物理学报 Acta Physica Sinica

Institute of Physics, CAS

具有本征低晶格热导率的硫化银快离子导体的热电性能

王拓 陈弘毅 仇鹏飞 史迅 陈立东

Thermoelectric properties of Ag₂S superionic conductor with intrinsically low lattice thermal conductivity

Wang Tuo Chen Hong-Yi Qiu Peng-Fei Shi Xun Chen Li-Dong

引用信息 Citation: Acta Physica Sinica, 68, 090201 (2019) DOI: 10.7498/aps.68.20190073

在线阅读 View online: https://doi.org/10.7498/aps.68.20190073

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能 Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn 物理学报. 2016, 65(6): 067201 https://doi.org/10.7498/aps.65.067201

CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究 The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2 物理学报. 2016, 65(15): 156301 https://doi.org/10.7498/aps.65.156301

PbSe-MnSe纳米复合热电材料的微结构和电热输运性能 Microstructures and thermoelectric transports in PbSe-MnSe nano-composites 物理学报. 2016, 65(10): 107201 https://doi.org/10.7498/aps.65.107201

晶格振动的超快光谱调控

Manipulation of lattice vibration by ultrafast spectroscopy 物理学报. 2017, 66(1): 014203 https://doi.org/10.7498/aps.66.014203

Ca2+掺杂对CdO多晶热电性能的影响

High temperature thermoelectric performance of Ca2+ doped CdO ceramics 物理学报. 2015, 64(21): 218101 https://doi.org/10.7498/aps.64.218101

微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理

Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction 物理学报. 2015, 64(24): 247302 https://doi.org/10.7498/aps.64.247302

具有本征低晶格热导率的硫化银 快离子导体的热电性能^{*}

王拓1)2) 陈弘毅1)2) 仇鹏飞1)† 史迅1)2)3)‡ 陈立东1)2)

(中国科学院上海硅酸盐研究所,高性能陶瓷和超微结构国家重点实验室,上海 200050)
 2)(中国科学院大学,材料与光电研究中心,北京 100049)
 3)(上海交通大学,材料科学与工程学院,上海 200240)
 (2019年1月14日收到;2019年3月1日收到修改稿)

硫化银 (Ag₂S) 是一种典型的快离子导体材料, 前期关于 Ag₂S 的研究主要集中在光电和生物等领域. 最近的研究表明, α-Ag₂S 具有和金属一样的良好延展性和变形能力. 但是, Ag₂S 的热电性能尚无公开报道. 本工作合成了单相 Ag₂S 化合物, 系统研究了其在 300—600 K 范围的物相变化、离子迁移特性和电热输运性质. 研究发现, Ag₂S 在 300—600 K 温度区间表现出半导体的电输运性质. 由于单斜-体心立方相晶体结构转变, Ag₂S 的离子电导率、载流子浓度、迁移率、电导率、泽贝克系数等性质在 455 K 前后出现急剧变化. 在 550 K, Ag₂S 的功率因子最高可达 5 μ W·cm⁻¹·K⁻². Ag₂S 在 300—600 K 温度区间均表现出本征的低晶格热导率 (低于 0.6 W·m⁻¹·K⁻¹). S 亚晶格中随机分布的类液态 Ag 离子是导致 β-Ag₂S 体心立方相具有低晶格热导率 的主要原因. 在 573 K, Ag₂S 的热电优值可达 0.55, 与 Ag₂Se, Ag₂Te, CuAgSe 等已报道的 Ag 基快离子导体热电材料的性能相当.

关键词: 热电材料, 相变, 快离子导体, 晶格热导率 **PACS**: 02.10.Yn, 66.10.Ed, 43.35.+d, 63.20.-e

1 引 言

热电材料是一种可以将热能和电能直接相互 转换的材料,在工业废热和汽车尾气废热回收发 电,以及空间探测、智能穿戴设备、大规模信息产 业等高新技术领域具有广泛的应用前景^[1-4]. 热电 材料的能量转换效率可用无量纲热电优值 $zT = S^2 \sigma T / \kappa$ 来衡量,其中, $S, \sigma, \kappa 和 T 分别是材$ 料的泽贝克系数、电导率、热导率和绝对温度.当 前热电材料的研究重点是在不同温区寻找具有高

DOI: 10.7498/aps.68.20190073

能量转换效率,即高 zT的材料.这包括对新材料体系的开发探索和对现有材料体系的性能优化. 2012年,Liu等^[5]提出了"声子液体-电子晶体"的概念,引发了国际上对于快离子导体材料热电性能的研究热潮.以Cu₂X(X = Se,S,Te)^[6-9],CuAgSe^[10],CuCrSe^[11],Cu₈GeSe^[12],Ag₉GaSe^[13]为代表的众多具有极低晶格热导率和高 zT的快离子导体热电材料相继被报道.部分快离子导体材料的zT可达2.0以上,与传统的热电材料相当.

