一种新型二维 TiO_2 的电子结构与光催化性质^{*}

熊子谦¹⁾ 张鹏程¹⁾ 康文斌^{1)2)†} 方文玉^{1)‡}

(湖北医药学院公共卫生与管理学院,十堰 442000)
 (湖北省南水北调水源区生物医药研发检测共享平台,十堰 442000)

(2020年4月29日收到; 2020年5月20日收到修改稿)

基于第一性原理计算方法,设计出了一种新型二维半导体材料 TiO₂,并进一步研究了其结构稳定性,电子结构,载流子迁移率和光学性质等.二维 TiO₂的形成能、声子谱、分子动力学、弹性常数表明,二维 TiO₂具有较好的动力学,热力学和机械稳定性,具备实验制备的条件,且能够稳定存在于常温条件下.电子 结构分析表明,二维 TiO₂是一种间接带隙半导体,在 GGA+PBE 和 HSE06 算法下的能隙分别为 1.19 eV 和 2.76 eV,其价带顶和导带底能级分别由 Ti-3d 和 Ti-4s 态电子构成,O 原子的电子态在费米能级附近贡献很小,主要分布在深处能级.载流子迁移率显示,二维 TiO₂的迁移率比单层 MoS₂要小,其电子和空穴迁移率分别为 31.09 和 36.29 cm²·V⁻¹·s⁻¹.由于空穴迁移率和电子迁移率的各向异性,电子-空穴复合率较低,使得单层 TiO₂的使用寿命更长,光催化活性更好.在应变调控下,二维 TiO₂的能隙发生明显响应,以适用于各种半导体器件的需要.半导体的带边势和光学性质显示,在-5%—2%单/双轴应变下,二维 TiO₂能够光裂水制 H₂,在-5%—5%单/双轴应变下,能够光裂水制 O₂, H₂O₂和 O₃等.此外,二维 TiO₂对可见光和紫外光具有较高的吸收系数,说明其在未来光电子器件和光催化材料领域有着潜在的应用前景.

关键词:二维 TiO₂,第一性原理,电子结构,光学性质 PACS: 63.20.dk, 73.22.-f, 78.20.Bh, 78.20.Ci

DOI: 10.7498/aps.69.20200631

1 引 言

石墨烯自从 2004 年被成功制备以来^[1],便吸 引了众多学者的兴趣. 随着研究的深入,越来越多 的新型二维材料被报道出来,例如氧化石墨烯^[2], h-BN^[3],过渡金属硫化物 (transition metal dichalcogenides, TMDCs)^[4]. 各族化合物也相继被 报道,如 III 族的硼烯^[5] 和铝烯^[6], IV 族的石墨烯^[7]、 硅烯^[8]、锗烯^[9] 和锡烯^[10], V 族的黑磷烯^[11]、砷烯^[12] 和锑烯^[13]等,这极大丰富了二维材料家族. 二维材 料因其独特的结构^[14–16],如表面积大、载流子迁移 路径短,导致电子-空穴的复合率很低,因而具有较 好的光催化性能,成为理想的光催化剂[17].例如, Zhu 等^[18] 通过计算表明, 二维硅硫族化合物 SiX(X = S, Se, Te)具有优异的光催化性质,且通 过双轴应变能够灵活调节材料的能隙和带边势,是 一种很有前途的水分解光催化剂。5un 等[19] 通过 机械剥离二维 SnS₂, 它在 1.0 生的光 电流密度为2.75 mA·cm⁻² ▲ 小 S 52的 72倍. 方文玉等^[20] 通过 F 中中 GeTe, 使 得 GeTe 的载流子 且其之催化性能明 显增强. 其他新垫 **主**化材料^[21] 也被陆 续报道,如不维 Mo 23], 过渡金属硫化

- † 通信作者. E-mail: wbkang@hbmu.edu.cn
- ‡ 通信作者. E-mail: jzfangwenyu@163.com

© 2020 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金 (批准号: 11947006)、湖北医药学院人才启动金项目 (批准号: 201 QDJZK 2) 和湖北省教育厅科学技术研究 项目 (批准号: B2018434) 资助的课题.

物 (TMDCs)^[24]、过渡金属碳化物或氮化物 MXenes^[25]、III 族卤化物^[26]和 MnPSe₃^[27]也已在 理论上预测用于光催化剂应用.

锐钛矿相 TiO₂ 是一种常见的光催化材料,其 能隙约为 3.23 eV^[28],在太阳光照射下能够光裂水 制氢和析氧^[29],受到很多学者的青睐^[30,31].关于二 维 TiO₂ 的研究 近期也有诸多报道^[32],比如 Song 等^[33]研究 TiO₂ 纳米片对肝脏和脾脏毒性反 应,发现纳米结构 TiO₂ 是一种安全的生物材料. Liu 等^[34] 以 CdS₄Se_{1-x} 为中间层,在 TiO₂ 纳米管 上制备出了多层阶梯式结构,能够显著提升其光电 电流强度和量子效率,为光电化学水分解提供了一 条全新的思路. Song 等^[35] 通过椭圆偏振光谱的非 接触无损检测方法,证明二维 TiO₂ 是可以作为半 导体器件中栅氧化物. Tao 等^[36] 通过钛金属氧化 方法在金红石 TiO₂(011) 表面制备纳米结构 TiO₂, 能够将 TiO₂ 的能隙降低至 2.1 eV,其光催化活性 显著增强.

