物理学报Acta Physica Sinica

Institute of Physics, CAS

混合手征活性粒子在时间延迟反馈下的扩散和分离

廖晶晶 蔺福军

Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback Liao Jing-Jing Lin Fu-Jun

引用信息 Citation: Acta Physica Sinica, 69, 220501 (2020) DOI: 10.7498/aps.69.20200505 在线阅读 View online: https://doi.org/10.7498/aps.69.20200505 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

两嵌段高分子链在周期管道内扩散的Monte Carlo模拟

Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study 物理学报. 2017, 66(1): 018201 https://doi.org/10.7498/aps.66.018201

Al原子在Si表面扩散动力学的第一性原理研究

First-principles study on the diffusion dynamics of Al atoms on Si surface 物理学报. 2019, 68(20): 207302 https://doi.org/10.7498/aps.68.20190783

页岩气滑脱、扩散传输机理耦合新方法

A new method for the transport mechanism coupling of shale gas slippage and diffusion 物理学报. 2017, 66(11): 114702 https://doi.org/10.7498/aps.66.114702

氧原子在钛晶体中扩散的第一性原理研究

First-principles investigation of oxygen diffusion mechanism in -titanium crystals 物理学报. 2017, 66(11): 116601 https://doi.org/10.7498/aps.66.116601

柔性棘轮在活性粒子浴内的自发定向转动

Spontaneous rotation of ratchet wheel with soft boundary in active particle bath 物理学报. 2019, 68(16): 161101 https://doi.org/10.7498/aps.68.20190425

动态突触、神经耦合与时间延迟对神经元发放的影响

Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron 物理学报. 2017, 66(20): 200201 https://doi.org/10.7498/aps.66.200201

混合手征活性粒子在时间延迟 反馈下的扩散和分离^{*}

廖晶晶1)2) 蔺福军1)3)†

(江西理工大学理学院, 赣州 341000)
 (江西理工大学应用科学学院, 赣州 341000)
 (华南师范大学物理与电信工程学院, 广州 510006)
 (2020 年 4 月 7 日收到; 2020 年 7 月 8 日收到修改稿)

在二维空间内,考虑周期性边界条件,提出了一种用时间延迟反馈分离混合手征活性粒子的新方法.当 系统引入时间延迟反馈时,手征活性粒子动力学特征发生明显改变.通过调节外加时间延迟反馈的强度和反 馈时间可以控制逆时针旋转 (counterclockwise, CCW) 粒子扩散受到顺时针旋转 (clockwise, CW) 粒子扩散的 影响程度.当时间延迟反馈强度和反馈时间较大且系统参数取最优值时,CCW 粒子加快旋转角速度,扩散完 全由粒子相互作用决定,而 CW 粒子的扩散由自身参数和粒子相互作用共同决定,在此情况下,CCW 粒子容 易聚集形成团簇,而 CW 粒子加快扩散,混合手征活性粒子实现分离.

关键词:活性粒子,扩散,时间延迟反馈,粒子分离 **PACS**: 05.10.Gg, 05.20.-y, 87.16.Uv, 05.40.Jc

DOI: 10.7498/aps.69.20200505

1 引 言

生物和物理系统中的活性物质的非平衡特性 在理论和实验上已有广泛研究^[1-6]. 与被动粒子不 同,活性粒子(也称自驱动力粒子或微泳)能从环 境中吸收能量并转化为定向运动.例如,自驱动分 子马达可以通过消耗活细胞中 ATP 水解产生的化 学能来进行定向运动^[7],大肠杆菌通过鞭毛来向前 运动^[8]等. 当活性粒子结构对称且受到自身驱动力 作用时,它只做线性运动^[9]. 如果它受到一个扭矩, 则称之为手征活性粒子,由于自驱动力与驱动方向 不在一条直线上,它将在二维上做圆周运动,在三 维上做螺旋运动^[10]. 该类新型活性粒子可以在手 征活性流体^[11]和许多微生物中找到,如精子^[12]、 大肠杆菌^[13]及单核细胞增多型李司忒氏菌^[14]等. 另一方面,近年来,受反馈作用的非平衡系统得到 了广泛的研究^[15-19].由于反馈作用,系统的动力学 变得与历史运动有关.反馈可以通过激光阱^[18,20-26] 的外部编程(反馈回路^[24,27,28])来实现.此外,反馈 也可能出现在自化学反应粒子中,即粒子本身是它 们所反应的化学物质的产生机制的一部分.如细 菌^[29]、兵蚁^[30]及合成微粒^[31].

混合活性物质的分离技术对于科学和工程研究极为重要^[32-55].通常对三种类型的混合粒子实现分离.1)对不同性质的活性粒子混合物的分离. 在外加势的作用下,根据有效扩散系数的不同能够 实现两种粒子混合物的分离^[33];利用离心分离技术或利用非对称障碍物可以分离不同迁移率的自

* 国家自然科学基金 (批准号: 11905086, 11804131)、江西省自然科学基金 (批准号: 20192BAB212006) 和江西省教育厅科技项目 (批准号: GJJ191598, GJJ191599) 资助的课题.

