

溶液法制备的金属掺杂氧化镍空穴注入层在 钙钛矿发光二极管上的应用

吴家龙 窦永江 张建凤 王浩然 杨绪勇

Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer Wu Jia-Long Dou Yong-Jiang Zhang Jian-Feng Wang Hao-Ran Yang Xu-Yong 引用信息 Citation: Acta Physica Sinica, 69, 018101 (2020) DOI: 10.7498/aps.69.20191269 在线阅读 View online: https://doi.org/10.7498/aps.69.20191269 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管

Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer 物理学报. 2019, 68(12): 128103 https://doi.org/10.7498/aps.68.20190258

蓝光钙钛矿发光二极管: 机遇与挑战

Blue perovskite light-emitting diodes: opportunities and challenges 物理学报. 2019, 68(15): 158503 https://doi.org/10.7498/aps.68.20190745

高效绿光钙钛矿发光二极管研究进展

Research progress of efficient green perovskite light emitting diodes 物理学报. 2019, 68(15): 158504 https://doi.org/10.7498/aps.68.20190647

有机添加剂在金属卤化钙钛矿发光二极管中的应用 Applications of organic additives in metal halide perovskite light-emitting diodes 物理学报. 2019, 68(15): 158505 https://doi.org/10.7498/aps.68.20190307

具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管 GaN-based light emitting diode with graphene/indium antimony oxide composite transparent electrode 物理学报. 2019, 68(24): 247303 https://doi.org/10.7498/aps.68.20190983

半导体黄光发光二极管新材料新器件新设备 Semiconductor yellow light-emitting diodes 物理学报. 2019, 68(16): 168503 https://doi.org/10.7498/aps.68.20191044

溶液法制备的金属掺杂氧化镍空穴注入层在 钙钛矿发光二极管上的应用^{*}

吴家龙1) 窦永江2) 张建凤2) 王浩然2) 杨绪勇2)†

1) (上海大学, 微电子研究与开发中心, 上海 201900)

2) (上海大学, 新型显示技术及应用集成教育部重点实验室, 上海 200040)

(2019年8月21日收到; 2019年10月25日收到修改稿)

甲脒基钙钛矿 (FAPbX₃) 纳米晶 (NCs) 具有成本低、色纯度高、吸收范围广、带隙可调等特点, 在照明显示与光伏领域中表现出良好的应用前景. 然而传统钙钛矿发光二极管 (LEDs) 的空穴注入层材料—— PEDOT:PSS, 由于其固有的吸湿性和酸性, 严重影响着器件的稳定性, 而器件的稳定性始终是阻碍钙钛矿发 光器件成为实际应用的关键因素之一. 本文首次使用溶液法制备的氧化镍 (NiO) 薄膜作为溴基甲脒钙钛矿 (FAPbBr₃) NCs LEDs 的空穴注入层, 降低空穴注入层对钙钛矿发光层的影响, 获得了高效且稳定的钙钛矿 发光器件, 器件寿命是基于 PEDOT:PSS 的器件的 2.3 倍. 通过适当浓度的金属掺杂 (Cs:NiO/Li:NiO) 可以有 效改善器件的电荷平衡, 从而进一步提高 FAPbBr₃ NCs LEDs 的性能. 基于掺杂 2 mol% Cs 的 NiO 的器件表 现出最优异的光电性质, 其最大亮度, 最大电流效率, 峰值 EQE 分别为 2970 cd·m⁻², 43.0 cd·A⁻¹和 11.0%; 相 比于传统的 PEDOT:PSS 基的器件, 效率提高了近 2 倍.