硫化银 (Ag₂S) 是一种典型的快离子导体材 料^[14]. 室温下 α-Ag₂S 相具有锯齿形 (zig-zag) 的褶

© 2019 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划 (批准号: 2018YFB0703600)、国家自然科学基金杰出青年科学基金 (批准号: 51625205)、中国科学院重点部 署项目 (批准号: KFZD-SW-421) 和中国科学院青年创新促进会 (批准号: 2016232) 资助的课题.

[†] 通信作者. E-mail: qiupf@mail.sic.ac.cn

[‡] 通信作者. E-mail: xshi@mail.sic.ac.cn

皱层状单斜结构.其中,4个S和4个Ag原子构 成一个8原子的圆环,圆环和圆环之间通过S原子 连接.当温度超过455 K, α-Ag₂S转变为具有体心 立方结构的 β-Ag₂S.在S原子构成的体心立方刚 性框架中,Ag的位置可以为6b,12d和24h,其占 位率分别为0.222,0.111和0.056^[15].当温度超过 843 K时,β-Ag₂S转变为具有面心立方结构的 γ -Ag₂S^[16].在S原子构成的面心立方刚性框架中, Ag的位置可以为8c和32f,其占位率分别为0.370 和0.160.β-Ag₂S和 γ -Ag₂S均为快离子导体,其中 的Ag离子可以在不同位置进行迁移.

前期关于 Ag₂S 的研究主要集中在光电和生物 等领域,如 Ag₂S 纳米光电传感器^[17]、Ag₂S 基光催 化材料^[18,19]、Ag₂S 红外发光量子点^[20-22]和细胞成 像^[23]等.最近的研究表明,α-Ag₂S 具有和金属一 样的良好延展性和变形能力^[14].力学性能测试表 明,α-Ag₂S 的压缩形变量可以达到 50% 以上,弯 曲形变量可以超过 20%,拉伸形变量可达 4.2%.这 些形变量均远远超过已知的陶瓷和半导体材料,而 和一些金属的力学性能相当.量子化学计算表明, α-Ag₂S 的 (100) 滑移面之间的作用力一直维持在 Ag-S 的成键状态,其在滑移过程中能量波动较小, 导致了小的滑移能量势垒;同时该成键状态保证了 这些滑移面之间较强的作用力,避免了在滑移过程 中裂纹的产生甚至材料的解离.这是造成其反常力 学性能的根本原因.

高性能热电材料需要较高的载流子迁移率和 适中的禁带宽度以实现较宽范围内可调节的电性 能.室温下, α -Ag₂S的载流子迁移率约为 70 cm²· V⁻¹·K⁻¹,其禁带宽度为 1.0 eV 左右.在 455 K时 α -Ag₂S 转变为 β -Ag₂S 之后,其能带的禁带宽度降 低至 0.44 eV,与许多传统热电材料 (如 PbTe^[24,25], SiGe^[26],填充方钴矿^[27-29])的禁带宽度相当.这使 得 Ag₂S 有可能实现高的功率因子 (*PF* = *S*² σ).同 时,类似于已报道的 Cu₂X (*X* = Se, S, Te)^[6–8], CuAgSe^[10]等快离子导体热电材料相变后, β -Ag₂S 晶体结构中无序分布的 Ag 离子可能强烈散 射声子并造成一部分横波振动模式的消失,从而导 致本征的低晶格热导率.因此,Ag₂S 有望成为一种 潜在的新型热电材料.但是目前为止,Ag₂S 的热电 性能尚无公开报道.