2017年, Xie 等^[37]提出了一种新型二维材料 设计方法,即在保持原晶体结构的前提下,可以用 相邻族元素替换的方式设计出新材料.受此启发, Ti和Mo同属过渡金属,且原子半径Mo(1.30Å) 和Ti(1.32Å)、电负性Mo(3.9)和Ti(3.45)都比较 接近.而O和S是同族元素,电子排列相似.因此, 我们设想分别用Ti和O去替换单层MoS₂中的 Mo和S原子,设计出一种与单层MoS₂相同结构 (*P*-6*M*2)的二维TiO₂.目前关于*P*-6*M*2结构的单 层TiO₂尚未见报道,本文基于第一性原理计算方 法,系统分析二维*P*-6*M*2TiO₂的稳定性、电子结 构、载流子迁移率和光学性质等,为实验上制备出 新型光电子材料提供理论指导.

2 计算方法

计算所选取的二维 TiO₂ 与单层 MoS₂ 具有相同的结构,其对称群为 *P*-6*M*2.为了避免层与层之间弱范德华力的影响,沿 *z* 轴方向设置了 20 Å的真空层,晶胞结构如图 1 所示.文中所有计算都是基于 CASTEP^[38] 软件来完成的,交换相关能用Perdew-Burke-Ernzerhof(PBE) 泛函中的广义梯度近似 (GGA) 表示.各原子选取的价电子组态分别为 Ti-3p⁶3d²4s², O-2s²sp⁴. 计算均在倒格矢中进行,其中平面波截断能设置为 $E_{cut} = 450 \text{ eV}, 采$

用 20 × 20 × 1 Monkhorst-Pack 特殊 $K \le 72$ 布里渊区求和. 自洽场计算中, 能量的收敛精度设 置 为 1.0 × 10⁻⁶ eV·atom⁻¹, 内应力收敛精度 0.001 GPa, 各原子受力不大于 0.001 eV·nm⁻¹, 最 大位移收敛标准 1.0 × 10⁻³ nm. 为了避免 GGA+ PBE 算法导致能隙偏小的问题^[39], 选取 Heyd-Scuseria-Ernzerhof(HSE06) 泛函杂化函数计算材 料的能带结构. 此外, 选取模守恒赝势和有限差分 方法计算声子谱, 采用 NVT 正则标准对 5×5×1 的超晶胞结构进行分子动力学模拟 (AIMD), 计算 各种体系时均进行结构优化.

图 1 二维 TiO₂ 的晶体结构 (a) 俯视图; (b) 侧视图; (c) *K*点路径

Fig. 1. Crystal structure of monolayer TiO_2 (a) top view; (b) side view; (c) K point path.

3 结果和讨论

3.1 晶体结构

表1是二维TiO2自由弛豫后的结构常数和结 合能 $E_{\rm f}$ 等,其中 a/b为晶格常数, $\theta_1 和 \theta_2$ 分别表 示 Ti-O-Ti和 O-Ti-O 的键角, l为 Ti 与 O原子间的键长, σ 为 TiO₂ 优化 后单层的厚度 buckling height, 所有参数均在 做了标注. 为了便于比较,同时计算了单层、 数,各项参数与Castellanos-Come 等少计算结 果基本相符. 从表 1 可义 4 出, 上進 \mathbf{NO}_2 的各项 其中晶格常数 a/b, 参数与单层 MoS₂ xz平面内 O—T Q T 角 θ_2 、键长 l 以及 buckling heat σ均, 干车 K MoS₂. 分析认为, 虽 然 Mo(1.30 Å) 永子半径支 Ti(1.32 Å) 原子稍小, 但是 S(10'A) 原子 产径比 O(0.66 Å) 大得多, 导 致 MoS₂ L.上述 数都比 TiO₂ 要大.同时,由于 TiO₂的 σ 值祉健长 *l*更小,从而导致其 xy 面内的 原子夹角θ₁较 MoS₂更大.

表 1 二维 TiO₂的结构常数和结合能 Table 1. Structure constants and binding energy of monolayer TiO₂.

Material	$a/b/{ m \AA}$	$ heta_1/(\circ)$	$\theta_2 / (\circ)$	$l/\text{\AA}$	$\sigma/{\rm \AA}$	$E_{\rm f}/{\rm eV}$
TiO_2	2.89	91.66	68.16	2.01	2.26	-8.11
MoS_2	3.18	82.58	80.74	2.41	3.14	-7.35

对于一种新型材料,实验的可行性是一个重要 指标,形成能能够表征材料实验合成的难易程度, 其计算公式为^[39]

$$E_{\rm f} = \frac{E_{\rm t} - E_{\rm Ti} - 2E_{\rm O}}{3},\tag{1}$$

式中 E_f 表示形成能, E_t 表示优化后 TiO₂ 原胞的能量, E_{Ti} 和 E_O 则分别表示单个 Ti 和 O 原子的能量. 从表 1 可以看出, 单层 TiO₂ 和 MoS₂ 的形成能分 别为-8.11 和-7.35 eV, 即单层 TiO₂ 的制备是一 种放热反应, 且相对于单层 MoS₂ 更容易在实验室 合成.

