

Institute of Physics, CAS

二维Nb₂SiTe₄基化合物稳定性、电子结构和光学性质的第一性原理研究

罗雄 孟威威 陈国旭佳 管晓溪 贾双凤 郑赫 王建波

First-principles study of stability, electronic and optical properties of two-dimensional Nb₂SiTe₄-based materials

Luo Xiong Meng Wei-Wei Chen Guo-Xu-Jia Guan Xiao-Xi Jia Shuang-Feng Zheng He Wang Jian-Bo

引用信息 Citation: Acta Physica Sinica, 69, 197102 (2020) DOI: 10.7498/aps.69.20200848 在线阅读 View online: https://doi.org/10.7498/aps.69.20200848 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性

Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites 物理学报. 2019, 68(15): 157101 https://doi.org/10.7498/aps.68.20190596

三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究

First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides 物理学报. 2020, 69(11): 116201 https://doi.org/10.7498/aps.69.20200234

应力调控下二维硒化锗五种同分异构体的第一性原理研究

First-principles study of five isomers of two-dimensional GeSe under in-plane strain 物理学报. 2019, 68(11): 113103 https://doi.org/10.7498/aps.68.20182266

H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算 First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states 物理学报. 2018, 67(16): 166401 https://doi.org/10.7498/aps.67.20180626

第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质

First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13) 物理学报. 2018, 67(6): 067101 https://doi.org/10.7498/aps.67.20172356

碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算

First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials 物理学报. 2019, 68(23): 237303 https://doi.org/10.7498/aps.68.20191246

二维 Nb₂SiTe₄ 基化合物稳定性、电子结构和 光学性质的第一性原理研究^{*}

罗雄¹) 孟威威^{1)†} 陈国旭佳¹) 管晓溪¹) 贾双凤¹) 郑赫¹)²)³[‡] 王建波^{1)††}

1) (武汉大学物理科学与技术学院,电子显微镜中心,人工微结构教育部重点实验室和高等研究院,武汉 430072)

2)(武汉大学苏州研究院,苏州 215123)
3)(武汉大学深圳研究院,深圳 518057)

(2020年6月4日收到; 2020年6月18日收到修改稿)

基于第一性原理计算,确定了 3 种稳定未被报道的 Nb₂SiTe₄ 基化合物 (A_2BX_4 : Nb₂SiSe₄, Nb₂SnTe₄ 和 Ta₂GeTe₄),研究了其电子结构,光学性质以及应力工程对其电子结构的调控.计算结果表明上述 3 种化合物 具有类似 Nb₂SiTe₄ 的窄带隙值、强的光吸收性能以及显著的光学各向异性,可用于光电器件之中.其晶格常 数范围为 6.04 Å $\leq a \leq 6.81$ Å, 7.74 Å $\leq b \leq 8.15$ Å. Ta₂GeTe₄ 的晶格参数与 Nb₂SiTe₄ 几乎相同,带隙值 减小了 0.15 eV,可应用于远红外光探测.应力工程表明外加双轴拉伸应力可减小 A_2BX_4 体系带隙值.外加双 轴压缩应力时, A_2BX_4 体系价带顶轨道可出现反转 (Nb₂SiTe₄, Nb₂GeTe₄ 和 Ta₂GeTe₄), 由 B 位阳离子占据态 d 轨道主导转变为 B 位阳离子占据态 d 轨道与 X 位阴离子满 p 轨道共同主导,导致带隙值变化趋势异常.我 们预测该价带顶轨道的反转可有效降低空穴有效质量,促进载流子的迁移,有助于器件性能的提升.

关键词: Nb₂SiTe₄, 元素替换, 应力工程, 第一性原理 **PACS:** 71.20.-b, 85.60.Gz, 31.15.A-

DOI: 10.7498/aps.69.20200848

1 引 言

自石墨烯被成功剥离以来^[1],二维层状材料因 其新奇的物理特性及其在纳米器件中的特殊应用 而被大家广泛关注.石墨烯得益于其特殊的狄拉克 锥型能带结构而具有很高的载流子迁移率.然而其 零带隙的特性限制了其在电子器件中的应用,如场 效应晶体管^[2].因此,打开石墨烯带隙或者寻找其 他二维层状半导体材料一度成为研究的热点^[3].前 者可以依靠二维异质结的构建实现^[4],后者则引导 大家发现诸多具有高载流子迁移率的二维材料候 选,如h-BN^[5],过渡金属二硫化物^[6],黑磷^[7]等.其 中得益于高周期的外壳层 p 轨道影响,二维碲化物 常拥有较小的带隙值,广泛应用于热电 (如 Bi₂Te₃^[8]) 和红外光探测等领域 (如 Nb₂SiTe₄^[9]).二维层状 Nb₂SiTe₄具有空气中稳定、带隙窄、载流子类型 可调以及对中红外光谱的响应良好等优异特性. 其块材带隙约 0.4 eV,室温下载流子迁移率可 达~100 cm²·V⁻¹·s^{-1[9]}.其单层材料的理论带隙值约