本研究通过熔融-退火的方法合成了具有不同载流子浓度的单相 Ag₂S 快离子导体材料,并系统

表征了其在 300—600 K 温度区间的物相转变、离 子迁移特性和电-热输运性能.研究发现, Ag₂S 在 300—600 K 温度区间具有本征的低晶格热导率 (低于 0.6 W·m⁻¹·K⁻¹). 但是, 在单斜-体心立方相转 变之前, 其过低的电导率不利于 Ag₂S 实现高热电 优值. 在单斜-体心立方相转变之后, Ag₂S 电导率 快速增加至 10⁴ S·m⁻¹ 数量级, 这使得其热电优值 显著增加. 在 580 K 附近, Ag₂S 的热电优值可达 0.55, 与已报道的 Ag₂Se^[30], Ag₂Te^[31], CuAgSe^[10] 等 的 Ag 基快离子导体热电材料的性能相当.

2 实验方法

2.1 Ag₂S 化合物的制备

Ag₂S 化合物由单质元素 Ag (块体, 99.999%, Alfa Aesar) 和 S (块体, 99.9999%, Alfa Aesar) 合成. 按照化学计量比称量单质元素后, 将其封入石 英管中, 在手套箱中密封石英管并使其处于真空状态, 然后置于立式熔融炉中以 1 K/min 的速度升 至 1173 K, 并保温 12 h. 之后在 773 K 下退火 12 h. 最终得到的化合物铸锭的相对密度可达 95% 以上. Ag₂S 的载流子浓度采用掺入微量 Ag 空位的方法 进行了调节.

2.2 物相和热电性能的表征

所合成 Ag_2S 化合物的物相由 X 射线衍射 (XRD) 进行表征 (Bruker D8 Phasor, 采用 Cu-Ka线系, $\lambda = 0.15406$ nm). Ag_2S 化合物的元素分 布状态由场发射扫描电子显微镜 (SEM, Zeiss Supra 55) 所带的能谱仪 (OXFORD Instruments X-max) 分析.

Ag₂S 化合物的电导率 σ 和泽贝克系数 S 由改 装过的热膨胀仪 (Netzsch DIL 402C) 进行测量, 测量方法为四探针法, 测试气氛为氩气. 热导率通 过公式 $\kappa = C_p d\lambda$ 计算得到, 其中 λ 为材料的热扩 散系数, 由激光脉冲法 (Netzsch LFA 457) 测量得 到; C_p 为材料的比热, 根据 Neumann-Kopp 法则 计算得到; d 为材料的密度, 由阿基米德法得到.

Ag₂S 化合物的载流子浓度 $n_{\rm H}$ 根据公式 $n_{\rm H} = \frac{1}{eR_{\rm H}}$ 计算得到,其中,e为元电荷, $R_{\rm H}$ 为霍尔系数. $R_{\rm H}$ 由范德堡法 (Lake Shore 8400 Series, 磁场大 小为± 0.9 T) 测量得到. 根据公式 $\mu_{\rm H} = \frac{\sigma}{en_{\rm H}}$,可以 获得材料的迁移率 $\mu_{\rm H}$,其中 σ 为电导率.

Ag₂S 化合物的离子电导率 σ_i 采用 Liu 等^[32] 的方法测量得到,即利用改装过的热膨胀仪 (Netzsch DIL 402C),在稳定的特定温度下,测量 通电流与放电流过程中电压随时间的变化,并利用 公式 $\sigma_i = \frac{2jd}{V_{i1} + V_{i2}} \cdot \frac{V_{r1} + V_{r2}}{V_{s1} + V_{s2}}$ 得到,其中,*j*为电流 密度; *d*为 R 型热电偶之间的距离; *V*_{i1}, *V*_{r1}, *V*_{s1} 和 *V*_{i2}, *V*_{r2}, *V*_{s2}分别是通电和放电过程中的初始 电压、相对电压、稳定电压.

3 结果与讨论

图 1 为 Ag₂S 化合物在 300 和 600 K 的块体 XRD 图谱. 如图 1 所示, 300 K 时采集的 XRD 图 谱中 Ag₂S 的衍射峰与 α-Ag₂S 单斜结构的标准 PDF 卡片 (#89-3840) 相吻合. XRD 图谱中没有 观测到非 α-Ag₂S 的衍射峰. 这表明所制备产物为 Ag₂S 的单相.

图 1 Ag₂S化合物在 (a) 300 K和 (b) 600 K时的块体 XRD 图谱

Fig. 1. Bulk XRD patterns of ${\rm Ag}_2{\rm S}$ compound at (a) 300 K and (b) 600 K.