3.2 稳定性分析

通常情况下,可以通过声子谱的软化程度来判断二维材料的动力学稳定性^[41].图2是二维TiO₂的声子谱计算结果,由于二维TiO₂原胞共有3个原子,因此其总共有9支振动模式,包括3支低频的声学模和6支高频的光学模.从图2中可以看出,TiO₂声子谱都没有虚频,因此,二维TiO₂具有较好的动力学稳定性.

图 2 二维 TiO₂的声子谱 Fig. 2. Phonon spectrum of monolayer TiO₂.

为了进一步研究二维 TiO₂ 的热力学稳定性, 对 TiO₂ 的 5 × 5 × 1 超晶胞结构进行分子动力学 模拟计算^[42], 计算中选取 NVT 正则标准, 温度设 置为 500 K, 模拟时间 5 ps, 步长 2 fs. 计算结果如 图 3 所示,可以发现, 二维 TiO₂ 在加热过程中总 能量在增加, 但是增加幅度非常小 (约 4.5 eV), 材 料的温度一直在 500 K 上下起伏. 更重要的是, TiO₂ 超晶胞在整个过程中没有出现明显的原子重 构及键断裂现象, 这表明二维 TiO₂ 具有较好的热 稳定性, 能够在常温下稳定存在.

图 3 二维 TiO₂的分子动力学模拟 Fig. 3. Molecular dynamics simulation of monolayer TiO₂.

此外,对于一个稳定的二维材料也应该具有稳定的机械稳定性,通常情况下可以用 Born-Huang 准则^[43]来表征,即需满足 $C_{11}C_{22} - C_{12}^2 > 0$ 和 $C_{66} > 0$,这里的 C_{ij} 指的是弹性常数.通过计算二维 TiO₂的弹性常数显示, $C_{11} = C_{22} = 77.18$ GPa, $C_{12} = 8.92$ GPa, $C_{66} = 34.13$ GPa,很显然满足 Born-Huang 准则.综上分析,二维 TiO₂ 同时具有较好的动力学、热力学和机械稳定性.

3.3 弹性常数

作为一种新的二维材料/研究其/(G-2)」可以 带来新的认识和应用的可能性、为此、根据二维 TiO₂的弹性常数进入步为公了真在*xy* 平面内的 杨氏模量*Y*(θ)和分数/*a*、29(6)是相对于*a*轴的夹 角),计算公式满足^[4]

(2)

$$Y(\theta) = \frac{C_{11}C_{12} - C_{12}^2}{C_{11}\sin^4\theta + \left(\frac{C_{11}C_{12} - C_{12}^2}{C_{66}} - 2C_{12}\right)\sin^2\theta\cos^2\theta + C_{22}\cos^4\theta},$$

$$v(\theta) = \frac{C_{12}\sin^4\theta - \left(C_{11} + C_{22} - \frac{C_{11}C_{12} - C_{12}^2}{C_{66}}\right)\sin^2\theta\cos^2\theta + C_{12}\cos^4\theta}{C_{11}\sin^4\theta + \left(\frac{C_{11}C_{12} - C_{12}^2}{C_{66}} - 2C_{12}\right)\sin^2\theta\cos^2\theta + C_{22}\cos^4\theta}.$$
(3)

力学性质计算结果如图4所示,由于空间反演 对称性,二维TiO,的杨氏模量和泊松比表现出明 显的各向异性,但沿 a 轴和 b 轴方向上的力学性质 相同,且在 a/b 轴方向达到最大值,在与 a 轴 45°和135°夹角处取最小值.对比常见二维材料的 力学性质发现,二维 TiO₂ 的杨氏模量最高可达 76.15 GPa, 明显小于石墨烯 (1.0 TPa)^[45]、单层 MoS₂(300 GPa)^[40] 和氧化石墨烯 (200 GPa)^[46] 的 杨氏模量, 但大于黑磷烯 (41.3 GPa)^[11], 稍小于 二维 TnSe (101.37 GPa)^[47]. 对于二维 TiO₂ 的泊 松比,最大可达 0.116,小于石墨烯 (0.175)[48]、 h-BN(0.211)^[49]和单层MoS2(0.25)^[50],且大于 8-Pmmn 硼烯^[41] (0.042—0.062) 的泊松比.因此, 二维 TiO₂ 是一种常见的正泊松比材料, 具有中等 偏小的杨氏模量,因此在柔性电子器件中具有潜在 的应用前景.