关键词: 溴基甲脒钙钛矿纳米晶, 氧化镍, 金属掺杂, 发光二极管 PACS: 81.07.Ta, 78.60.Fi, 85.60.Jb

DOI: 10.7498/aps.69.20191269

1 引 言

甲脒基钙钛矿 (FAPb X_3) 材料具有连续可调 节的光谱范围 (400 nm $\leq \lambda \leq$ 780 nm)、色彩饱 和度高 (半高宽约为 20 nm)、缺陷密度低、载流子 迁移率大等优异的光电特性, 被认为是 21 世纪最 有发展前景的发光材料之一^[1-6]. 与甲基钙钛矿 (MAPb X_3) 或全无机钙钛矿 (CsPbBr₃) 相比, FAPb X_3 具有一些引人注目的特征,如更高的热、 湿度和化学稳定性^[7-11]. 2016年, Perumal等^[12] 使用 B3PYMPM 和 TPBi 作为电子传输层, 首次 实现了高亮度 (2714 cd·m⁻²) 和高效率 (6.4 cd·A⁻¹) FAPbBr₃ NCs 钙钛矿发光二极管 (LEDs). 自此以 后,提高 FAPbBr₃ NCs 的钙钛矿 LEDs 的效率及 其稳定性并使之能够商业化一直是人们的研究热 点. 随后,Kim 等^[13]提出 FAPbBr₃ NCs 发光层中 的电荷注入和传输依赖于钙钛矿有机配体中绝缘 烃链的长度,并且通过控制胺配体中烃链的长度来 改善 NCs 发光层的电荷注入和传输能力,使 FAPbBr₃ NCs 的光致发光量子产率最大化,器件最大电流 效率为 9.16 cd·A⁻¹. 然而, FAPbBr₃ 钙钛矿 LEDs 的发光效率和器件稳定性仍然很落后,难以满足商 业化应用的需求.

PEDOT:PSS 作为高电导率和高功函数的空 穴材料,常被用作钙钛矿 LEDs 的空穴注入层,但

© 2020 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划 (批准号: 2016YFB0401702)、国家自然科学基金 (批准号: 51675322, 61605109, 61735004)、上海启明星计划 (批准号: 17QA1401600) 和上海高校特聘教授 (东方学者) 计划资助的课题.

[†] 通信作者. E-mail: yangxy@shu.edu.cn

它固有的化学不稳定性如酸性和易湿性等不可避 免对氧化铟锡 (ITO) 电极造成腐蚀, 对钙钛矿发 光层造成淬灭,从而影响器件性能¹⁴.在钙钛矿 LEDs 的制备中选择相对稳定的无机半导体作为空 穴注入层来替代 PEDOT:PSS 将会是提高器件稳 定性的一个不错的选择. Cao 等[15] 使用 NiO 薄膜 作为量子点 (CdSe/ZnS)LEDs 的空穴注入层,器 件峰值 EQE 达到 10.5%, 器件寿命是 PEDOT: PSS 器件的近四倍, 使得 NiO 成为 PEDOT: PSS 的一 种可靠的替代材料. Chih 等^[16] 提出相比 PEDOT: PSS, NiO 有着更适合空穴传输的能带结构,并且可以充 当电子阻挡层,减小漏电流,有助于改善器件的性 能. Wang 等^[17]利用 NiO 同时充当空穴传输层与 空穴注入层,实现了高效且稳定的 CsPbBr₃ 钙钛 矿 LEDs. 由于 NiO 优越的空穴注入/传输能力、 电子阻挡能力以及稳定性, NiO 器件的电流效率, EQE 以及器件寿命都达到 PEDOT:PSS 器件的三 倍左右. Lee 等^[18] 研究了分别在 NiO 和 PEDOT: PSS 空穴界面上生长准二维钙钛矿的界面能和光电性 能. 研究表明 NiO/钙钛矿界面具有更低的缺陷/陷 阱密度,在钙钛矿层形成更平衡的电荷载流子,从 而具有更高的载流子复合产率,这也是其可以显著 提高器件效率,钙钛矿的光稳定性和钙钛矿 LEDs 器件稳定性的主要原因.