图 2 所示为通过 SEM-EDS 表征的 Ag₂S 的微 观结构. Ag 和 S 元素分布非常均匀, 没有发现明 显元素富集区域. 当测试温度升高至 600 K, 所采 集 XRD 图谱与 300 K 时明显不同. 600 K 时采集 的 XRD 图谱中的衍射峰与 β-Ag₂S 体心立方结构 的标准 PDF 卡片 (#71-0996) 相吻合, 表明此时 Ag₂S 已经完全转变为体心立方相. 同时, 在 600 K 时采集的 XRD 图谱上, 2θ = 35°处存在明显的弥 散峰. Tsuchiya 等^[33] 在 1978 年对 Ag₂S 晶体结构 的研究中发现过类似现象. 2011 年, Blanton 等^[34]的研究表明, Ag₂S 化合物 XRD 图谱中的弥散峰 是由于在体心立方结构中存在的高度无序分布的 类液态 Ag 离子所造成的.

图 3(a) 为采用差示扫描量热法 (DSC) 测得 的 Ag_2S 的定压热容 (C_p). 在 455 K, 可以观测到 尖锐的吸热峰, 对应于 Ag₂S 单斜-体心立方结构相 变. 其相转变温度与文献 [14] 报道值相当. 根据测 量得到的定压热容 $C_{\rm p}$,以及公式 $C_{\rm p} = C_{\rm V} + C_{\rm e} +$ $9\alpha_1^2 BV_m T$,可计算得到 Ag₂S 化合物的定容热容 C_{v} ,其中, C_{o} 为电子热容, α_{l} 为材料的线膨胀系数, B为材料的体弹性模量, Vm 为材料的原子摩尔体 积, T为绝对温度. 对于半导体材料, 电子热容 C_{e} 通常可忽略. Honma 和 Iida^[35] 的测量表明, α - Ag_2S 的线膨胀系数 α_1 为 16.2 × 10⁻⁶ K⁻¹, β -Ag₂S 的线膨胀系数 α_1 为 45.8 × 10⁻⁶ K⁻¹. 同时, Ag₂S 的 体弹性模量 B为 45 GPa^[35]. 基于上述参数计算得 到的 $Ag_{2}S$ 的定容热容 C_{V} 如图 3(b) 所示. 当温度 低于相变温度 455 K时, Ag₂S的 C_V基本为杜隆-珀蒂理论值 3Nk_B. 但是, 当温度超过相变温度 455 K 时, Ag₂S的 C_V 要明显低于 $3Nk_B$, 且向液体的定 容热容理论值 2Nk_B移动. 这是由于相变后的 β-Ag₉S 是快离子导体,其中的 Ag 离子具有了类液 态的特性. 由于 Ag 离子在晶体结构中不同位置之 间的迁移,使部分横波振动模式衰减甚至消失,导 致用于热传导的总模式数减少,因此 β -Ag₂S的定 容热容 Cv 低于固体材料的杜隆-珀蒂理论值.

为了进一步理解 Ag₂S 中 Ag 离子的迁移行为, 本研究采用改进的 Yokota 方法测量了其离子电导 率 $(\sigma_i)^{[32]}$. 图 4 为 Ag₂S 的离子电导率随温度的变 化. 在 300 K 时, Ag₂S 的离子电导率极小. 这是由 于 α -Ag₂S 的单斜结构中的 Ag 离子具有固定的位 置, 难以在不同位置之间迁移. 当发生单斜-体心立 方结构相变后, Ag₂S 转变为快离子导体,其中的 Ag 离子可以在很多近邻位置之间迁移. 相应地, Ag₂S 的离子电导率显著增加. 在 600 K, Ag₂S 的离子电导率可达 1000 S·m⁻¹. 根据阿伦尼乌斯公 式 $\sigma_i = \sigma_{i,0}e^{-\frac{E_a}{2k_BT}}$ 可以计算得到 β -Ag₂S 的离子激 活能 (E_a) ,其中 $\sigma_{i,0}$ 为指前因子, e 为元电荷, k_B 为 玻尔兹曼常数. 计算得到的 β -Ag₂S 的离子激活能 为 0.076 eV. β -Ag₂S 的离子激活能要低于很多快 离子导体热电材料, 如 β -Cu₂S 的离子激活能为

图 2 Ag₂S 化合物的 (a) 背散射电子图片; (b) 所有元素, (c) Ag 和 (d) S 的元素分布

Fig. 2. (a) Backscattering image of Ag₂S compound. Elemental mappings of (b) all elements, (c) Ag, and (d) S, respectively.