© 2020 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: fujun012@yeah.net

驱动粒子[34,35];利用自驱动人工微泳粒子能够实现 两种胶体混合物的分离^[36]. 此外, Weber 及其合作 者[37]研究了粒子间相互作用对相同尺寸不同扩散 系数的混合粒子分离的影响,他们发现仅不同扩散 系数就足以驱动两种胶体混合物相分离; Costanzo 及其合作者[38]提出了一种在微通道中分离不同迁 移率粒子的方法. 2) 对主动粒子和被动粒子混合 物的分离. Stenhammar 及其合作者^[39]研究了主 动粒子和被动粒子组成的单分散混合物的相行为 和动力学,结果表明,主动粒子的运动可以触发相 分离. 另外, 在被动粒子和偏心主动粒子的混合体 中,当主动粒子的偏心度足够大时,偏心粒子可以 推动被动粒子形成一个大而密的动态团簇^[40]. McCandlish 及其合作者^[41] 实现了在二维空间自 由运动的主动粒子和被动粒子的自发分离; Smrek 和 Kremer^[42] 的研究发现, 在主动-被动聚合物混 合物中,小的活性差异能驱动相分离.3)对手征活 性物质的分离. 手征活性物质包括多种旋转运动 的微生物,如趋磁细菌^[56]、大肠杆菌^[57,58]和精子细 胞^[59]. 手征活性粒子可以根据其运动特性, 在环境 中使用一些简单的静态模式来进行分类^[45]. Scholz 及其合作者[46]研究发现顺时针和逆时针旋转机器 人会发生集体运动,通过调幅分解得到分界面上的 超扩散和相分离. 另外, 当系统参数满足一定的关 系时,利用两个相对的旋转障碍物可以分离混合手 性粒子[47]. 艾保全等[48] 研究表明, 极性手征活性 粒子混合物的分离是由手征性和对齐相互作用的 竞争决定的.

本文考虑时间延迟反馈作用的影响,提出一种 手性分离的新方法.通常情况下,单纯考虑粒子之 间排他相互作用,手征活性粒子混合物并没有自分 离特性,但时间延迟反馈和输出信号之间的差值能 重新作用到系统,改变系统的运动状态,实现对混 合粒子手征性和扩散特性的差异性调制,相当于给 系统提供一种可调节的外驱动.具体来说,当时间 延迟反馈强度和反馈时间均很大且系统参数取最 优值时,逆时针旋转 (counterclockwise, CCW) 粒子快速旋转,扩散完全由粒子相互作用控制,顺 时针旋转 (clockwise, CW)粒子扩散由自身参数和 粒子相互作用共同决定,因此粒子分离;当两种粒 子扩散都由自身参数和粒子相互作用共同决定时, 粒子无法分离. 通过调节反馈强度和反馈时间可以 调节不同手性粒子的扩散控制因素, 从而达到粒子 分离的目的.

2 模型和方法

考虑半径为 r 的手征活性粒子混合物 (N/2个 CCW 粒子, N/2个 CW 粒子) 在尺寸为 $L \times L$, 满足周期边界条件的二维空间中运动. 粒子除了受 到排斥相互作用, 还受到时间延迟反馈作用^[60]. 粒 子 的 运 动 由 质 心 位 置 $r_i \equiv (x_i, y_i)$ 和 极 坐 标 $n_i \equiv (\cos \theta_i, \sin \theta_i)$ 下的角度 θ 描述. 角度由旋转扩 散、作用在粒子上的常数扭矩及相邻粒子间的相互 作用决定. 考虑平动和转动扩散系数不相关且平动 扩散系数可忽略的情况下, 描述过阻尼下粒子动力 学性质的郎之万方程为

$$\frac{\mathrm{d}\boldsymbol{r}_i}{\mathrm{d}t} = v_0 \boldsymbol{n}_i + \mu \sum_{j=1}^N \boldsymbol{F}_{ij}, \qquad (1)$$

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \Omega_i + K_{\mathrm{fb}} \{1 - \tanh[\theta_i(t-\tau) - \theta_i(t)]\} + \sqrt{2D_\theta} \xi_i(t),$$
(2)

其中 v_0 是自驱动速度, μ 为迁移率. D_{θ} 是转动扩散 系数, $\xi_i(t)$ 是零平均单位方差高斯白噪声. 角速度 $\Omega_i = \pm \omega$ 的符号决定了粒子的手征性, $\Omega_i > 0$ 代表 粒子逆时针旋转, $\Omega_i < 0$ 代表粒子顺时针旋转.

粒子之间采用短程谐波相互作用: 当 $r_{ij} < 2r$ 时, $F_{ij} = k(2r - r_{ij})\hat{r}_{ij}$; 否则, $F_{ij} = 0$. $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ 是 粒子 i和粒子 j间的相互作用距离. $\hat{r}_{ij} = (\mathbf{r}_i - \mathbf{r}_j)/r_{ij}$. 此处 k为弹性系数.为了模拟硬粒子,使用较大的 弹性系数,令 $\mu k = 100$,保证粒子不重叠. $K_{\rm fb}$ 是反 馈的强度, τ 是反馈时间.其中, $K_{\rm fb} \ge 0$, $\tau \ge 0$, $0 \le \Omega(t) \le 2K_{\rm fb}$.这种反馈机制引入了一个时间间 隔为 τ 的逆时针扭矩作用在粒子上 (如图 1).

为了描述两种粒子的空间分布,将系统分隔成 M个(L×L)/M的区块,分离系数则定义为^[61]

$$S = \frac{1}{N} \sum_{i=1}^{M} |N_i^{\text{CW}} - N_i^{\text{CCW}}|, \qquad (3)$$

其中 N_i^{CW} (N_i^{CCW})为第i个子区块CW(CCW) 粒子个数. $S \rightarrow 0$ 代表CW粒子和CCW粒子呈现 均匀分布; $S \rightarrow 1$ 意味着两种粒子完全分离.