本文首次使用溶液法处理的 NiO 薄膜作为 FAPbBr₃ NCs 钙钛矿 LEDs 的空穴注入层,获得 了高效且稳定的钙钛矿发光器件,与 PEDOT:PSS 的器件相比,其器件寿命提高了 2 倍多.通过对 NiO 进行适当浓度的金属掺杂 (Cs:NiO/Li:NiO 可 以有效改善器件的电荷平衡,从而进一步提高 FAPbBr₃ NCs LEDs 的性能.NiO 掺杂 2 mol% Cs 金属离子的器件表现出最优异的光电性质,其 最大亮度,最大电流效率,峰值 EQE 分别为 2970 cd·m⁻², 43.0 cd·A⁻¹ 和 11.0%;相比于 PEDOT: PSS 基的器件,效率提高了近 2 倍.

2 实 验

2.1 材料的制备

油酸甲脒 (FA-oleate) 的制备: 所有材料均购 买于 Aldrich 公司.将 醋酸甲脒 (FA-acetae, 5 mmol, 0.521 g, 99%) 和油酸 (20 mL, OA, 90%, 120 ℃下真空干燥) 装入 100 ml 的三颈烧瓶, 通 入氮气,在氮气的保护下将混合物加热至 130 ℃ 直至反应完成,然后在 50 ℃ 下真空干燥 30 min.

FAPbBr₃ NCs 的制备:将 0.2 mmol 溴化铅 (PbBr₂, 99.99%)和16 ml ODE(90%)装入三颈烧 瓶中,并在 80 ℃下真空干燥 35 min,以除去水和 氧气;然后通入氮气,在氮气保护下将混合物加热 至 130 ℃,先后注入 2 ml 的油胺 (OAm)和油酸, 反应 10 min,使反应物完全溶解.接着将温度升高 至 180 ℃,在剧烈搅拌下将制备好的 3 ml 油酸甲 脒快速注入到三颈烧瓶中.几秒钟后,迅速用冰浴 将混合物冷却至室温.

NiO 前驱体溶液的制备:将1 mmol 乙酸镍四 水合物和60 μL 乙醇胺溶解在10 ml 乙醇中制得, 具体方法参考文献 [15],类似地,Cs(Li) 掺杂的 NiO 的前驱体溶液只需调节氯化铯 (氯化锂) 与乙 酸镍四水合物的比例.

2.2 器件的制备

使用的 ITO 电极方块电阻为 15 Ω·sq⁻¹. 进行 实验前,将 ITO 电极依次使用清洁剂,去离子水, 丙酮和异丙醇分别在超声下清洗 30 min,然后用 O₃等离子气体处理 15 min. 随后,在空气中旋涂 NiO 前驱体溶液或 PEDOT:PSS 并在空气中退火. 接着在充满氮气的手套箱中依次旋涂 poly-TPD, FAPbBr₃ NCs,最后在约 10⁻⁴ Pa 的环境下通过热 蒸镀的方式依次蒸镀 TPBi, LiF 和 Al.

2.3 测试与表征

器件的横断面扫描电子显微镜 (SEM) 图由 Hitachi S-4800 扫 描 电 子 显 微 镜 拍 摄 . 采 用 PHILIPS CM 300 UT 高分辨透射电子显微镜拍 摄 (TEM) 图. X 射线衍射图谱 (XRD) 通过 Bruker D8 Advance 衍射仪获得, 电流密度-电压曲线由一 个可编程的源表 (Keithley 2400) 测得, 亮度由亮 度计 (LS110, Konica Minolta) 测得, 光谱由分光 光度计 (Spectrascan PR670, Photo Research) 测 得. 通过 ZJZCL-1 OLEDs 老化寿命测试仪进行器 件寿命的测试.