3.4 电子结构

为考虑电子自旋极化 (SOC)^[51] 对能带结构的 影响,分别计算了 GGA+PBE 算法加上自旋极化 和不加自旋极化能带结构,结果显示两种能带图几 乎没有区别 (能隙仅相差 0.002 eV),因此可以认为 自旋极化对体系的计算结果几乎没有影响,可以不 用考虑.为了比较这种 *P*-6*M*2 结构的 TiO₂ 与常

见 TiO₂ 结构 (金红石相和锐钛矿相) 性质的不同, 分别计算出了单层金红石 (rutile TiO₂) 和单层锐 钛矿 (anatase TiO₂) 的能带结构和分波态密度, 如 图 5 所示. 图中分别描绘了 GGA+PBE (红色)和 HSE06 (蓝色) 两种算法下的能带结构, 以及 HSE06算法下的分波态密度.观察能带图可以发 现,两种算法下的能级色散曲线的变化趋势基本一 致. 通常情况下, GGA+PBE 会低估半导体的能 隙,而HSE06计算的结果则能与实验值很好地符 合^[52]. 通过图 5(a) 可知, P-6M2 TiO₂计算能隙 分别为 1.19 eV (GGA+PBE) 和 2.76 eV (HSE06), 因此 2.76 eV 可以视为二维 TiO₂ 的真实能隙, 这 比锐钛矿 TiO2 的能隙 (3.2 eV)^[53] 更小. 由于价带 顶和导带底不在同一点, P-6M2 TiO2 属于间接带 隙半导体. 比对图 5(b) 和图 5(c) 发现, 单层 rutile TiO₂和 anatase TiO₂的计算能隙分别高达 5.02 和 4.70 eV (HSE06), 这明显高于体相 rutile TiO2 (3.0 eV) 和体相 anatase TiO₂ (3.2 eV) 的能隙^[54]. 单从能隙宽度来看, P-6M2 TiO2 属于窄带隙半导 体,它能够对太阳光谱产生很好的响应.而单层 rutile TiO₂和 anatase TiO₂能隙均大于4 eV (接近5 eV),属于宽带隙半导体,很难对太阳光谱 产生响应.因此,相比较而言, P-6M2 TiO2 更适用 于光催化材料,因此后文中将主要对单层 P-6M2

Fig. 4. Polar coordinates for Young's modulus (left/blue line) and Poisson's ratio (right/red line) θ is the angle with respect to the *a*-direction.

图 5 能带图(左)和分波态密度图(右) (a)单层 P-6M2 TiO₂; (b)单层金红石 TiO₂; (c)单层锐钛矿 TiO₂ Fig. 5. Energy band structure (left) and density of states (right) of (a) monolayer P-6M2 TiO₂, (b) monolayer rutile TiO₂, (c) monolayer anatase TiO₂.

TiO₂进行分析.对照分波态密度可知,在-3— 6 eV的能量范围内,能级曲线主要由 Ti 原子外的 电子贡献,O 原子的贡献很少,仅在能级深处 (-2.5 eV)处有少量的分布.此外,半导体的价带顶 主要由 Ti-3 d 组成,导带底则是由 Ti-4 s 组成.态 密度在费米面上下出现两个孤立的峰值,这与价带 顶和导带底各自形成一条孤立的能级相符合;而在 价带深处 (-3—1.5 eV)和导带远处 (4.5—6.0 eV) 则出现相对较宽的峰值,与之对应的则是能级曲线 在以上两个范围内的局域化程度明显加剧,并且发 生能级简并现象.由于半导体对光电性质起决定性 作用的主要是费米面附近电子的分布,半导体费米面上下出现峰值,这将允许更多的载流子在价带顶和导带底发生跃迁而产生光吸收现象,这显然对其 光催化性质是有利的.

为研究晶体中原子间的成键特征以及电子转 移情况,选取Ti和O原子在同一平面内的差分电 荷密度^[55],如图6所示.图6中差分电荷密度线保 持同一刻度,刻度条的数值表示差分电荷密度等高 线数值的大小,其中蓝色表示失去电子,红黄色表 示得到电子,颜色越深表示电子转移得越多.很明 显,Ti主要表现为失去电子,O则得到电子,即电 子由低电负性的Ti(3.45)转移至高电负性的O(7.54) 原子,因此,Ti—O之间主要以离子键形式存在.

图 6 二维 TiO₂的差分电荷密度图 Fig. 6. The differential charge density of monolayer TiO₂.

载流子迁移率是半导体材料的重要指标,通过 计算价带顶光生空穴和导带底光生电子的迁移率, 可以很直观地反映电子和空穴的复合率^[56],合理 评价半导体的光催化活性.对于二维半导体材料, 可以通过 Bardeen 和 Shockley 提出的形变势理论^[57] 来表达,如果把二维材料看作均匀的介质,其载流 子迁移率的计算公式如下^[58]:

$$\mu_{2D} = \frac{e\hbar^3 C^{2D}}{k_{\rm P} T m^* m^* (L^2)^2}$$
(4)

式中, e为电子带电量, ħ为 kB为 玻尔兹曼常数, m ₹ ▲ (可以根据 ^[59], *E*₀(*k*)为载流 公式 $m^* = \hbar^2$,能级), *m_l**为平均 子迁移方向上价带 有效质量、计算 $\sqrt{m_a^* m_b^*}\,,\,m_a^* \, \pi \, m_b^* \, G$ 式为加 别为沪 a 轴ヂ *b* 轴力向上的有效质量), *T* 为温度 势^[60](计算公式为 $E_l^i = \frac{\Delta E_i}{\Delta l/l_0}$ (300 K), 入为形产 这里 ΔE_i 为弟i条能级在压缩或者拉伸应变下能 量的变化, Δl 为压缩或者拉伸长度, l_0 为晶胞初始 长度,设置的应变范围为ε(-1%—1%),应变步长 为 0.5%), C^{2D} 为平面刚度,计算公式为^[61]