图 1 时间延迟反馈示意图. 当 $\tau = 0$ 时, $\Omega(t) = K_{\text{fb}}$; 当 $\tau \to \infty \pm \theta(t-\tau) > \theta(t)$ 时, $\Omega(t) = 0$; 当 $\tau \to \infty \pm \theta(t-\tau) < \theta(t)$ 时, $\Omega(t) = 2K_{\text{fb}}$

Fig. 1. Schematic diagram of time-delayed feedback. When $\tau = 0$, $\Omega(t) = K_{\rm fb}$; when $\tau \to \infty$ and $\theta(t - \tau) > \theta(t)$, $\Omega(t) = 0$; when $\tau \to \infty$ and $\theta(t - \tau) < \theta(t)$, $\Omega(t) = 2K_{\rm fb}$.

为了描述混合物中单种粒子团簇的特征尺寸, 定义相对径向分布函数^[46,50]:

$$g_{AB}(\boldsymbol{r}_{1},\boldsymbol{r}_{2})$$

$$= \langle \rho_{A}(\boldsymbol{r}_{1})\rho_{A}(\boldsymbol{r}_{2})\rangle + \langle \rho_{B}(\boldsymbol{r}_{1})\rho_{B}(\boldsymbol{r}_{2})\rangle$$

$$- \langle \rho_{A}(\boldsymbol{r}_{1})\rho_{B}(\boldsymbol{r}_{2})\rangle - \langle \rho_{B}(\boldsymbol{r}_{1})\rho_{A}(\boldsymbol{r}_{2})\rangle, \quad (4)$$

其中 $\rho_I(\mathbf{r}) = \sum_{i=1}^{N_I} \delta(\mathbf{r} - \mathbf{r}_i)$ 是粒子种类 $I(I = A \oplus B)$ 的粒子数密度.在均匀的各向同性系统中,方程(4)退化为 $g_{AB}(r)$,其中 $r = |\mathbf{r}_1 - \mathbf{r}_2|$.团簇的尺寸 由 $g_{AB}(r)$ 的第一个零根决定^[46,50].

定义所有粒子所占的面积与二维系统面积的 比例为填充率 $\phi = N\pi r^2/(L \times L)$. 引入时间尺度 $\frac{1}{\mu k}$ 和长度尺度 r 对参数进行无量纲化: $\hat{v}_0 = \frac{v_0}{\mu k r}$, $\hat{\omega} = \frac{\omega}{\mu k}$, $\hat{D}_r = \frac{D_{\theta}}{\mu k}$. 在以下讨论中均使用无量纲量 且省略所有量上面的"帽子",通过改变角速度 ω , 反馈强度 $K_{\rm fb}$,反馈时间 τ ,转动扩散系数 D_{θ} 和自 驱动速度 v_0 来研究系统的行为. 粒子在二维空间的 有效扩散系数为

$$D \equiv \lim_{t \to \infty} \frac{1}{4t} \left\langle \left| \Delta \boldsymbol{r}_i(t) \right|^2 \right\rangle, \tag{5}$$

其中
$$\Delta \boldsymbol{r}_i(t) \equiv \boldsymbol{r}_i(t) - \boldsymbol{r}_i(0).$$

3 结果和讨论

在模拟中, 粒子的初始位置随机分布, 且方向 角在[0,2π]上是随机的.利用龙格库塔算法对方程 (1)和(2)进行数值积分.积分步长小于10⁻³, 总积 分时间大于 2 × 10⁴ (该积分时间可以确保系统达到 稳态). 进行了 100 次数值计算以提高计算精度和 减小统计误差. 模拟参数选取为 $L = 40.0, M = 10 \times$ 10 = 100, $N = 1024(\phi = 0.50)$.

对于手性活性粒子混合物, 自驱动方向角度 θ 由 ω , D_{θ} , K_{fb} , τ 决定. 角速度 ω 决定了手征性差 异 (当 $\omega = 0.0$ 时, 两种粒子是无差异的). 转动扩散 系数 D_{θ} 描绘了角速度的波动. 当 D_{θ} 固定时, 粒子 的扩散由 ω , v_0 , K_{fb} 及 τ 的竞争决定.

图 2 描述了混合手征活性粒子在 $v_0 = 2.5$, $D_{\theta} = 0.001$, $\phi = 0.5$, $\omega \pi K_{fb} \otimes \tau$ 不同时的粒子分 布图.可得:1) 当 $K_{fb} = 0$, $\omega = 0$ 时 (如图 2(a)), 两种粒子无差别且不受时间延迟反馈作用, 粒子由 于自驱动作用聚集成团, 发生自驱动诱导相分离 (MIPS, motility induced phase separation) 现象^[62]. 2) 当 $K_{fb} = 10.0$, $\tau = 10.0$, $\omega = 0$ 时 (如图 2(b)), 两种粒子相同且受到强的时间延迟反馈作用, 粒子 受到大的扭矩作用, 因此反馈调制后的角速度很 大, 旋转半径 ($R = v_0/\omega$) 很小, 粒子几乎待在原 地打转, 从整体上看, 粒子是均匀分布且混合的.