3 结果与讨论

3.1 器件结构

图 1(a) 为 FAPbBr₃ NCs 的电致发光器件的

示意图,器件结构为: ITO/NiO/poly-TPD/FAPbBr3 NCs/TPBI/LiF/Al. 图 1(b) 为器件横断面的 SEM 截面图,从下到上依次为玻璃基底、ITO 阳 极 (100 nm)、NiO 空穴注入层 (20 nm)、poly-TPD 空穴传输层 (30 nm)、FAPbBr₃ NCs发光层 (40 nm)、TPBI 电子传输层 (35 nm)、LiF 电子注 入层 (1 nm) 和 Al 阴极 (100 nm). 图 1(c) 为器件 的能带结构示意图,其中 ITO 电极和 LiF/Al 电极 的功函数, NiO的导带底/价带顶值以及 poly-TPD, FAPbBr₃ NCs 和 TPBI 的最低未占轨道 (LUMO)/最高已占轨道 (HOMO) 值参考于先前 发表的实验数据^[13,15-20]. 由图可知, 空穴从 ITO 经 NiO, poly-TPD 注入到 FAPbBr₃ NCs 发光层, 注入势垒呈阶梯式. NiO的价带顶 (-5.2 eV) 与 PEDOT:PSS 的 HOMO(-5.1 eV) 相比, 减少了空 穴从注入层传输到传输层的势垒,有利于空穴的注 入. 而电子由 LiF 修饰的 Al 电极注入后经 TPBI 层传输并注入到 FAPbBr₃ NCs 所碰到的势垒约 0.1 eV, 因此电子能够有效地注入到发光层中. 通过 XRD 和透射电子显微镜 TEM 表征可知 (图 1(d)), 所制备的 FAPbBr₃ NCs 表现出标准的立方相结

构^[9,21],具有良好的结晶性,单分散的立方体形貌, 平均尺寸约为10 nm,优异的光学性质为制造高性 能的发光器件提供了可能.

3.2 器件光电性能

图 2(a) 为 FAPbBr₃ NCs 溶液归一化的光致 发光 (PL) 光谱和对应器件在 4 V 偏压时的电致发 光 (EL) 光谱. 由图可知, FAPbBr₃ NCs 的 EL 峰 位为 533 nm, 对应的半高宽为 20 nm; FAPbBr₃ NCs 的 PL 峰位为 536 nm, 对应的半高宽为 22 nm, 表现为色彩饱和度高的绿光发光. 器件的 EL 峰位 相对于 PL 峰位红移 3 nm, 这可以归因于点间库 仑相互作用和电场诱导的斯塔克效应[22,23].为了研 究 NiO 空穴注入层的器件优势, 我们同时制备了 NiO 和 PEDOT: PSS 空穴注入层的钙钛矿发光器 件,并比较它们的性能.图 2(b) 为两器件的电流 密度-电压 (J-V) 曲线, 由图可知, NiO 器件与 PEDOT:PSS 器件相比, 在同等电压下均表现出较 大的电流密度,表明更加容易的电荷注入,这一点 与 NiO 的价带顶和 PEDOT: PSS 的 HOMO 差别 相关,并且进一步体现在图 2(c) 和图 2(d) 中. 图 2(c)

图 1 (a) 器件结构示意图; (b) 器件横断面 SEM 截面图; (c) 能级结构示意图; (d) FAPbBr₃ NCs 的 XRD 图谱 (插图为其 TEM 图)

Fig. 1. (a) Device structure; (b) cross-sectional SEM image of the device; (c) energy band diagram; (d) XRD diffraction pattern of the FAPbBr₃ NCs (inset: TEM image of the FAPbBr₃ NCs).

图 2 (a) 器件的归一化电致发光和光致发光光谱; PEDOT:PSS 和 NiO 空穴注入层器件的 (b) 电流密度-电压曲线, (c) 亮度-电压曲线和 (d) 电流密度-外量子效率-电压特性

Fig. 2. (a) Normalized electroluminescence and photoluminescence spectra of the device; (b) *J-V* characteristics, (c) *L-V* characteristics, (c) *L-V* characteristics, and (d) CE-EQE-*V* characteristics of the PEDOT:PSS- and NiO-based device.