^{*} 国家自然科学基金(批准号: 51871169, 51671148, 11674251, 51501132, 51601132)、江苏省自然科学基金(批准号: BK20191187)、中央高校基本科研业务费专项资金(批准号: 2042019kf0190)、深圳市科创委基础研究面上项目(批准号: JCYJ20190808150407522)和中国博士后科学基金(批准号: 2019M652685)资助的课题.

[†] 通信作者. E-mail: meng@whu.edu.cn

[‡] 通信作者. E-mail: zhenghe@whu.edu.cn

計通信作者. E-mail: wang@whu.edu.cn

^{© 2020} 中国物理学会 Chinese Physical Society

为 0.8 eV, 可应用于光伏器件之中^[10]. 此外, 理论 计算表明单层 Nb₂SiTe₄ 具有强的各向异性和铁弹 性, 可应用于压敏器件之中^[11].

然而,受限于材料晶格不匹配的问题,二维异 质结器件的功能层界面处极易产生应力和缺陷.界 面应力会导致二维材料晶格出现自适应畸变,影响 原材料的电子结构等[12];缺陷核心会形成有害深 能级捕获载流子,进而影响器件的整体性能[13].为 了减少二维异质结器件界面处的晶格失配,基于同 族元素的合金化方法常被用来调控功能层的晶格 参数,同时保持母相结构的优良性质.此外,应力 工程[14]则被用来探究二维材料的晶格参数、电子 结构和光学性质等对外应力的响应,实现可控应力 下的性能调控. 基于此, 为了优化 Nb₉SiTe₄ 异质 结器件的潜在界面失配,提升器件性能表达,我们 通过第一性原理计算对 Nb₂SiTe₄ 体系进行探究. 我们采用同族元素替换法得到 27 种 Nb₂SiTe₄ 基 化合物 (A₂BX₄) 组合. 通过第一性原理能量计算, 筛选出稳定的组合,计算其电子结构和光学性质, 为 Nb₉SiTe₄ 的实验室合金化提供选择依据. 为了 研究实际器件中可能存在的由晶格失配造成的面 内应力影响,我们针对 Nb₂SiTe₄ 基化合物进行外 应力的模拟,探究了其对电子结构的影响,为Nb₂SiTe₄ 基微纳器件的可控制备和性能调控提供了理论指导.

2 理论计算方法

我们采用 VASP 软件进行 Nb₂SiTe₄ 基化合物的模拟.为了简化计算,本文采用自由单层 A_2BX_4 模型进行讨论,所用晶胞的真空层为 20 Å (1 Å = 0.1 nm).用广义梯度近似 (GGA) 的 Perdew-Burke-Ernzerhof ^[15,16] 来处理电子间的交换关联作用.布 里渊区的 K点网格划分采用 Monkhorst-Pack^[17] 方法. K网格选为 6 × 5 × 1,截断能为 500 eV,原 子间的相互作用力收敛标准为 0.01 eV/Å. HSE06 杂化泛函 ^[18] 用来计算更准确的带隙值和能带结构. 声子谱的计算采用 PHONOPY^[19] 软件中有限位移 法进行.

3 计算结果与讨论

3.1 A_2BX_4 化合物的稳定性

以 Nb₂SiTe₄ 为代表的 A_2BX_4 化合物具有单斜 晶体结构, 空间群为 $P2_1/c$, 其晶体结构如图 1(a) 所示, A 与 B 位阳离子被 X 位阴离子夹在中间, 形 成三明治结构. 我们采用同族元素 (A = V/Nb/Ta; B = Si/Ge/Sn; X = S/Se/Te)进行替换,共有 27 种不同 A₂BX₄ 化合物组合. 为了研究其理论上 的稳定性,我们计算了化学势能窗口.该判断稳定 性的方法广泛应用于多种材料体系.其原理是计算 实验上已合成的同元素组合的竞争相或可能分解 的二次相的形成焓,若存在化学势能窗口,则该化 合物理论上可以稳定存在;若不存在化学势能窗 口,则该化合物一定存在一条分解路径,分解为其 竞争相或二次相及其组合. 我们以 Nb₂SiTe₄ 为例, 详细介绍如何计算其化学势能窗口.首先查询 MaterialsProject^[20]数据库可知 Nb₂SiTe₄存在 Nb₄-SiTe₄和Nb₃SiTe₆两种竞争相,与NbTe₄,Nb₃Te₄, NbTe₂, Nb₅Te₄, Nb₅Si₃, NbSi₂共有6种二次相. 为了满足 Nb₂SiTe₄ 的稳定条件, 有如下等式:

 $2\mu_{Nb} + \mu_{Si} + 4\mu_{Te} = \Delta H (Nb_2SiTe_4),$ (1) 其中, μ 为对应元素的化学势, ΔH 为对应化合物的 形成焓.为了避免形成竞争相和二次相, 还需满足 以下关系:

 $4\mu_{\rm Nb} + \mu_{\rm Si} + 4\mu_{\rm Te} < \Delta H \left({\rm Nb}_4 {\rm SiTe}_4 \right), \qquad (2)$

 $3\mu_{\rm Nb} + \mu_{\rm Si} + 6\mu_{\rm Te} < \Delta H \left({\rm Nb}_3{\rm SiTe}_6\right), \qquad (3)$

 $\mu_{\rm Nb} + 4\mu_{\rm Te} < \Delta H \left(\rm NbTe_4 \right), \tag{4}$

 $3\mu_{\rm Nb} + 4\mu_{\rm Te} < \Delta H \left({\rm Nb}_3 {\rm Te}_4 \right), \tag{5}$

 $\mu_{\rm Nb} + 2\mu_{\rm Te} < \Delta H \left(\rm NbTe_2 \right), \tag{6}$

 $5\mu_{\rm Nb} + 4\mu_{\rm Te} < \Delta H \left({\rm Nb}_5 {\rm Te}_4 \right), \tag{7}$

 $5\mu_{\rm Nb} + 3\mu_{\rm Si} < \Delta H \left(\rm Nb_5 Si_3 \right), \tag{8}$

$$\mu_{\rm Nb} + 2\mu_{\rm Si} < \Delta H \left(\rm NbSi_2 \right). \tag{9}$$

结合不等式组 (1)—(9),可以得到闭合的化学 势能区间,如图 1(b) 阴影部分所示. 阴影区域的边 界即为实验室合成 Nb₂SiTe₄ 时可能出现的竞争杂 相,可以通过调控各组分浓度 (分压) 来抑制杂相 的形成.为了有效合成 Nb₂SiTe₄,应选择贫 Nb 富 Te 的环境. 我们去除了不存在化学势能窗口的组合, 筛选出 Nb₂SiSe₄, Nb₂SiTe₄, Nb₂CeTe₄, Nb₂SnTe₄ 和 Ta₂GeTe₄ 共 5 种稳定存在的 A_2BX_4 组合.其 中 Nb₂SiTe₄^[21] 与 Nb₂GeTe₄^[22] 的多层块体材料已 被实验合成,其单层材料也被理论证实可以稳定存 在.Nb₂SiSe₄, Nb₂SnTe₄ 与 Ta₂GeTe₄ 3 种化合物 未经报道.值得一提的是, Snyde 等^[23] 报道在实验 上合成了 TaGe_{0.6}Te₂, 但并未给出严格的晶体结

图 1 (a) 二维 A_2BX_4 化合物的晶体结构图; (b)—(f) 筛选出的 5 种稳定 A_2BX_4 化合物的化学势能窗口图, 分别对应 Nb₂SiTe₄, Nb₂SeTe₄, Nb₂SiSe₄, Nb₂SnTe₄ 和 Ta₂GeTe₄.

Fig. 1. (a) Crystal structure of A_2BX_4 compounds; (b)–(f) Chemical potential windows for 5 stable A_2BX_4 compounds corresponding to Nb₂SiTe₄, Nb₂GeTe₄, Nb₂SiSe₄, Nb₂SiTe₄, Nb₂SiSe₄, Nb₂SiTe₄, nb₂SiSe₄, Nb