图 2 CCW 粒子 (红色) 和 CW 粒子 (蓝色) 的混合物分 布 (a) $K_{\rm fb} = 0, \, \omega = 0; \, (b) \, K_{\rm fb} = 10.0, \, \tau = 10.0, \, \omega = 0;$ (c) $K_{\rm fb} = 10.0, \, \tau = 10.0, \, \omega = 2.2; \, (d) \, K_{\rm fb} = 10.0, \, \tau = 10.0, \, \omega = 4.2.$ 其他参数设置为 $v_0 = 2.5, \, D_{\theta} = 0.001, \, \phi = 0.5$ Fig. 2. The snapshots of mixture of CCW particles (red) and CW particles (blue): (a) $K_{\rm fb} = 0, \, \omega = 0; \, (b) \, K_{\rm fb} = 10.0, \, \tau = 10.0, \, \omega = 0; \, (c) \, K_{\rm fb} = 10.0, \, \tau = 10.0, \, \omega = 2.2;$ (d) $K_{\rm fb} = 10.0, \, \tau = 10.0, \, \omega = 4.2.$ The other parameters are $v_0 = 2.5, \, D_{\theta} = 0.001$, and $\phi = 0.5$.

3) 当 $K_{\text{fb}} = 10.0$, $\tau = 10.0$, $\omega = 2.2$ 时 (如图 2(c)), 手征差异性增加,由于时间延迟反馈作用,使得 CCW 粒子的角速度增大,旋转半径减小 ($\propto 1/\omega$), 扩散减小.对 CW 粒子,反馈对其几乎无作用,因 此以 $\omega = 2.2$ 的角速度 CW 转动,旋转半径较 CCW 粒子的旋转半径更大, 扩散较大. 由于排他 相互作用,一方面 CW 粒子在与 CCW 粒子相互 作用的过程中从 CCW 粒子中挣脱逃逸, 另一方面 推进 CCW 粒子聚集成一个团簇整体旋转, 两种粒 子分离; 4) 当 $K_{\text{fb}} = 10.0$, $\tau = 10.0$, $\omega = 4.2$ 时 (如 图 2(d)), 粒子角速度ω增大, 由于延迟时间反馈作 用, CCW 粒子角速度进一步增大, 旋转半径减小; 但时间延迟反馈对 CW 粒子几乎无作用, 因此 CW 粒子基本保持原角速度旋转, 但旋转半径变 小,扩散减小,因此一方面很难从 CCW 粒子中挣 脱逃逸,另一方面只能在小区域推进 CCW 粒子聚 集,所以在每一个小区域,两种粒子分离,但是整 体上来说,较小的团簇出现,粒子混合.

为了研究团簇大小,使用 CW 粒子和 CCW 粒子的最大团簇粒子数占各自总粒子数的比例 $P = \langle N_{\rm cl} \rangle / (N/2)$ 随角速度 ω 的变化如图 3(a) 中描 述. Nci为最大团簇的粒子数个数. P 越大代表团簇 尺寸越大, 表明粒子分离. 由图可知, 比例 P是角 速度 ω 的峰值函数. 图中 a, b, c 及 d 四点的分布 图分别对应图 2(a),图 2(b),图 2(c) 及图 2(d).由 图 3(a) 可以看出, 1) 当ω = 0时 (a, b 点), CW 粒 子和 CCW 粒子的最大团簇强度 P相等.当 $K_{\text{tb}} = 0$ 时,由于 MIPS 效应,最大团簇强度比例 P = 0.8; $\leq K_{\rm fb} = 10.0$, $\tau = 10.0$, $\omega = 0$ 时, 两种 粒子均做逆时针旋转且旋转半径很小,几乎各自待 在原地打转,因此P = 0.2)当 $\omega = 2.2$ 时(c点) 时,在外加时间延迟反馈作用下,CW粒子角速度 不变, CCW 粒子角速度增大, 在两种粒子相互作 用下, CCW 粒子聚集成一大团簇, P 接近于 1, 达 到最大值; CW 粒子旋转半径更大, 扩散更大, 聚 集成小团簇, $P \simeq 0.2.3$) 当 $\omega = 4.2$ 时 (d 点), CCW 角速度继续增大, CW 粒子旋转半径继续减小, 均聚 集成更小团簇. 图 3(b) 绘制了不同 ω 下, $K_{\text{fb}} = 10.0$, $\tau = 10.0, t = 2 \times 10^4$ 时,相对径向分布函数 $g_{AB}(r)$. 图中标注的圆圈为第一个零根,代表单种粒子的团 簇尺寸. 当 $\omega = 0.0$ 和5.4时, 顺时针和逆时针粒子 旋转角速度都很大,旋转半径很小,所以团簇尺寸 很小;随着 ω 增加,反馈加速 CCW 粒子旋转,对

CW 粒子无作用, 逆时针旋转角速度很大, 顺时针旋转角速度很小, 团簇尺寸增大, 当 $\omega = 2.2$ 时, 团簇尺寸达到最大值.

图 3 (a) CW 粒子和 CCW 粒子的最大团簇粒子数占各 自总粒子数的比例 P随角速度 ω 的变化.图中 a, b, c, d 四 点的构型图分别对应图 2(a),图 2(b),图 2(c),图 2(d); (b) 在 不同 ω 下, $t = 2 \times 10^4$ 时,相对径向分布函数 $g_{AB}(r)$.图中 标注的圆圈为第一个零根,代表单种粒子的团簇尺寸.其 他参数设置为 $v_0 = 2.5$, $D_{\theta} = 0.001$, $\phi = 0.5$, $K_{\rm fb} = 10.0$, $\tau = 10.0$

Fig. 3. (a) The ratio of the particle number in maximum cluster of CW particles and CCW particles to the total number of particles respectively as a function of ω . The points a, b, c, d are corresponding to Fig. 2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d), respectively; (b) relative radial distribution function $g_{AB}(r)$ for different value of ω at $t = 2 \times 10^4$. The first non-trivial root (marked by circles) denotes the cluster size of the single particle species. The other parameters are $v_0 = 2.5$, $D_{\theta} = 0.001$, $\phi = 0.5$, $K_{\rm fb} = 10.0$, and $\tau = 10.0$.