图 3 Ag_2S 化合物的 (a) 定压热容 $C_p \mathcal{D}$ (b) 相同温度下的 C_p 和定容热容 C_V 计算值的比较, 其中点划线分别为固体的 C_V 理论 值 $3Nk_B$ 和液体的 C_V 理论值 $2Nk_B$

Fig. 3. (a) Specific heat at constant pressure C_p of Ag₂S compound; (b) comparison of C_p and the calculated specific heat at constant volume C_V . The dash-dot lines are the theoretical C_V of solid and liquid, respectively.

Fig. 4. Temperature dependence of ionic conductivity (σ_i) for Ag₂S compound.

0.19 $eV^{[36]}$, Cu_7PSe_6 的离子激活能为 0.15 $eV^{[32]}$. β -Ag₂S极低的离子激活能表明其晶体结构中的 Ag离子在热扰动作用下很容易从一个位置迁移至 近邻位置.这是造成图 1 所示在 600 K采集的 XRD图谱中出现明显弥散峰和如图 3(b)所示定 容热容 C_V 低于 3 Nk_B 的根本原因.

图 5 所示为两个单相 Ag₂S 快离子导体材料 在 300—600 K 温度区间的载流子浓度随温度的变 化. 在 300 K 时, Ag₂S 的载流子浓度仅为 10¹⁴ cm⁻³ 数量级. 随着温度的增加, Ag₂S 的载流子浓度快速 增加. 在 423 K, 载流子浓度可达 10¹⁷ cm⁻³ 数量 级, 比 300 K 时提高约 3 个数量级. 这是由于随着 温度增加,从价带跃迁到导带的载流子浓度增加所导致的.在单斜-体心立方结构相变之后,Ag₂S的载流子浓度进一步增加至10¹⁹ cm⁻³ 数量级.

相对于载流子浓度随温度发生的急剧变化, Ag₂S的载流子迁移率随温度的变化则较小.如 图 5(b) 所示, 在 300 K时, Ag₂S的载流子迁移率 约为 60 cm⁻²·V⁻¹·s⁻¹. 这一数值远高于大部分 Cu 基快离子导体热电材料的载流子迁移率.如 300 K 时, Cu₂S的载流子迁移率为14 cm⁻²·V⁻¹·s^{-1[37]}, Cu₂Se的载流子迁移率为16 cm⁻²·V⁻¹·s^{-1[38]}. 一般 半导体材料的载流子迁移率取决于载流子有效质 量,载流子有效质量越小,载流子迁移率越高. Alieve 等^[39] 的研究表明, α -Ag₂S 的载流子有效质 量为 0.45m。(m。为元电荷的质量), 该数值远小于 Cu基快离子导体热电材料的载流子有效质量.如 Cu₂S的载流子有效质量为 1.60m_e^[37], Cu₂Se 的载 流子有效质量为 2.30m。[38], 因此 α-Ag₂S 具有高的 载流子迁移率.对于 Ag 基快离子导体热电材料, 其导带底通常主要由高度色散的 Ag 5s 电子轨道 构成,因此其往往具有低的载流子有效质量[40].在 单斜-体心立方结构相变之后, Ag_2S 的载流子迁移 率显著增加. 在 473 K, Ag_2S 的载流子迁移率约 为 120 cm⁻²·V⁻¹·s⁻¹, 是 300 K 时的 2 倍, 表明此时 Ag_2S 的有效质量有可能进一步降低.

图 6(a) 为具有不同载流子浓度的 Ag₂S化合物 在 300—600 K 温度区间的电导率、泽贝克系数和 功率因子随温度的变化. 室温下两个样品的载流子 浓度分别为 1.2×10^{14} cm⁻³ 和 2.0×10^{14} cm⁻³. 在 整个温度区间, Ag₉S 化合物的泽贝克系数均是负 值,表明其电输运由电子所主导.事实上,目前所 报道的大部分 Ag 基快离子导体热电材料^[41,42] 均表现出 n 型的电输运性质. 这可能是由于晶体结 构中存在的 Ag 间隙离子造成的, 即 Ag 间隙离子 作为施主杂质,提供了额外的电子,导致了n型的 电输运性质. 室温下, Ag₂S 的泽贝克系数约为 -900 μV·K⁻¹. 随着温度增加, Ag₂S 的泽贝克系数 的绝对值快速降低.440 K时,其泽贝克系数约为 -450 µV·K⁻¹, 仅为 300 K 时的一半. 在单斜-体心 立方结构相变之后, Ag₂S 的泽贝克系数的绝对值 进一步降低. 在 600 K时, Ag₂S的泽贝克系数为

图 5 Ag_2S 化合物的 (a) 载流子浓度 n_H 和 (b) 载流子迁移率 μ_H 随温度的变化

Fig. 5. Temperature dependences of (a) carrier concentration $n_{\rm H}$ and (b) carrier mobility $\mu_{\rm H}$ for Ag₂S compound.