$$C^{\rm 2D} = (\partial^2 E / \partial \varepsilon^2) / S_0, \tag{5}$$

式中 $E - E_0$, $S_0 \pi \Delta l/l_0$ 分别表示晶胞的总能量的 变化, *xy* 平面面积, 以及应变压缩或者拉伸比例. 图 7 (a) 为二维 TiO₂ 总能量随应变量的变化, 采 取二次曲线拟合计算平面刚度; 图 7(b) 和图 7(c) 表示价带顶 (VBM) 和导带底 (CBM) 相对真空能 级的变化, 采取线性拟合计算材料的形变势, 计算 中均是采取 $3 \times 3 \times 1$ 超晶胞结构进行.根据 (4) 式和 (5) 式可以计算出二维 TiO₂ 的载流子迁 移率等有关性质, 如表 2 所列.

从图 7 可以看出, 二维 TiO₂ 沿 a 和 b 两个方向上的总能量、CBM 和 VBM 变化趋势非常相似, 因而两个方向上的平面刚度 (21.27, 21.28 N·m⁻¹) 和形变势 (3.42, 3.38 eV) 差异很小, 如表 2 所列. 计算载流子有效质量发现, 二维 TiO₂ 空穴质量明显大于电子质量, 这说明价带顶附近能级较导带底 附近能级更加平坦, 对照图 5 也证实了这一点. 根 据 (4) 式可知, 正是有效质量的不同导致载流子迁 移率表现出明显的各向异性, 沿 a, b 方向上的电子 迁移率为 19.92 和 31.09 cm²·V⁻¹·s⁻¹, 空穴迁移率 分别为 30.75 和 36.29 cm²·V⁻¹·s⁻¹, 这比单层 MoS₂ 的迁移率 (200 cm²·V⁻¹·s⁻¹)^[62] 要小. 这说明二维 TiO₂ 载流子迁移率相对较小, 并且电子和空穴的 迁移率表现出明显差异, 即两者的分离效率和异步 化程度较高, 导致电子和空穴的复合率较低^[63], 这样的半导体更耐用, 光催化活性更好.

为进一步研究弹性形变对二维 TiO₂ 电子结构 的影响,分别计算了在-5%—5% 的面内压缩/拉伸 应变下 TiO₂ 的能隙变化,计算选取 HSE06 函数, 结果如图 8 所示. 很明显,二维 TiO₂ 的能隙对弹 性应变有着明显响应,其能隙随压缩/拉伸应变单 调增大/减小,并且在沿 *a*/*b* 轴双轴方向应变下能 隙变化得更快,这说明二维 TiO₂ 的能隙可以通过 形变进行调控,以适用于各种电子器件的需求.

王在

图 7 (a) 二维 TiO₂ 沿 a/b 方向的总能量与应变量 $\Delta l/l$ 的关系,采用二次数据拟合二维结构的平面刚度, 罗色和东色曲线表示 沿 $a \pi b$ 方向的面内刚度; (b), (c) 单层 TiO₂ 的 VBM 和 CBM 随应变量相对真空能级的变化,采取线性执合计变 / 之类 Fig. 7. (a) The relation between total energy and the applied strain $\Delta l/l$ along the a/b directions of monolecue The the quadratic data fitting gives the in-plane stiffness of 2D structures. Black and red curves show the in-plane tillerss along the along b directions of monolayer TiO₂. The shift of VBMs and CBMs for (b-c) monolayer TiO₂ with respective the use und energy as a function of the applied strain along either the a and b direction. The linear fit of the data yields the defent a composite vial constant.

表 2 二维 TiO₂ 有效质量 m^* , 形变势常数 E^i_{d} , 弹性常数 C^{2D}_{d} 和载流

Table 2. Calculated effective mass m^* , deformation potential constant E_d^i , electromodulus O^D , and carrier mobility μ_{2D} for monolayer TiO₂ along the $a \ (\zeta \to K)$ and $b \ (\zeta \to G)$ directions, where μ represents the position of the valence band top and the conduction band bottom.

Carrier type	$m_a^*/m_{ m e}$	$m_b^*/m_{ m e}$	$m_l^*/m_{ m e}$	$ E_{la} / \text{ eV}$	$\left E_{lb}\right /~{\rm eV}$	$C_a^{ m 2D} / \mathrm{N}{\cdot}\mathrm{m}^{-1}$	C,	P / N·m⁻	$\mu_a^{ m 2D} / { m cm}^2 \cdot { m V}^{-1} \cdot { m s}^{-1}$	$\mu_b^{2\mathrm{D}}/~\mathrm{cm}^2\cdot\mathrm{V}^{-1}\cdot\mathrm{s}^{-1}$
Electrons	3.21	1.39	2.11	3.43	3.38	21.27		21.	12.92	30.75
Holes	4.73	4.12	4.41	1.26	1.25	21.27		21.28	31.09	36.29

 $\alpha(\omega)$

图 8 单/双轴应变下能隙变化

Fig. 8. Band gap of monolayer ${\rm TiO}_2$ under uniaxial/biaxial strain, calculated using the HSE06 functional.