为了进一步描述粒子动力学,分别研究了有效 扩散系数 D和分离系数 S随角速度 ω ,反馈强度 $K_{\rm fb}$,反馈时间 τ ,转动扩散系数 D_{θ} ,自驱动速度 v_0 , 填充率 ϕ 和时间 t的变化.图 4—图 10 中的每条曲 线均是由 100 次模拟的统计平均得到的.

图 4 研究了在不同 K_{fb} 和 τ 值下, CCW 粒子 和 CW 粒子的有效扩散系数 D 和分离系数 S 随角

图 4 (a) 在不同 $K_{\rm fb}$ 和 τ 值下, CCW 粒子和 CW 粒子的 有效扩散系数 D随角频率 ω 的变化; (b) 在不同 $K_{\rm fb}$ 和 τ 下, 分离系数 S随角频率 ω 的变化. 其他参数设置为 $v_0 = 2.5, D_{\theta} = 0.001, \phi = 0.5$

Fig. 4. (a) The effective diffusion coefficient D of CCW and CW particles as a function of ω for different $K_{\rm fb}$ and τ ; (b) the separation coefficient S as a function of ω for different $K_{\rm fb}$ and τ . The other parameters are $v_0 = 2.5$, $D_{\theta} = 0.001$, and $\phi = 0.5$.

速度 ω 的变化. 从图 4(a)可知, 当 $K_{\rm fb} = 0$ 时, 粒子 不受反馈作用, CCW和CW粒子的有效扩散系 数 D相等, 且随 ω 单调减小; 而当 $K_{\rm fb}$ 和 τ 取其他 值时, CCW 粒子和 CW粒子的有效扩散系数为 ω 的峰值函数.可以解释如下:1) 当 $K_{\text{fb}} = 0, \omega = 0$ 时, 粒子自身参数 (自驱动速度, 转动扩散系数 等) 控制扩散, 扩散远远大于 1, 达到最大值; 2) 当 $K_{\rm fb} = 0, \, \omega \to \infty$ 时, 粒子转动非常快, 自驱动速度 可忽略, $D \to 0; 3$) 当 $K_{\rm fb}$ 和 τ 取其他值, $\omega \to 0$ 时, 两种粒子相同,时间延迟反馈使得粒子快速旋转, $D \to 0.$ 随着 ω 增加,时间反馈对两种粒子角速度 调制差异开始显现, 由图 1 可知, τ 越大, CCW 粒 子受到反馈作用后 ω 增大越多, CW 粒子的 ω 受到 的调制越小, 当τ很大时, CCW 粒子和 CW 粒子 受到的扭矩调制作用分别趋于 $2K_{\rm fb}$ 和 0. ω 的增加 能导致两种结果: (A) 两种粒子手征差异性增大, 粒子相互作用力增大,扩散增大;(B)抑制自驱动, 减小扩散. 当ω从零增加, A 因素控制扩散, 扩散 主要由粒子间相互作用控制, ω 越大,受到的 CW 粒子的排斥力越大, D越大; 而 CW 粒子扩散 主要由自身参数决定 (受反馈影响很小), CW 粒子 的 D 随 ω 增加而增加. 当 ω 继续增加, B 因素起作 用, CW 粒子快速旋转, CW 的扩散趋于 0, 因此 CCW 粒子受到 CW 粒子的排斥力作用效应越来 越小, CCW扩散也趋于 0. 值得注意的是, $K_{\text{fb}} = 10$, $\tau = 10$ 时的 D大于 $K_{\text{fb}} = 2.5$, $\tau = 1$ 时的 D且峰值对应的 ω 更小. 此外, 当 $K_{\text{fb}} = 10, \tau = 10$ 时, CW 粒子有效扩散大于 CCW 粒子的有效扩 散; 而 $K_{\text{fb}} = 2.5$, $\tau = 1$ 时, CW粒子有效扩散在 $1.7 < \omega < 2.1$ 时小于 CCW 粒子的有效扩散, 在 $\omega > 2.1$ 时, CW 粒子的 D更大. 这是因为 K_{tb} 和 τ 越大,时间延迟反馈对粒子角速度调制作用越强, 导致 CCW 粒子和 CW 粒子角速度差异越大, CCW 粒子扩散由 CW 粒子排斥力决定的程度越大.

由图 4(b) 发现, 分离系数 *S*为角速度 ω 的峰 值函数. 当 $\omega \to 0$ 时, 两种粒子相同, 且扩散都由粒 子参数和相互作用共同控制, 粒子混合, $S \to 0$; 当 $\omega \to \infty$ 时, ω 控制了粒子运动, 两种粒子都快速旋 转, 几乎各自待在原地打转, $S \to 0$. 所以 ω 取最优 值时, 分离系数能达最大值. 峰值位置随 $K_{\rm b}$ 和 τ 增 大而往 ω 减小方向移动. 当 $K_{\rm fb} = 10, \tau = 10$ 时的分 离效果最好, 这是因为此时 CCW 粒子角速度受时 间延迟反馈调制快速逆时针旋转, 其扩散与自身参 数无关, 完全由 CW 粒子的扩散决定. 特别地, 当 $K_{fb} = 2.5, \tau = 1$ 时, 曲线存在一个谷底值. 这是因 为 $\omega > 1.65$ 时, CW 粒子顺时针旋转; 而 $\omega < 1.65$ 时, CW 粒子被时间延迟反馈调制为逆时针旋转. $|\omega - 1.65|越大, CCW 粒子扩散受 CW 粒子扩散影$ $响程度越大, 因此<math>\omega = 1.65$ 时, *S*达最小值.