图 6 Ag_2S 化合物的 (a) 泽贝克系数 $S_{(b)}$ 电导率 $\sigma_{(c)}$ 功率因子 PF 随温度的变化

Fig. 6. Temperature dependences of (a) Seebeck coefficient S, (b) electrical conductivity σ , and (c) power factor (*PF*) for Ag₂S compound.

-140 μV·K⁻¹, 仅为 440 K 时的 1/3.

如图 6(b) 所示, 室温下 Ag₂S 电导率仅为 0.1—0.5 S·m⁻¹. 随着温度的增加, Ag₂S 的电导率 呈指数型增加. 在 440 K, 其电导率增加至 120 S·m⁻¹, 比 300 K 时的数值增加约 3 个数量级. 与泽贝克 系数的变化规律相似,在单斜-体心立方结构相变 后, Ag₉S 电导率出现突变. 相变之后, Ag₉S 电导率 仍随温度增加而逐渐增加,但是其增加速度显著慢 于相变之前. 基于电导率与温度的关系, 根据阿伦 尼乌斯公式 $\sigma = \sigma_0 e^{-\frac{E_g}{2k_B T}}$ 可以计算得到 α -Ag₂S 和 β -Ag₂S 的禁带宽度 (E_{g}), 其中 σ_{0} 为指前因子, e 为元电荷, $k_{\rm B}$ 为玻尔兹曼常数. 对于 α -Ag₂S, 其 禁带宽度计算值为 1.1 eV, 与紫外漫反射光谱测试 值 (1.0 eV)^[14] 相当. 对于 β-Ag₂S, 其禁带宽度计算 值为 0.42 eV, 与 Aliev 等^[39] 的报道值 (0.44 eV) 相当. 禁带宽度的减小是造成图 5 所示相变后载流 子浓度急剧上升的原因.

基于测量的电导率和泽贝克系数,可计算得 到 Ag₂S 的功率因子 *PF*(= S²σ),结果如图 6(c) 所示.在单斜-体心立方结构相变之前,虽然 Ag₂S 具有很高的泽贝克系数,但是由于其电导率 仅为 10⁻¹—10² S·m⁻¹ 数量级,导致其功率因子低 于 0.3 μW·cm⁻¹·K⁻².在单斜-体心立方结构相变之 后,Ag₂S 的电导率达到 10⁴ S·m⁻¹ 数量级,相应地, 其功率因子显著增加至 5 μW·cm⁻¹·K⁻².该数值与 当前已报道的 Cu 基快离子导体^[11] 热电材料的功 率因子相当.当温度高于 550 K 时,功率因子随温 度增加出现下降趋势.

Ag₂S 晶体结构中类液态的 Ag 离子必将导致 极低的晶格热导率. 图 7(a) 所示为具有不同载流 子浓度的 Ag₂S 在 300—600 K 温度区间总热导率 随温度的变化. 在整个温度区间, Ag₂S 总热导率 为 0.4—0.6 W·m⁻¹·K⁻¹. 该数值低于大部分固体热 电材料. 图 7(b) 为 Ag₂S 晶格热导率 κ_L 随温度的 变化. 这里晶格热导率通过 $\kappa_{\rm L} = \kappa - L\sigma T$ 计算得 到, 其中 L 为洛伦兹常数 (L = 2 × 10⁻⁸ V²·K⁻²). 在 单斜-体心立方结构相变之前,由于 Ag₂S 电导率很 低,导致载流子对热导率的贡献可以被忽略,其晶 格热导率与总热导率接近,在 0.4 — 0.6 W·m⁻¹·K⁻¹ 之间. 但是在单斜-体心立方结构相变之后, 由于 Ag₉S 电导率的急剧上升,导致载流子对热导率的 贡献显著增加.以 600 K 时为例,根据维德曼-弗兰 兹定律计算得到的载流子对热导率的贡献约为 0.25 W·m⁻¹·K⁻¹. 此时的晶格热导率约为 0.22 W·m⁻¹·K⁻¹, 明显低于相变前的 κ_L 数值. 该数值也 与 Cu₂S^[43], Cu₂Se^[5] 等快离子导体热电材料的晶格 热导率相当. 在单斜-体心立方结构相变之后, Ag₉S 中的 Ag 离子可以在不同晶格位置进行迁移, 进而造成强烈的声子散射以及一部分横波振动模 式的消失,这是导致 AgoS 在 453 K 以上时具有极 低的晶格热导率的原因.