和图 2(d) 分别为两器件的亮度-电压 (*L-V*) 和电流 效率-外量子效率-电压 (CE-EQE-V) 曲线, 由图可 知, 与 PEDOT:PSS 器件相比, NiO 器件的亮度、电流效率和 EQE 提升更快, 在较低电压下就可达 到最大亮度 (4 V 偏压时为 1000 cd·m⁻²), 最大电 流效率 (3.5 V 偏压时为 39.6 cd·A⁻¹) 和峰值 EQE (3.5 V 偏压时为 10.2%). 除此之外, 与 PEDOT:PSS 器件相比, NiO 器件的亮度、电流效率和 EQE 达 到最大后, 随着电压的增大下降较慢, 这显示出 NiO 在器件稳定性方面的优势, 这一点也会在后面 进一步探讨. 由此可见, NiO 对于提升 FAPbBr₃ NCs LEDs 性能方面具有显著的优势.

3.3 器件寿命

许多研究表明, ITO/PEDOT:PSS 界面的作 用严重影响着器件的工作寿命. ITO 对酸性环境 非常敏感,同时具有吸湿性的 PSS 易于吸收空气 中的水,这会加速 ITO 的腐蚀,从而导致器件稳定 性的下降^[24].与 PEDOT:PSS 空穴注入层相比, NiO 薄膜最显著的优势是器件工作寿命方面的提 高.为了比较 NiO 和 PEDOT:PSS 器件在空气中 的工作稳定性, 先对器件进行环氧树脂封装 (使用 紫外光固化). 如图 3 所示, NiO 器件显示在初始亮 度为 600 cd·m⁻² 下测试的半衰期约为 47 s, 这对应 于在 100 cd·m⁻² 的初始亮度下 11.5 min 的寿命 $(L_0^n T_{50} = 常数, 其中 L_0$ 代表初始亮度, n = 1.5, 代表加速因子, T_{50} 为亮度下降为初始亮度一半时 的时间)^[25,26], 这与 PEDOT:PSS 器件 (5 min) 相 比, 器件寿命提高了两倍多. 改善的器件稳定性在 很大程度上归因于无机空穴注入材料 (NiO) 的热

图 3 PEDOT:PSS 和 NiO 空穴注入层的器件寿命特性图 Fig. 3. Operating lifetime characteristics of the PEDOT:PSS and NiO-based devices.

稳定性优于 PEDOT:PSS^[27–30], 而且 ITO/NiO 相 对稳定的界面可有效防止 ITO 电极被腐蚀, 同时 NiO 薄膜也可以作为 FAPbBr₃ NCs LEDs 中有机 材料的保护层^[15].

3.4 NiO 掺杂特性

掺杂可以在调节半导体材料的电学性质和改善善电荷传输性质方面起重要作用^[31-35].为进一步提高 FAPbBr₃ NCs LEDs 的性能,分别对 NiO 掺杂不同浓度 (2,4,6 mol%)Cs 和 Li 来提升器件的整体空穴注入能力.如图 4 所示,发现 FAPbBr₃ NCs LEDs 的性能明显受 Cs/Li 掺杂浓度的影响,详细的器件性能见表 1. 在掺杂 Cs 的 NiO 器件中,掺杂 2 mol% Cs 的 NiO 器件表现出最优异的性能,6 V 达到最大亮度 2970 cd·m⁻²,最大电流效率为43.0 cd·A⁻¹,峰值EQE 为11.0%(图4(a),图4(b)).随后,随着 Cs 掺杂浓度的提高,器件的最大亮度、最大电流效率和峰值 EQE 呈现下降趋势.而在掺杂 Li 的 NiO 器件中,掺杂 4 mol% Li 的 NiO 器件表现出最高的性能,5.5 V 达到最大亮度 3490 cd·m⁻²,