图 5 描绘了在不同 τ 值下, CCW 粒子和 CW 粒子的有效扩散系数 D和分离系数 S 随反馈 强度 $K_{\rm fb}$ 的变化.可以看出, 1) 当 $\tau = 0.01$ 时, 两种 粒子的 D 为反馈强度的峰值函数 (如图 5 (a)). $K_{\rm fb}$ 很小时, 外加反馈对粒子角速度调制作用很小, CCW 粒子和 CW 粒子扩散相等且由自身参数控 制; 随 $K_{\rm fb}$ 增大, 调制作用增大, 由于 τ 很小, 反馈 作用在 CCW 粒子和 CW 粒子的扭矩几乎相等, CW 粒子调制后角速度减小, D 增大, 当 $K_{\rm fb} \approx 2.1$ 时达到最大值, 此时 CW 粒子角速度几乎为 0, 而

图 5 在 (a) $\tau = 0.01$, (b) $\tau = 1.0$, (c) $\tau = 10.0$ 时, CCW 粒子和 CW 粒子的有效扩散系数 D 随反馈强度 $K_{\rm fb}$ 的变化; (d) 在 不同 τ 下, 分离系数 S 随反馈强度 $K_{\rm fb}$ 的变化. 其他参数设置为 $\omega = 2.1$, $v_0 = 2.5$, $D_{\theta} = 0.001$, $\phi = 0.5$ Fig. 5. The effective diffusion coefficient D of CCW and CW particles as a function of $K_{\rm fb}$ at (a) $\tau = 0.01$, (b) $\tau = 1.0$, and (c) $\tau = 10.0$; (d) the separation coefficient S as a function of $K_{\rm fb}$ for different τ . The other parameters are $\omega = 2.1$, $v_0 = 2.5$, $D_{\theta} = 0.001$, and $\phi = 0.5$.

CCW 粒子调制后角速度增大, D 受 CW 粒子扩散 影响增大,因此也在 $K_{\rm fb} \approx 2.1$ 时达到最大;当 $K_{\text{fb}} \to \infty$ 时, 两种粒子调制后角速度很大, $D \to 0$. 2) 当 $\tau = 1.0$ (如图 5 (b)) 时, 随 K_{fb} 增加, 两种粒 子扩散先减小,后增大达到最大值, $K_{tb} \to \infty$ 时, $D \to 0.3$) 当 $\tau = 10.0$ (如图 5 (c)) 时, D 随 K_{tb} 先 减小,后增大达到最大值,继而趋于常数,这是因 为此时 CW 粒子几乎不受反馈调制作用, Ktb 的改 变对 D无影响, 而 CCW 粒子的扩散完全由 CW 粒子对 CCW 粒子的排斥力控制,因此也趋于 常数且小于 CW 的扩散. 由图 5(d) 可知, $\tau \leq 1$ 时, 分离系数 S为反馈强度 $K_{\rm fb}$ 的峰值函数, 而 $\tau > 1$ 时, S随 $K_{\rm fb}$ 的增大而增大并于 $K_{\rm fb} = 10$ 时达到最 大值并保持不变.可以解释如下:1) 当 $\tau \leq 1$ 时,外 加反馈对 CW 粒子调制随 Ktb 增大而改变, 当 Ktb 从零开始增加, CW 粒子为顺时针旋转, 且随 K_{tb} 增加角速度减小,扩散增大,CCW粒子扩散受 CW 粒子扩散影响程度增大, S 达最大值, 粒子分 离;随着 K_{fb}继续增大,CW 粒子由顺时针旋转翻 转为逆时针旋转,与 CCW 粒子同时受外加反馈强 烈调制,两种粒子扩散由各自自身参数决定,因此 S降低,粒子混合.2) 当 $\tau > 1$ 时,CW粒子几乎不 受外加反馈作用,因此CW粒子扩散不随 $K_{\rm fb}$ 而改 变,CCW粒子扩散受CW粒子扩散影响程度越来 越大,当 $K_{\rm fb} = 10$ 时,CCW粒子扩散完全由 CW粒子扩散决定,所以S达到峰值并且保持不 变.可以通过控制外加时间反馈强度来控制不同手 征性粒子的扩散和分离.

图 6 描述了在不同 $K_{\rm fb}$ 值下, CCW 粒子和 CW 粒子的有效扩散系数 D和分离系数 S随反馈时间 τ 的变化.可以看出: 1) 当 $K_{\rm fb}$ 很小时 ($K_{\rm fb}$ =1.0, 2.5), 两种粒子的 D随反馈时间 τ 的增加而先增加, 后单 调减小,且在 $\tau > 1$ 时达到平稳值 (如图 6(a) 和 6(b)).这是因为当 $\tau < 1$ 时, CCW 粒子受外加反馈 调制强度随 τ 增加而增加, 而 CW 粒子受调制强度 随 τ 增加而减小,所以两种粒子的扩散都随 τ 增加 而单调减小; 2) 当 $\tau > 1$ 时, CCW 粒子受外加反馈 调制强度随 τ 增加而急剧增加,扩散主要来自与 CW 粒子的相互作用力, 而 CW 粒子不受调制强 度影响,因而扩散不随 τ 变化, CW 粒子扩散决定