3.5 光催化性质

前文分析结果表明二维 TiO₂ 属于间接窄带隙 半导体,且通过单/双轴应变可以有效调控其能隙, 为此进一步分析了二维 TiO₂ 在不同应变下的光催 化解水能力.一般情况下,参照标准氢电极的氧化 还原势,半导体的氧化还原电势为^[56]:

$$CB = \chi - E_{\rm e} - 0.5E_g,\tag{6}$$

$$VB = E_{\rm c} + E_q,\tag{7}$$

其中 CB 与 VB 分别表示导带底与价带顶的氧化 还原电势, χ 表示材料的电负性, 它可以通过计算 各原子密立根电负性几何平均值得到. E。为以氢 为标准时自由电子的电势 (4.50 eV), Eg 为半导体 能隙. 已知 Ti 和 O 原子的电负性分别为 3.45 和 7.54, 可导 TiO₂ 电负性 χ 为 5.81. 通过 (6) 式和 (7) 式计算得到二维 TiO2 在不同应变下的氧化还 原势,并将其与光催化水的部分产物的电势作比 较,如图9所示.可以看出,TiO2的导带底的电势 随着压缩/拉伸形变的增加而减小/增加,价带顶的 电势则随着压缩/拉伸形变的增加而增加/减小,且 在-5%-2%的单/双轴应变下其电势小于0 eV, 即低于光裂水制氢的还原势 (0.0 eV), 因此在这个 应变范围内,二维 TiO2 能够光裂水制 H2. 值得注 意的是,在整个应变范围内(-5%--5%),TiO2价 带顶的电势很大(大于 2.5 eV),具有很强的氧化 性,这说明二维 TiO2 还能够光催化水析出 O2, H2O2 和 O₃ 等, 而这些产物都有较强的氧化能力, 可以 直接氧化很多污染物,这使得 TiO2 有望成为一种 新型二维光催化材料.

采用 HSE06 泛函杂化函数计算二维 TiO₂ 的

介电函数,可以根据 Kramers-Kronig 的色散关系 和直接跃迁概率的定义推导出其吸收系数等光学 常数,计算关系可以表达为^[64]:

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega),$$
 (8)

$$=\sqrt{2}\omega[(\varepsilon_1^{\ 2}(\omega)+\varepsilon_2^{\ 2}(\omega))^{1/2}-\varepsilon_1(\omega)]^{1/2}, \quad (9)$$

其中 $\varepsilon(\omega)$ 表示介电函数, $\varepsilon_1(\omega)$ 和 $\varepsilon_2(\omega)$ 分别表示实 部和虚部, ω 是频率, $\alpha(\omega)$ 为光吸收系数. 根据 (8)式和(9)式得到介电函数的虚部和吸收系数随 波长的变化, 如图 10 所示, 这里分别选取面内沿

Fig. 9. Schematic diagram of monolayer ${\rm TiO}_2$ photocatalysis under uniaxial/biaxial strain.

Fig. 10. Optical properties: (a) virtual part of dielectric function; (b) absorption coefficient.

x轴方向 xx (蓝色) 和沿 z轴方向 zz (红色) 两个光 线入射方向. 从图中可以看出, 二维 TiO₂ 对光谱 的响应范围内 (100—700 nm), $\varepsilon_2(\omega)$ 和 $\alpha(\omega)$ 的变 化趋势保持一致, 在 200 nm 附近出现峰值, 在 400 nm 以上的分布很少, 这说明其对中长波紫外 线及短段可见光具有一定的吸收效果. 值得注意的 是, 吸收系数对应的吸收边约为 480 nm, 对应的光 子能量约为 2.58 eV, 与 TiO₂ 的能隙 (2.76 eV) 比 较接近. 这主要是由于吸收边与光学带隙直接相 关, 当光子能量达到能隙范围, 半导体便能产生光-电子耦合效应, 激发电子在价带与导带间跃迁. 此 外, 吸收系数达到了 10⁵ 的数量级, 与硅的吸收系 数^[54] 相当, 说明二维 TiO₂ 作为一种高效的光吸收 材料有望应用于太阳能电池和其他光电器件中.

4 结 论

基于第一性原理计算方法,设计出了一种新型 二维 TiO₂, 通过计算其结合能、声子谱、分子动力 学和弹性常数表明, 二维 TiO2 具备实验合成的条 件,同时拥有较好的动力学、热力学和机械稳定性, 能够在常温条件下稳定存在. 电子结构分析表明, 二维 TiO₂ 的计算能隙为 2.67 eV, 为一种间接带 隙半导体.其迁移率比单层 MoS2 要小,电子和空 穴迁移率分别为 31.09 和 36.29 cm²·V⁻¹·s⁻¹ 即二 维 TiO₂ 的电子和空穴的复合率较低, 具备较好的 光催化活性. 在单/双轴应变下, 二维 TiO₂ 能隙随 压缩/拉伸应变量单调增大/减小,即可以通过外力 应变有效调控其能隙,以适应不同电子器件的需 求. 分析其光催化性质表明, 二维 TiO2 具备较好 的光催化效果,当施加-5%-2%的单/双轴应变 时,其还原势低于0 eV,能够光裂水制H₂,而在 -5%—5%的应变范围内,二维 TiO₂ 的氧化势高 于 2.5 eV, 能够光裂水析 O₂, H₂O₂和 O₃等. 另一 方面, 二维 TiO₂ 的吸收系数达到 10⁵ 的数量级, 光 吸收范围覆盖中长波紫外线及可见光波段,因此二 维 TiO₂ 作为一种高效的光吸收材料有望应用于太 阳能电池和其他光电器件中.