最大电流效率为 41.8 cd·A⁻¹, 峰值 EQE 为 10.7% (图 4(c),图 4 (d)).为了研究 Cs/Li 掺杂 NiO 后器 件性能提高的机理,我们利用霍尔效应测试获得了 不同掺杂浓度 NiO 薄膜 (20 nm) 的载流子浓度、 电阻率和迁移率. NiO 薄膜和掺杂 Cs/Li 的 NiO 薄膜均呈现 p 型特性. 其中, 随着 Cs/Li 掺杂浓度 的提高, 电阻率逐渐减小, 而载流子 (空穴) 浓度逐 渐升高 (表 2). 值得注意的是 (以掺杂 Cs 的 NiO 薄膜为例),相比于未掺杂的 NiO 薄膜,掺杂 2 mol% Cs的NiO薄膜的迁移率开始下降,但随着掺杂浓 度的进一步提高,薄膜迁移率骤然减小,这与掺杂 不同浓度 Cs 后器件性能的变化情况相一致. 这一 现象可解释为:掺杂浓度的提高会导致薄膜中 Ni 空位浓度的提高, 从而提高薄膜电导率, 同时由 于晶界和杂质相的增加, 散射会增加, 导致迁移率 下降,并且这一现象在掺杂浓度较高的情况下表现 得更为明显^[36-38].因此,通过对 NiO 掺杂适当浓 度的 Cs/Li 可以有效改善 NiO 薄膜的电学性能, 从而进一步提高 FAPbBr₃ NCs LEDs 的性能.

图 4 掺杂不同浓度 (2, 4, 6 mol%)Cs 的 NiO 器件的 (a) 电流密度-亮度-电压特性和 (b) 电流效率-外量子效率-电压特性; 掺杂不 同浓度 (2, 4, 6 mol%)Li 的 NiO 器件的 (c) 电流密度-亮度-电压特性和 (d) 电流效率-外量子效率-电压特性

Fig. 4. (a) *J-L-V* characteristics of the devices with Cs: NiO; (b) CE-EQE-V characteristics of the devices with Cs: NiO; (c) *J-L-V* characteristics of the devices with Li: NiO; (d) CE-EQE-V characteristics of the devices with Li: NiO at different concentrations (2, 4 and 6 mol%).

表 1 金属掺杂 NiO 的器件性能 Table 1. The performance of devices with metaldoped NiO.

金属掺 杂浓度	$V_{\rm on}/V^{{\bf a}}$	${L_{ m max}/\over m cd{\cdot}m^{-2}}$ b	${ m CE}/{ m cd}{\cdot}{ m A}^{-1}$ c	EQE/% d
2 mol% Cs	3	2970	43.0	11.0
$4~{\rm mol}\%~{\rm Cs}$	3	2610	27.8	7.1
$6~{\rm mol}\%~{\rm Cs}$	3	2090	8.7	2.2
$2~{\rm mol}\%$ Li	3	2500	32.3	8.3
$4~{\rm mol}\%$ Li	3	3490	41.8	10.7
6 mol% Li	3	2950	16.0	4.1

[•]开启电压,亮度为1 cd·m⁻²时的电压;[•]最高的亮度; [•]最高的电流效率; [•]最高的外量子效率.

表 2 Cs 掺杂 NiO 薄膜的电学性能

 Table 2.
 Electrical properties of Cs-doped NiO

 films.

金属掺杂浓度	$\rho/\Omega{\cdot}{\rm cm}^{~{\bf a}}$	$\mu/\mathrm{cm}^2{\cdot}\mathrm{V}^{-1}{\cdot}\mathrm{s}^{-1}$ b	p/cm^{-3} c
0	2.6×10^{-1}	1.7	$2.1 imes 10^{18}$
$2~{\rm mol}\%~{\rm Cs}$	1.8×10^{-1}	1.5	$5.3 imes10^{18}$
$4~{\rm mol}\%~{\rm Cs}$	$1.7 imes 10^{-1}$	0.5	$6.0 imes 10^{18}$
$6~{\rm mol}\%~{\rm Cs}$	1.4×10^{-1}	0.2	7.4×10^{18}
$2~{\rm mol}\%$ Li	$2.2 imes 10^{-1}$	1.3	4.6×10^{18}
$4~{\rm mol}\%$ Li	$1.8 imes 10^{-1}$	1.1	$5.7 imes 10^{18}$
$6~{\rm mol}\%$ Li	1.5×10^{-1}	0.3	$6.9 imes10^{18}$

*电阻率; b迁移率; °载流子浓度(空穴).