图 6 在 (a) $K_{\text{fb}} = 1.0$, (b) $K_{\text{fb}} = 2.5$, (c) $K_{\text{fb}} = 10.0$ 时, CCW 粒子和 CW 粒子的有效扩散系数 D 随反馈时间 τ 的变化; (d) 在 不同 K_{fb} 下, 分离系数 S 随反馈时间 τ 的变化. 其他参数设置为 $\omega = 2.1$, $v_0 = 2.5$, $D_{\theta} = 0.001$, $\phi = 0.5$ Fig. 6. The effective diffusion coefficient D of CCW and CW particles as a function of τ at (a) $K_{\text{fb}} = 1.0$, (b) $K_{\text{fb}} = 2.5$, and (c) $K_{\text{fb}} = 10.0$; (d) the separation coefficient S as a function of τ for different K_{fb} . The other parameters are $\omega = 2.1$, $v_0 = 2.5$, $D_{\theta} = 0.001$, and $\phi = 0.5$.

了粒子间的相互作用力,所以 CCW 粒子扩散也保 持常数. 当 K_{fb} 很大时 ($K_{fb} = 10.0$), 两种粒子的 D 随反馈时间 τ 的增加而先保持为 0, 后在 $\tau = 1$ 时 突然增大并保持为常数 (如图 6(c)). 可以解释如 下:1) 在 $\tau < 1$ 时, CW 粒子在外加反馈作用下由 顺时针旋转翻转为逆时针旋转,并且角速度值很 大,所以两种粒子扩散都几乎为 0; 2) 在 $\tau > 1$ 时, CCW 粒子受外加反馈作用快速旋转,其扩散主要 来自粒子间的相互作用力, CW 粒子保持原有的角 速度,扩散保持常数不变,因而 CCW 粒子扩散比 CW 扩散低且保持不变. 由图 6(d)可发现, 分离系 数 S 随 τ 的增加而增加并于 $\tau > 1$ 后保持不变.其 中 $K_{\rm fb} = 1.0, 2.5$ 时, S随 τ 缓慢增加, 而 $K_{\rm fb} = 10.0$ 时, 分离效果最好且 $S 在 \tau = 1$ 时突然增大到最大 值,这与图 5(d)结果一致.这是因为 $\tau > 1$ 时, CCW 粒子扩散完全由不随 7 变化的 CW 粒子扩 散控制.

在不同 $K_{\rm fb}$ 和 τ 值下, CCW 粒子和 CW 粒子 的有效扩散系数 D和分离系数 S 随转动扩散系数 D_{θ} 的变化如图 7 所示. 由图 7(a)—图 7(c) 可以发 现,有效扩散系数 D 随 D_{θ} 先增大,后减小,继而增 大,出现一个谷底和一个峰值,最后 $D_{\theta} \to \infty$ 时, $D \to 0$.这是由于随 D_{θ} 增大过程中,在外加反馈调 控下,粒子调制后的角速度与 D_{θ} 竞争造成的,当调 制后的角速度很小时, D_{θ} 控制粒子的扩散,当调制 后 的 角速度很大时, D_{θ} 的作用可以忽略.当 $D_{\theta} \to \infty$ 时,粒子完全由 D_{θ} 控制,粒子自驱动角度 $\theta 变化很快,所以 D \to 0$.图 7(d)可以看出,分离 系数 S 随转动扩散系数 D_{θ} 的增加而单调递减, $K_{\rm fb} = 10.0, \tau = 10.0$ 时 S 取最大值,这与前面的结 果一致.当 $D_{\theta} \to 0$ 时,转动扩散系数可以忽略,因 此 S 达最大值.

图 8(a) 绘制了在 $K_{\rm fb} = 10.0$, $\tau = 10.0$ 时, 不 同自驱动速度 v_0 下, 均方位移 MSD = $\langle |\Delta r_i(t)|^2 \rangle$ 随时间 t的变化. 可以看出, 1) 当 $v_0 = 0$ 时, 两种 粒子扩散完全由角速度控制, 因此 MSD 始终趋于 0. 2) 当 $v_0 = 2.5$ 时, CCW 粒子快速旋转, MSD 完全由 CW 粒子的 MSD 决定, CW 粒子的 MSD 由自驱动速度 v_0 和角速度 ω 共同决定, 且随时间 t 增大, 所以 CCW 粒子的 MSD 也随时间 t 增大,

图 7 在 (a) $K_{\rm fb} = 0.0$, (b) $K_{\rm fb} = 2.5$, $\tau = 1.0$, (c) $K_{\rm fb} = 10.0$, $\tau = 10.0$ 时, CCW 粒子和 CW 粒子的有效扩散系数 D 随转动扩散 系数 D_{θ} 的变化; (d) 在不同 $K_{\rm fb}$ 和 τ 下, 分离系数 S 随转动扩散系数 D_{θ} 的变化. 其他参数设置为 $\omega = 2.1$, $v_0 = 2.5$, $\phi = 0.5$ Fig. 7. The effective diffusion coefficient D of CCW and CW particles as a function of D_{θ} at (a) $K_{\rm fb} = 0.0$, (b) $K_{\rm fb} = 2.5$, $\tau = 1.0$, and (c) $K_{\rm fb} = 10.0$, $\tau = 10.0$; (d) the separation coefficient S as a function of D_{θ} for different $K_{\rm fb}$ and τ . The other parameters are $\omega = 2.1$, $v_0 = 2.5$, and $\phi = 0.5$.