感谢国家超级计算深圳中心计算资源的支持.

参考文献

[1] Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004

Nature **430** 870

- [2] Liu L, Zhang J, Zhao J, Liu F 2012 Nanoscale 4 5910
- [3] Kvashnin D G, Bellucci S, Chernozatonskii L A 2015 Phys. Chem. Chem. Phys. 17 4354
- [4] Liu Y, Duan X, Huang Y, Duan X 2018 Chem. Soc. Rev. 47 6388
- [5] Gupta S, Kutana A, Yakobson B I 2018 J. Phys. Chem. Lett. 9 2757
- [6] Yuan J, Yu N, Xue K, Miao X 2017 Appl. Surf. Sci. 409 85
- [7] Lee C, Wei X, Kysar J W, Hone J 2008 Science **321** 385
- [8] Wang H, Chan T L, Xie Z 2018 Chem. Commun. (Camb) 54 385
- [9] Hartman T, Sofer Z 2019 ACS Nano 13 8566
- [10] Li P 2019 Phys. Chem. Chem. Phys. 21 11150
- [11] Li L, Yang J 2017 Nanotechnology 28 475701
- [12] Yuan J, Xie Q, Yu N, Wang J 2017 Appl. Surf. Sci. 394 625
- [13] Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112
- [14] Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M, Cao M S 2020 Sci. Bull. 65 138
- [15] Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys.-Berlin 531 1800390
- [16] Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398
- [17] Matta S K, Zhang C, Jiao Y, O'mullane A, Du A 2018 Nanoscale 10 6369
- [18] Zhu Y L, Yuan J H, Song Y Q, Wang S, Xue K H, Xu M, Cheng X M, Miao X S 2019 J. Mater. Sci. 54 11485
- [19] Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J, Wei S, Xie Y 2012 Angew. Chem. Int. Ed. Engl. 51 8727
- [20] Fang W Y, Zhang P C, Zhao J, Kang W B 2020 Acta Phys. Sin. 69 056301 (in Chinese) [方文玉, 张鹏程, 赵军, 康文斌 2020 物理学报 69 056301]
- [21] Chen Y, Wang L, Wang W, Cao M S 2017 Appl. Catal., B Environ. 209 110
- [22] Zhang Y, Kuwahara Y, Mori K, Yamashita H 2019 Chem. Asian J. 14 278
- [23] Liang Z, Sun B, Xu X, Cui H, Tian J 2019 Nanoscale 11 12266
- [24] Zeng H, Cui X 2015 Chem. Soc. Rev. 44 2629
- [25] Guo Z, Zhou J, Zhu L, Sun Z 2016 J. Mater. Chem. A 4 11446
- [26] Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232
- [27] Zhang X, Zhao X, Wu D, Jing Y, Zhou Z 2016 Adv. Sci. 3 1600062
- [28] Lacerda A M, Larrosa I, Dunn S 2015 ar spie 7 12331
 [29] Ishida Y, Motokane Y, Tokunaga T, Youe av 1 2015 Phys.
- Chem. Chem. Phys. 17 24556 [30] Yoshida T, Niimi S, Yamamoto Maximuto T, angi S 2015 J.
- Colloid Interface Sci. 447 25 [31] Liu X. Chen Z. Cao Les 2 2 2 1 CS and Energy Mater. 2
- [31] Liu X, Chen Z, Cao X S 2 19 CS hepp. Energy Mater. 2 5960
- [32] Yang J, Jiang Y, Li, Z, Musire E, Gao M Z 2016 Nanoscale 8:8170
- [33] Song S Soxia P Y, Chen & Yang J, Shen X, Fan S J, Guo M L, Sup T M, Zhong X D 201 RSC Adv. 4 42598
- [34] Liu X, Chen Z, Li W, Cao M S 2017 J. Phys. Chem. C 121 20605
- [35] Song X N Hu L Forki D H, Chen L, Sun Q Q, Zhou P, Zhang D W 2015 Strep 5 15989
- [36] Tao J, Luttrell T, Batzill M 2011 Nat. Chem. 3 296
- [37] Xie Q, Yuan J, Yu N, Wang L, Wang J 2017 Comput. Mater.

Sci. 135 160

- [38] Qiu G, Xiao Q, Hu Y, Qin W, Wang D 2004 J. Colloid Interface Sci. 270 127
- [39] Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 *Appl. Surf. Sci.* 469 456
- [40] Castellanos-Gomez A, Poot M, Steele G A, Van Der Zant H S, Agrait N, Rubio-Bollinger G 2012 Adv. Mater. 24 772
- [41] Yuan J, Yu N, Xue K, Miao X 2017 RSC Adv. 7 8654
- [42] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131
- [43] Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284
- [44] Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227
- [45] Li P, You Z, Haugstad G, Cui T 2011 Appl. Phys. Lett. 98 253105
- [46] Wang Y, Ma R, Hu K, Kim S, Fang G, Shao Z, Tsukruk V V 2016 ACS Appl. Mater. Interfaces 8 24962
- [47] Li Y, Yu C, Gan Y, Kong Y, Jiang P, Zou D F, Li P, Yu X F, Wu R, Zhao H, Gao C F, Li J 2019 Nanotechnology 30 335703
- [48] Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120
- [49] Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406
- [50] Kang J, Sahin H, Peeters F M 2015 Phys. Chem. Chem. Phys. 17 27742