虽然 α-Ag₂S 不是快离子导体,但是其仍具有 本征的低晶格热导率.为了解释这一现象,采用第 一性原理计算了 Ag₂S 的声子色散关系.如图 8 所 示,在低频率区间 2—10 meV 的范围内存在大量 平坦的光学支.在 AgInSe₂^[44], Ag₉GaSe₆^[12]等具有 低晶格热导率的 Ag 基热电材料体系的声子色散

图 7 Ag_2S 化合物的 (a) 总热导率 $\kappa \pi$ (b) 晶格热导率 κ_L 随温度的变化, 图 (b) 中虚线所示为 $Cu_2Se^{[5]} \pi Cu_2S^{[37]}$ 快离子导体热电材料的晶格热导率

Fig. 7. Temperature dependences of (a) total thermal concentration κ and (b) lattice thermal conductivity $\kappa_{\rm L}$ for Ag₂S compound. The $\kappa_{\rm L}$ data for Cu₂Se^[5] and Cu₂S^[37] are included for comparison in panel (b).

图 8 Ag₂S的声子色散关系和声子态密度图

Fig. 8. Phonon dispersion relations and density of states for ${\rm Ag}_2{\rm S}$ compound.

关系中也发现了类似的低频光学支. 从图 8 右边的 声子态密度图可以看出, 这些低频率区间的光学支 主要是由 Ag 原子贡献的. 在 Ag₂S 单斜结构中, 沿 (100) 面 2 个 S 原子和 6 个 Ag 原子构成比较弱 的化学键. 由于 S 对 Ag 的束缚力较弱, 因此 Ag 原子表现出低的声子振动频率. Ag 原子主导的 低频光学支可以强烈散射与其频率接近的晶格声 子, 这是导致 Ag₂S 在转变为离子导体之前即具有 低晶格热导率的根本原因.

基于测量得到的 *S*, σ 和 κ , 可以计算得到 Ag₂S 的热电优值 *zT* (= $S^2\sigma T/\kappa$). 如图 9 所示, 在 单斜-体心立方结构相变之前, 由于 Ag₂S 的低电导 率, 其热电优值低于 0.02. 但是, 在相变之后, Ag₂S 的热电优值显著增加. 在 580 K 时, 其 *zT* 达

图 9 Ag_2S 化合物的热电优值 zT 随温度的变化, 虚线所 示为 $Ag_2Se^{[30]}$, $Ag_2Te^{[31]}$ 和 $CuAgSe^{[10]}$ 等 Ag 基快离子导体 热电材料的热电优值

Fig. 9. Temperature dependence of thermoelectric figure-ofmerit zT for Ag₂S compound. The data for Ag₂Se^[30], Ag₂Te^[31] and CuAgSe^[10] are included for comparison. 到最大值 0.55. 该数值与已报道的 Ag 基快离子导体热电材料^[10,30,31]的 *zT*相当. 如果对 Ag₂S 的载流子浓度进行优化,有望进一步提高其 *zT*值.

4 结 论

本文使用熔融-退火方法合成了单相的 Ag₂S 化合物,并对其在 300—600 K 温度区间内的物相 转变、离子电导率和电-热输运性能进行了系统的 表征. DSC 测试结果表明, Ag₂S 在 455 K 附近发 生单斜-体心立方结构相变.相变前, α-Ag₂S 的禁 带宽度为 1.1 eV.相变后, β-Ag₂S 禁带宽度降低 至 0.42 eV,此时离子激活能为 0.076 eV.这导致 Ag₂S 的离子电导率、载流子浓度、迁移率、电导 率、泽贝克系数等性质在 455 K 前后出现急剧变 化.由于相变之后电导率显著提高, Ag₂S 在 550 K 附近功率因子最高可达到 5 μW·cm⁻¹·K⁻².结合 Ag₂S 本征的低晶格热导率, Ag₂S 在 580 K 附近 *zT*值最高可达 0.55, 与已报道的 Ag 基离子导体 热电材料相当.如果对 Ag₂S 的载流子浓度进行优 化,有望进一步提高其 *zT*值.