4 结 论

本文利用无机的溶液法制备的 NiO 材料作为 空穴注入层,实现了高效且稳定的 FAPbBr₃ NCs 的钙钛矿 LEDs,与传统 PEDOT:PSS 的器件相 比,其器件寿命提高了 2.3 倍.同时,通过对 NiO 掺杂适当浓度的 Cs/Li 可以有效改善器件的电荷 平衡和器件的电学性能.NiO 掺杂 2 mol% Cs 的 器件表现出最优异的性能,6 V 时达到最大亮度 2970 cd·m⁻²,最大电流效率 43.0 cd·A⁻¹,峰值 EQE 11.0%.本文的研究成果提供了一种 FAPbBr₃ NCs 钙钛矿 LEDs 制备的新方法,有助于实现 FAPbBr₃ NCs 高效且稳定的电致发光器件.

参考文献

- Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 *Science* 350 1222
- [2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat.

Nanotechnol. 9 687

- [3] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872
- [4] Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108
- [5] Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248
- [6] Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515
- [7] Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S 2016 Nano Lett. 16 1000
- [8] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956
- [9] Protesescu L, Yakunin S, Bodnarchuk M I, Bertolotti F, Masciocchi N, Guagliardi A, Kovalenko M V 2016 J. Am. Chem. Soc. 138 14202
- [10] Song J, Hu W, Wang X F, Chen G, Tian W, Miyasaka T J 2016 Mater. Chem. A 4 8435
- [11] Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, LaMagna A, Alberti A 2016 Phys. Chem. Chem. Phys. 18 13413
- [12] Perumal A, Shendre S, Li M, Tay Y K E, Sharma V K, Chen S, Wei Z, Liu Q, Gao Y, Buenconsejo P J S, Tan S T, Gan C L, Xiong Q, Sum T C, Demir H V 2016 *Sci. Rep.* 6 36733
- [13] Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51
- [14] Cui J, Meng F P, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M K 2014 ACS Appl. Mater. Interfaces 6 22862
- [15] Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y Q, Zhang J H, Ning Z, Yang X 2017 Adv. Funct. Mater. 27 1704278
- [16] Chih Y, Wang J, Yang R, Liu C, Chang Y, Fu Y, Lai W, Chen P, Wen T, Huang Y, Tsao C, Guo T 2016 Adv. Mater. 28 8687
- [17] Wang Z, Luo Z, Zhao C, Guo Q, Wang Y, Wang F, Bian X, Alsaedi A, Hayat T, Tan Z 2017 J. Phys. Chem. C 121 28132
- [18] Lee S, Kim D B, Hamilton L, Daboczi M, Nam Y S, Lee B R, Zhao B, Jang C H, Friend R, Kim J, Song M H 2018 Adv. Sci. 5 1801350
- [19] Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X 2019 Nat. Commun. 10 665
- [20] Wang H, Li X, Yuan M, Yang X 2018 Small 14 1703410
- [21] Levchun L, OsvetA, Tang X F 2017 Nano Lett. 17 2765
- [22] Empedocles S A, Bawendi M G 1997 Science 278 2114
- [23] Mashford B S, Stevenson M, Popvic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas P T 2013 Nat. Photonics 7 407
- [24] Park S Y, Kim H R, Kang Y J, Kim D H, Kang J W 2010 Sol. Energy Mater. Sol. Cells 94 2332
- [25] Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H, Qian L 2015 Nat. Photonics 9 259
- [26] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96
- [27] Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R B M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920
- [28] Fu F, Feurer T, Weiss T P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari A N 2016 Nat. Energy 2 16190
- [29] Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313