- [51] Zhao J, Li Y, Ma J 2016 Nanoscale 8 9657
- [52] Yuan J, Yu N, Wang J, Xue K-H, Miao X 2018 Appl. Surf. Sci. 436 919
- [53] El Mragui A, Logvina Y, Pinto Da Silva L, Zegaoui O, Esteves Da Silva J C G 2019 Materials 1 2
- [54] An X, Hu C, Liu H, Qu J 2018 Langmuir 34 1883
- [55] Luican-Mayer A, Zhang Y, Dilullo A, Li Y, Fisher B, Ulloa S E, Hla S W 2019 Nanoscale 11 22351
- [56] Yu W, Zhang J, Peng T 2016 Appl. Catal., B Environ. 181 220
- [57] Zhong L, Chen X, Qi J 2017 Phys. Chem. Chem. Phys. 19 15388
- [58] Hua C, Sheng F, Hu Q, Xu Z A, Lu Y, Zheng Y 2018 J. Phys. Chem. Lett. 9 6695
- [59] Sarker H P, Rao P M, Huda M N 2019 ChemPhysChem 20 773
- [60] Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959
- [61] Liu X, Wang Y, Li F, Li Y 2016 Phys. Chem. Chem. Phys. 18 14638
- [62] Xiao J, Long M, Li M, Li X, Xu H, Chan K 2015 Phys. Chem. Chem. Phys. 17 6865
- [63] Zhang J, Wageh S, Al-Ghamdi A, Yu J 2016 Appl. Catal., B Environ. 192 101
- [64] Mogulkoc A, Mogulkoc Y, Kecik D, Durgun E 2018 Phys. Chem. Chem. Phys. 20 21043

Study on the electronic structure and photocatalytic properties of a novel monolayer TiO_2^*

Xiong Zi-Qian¹⁾ Zhang Peng-Cheng¹⁾ Kang Wen-Bin^{1)2)†} Fang Wen-Yu^{1)‡}

1) (Public Health and Management School, Hubei University of Medicine, Shiyan 442000, China)

2) (Hubei Biomedical Detection Sharing Platform in Water Source Area of

South to North Water Diversion Project, Shiyan 442000, China)

(Received 29 April 2020; revised manuscript received 20 May 2020)

Abstract

By means of state-of-the-art density functional theory (DFT) computations, We designed a new twodimensional material TiO₂. We further investigated the stability, electronic structure, carrier mobility, and optical properties of monolayer TiO_2 . Our results show that monolayer TiO_2 has good kinetic, thermodynamic and mechanical stability and can exist stably at room temperature. The results were demonstrated using the binding energy, phonon spectrum, molecular dynamics simulation, and elastic constant calculation. The band structure indicates that the monolayer TiO_2 is an indirect bandgap semiconductor with energy gaps of 1.19 eV (GGA+PBE) and 2.76 eV (HSE06), respectively. The results of state density show that the Ti-3d state electrons constitute the top of the valence band and Ti-4s state electrons constitute the bottom of the conduction band. The electron states of O atoms contribute very little near the Fermi energy level and are mainly distributed in the deep energy level. In addition, the carrier mobility of monolayer TiO_2 is smaller than monolayer MoS_2 , and the electron and hole mobility can reach 31.09 cm²·V⁻¹·s⁻¹ and 36.29 cm²·V⁻¹·s⁻¹, respectively. Due to the anisotropy of hole mobility and electron mobility, the composite rate of electrons and holes is relatively low. This ensures longer service life and better photocatalytic activity of monolayer TiO₂. Furthermore, under the condition of uniaxial strain and biaxial strain, the energy gap of monolayer TiO_2 has a clear response. The energy gap is more sensitive to biaxial strain than uniaxial strain, indicating that monolayer TiO_2 can be applied to various semiconductor devices. The band-edge potential and optical properties of semiconductors indicate that two-dimensional TiO_2 is capable of photo-splitting water production, H₂ at $-5\sim 2\%$ single/biaxial strain, and O_2 , H_2O_2 , O_3 , etc. at $-5 \sim 5\%$ single/biaxial strain. Moreover, the monolayer TiO₂ has a high absorption coefficient for visible and ultraviolet light. In conclusion, the monolayer TiO₂ has a potential application prospect in the field of optoelectronic devices and photocatalytic materials in the future

Keywords: two-dimensional TiO2, first principles, electronic structures, optical propertiesPACS: 63.20.dk, 73.22.-f, 78.20.Bh, 78.20.CiDOI: 10.7498/aps/s 202062

^{*} Project supported by the National Natural Science Foundation of China (Gray No. 1194,006), the Cultivating Project for Young Scholar at Hubei University of Medicine, China (Grant No. 2018QD, 2R22), and the Natural Science Foundation of Hubei Provincial Department of Education, China (Grant No. B2018434).

[†] Corresponding author. E-mail: wbkang@hbmu.edu.cn

[‡] Corresponding author. E-mail: jzfangwenyu@163.com