构与原子占位,不能作为 Ta₂GeTe₄ 结构的参考. 可以看出, A₂BX₄系列材料主要存在于 Nb 和 Te 组合之中. B 位离子的变化对 Nb-Te 组合稳定 性的影响相对较小. 上述化合物均可以在富 Se/Te 环境下合成,表明阴离子的分压增大可以促进其纯 相的制备. 单层 A2BX4 的制备可以通过块材的机 械剥离. Fang 等^[10]和 Zhang 等^[11]结合第一性原 理计算,报道了Nb₂SiTe₄和Nb₂GeTe₄的理论单层 剥离能分别为 0.42(0.43) J/m² 和 0.41(0.42) J/m², 与石墨烯, MoS₂和 GeS 接近^[11], 表明其单层制备 切实可行. Zhao 等 [9] 通过胶带剥离, 得到了厚度 为 7.5 nm(约 10 层)的多层 Nb₂SiTe₄材料. 对于 Nb₂SiSe₄, Nb₂SnTe₄与Ta₂GeTe₄3种未被报道的 化合物,需要首先合成其块材纯相.得益于典型的 三明治构型, A₂BX₄系列材料的层间耦合来源于 上下两层邻近 X 阴离子的相互作用, 其单层剥离 能主要取决于 X 阴离子. 当 X = Te时, A_2BTe_4 的 理论剥离能接近报道的 0.4 J/m².

为了进一步确认 A₂BX₄ 系列化合物的稳定性, 我们通过有限位移法计算了上述 3 种新化合物 (Nb₂SiGe₄, Nb₂SnTe₄和 Ta₂GeTe₄)的声子谱. 声 子谱若存在虚频,则对应化合物的晶格存在自发沿 特定方向振动的趋势,俗称"软晶格",表明该化合 物动力学不稳定,可以退化成对称性更低的结构, 通过扩胞优化可以得到最终的稳定结构.如图 2 所 示,在 0 K下,3种化合物的声子谱在 Γ-X 与 Γ-Y 方向存在很小的虚频,频率小于-0.1 THz(-3.3 cm⁻¹). 造成此种微小虚频的来源主要有两点:1)有限尺 寸晶胞下对力常数的计算不够准确;2)计算中考 虑单层二维材料时,丢失了第三维度的平移对称 性.可以通过扩胞来消除 Γ 点处的微小虚频.考虑 到扩胞成倍的增加计算成本,我们并未进行此种小 虚频的完美消除.结合前文化学势能窗口的计算, 足以说明 Nb₂SiSe₄, Nb₂SnTe₄和 Ta₂GeTe₄ 3种 化合物的稳定性.

3.2 5 种稳定的 A₂BX₄ 化合物的晶格常数, 电子结构和光学性质

我们归纳了上述 5 种稳定的 A_2BX_4 单层材料 的晶格常数和带隙值, 如表 1 所示. Nb₂SiSe₄, Nb₂-

图 2 0K下基于 PBE 计算的声子谱 (a) Nb₂SiSe₄; (b) Nb₂SnTe₄; (c) Ta₂GeTe₄ Fig. 2. PBE calculated phonon dispersions for (a) Nb₂SiSe₄, (b) Nb₂SnTe₄ and (c) Ta₂GeTe₄ under 0 K.

SnTe₄和 Ta₂GeTe₄均具有更窄的带隙值,其块材 具有更远的红外光响应范围.为了验证计算的可靠 性,我们对比了文献报道的 Nb₂SiTe₄与 Nb₂GeTe₄ 的带隙值.可以看出,基于 PBE 和 HSE06计算的 带隙值与文献报道的非常接近. Nb₂SiTe₄的理论 晶格常数为 a = 6.40 Å, b = 7.92 Å, 与实验值非 常吻合 (a = 6.30 Å, b = 7.90 Å). 通过同族元素 替代,其晶格常数可以得到有效调控: a的调控范 围为 6.04-6.81 Å, b的调控范围为 7.74-8.15 Å, 在进行不同二维异质结构建时,有了更多的晶格选 择以匹配衬底.值得一提的是 Ta₂GeTe₄的晶格参 数与 Nb₂SiTe₄接近,却保持更窄的带隙值,可以 在远红外光吸收波段替代 Nb₂SiTe₄.