- [30] Shi Z, Li S, Li Y, Ji H, Li X, Wu D, Xu T, Chen Y, Tian Y, Zhang Y, Shan C, Du G 2018 ACS Nano 12 1462
- [31] Alidoust N, Carter E A 2015 Phys. Chem. Chem. Phys. 17 18098
- [32] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695
- [33] Zhang J, Cai G, Zhou D, Tang H, Wang X, Gu C, Tu J 2014 J. Mater. Chem. C 2 7013
- [34] Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I C 2015 Phys. Chem. Chem. Phys. 17 8138
- [35] Muthukumaran P, Raju C V, Sumathi C, Ravi G, Solairaj D, Rameshthangam P, Wilson J, Rajendrane S, Alwarappan S 2016 New J. Chem. 40 2741
- [36] Chen S C, Kuo T Y, Lin Y C, Lin H C 2011 Thin Solid Films 519 4944
- [37] Hwang J D, Ho T H 2017 Mater. Sci. Semicond. Process. 71 396
- [38] Chen W, Wu Y, Fan J, Djurišic A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z B 2018 Adv. Energy Mater. 8 1703519

Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer^{*}

Wu Jia-Long ¹⁾ Dou Yong-Jiang ²⁾ Zhang Jian-Feng ²⁾ Wang Hao-Ran ²⁾ Yang Xu-Yong ^{2)†}

1) (Shanghai University Microelectronic R&D Center, Shanghai University, Shanghai 201900, China)

 2) (Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200040, China) (Received 21 August 2019; revised manuscript received 25 October 2019)

Abstract

Formamidinium lead bromide (FAPbBr₃) perovskite nanocrystals (NCs) have attracted great attention due to their remarkable performances of low cost, high color purity and tunable band gap. However, in a typical FAPbBr₃ perovskite light-emitting diode(LED), PEDOT:PSS, with hygroscopic and acidic nature, serves as a hole injection layer (HIL), thus leading to the device stability to decrease seriously. Device stability is one critical issue that needs improving for future applications. Here in this study, the nickel oxide (NiO) film prepared by the solution method is adopted as the HIL of the FAPbBr₃ perovskite LED to substitute detrimental PEDOT:PSS. Compared with the control device with PEDOT:PSS HIL, the resulting LED based on NiO film has the operating lifetime twice as great as that based on the PEDOT:PSS film. For further enhancing the performance of FAPbBr₃ LED, two metal dopants (Cs and Li) are introduced to improve the hole injection capability of NiO film and the charge carriers' balance of device. With Hall measurements, both NiO and Cs/Li-doped NiO demonstrate a full p-type semiconductor characteristic. Increasing the doping concentration in the film can increase the carrier concentration and reduce the carrier mobility. This decreased carrier mobility results from the increased scattering due to grain boundaries and impurity phases, seriously at high Cs/Li concentration. As a result, the device, based on the NiO film (doping 2 mol% Cs) shows the best performance with a maximum brightness value of 2970 cd/m², current efficiency of 43 cd/A and external quantum efficiency (EQE) of 11.0%, thus its efficiency is increased nearly by twice compared with that of the PEDOT:PSS-based device. The results pave the way for making highly efficient and stability perovskite LEDs based on FAPbBr₃ NCs.

Keywords: formamidinium lead bromide perovskite nanocrystals, nickel oxide, metal dopants, light emitting diodes

PACS: 81.07.Ta, 78.60.Fi, 85.60.Jb

DOI: 10.7498/aps.69.20191269

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0401702), the National Natural Science Foundation of China (Grant Nos. 51675322, 61605109, 61735004), the Shanghai Rising-Star Program, China (Grant No. 17QA1401600), and the Program for Professors of Special Appointment (Eastern Scholar) of the Higher Education Institutions of Shanghai, China.

[†] Corresponding author. E-mail: yangxy@shu.edu.cn