参考文献

- [1] Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123
- [2] Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826
- [3] Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379
- [4] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884
- [5] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422
- [6] Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14
- [7] Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866
- [8] Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977
- [9] Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115
- [10] Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662
- [11] Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289
- [12] Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943
- [13] Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658

- [14] Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421
- [15] Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157
- [16] Skinner B J 1966 Econ. Geol. 61 1
- [17] Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304 (in Chinese) [董占民, 孙红三, 许佳, 李一, 孙 家林 2011 物理学报 60 077304]
- [18] Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637
- [19] Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902
- [20] ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695
- [21] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470
- [22] Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825
 (in Chinese) [邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825]
- [23] Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818
- [24] Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
- [25] Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201 (in Chinese) [张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟 娟, 骆军 2016 物理学报 65 107201]
- [26] Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. **31** 997 (in Chinese) [杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 **31** 997]
- [27] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
- [28] Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503
- [29] Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31

1375 (in Chinese) [姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材 料学报 **31** 1375]

- [30] Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568
- [31] Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256
- [32] Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337
- [33] Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651
- [34] Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114
- [35] Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828
- [36] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512
- [37] He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974
- [38] Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607
- [39] Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146
- [40] Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 *Phys. Status Solidi B* 241 114
- [41] Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903
- [42] Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287
- [43] He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639
- [44] Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727

Thermoelectric properties of Ag_2S superionic conductor with intrinsically low lattice thermal conductivity^{*}

Wang Tuo¹⁾²⁾ Chen Hong-Yi¹⁾²⁾ Qiu Peng-Fei^{1)†} Shi Xun^{1)2)3)‡} Chen Li-Dong¹⁾²⁾

1) (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,

Chinese Academy of Sciences, Shanghai 200050, China)

2) (Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

3) (School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

(Received 14 January 2019; revised manuscript received 1 March 2019)

Abstract

Recently, Ag₂S superionic conductor has attracted great attention due to its metal-like ductility and deformability. In this work, the single phase Ag₂S compound is fabricated by the melting-annealing method. The crystal structure, ionic conduction, and electrical and thermal transports in a temperature range of 300-600 K are systematically investigated. The monoclinic-cubic crystal structure transition occurs around 455 K for Ag₂S. Significant reduction in the specific heat at constant volume below the Dulong-Petit limit is observed for Ag₂S after the monoclinic-cubic phase transition, which is attributed to the liquid-like Ag ions existing inside the sulfur framework. Ag_2S shows typical semiconducting-like electrical transport behavior in the whole measured temperature range. Around 455 K, the ionic conductivity, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient each show an abrupt change. The calculated ionic activation based on the ionic conductivity is 0.076 eV for the body centered cubic Ag₂S. The calculated band gap based on the electrical conductivity decreases from 1.1 eV for the monoclinic Ag_2S to 0.42 eV for the body centered cubic Ag_2S . The abrupt increase of electrical conductivity after the monoclinic-cubic phase transition leads to a maximum power factor around 5 μ W·cm⁻¹·K⁻² at 550 K. In the whole measured temperature range, Ag₂S demonstrates an intrinsically low lattice thermal conductivity (below 0.6 $W \cdot m^{-1} \cdot K^{-1}$). The calculated phonon dispersion indicates that the weak chemical bonding between Ag and S is responsible for the low lattice thermal conductivity observed in the monoclinic Ag₂S. Likewise, the presence of liquid-like Ag ions with low ionic activation energy is responsible for the low lattice thermal conductivity for the cubic Ag₂S. Finally, the Ag₂S shows the maximum thermoelectric figure of merit of 0.55 at 580 K, which is comparable to the thermoelectric figure of merit reported before in most of Ag-based thermoelectric superionic conductors.

Keywords: thermoelectric, superionic conductor, phase transition, lattice thermal conductivity

PACS: 02.10.Yn, 66.10.Ed, 43.35.+d, 63.20.-e

DOI: 10.7498/aps.68.20190073

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600), the National Natural Science Foundation of China (Grant No. 51625205), the Key Research Program of Chinese Academy of Sciences (Grant No. KFZD-SW-421), and the Youth Innovation Promotion Association, CAS (Grant No. 2016232).

 $[\]dagger~$ Corresponding author. E-mail: <code>qiupf@mail.sic.ac.cn</code>

[‡] Corresponding author. E-mail: xshi@mail.sic.ac.cn