为了更精确描述 A_2BX_4 体系的电子结构, 我 们使用 HSE06 泛函计算了能带结构, 并参考 Nb₂SiTe₄ 进行了能带对齐. 如图 3 所示, 上述 5 种 A_2BX_4 材料均为间接带隙半导体, 其 VBM 落在 Γ 点, CBM 落在 Γ -Y之间. 其中: 1)Nb₂SiSe₄ 带隙 值 (0.74 eV) 比 Nb₂SiTe₄(0.87 eV) 更小, VBM 位 置更高. 常规硫族化合物中, 随着阴离子周期的增 大, 带隙值越来越小. 这是因为其 VBM 通常由硫 族元素的外壳层 p 轨道主导. 随着周期的增大, p轨道的能量升高, VBM升高, 带隙值减小. 在 A_2BX_4 体系中, VBM 来源于 A 位阳离子的 d 轨道 与 X 位阴离子的 p 轨道反键作用, 以 d 轨道主导. 相较于 Te, Se 与 Nb 的反键作用更强, VBM 被推 的更高,更易呈现 p 型导电.不同于钙钛矿化合物 MAPb X'_3 (X' = Cl/Br/I)中,当X'由I变为Cl时, 虽然 VBM 的 s-p 反键作用增强, 但是整体的 VBM 依然下移. 这是由于 s-p 反键态中 p 轨道主导 VBM, 因而 p 轨道能量区间决定整个体系 VBM 的能量 位置. 在 A_2BX_4 体系中, VBM(d-p 反键) 主要由 A 离子的 d 轨道贡献, 因而 X 离子由 Te 变为 Se 时, 其 p 轨道的降低不足以抵消 d-p 反键轨道的升高. 2) 当 B 离子从 Si, Ge 到 Sn 变化时, VBM 位置逐 渐升高, CBM 位置变化不大. 观察能带形状可以 发现, VBM 的带宽从1 eV (Nb₂SiTe₄) 增大到1.5 eV (Nb₂SnTe₄),显示出明显的 d-p 反键增强效应.同 时, VBM 和价带电子海洋的脱离越来越远, 直至 形成类孤立的价带顶 (Nb₂SnTe₄). 3) 对比 Nb₂SiTe₄ 与Ta2GeTe4发现,后者的VBM更高.这是由于B位 元素的变化 (从 Si 到 Ge) 和 A 位元素变化 (从 Nb 到 Ta) 的双重影响. Ta 的外壳层 5 d 轨道在能量 上高于 Nb 的 4d 轨道.

表 1 A_2BX_4 化合物的理论晶格常数与带隙值 Table 1. Theoretical lattice constants and bandgaps of stable A_2BX_4 compounds.

	晶格常数的理论值(文献值)/Å		带隙的理论值(文献值)/eV	
_	a	b	PBE	HSE06
Nb_2SiSe_4	6.04	7.74	0.44	0.74
Nb_2SiTe_4	$6.40 \ (6.30^{[9]})$	$7.92 \ (7.90^{[9]})$	$0.51 \ (0.51^{[10]})$	$0.87 \ (0.80^{[10]}, \ 0.84^{[11]})$
Nb_2GeTe_4	$6.54 \ (6.45^{[22]})$	$7.95~(7.92^{[22]})$	$0.41 \ (0.41^{[10]})$	$0.67 \ (0.63^{[10]}, \ 0.66^{[11]})$
$\rm Nb_2SnTe_4$	6.81	8.15	0.31	0.51
Ta_2GeTe_4	6.54	7.93	0.35	0.59

图 3 HSE06 计算的能带结构 (a) Nb₂SiSe₄; (b) Nb₂SiTe₄; (c) Nb₂GeTe₄; (d) Nb₂SnTe₄; (e) Ta₂GeTe₄. 其中蓝线 (绿线) 代表 Nb₂SiTe₄ 的 VBM(CBM) 位置, 数字表示相比 Nb₂SiTe₄ VBM(CBM) 的移动

Fig. 3. HSE06 calculated band structures for (a) Nb_2SiSe_4 , (b) Nb_2SiTe_4 , (c) Nb_2GeTe_4 , (d) Nb_2SnTe_4 and (e) Ta_2GeTe_4 , respectively. Lines represent for VBM (blue) and CBM (green) of Nb_2SiTe_4 . Numbers indicate VBM(CBM) shifts compared with Nb_2SiTe_4 .

图 4 计算的 5 种 A_2BX_4 光吸收谱 (a) 沿 x方向; (b) 沿 y方向 Fig. 4. Calculated optical absorption coefficients for five A_2BX_4 compounds along (a) x direction and (b) y directions.

我们计算了上述 5 种单层 A₂BX₄ 化合物的光 学性质. 图 4(a) 沿 x方向, 图 4(b) 沿 y方向. 阴影 部分为 AM1.5G 太阳辐射光谱. 可以看出此系列 材料在红外到紫外光区间内均具有较强的光吸收 特性 (光吸收系数在 10⁵ cm⁻¹ 量级), 可以应用于 红外光探测和光伏器件之中. 此外, A₂BX₄ 化合物 沿 x方向的光吸收较 y方向更强, 具有明显的光学 各向异性, 表明其在偏振光探测方面有潜在应用.

