurm D, Ramos-Castro J 2015 Sensors and Actuators A: Physical 224 147
- [10] Liu G, Li X, Sun X, Feng J, Ye C, Zhou X 2013 J. Magn. Reson. 237 158
- [11] Pustelny S, Wojciechowski A, Gring M, Kotyrba M, Zachorowski J, Gawlik W 2008 J. Appl. Phys. 103 063108
- [12] Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501
- [13] Dong H F, Hao H J, Huang H C, Hu X Y, Zhou B Q 2014
 Chin. J. Sci. Instrum. 35 2783 (in Chinese) [董海峰, 郝慧杰, 黄海超, 胡旭阳, 周斌权 2014 仪器仪表学报 35 2783]
- [14] Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503
- [15] Wang M B, Zhao D F, Zhang G Y, Zhao K F 2017 Chin. Phys. B 26 100701
- [16] Lucivero V G, Anielski P, Gawlik W, Mitchell M W 2014 Rev. Sci. Instrum. 85 113108
- [17] Li W H, Peng X, Li S J, Liu C F, Guo H 2016 IEEE International Frequency Control Symposium (IFCS) New Orleans, USA, May 9–12, 2016 p1
- [18] Julsgaard B, Sherson J, Sørensen J L, Polzik E S 2004 J. Opt. B 6 5
- [19] Avila G, Giordano V, Candelier V, de Clercq E, Theobald G, Cerez P 1987 Phys. Rev. A 36 3719
- [20] Zhang J H, Xiang K, Mei H S, Zhao W H, Huang Z J, Sun W M 2015 J. Optoelectron. Laser 26 211 (in Chinese) [张军海,

向康,梅红松,赵文辉,黄宗军,孙伟民 2015 光电子•激光 26 211]

- [21] Ledbetter M P, Savukov I M, Acosta V M, Budker D, Romalis M V 2008 Phys. Rev. A 77 033408
- [22] Yang G Q, Zhang H B, Geng X X, Liang S Q, Zhu Y F, Mao J T, Huang G M, Li G X 2018 *Opt. Express* 26 30313
- [23] Rochester S M 2010 Ph. D. Dissertation (Berkeley: University of California
- [24] Bloch F 1946 Phys. Rev. 70 460
- [25] Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E, Hughes I G 2006 Phys. Rev. A 73 062509
- [26] Xue J, Qin J L, Zhang Y C, Li G, Zhang P F, Zhang T C, Peng K C 2016 Acta Phys. Sin. 65 044211 (in Chinese) [薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀 2016 物理学报 65 044211]
- [27] Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H, Weis A 2009 Appl. Phys. B 96 763
- [28] Li W H, Balabas M, Peng X, Pustelny S, Wickenbrock A, Guo H, Budker D 2017 J. Appl. Phys. 121 063104
- [29] Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V, Yashchuk V V 2005 Phys. Rev. A 72 023401
- [30] Cates G D, Schaefer S R, Happer W 1988 Phys. Rev. A 37 2877
- [31] Hasson K C, Cates G D, Lerman K, Bogorad P, Happer W 1990 Phys. Rev. A 41 3672
- [32] Seltzer S J, Romalis M V 2009 J. Appl. Phys. 106 114905
- [33] Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307
- [34] Huang J 2016 J. Quantum Opt. 22 121 (in Chinese) [黃江 2016 量子光学学报 22 121]
- [35] Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E, Sushkov A O, Yashchuk V V 2004 *Phys. Rev. Lett.* 93 173002
- [36] Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 093602

Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure^{*}

Yang Chen ¹⁾ Zuo Guan-Hua ¹⁾ Tian Zhuang-Zhuang ¹⁾ Zhang Yu-Chi ^{2)†} Zhang Tian-Cai ^{1)‡}

1) (State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics,

Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China)

2) (College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China)

(Received 6 January 2019; revised manuscript received 25 February 2019)

Abstract

Magnetometry has already been widely used in mineral exploration, medical exploration and precision measurement physics. One is trying to improve the sensitivity of the magnetometer. One of the most widely used magnetometers is based on the Bell-Bloom structure, which can be realized by modulating the pump light. The sensitivity of the Bell-Bloom magnetometer is determined by the magnetic resonance linewidth (MRL) and the signal-to-noise under the condition of magnetic resonance (SNR). Both are affected by the pump intensity and the relaxation rate of the atoms. In order to achieve a higher sensitivity, how these factors affect the magnetic field measurement should be analyzed. In this paper, the influence of the pump light on the sensitivity of the linearly polarized Bell-Bloom magnetometer is investigated based on the Bloch equation with amplitude modulated pump beam and the rate equations with spin relaxation. The rate equations are obtained from the Liouville equation, and the theoretical analysis is based on the cesium. The pump beam is linearly polarized and is resonant to D_1 transition of cesium. Both the direct pump (pump frequency is resonant to $6^2S_{1/2} F = 4$ - $6^{2}P_{1/2} F' = 3$ transition) and the indirect pump (pump frequency is resonant to $6^{2}S_{1/2} F = 3 - 6^{2}P_{1/2} F' = 4$ transition) are analyzed. The experiment is performed based on a 20-mm cube cesium vapour cell with 20-Torr helium as buffer gas. The linearly polarized probe beam is tuned to resonance to cesium D_2 transition $6^2 S_{1/2} F = 4 - 6^2 P_{3/2} F' = 5$, and the intensity of the probe is 0.2 W/m². The spectra of magnetic resonance are measured by using the lock-in detection with a scanning of the modulation frequency. Then the sensitivity can be obtained by measuring MRL and SNR. The experimental results show that the sensitivity and the pump intensity are related nonlinearly, which is coincident with theoretical result. Higher sensitivity can be obtained under the condition of indirect pump. In addition, the effect of atomic spin relaxation on sensitivity is also analyzed with the indirect pump beam. This work clarifies the dynamics of the Bell-Bloom magnetometer to some extent. The highest sensitivity obtained is $31.7 \text{ pT}/\sqrt{\text{Hz}}$ in our experiment, which can be optimized by using other kinds of vapour cells and different measuring methods.

Keywords: magnetic field measurement, magnetic resonance, spin relaxation, atomic polarization

PACS: 07.55.Ge, 78.20.Ls, 76.70.Hb, 76.60.Es

DOI: 10.7498/aps.68.20190030

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grants Nos. 11634008, 11674203, 11574187, 61227902).

[†] Corresponding author. E-mail: yczhang@sxu.edu.cn

[‡] Corresponding author. E-mail: tczhang@sxu.edu.cn