3.3 应力工程调控 A₂BX₄ 化合物电子结构

外加应力可以有效调控二维材料的电子结构 及相关性质,对柔性或与衬底存在晶格不匹配而产 生面内应力的二维材料尤为重要.我们针对 5 种稳 定的 *A*₂*BX*₄ 单层材料,通过改变晶格参数,施加 均一的双轴应力,应力大小为 (*a* - *a*₀)/*a*₀,其中 *a*₀ 为 0 K 下基态的晶格常数.应力为负值时,表明 施加的是双轴压缩应力,晶格常数减小;结果为 正值时,施加双轴拉伸应力,晶格常数增大.如 图 5 可以看出,外加+5% 拉伸应力时, A₂BX₄ 系 列化合物的带隙值均减小约 0.25 eV,体系由间接 带隙转变为直接带隙.外加-5%压缩应力时, A₂BX₄化合物中 Nb₂SiSe₄与 Nb₂SnTe₄的带隙值 增加约 0.3 eV,保持间接带隙.然而,其他 3 种化 合物的带隙值变化异常,甚至出现减小(如 Nb₂SiTe₄).观察压缩应力下*A*₂*BX*₄系列化合物的 能带结构我们发现:Nb₂SiTe₄,Nb₂GeTe₄和 Ta₂GeTe₄ 3 种化合物的 VBM 形状发生了变化. 此种 VBM 和 CBM 的变化可以有效解释不同应

图 5 PBE计算的外加 ± 5% 应力时 A_2BX_4 的能带结构图 (a) Nb₂SiSe₄; (b) Nb₂SiTe₄; (c) Nb₂GeTe₄; (d) Nb₂SnTe₄; (e) Ta₂GeTe₄; (f), (g), (h) 为对应外应力下 Nb₂SiTe₄ VBM 的电荷密度图

Fig. 5. PBE calculated band structures for A_2BX_4 under \pm 5% strain: (a) Nb₂SiSe₄; (b) Nb₂SiTe₄; (c) Nb₂GeTe₄; (d) Nb₂SnTe₄; (e) Ta₂GeTe₄; (f), (g), (h) VBM charge density maps of Nb₂SiTe₄ under strains.

力条件下化合物带隙的变化趋势问题:

1) CBM 的一致性变化. i) 无应力晶格状态下, A2BX4 化合物的 CBM 贡献主要来源于 A 位阳离 子 (Nb/Ta) 的空 d 轨道和 B 位阳离子 (Si/Ge/Sn) 的空 p 轨道. X 位阴离子 (Se/Te) 与 A 位阳离子 形成弱的 p-d 反键态, 与 B 位阳离子形成 p-p 反键 态,此两中轨道成分共同构成 CBM. ii) 外加压缩 应力时, A 位阳离子与 B 位阳离子距离缩短, 空 d 与空 p 轨道交叠形成 A-B之间的弱 p-d 成键态. 此弱成键态对 CBM 位置影响较小. 同时, A/B 阳 离子与 X 位阴离子间距缩短, p/d-p 轨道相互作用 增强,反键态持续升高,导致 CBM 位置大幅升高. iii) 外加拉伸应力时, A 与 B 位阳离子间距增大, 相互作用减弱,其成键态逐渐消失,对 CBM 影响 持续减弱; A/B阳离子与 X阴离子键长增大, 其反 键 p/d-p 相互作用减弱, 导致 CBM 位置大幅度下 降. 由此可知, 从压缩应力逐渐向拉伸应力的过渡 中, CBM 的主要成分不变, 由 A 位离子空 d 轨道 与 B 位离子空 p 轨道共同和 X 阴离子的反键轨道 组成,该反键作用随离子间距的增大逐渐减弱, CBM 位置逐渐降低.

2)VBM 的反常变化. VBM 反常变化的主要 原因为贡献 VBM 的轨道特性发生了变化, 我们依 照图 5 所示能带结构, 将 5 种 A₂BX₄ 化合物分为 两类: i)VBM 未发生突变. 有 Nb₂SiSe₄ (图 5(a)) 与 Nb₂SnTe₄ (图 5(d)). 此类化合物的 VBM 形状 保持一致,由 A 位阳离子的占据态 d 轨道主导,与 少量 X 阴离子的 p 轨道形成 d-p 反键, 如图 5(g)所示.此d轨道不甚活跃,随外应力的变化,其变 化不大,如图 5(h) 所示, VBM 的位置变化也不大. 此类化合物的带隙改变主要来源于对应 CBM 的 位置改变. ii)VBM发生了突变. 有 Nb₂SiTe₄, Nb₂GeTe₄与Ta₂GeTe₄. 从图 5 (b),(c),(e) 中可以 看出, 施加拉伸应力时, 其 VBM 的轨道特征并未 发生改变,此时起带隙值的变化主要来源于 CBM 的变化. 此点可以从其带隙变化均为~0.25 eV 处 得到证实. 当施加压缩应力时, 此3种化合物的 VBM 由原始的 A 离子 d 轨道主导, 变成了 A 离 子与 X 离子共同贡献. 以 Nb₂SiTe₄ 为例, 如图 5(f) 所示,外加--5%应力时,其VBM在Γ点的主要贡 献为 Nb 离子的 d 轨道与 Te 离子的 p 轨道. 得益 于面内晶格常数的减小, Te 与周围 Te 离子的间距 显著缩短,从0%应力下的3.9Å缩短为3.7Å,扩

宽了 Te 5p 轨道贡献能带的宽度, 在能量上高于 满 d 轨道, 形成新的 VBM. 因而在压应力作用下, A₂BX₄ 化合物的带隙变化来源于 CBM 升高与 VBM 升高的竞争作用. 当 VBM 升高更快时, 体 系的带隙整体呈现反常减小情况, 如 Nb₂SiTe₄. 此 外, VBM 发生轨道反转后的能带更加分散, 其 VBM 的电荷密度分散在 Nb-Te 框架之中 (如图 5(f)), 预测能大幅降低空穴的有效质量, 促进空穴的迁移.

值得一题的是,为了节约计算成本,在讨论外 应力对 A₂BX₄体系电子结构的影响中,我们使用 了 PBE 泛函. 该泛函不能准确描述体系带隙的绝 对值. 然而,带隙变化的相对值却可以通过 PBE 泛函得到可靠的描述. 类似的还有体系的能 带形状,载流子有效质量等.

4 结 论

通过第一性原理计算,我们系统研究了 A₂BX₄ 系列化合物的稳定性,电子结构,光学性质和应力 工程对其电子结构调控,确认了 27 种 A2BX4组合 中存在 5 种稳定结构. 其中已有 Nb₂SiTe₄与 Nb₂GeTe₄的实验报道.Nb₂SiSe₄, Nb₂SnTe₄与 Ta2GeTe4 为首次报道的稳定组合,且具有类似 Nb₂SiTe₄的强光吸收性质 ($\alpha > 10^5$ cm⁻¹) 和更窄 的带隙值 (0.51—0.74 eV). 通过同族元素替换, 我 们可以有效调控 Nb₂SiTe₄ 体系的晶格参数, 实现 基于 A₂BX₄二维异质结的晶格匹配.其中 Ta2GeTe4 具有和 Nb2SiTe4 相同的晶格参数, 更窄 的带隙值,可在远红外光探测方面替代 Nb₂SiTe₄. 外加拉伸应力可以减小 A₂BX₄ 体系带隙值. 外加 压缩应力时, Nb₂SiSe₄与 Nb₂SnTe₄带隙增大, 其 他3种化合物受限于 VBM 的轨道反转影响,带隙 值增加不明显甚至减小.该 VBM 轨道反转来源 于 Te 阴离子 p 轨道的贡献, 会降低空穴的有效质 量,促进空穴的迁移.我们的结果为 A₂BX₄ 二维异 质结器件的设计拓宽了本体和基体的选择范围,为 其器件性能的提升提供了理论指导.

参考文献

- Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
- [2] Fan Y, Liu X, Wang J, Ai H, Zhao M 2018 Phys. Chem. Chem. Phys. 20 11369

- [3] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
- [4] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, Macdonald A H, Niu Q 2014 Phys. Rev. Lett. 112 116404
- [5] Ishii T, Sato T 1983 J. Cryst. Growth 61 689
- [6] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
- [7] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475
- [8] Venkatasubramanian R, Colpitts T, Watko E, Lamvik M, El-Masry N 1997 J. Cryst. Growth 170 817
- [9] Zhao M, Xia W, Wang Y, Luo M, Tian Z, Guo Y, Hu W, Xue J 2019 ACS Nano 13 10705
- [10] Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959
- [11] Zhang T, Ma Y, Xu X, Lei C, Huang B, Dai Y 2020 J. Phys. Chem. Lett. 11 497
- [12] Jain S C, Harker A H, Cowley R A 1997 Philos. Mag. A 75 1461

- [13] Wosinski T, Yastrubchak O, Makosa A, Figielski T 2000 J. Phys. Condens. Matter 12 10153
- [14] Smith A M, Mohs A M, Nie S 2009 Nat. Nanotechnol. 4 56
- [15] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
- [16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
- [17] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [18] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
- [19] Togo A, Tanaka I 2015 Scr. Mater. 108 1
- [20] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002
- [21] Tremel W, Kleinke H, Derstroff V, Reisner C 1995 J. Alloys. Compd. 219 73
- [22] Gareh J, Boucher F, Evain M 1996 Eur. J. Solid State Inorg. Chem. 33 355
- [23] Snyder G J, Caillat T, Fleurial J P 2011 J. Mater. Res. 15 2789

First-principles study of stability, electronic and optical properties of two-dimensional Nb₂SiTe₄-based materials^{*}

Luo Xiong¹⁾ Meng Wei-Wei^{1)†} Chen Guo-Xu-Jia¹⁾ Guan Xiao-Xi¹⁾

Jia Shuang-Feng¹⁾ Zheng He^{1)2)3)[‡] Wang Jian-Bo^{1)††}}

1) (School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China)

2) (Suzhou Institute of Wuhan University, Suzhou 215123, China)

3) (Wuhan University Shenzhen Research Institute, Shenzhen 518057, China)

(Received 4 June 2020; revised manuscript received 18 June 2020)

Abstract

Two-dimensional (2D) niobium silicon telluride (Nb_2SiTe_4) was recently proposed as a promising candidate in infrared detector, photoelectric conversion, polarized optical sensor and ferroelastic switching application due to its narrow bandgap, long-term air stability, high carrier mobility, etc. However, the in-plane strains and interfacial defects induced by the lattice misfits between functional layers are harmful to 2D heterojunction nanodevice performance, making the crystal-lattice regulation and strain engineering necessary to achieve lattice matching and strain-controllable interface. Here, using first-principles calculations and elemental substitutions, i.e., replacing cations (anions) with elements in the same group of periodic table, we identify three new and stable single-layer A_2BX_4 analogues (Nb₂SiSe₄, Nb₂SnTe₄ and Ta₂GeTe₄) as appealing candidates in manipulating the lattice parameters of Nb₂SiTe₄. The controllable lattice parameters are 6.04 Å $\leq a \leq 6.81$ Å and 7.74 Å $\leq b \leq 8.15$ Å. Among them, Ta₂GeTe₄ exhibits similar lattice parameters to Nb₂SiTe₄ but smaller bandgap, yielding better response in far-infrared region. Strain engineering shows that the external biaxial tensile stress narrows the bandgaps of A_2BX_4 due to the downshifting in energy of conduction band minimum (CBM). External biaxial compressive stress induces valance band maximum (VBM) orbital inversion for Nb₂SiTe₄, Nb₂GeTe₄ and Ta₂GeTe₄, which pushes up VBM and discontinues the trend of corresponding bandgap increase. In this case, the bandgap change depends on the competition between energy upshifts of both CBM and VBM. In the Nb₂SiSe₄ and Nb₂SnTe₄ cases, the d-p antibonding coupling in valance band is so strong that no valance band inversion appears while the bandgap increases by ~ 0.3 eV under -5% compressive strain. Regarding Nb₂SiTe₄, Nb₂GeTe₄ and Ta₂GeTe₄, their bandgaps can hardly change under -5% compressive strain, indicating that the energy upshift in VBM equals that in CBM. Such a valance band inversion is attributed to Te outmost p orbital overlapping, which introduces more dispersive VBM and smaller effective mass of hole. Our findings suggest that Nb₂SiTe₄ can be alloyed with Nb₂SiSe₄, Nb₂SnTe₄ and Ta₂GeTe₄ to achieve controllable device lattice matching while maintaining its superior properties at the same time. The use of external biaxial compressive stress can promote the hole diffusion and improve the device performance.

Keywords: Nb₂SiTe₄, elemental substitution, strain engineering, first-principles calculations PACS: 71.20.-b, 85.60.Gz, 31.15.A- DOI: 10.7498/aps.69.20200848

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51871169, 51671148, 11674251, 51501132, 51601132), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191187), the Fundamental Research Funds for the Central Universities, China (Grant No. 2042019kf0190), the Science and Technology Program of Shenzhen, China (Grant Nos. JCYJ20190808, 150407522), and the China Postdoctoral Science Foundation (Grant No. 2019M652685).

[†] Corresponding author. E-mail: meng@whu.edu.cn

[‡] Corresponding author. E-mail: zhenghe@whu.edu.cn

^{††} Corresponding author. E-mail: wang@whu.edu.cn