图 8 (a) 在 $K_{\rm fb} = 10.0$, $\tau = 10.0$ 时, 不同自驱动速度 v_0 下, 均方位移 $MSD = \langle |\Delta \mathbf{r}_i(t)|^2 \rangle$ 随时间 t 的变化; (b) 在不同 $K_{\rm fb}$ 和 τ 下, 分离系数 S 随自驱动速度 v_0 的变化. 其他参数设置为 $\omega = 2.1$, $D_{\theta} = 0.001$, $\phi = 0.5$

Fig. 8. (a) The mean square displacement MSD = $\langle |\Delta \mathbf{r}_i(t)|^2 \rangle$ as a function of t for different v_0 at $K_{\rm fb} = 10.0$ and $\tau = 10.0$; (b) the separation coefficient S as a function of v_0 for different $K_{\rm fb}$ and τ . The other parameters are $\omega = 2.1$, $D_{\theta} = 0.001$, and $\phi = 0.5$.

且小于 CW 粒子的 MSD. 3) 当 $v_0 = 6.0$,两种粒 子的 MSD 都由 v_0 和角速度 ω 共同决定,因此两种 粒子的 MSD 随时间 t增大且交叉多次. 图 8(b) 描 述了在不同 K_{tb} 和 τ 下,分离系数 S随自驱动速度 v_0 的变化. 图形显示为铃铛状,这是由于单个手征 粒子做旋转运动的半径为 $R = v_0/\omega$, 当 $v_0 \rightarrow 0$ 时,

粒子待在各自位置做自旋运动,因此 S趋于零.当 $v_0 \to \infty$ 时,两种粒子扩散都由 $v_0 \pi \omega$ 共同决定,粒 子混合, $S \to 0$.所以存在最优值 v_0 使得分离系数 S达到最大值.

图 9(a) 和图 9(b) 分别描述了 CCW 粒子和 CW 粒子的有效扩散系数 D和分离系数 S 随填充

图 9 (a) CCW 粒子和 CW 粒子的有效扩散系数 D 随填充率 ϕ 的变化; (b) 分离系数 S 随填充率 ϕ 的变化. 其他参数设置为 $v_0 = 2.5, D_{\theta} = 0.001, \omega = 2.1, K_{fb} = 10.0, \tau = 10.0$

Fig. 9. (a) The effective diffusion coefficient D of CCW and CW particles as a function of ϕ ; (b) the separation coefficient S as a function of ϕ . The other parameters are $v_0 = 2.5$, $D_{\theta} = 0.001$, $\omega = 2.1$, $K_{\text{fb}} = 10.0$, and $\tau = 10.0$.

图 10 (a) 在不同填充率 ϕ 下, 分离系数 S随时间 t的变化; (b) 在不同时间 t下, $\phi = 0.5$ 时, 相对径向分布函数 $g_{AB}(r)$. 图中标 注的圆圈为第一个零根, 代表单种粒子的团簇尺寸. 其他参数设置为 $v_0 = 2.5$, $D_{\theta} = 0.001$, $\omega = 2.1$, $K_{fb} = 10.0$, $\tau = 10.0$ Fig. 10. (a) The separation S as a function of t for different ϕ ; (b) the relative radial distribution function $g_{AB}(r)$ for different t at $\phi = 0.5$. The first non-trivial root (marked by circles) denotes the cluster size of the single particle species. The other parameters are $v_0 = 2.5$, $D_{\theta} = 0.001$, $\omega = 2.1$, $K_{fb} = 10.0$, and $\tau = 10.0$.

率φ的变化.可以看出,有效扩散系数 D 和分离系数 S 都表现为填充率φ的峰值函数.当φ很小时, 粒子间的平均距离很大,发生相互作用的概率很小,导致 D 很小,粒子无法聚集,因此分离系数 S 也很小.当φ很大时,粒子间相互作用变得重要, 粒子拥挤造成粒子很难移动,所以 D 很小,S 也很小.所以存在最优值φ使得有效扩散系数 D 和分离 系数 S 达到最大值.

为了验证模拟结果具有鲁棒性, 绘制了在不同 填充率 ϕ 下, 分离系数 *S*随时间 *t* 的变化, 如图 10(a) 所示. 选取的积分时间大于 2 × 10⁴, 由图 10(a) 可 知, 分离系数 *S*从 *t* = 1 × 10⁴开始保持常数不变, 即系统达到稳态. 此外 ϕ = 0.5的分离系数最大, 这 与图 9(b) 结果一致. 图 10(b) 描述了在不同时间 *t*下, ϕ = 0.5时, 相对径向分布函数 *g*_{AB}(*r*). 图中标 注的圆圈为第一个零根, 代表单种粒子的团簇尺 寸. 由图 10(b) 可知, 随时间 *t* 增大, 团簇尺寸增大, 并于*t* = 1 × 10⁴开始达到最大值.

4 结 论

在二维周期边界条件下,考虑时间延迟反馈作 用的影响,文章提出了一种手征活性粒子混合物的 分离方法.分别研究了角速度 ω 、反馈强度 $K_{\rm fb}$ 、反 馈时间 τ 、转动扩散系数 D_{θ} 、自驱动速度 v_0 及填充 率 ϕ 对粒子有效扩散系数D和分离系数S的影响. 手征活性混合粒子体系在没有驱动源时并不包含 自分离属性,但存在时间延迟反馈时,系统的原有 状态参量与反馈相耦合,形成对混合粒子系统的驱 动.由于两种粒子在不同参数空间中对驱动的响应 存在差异,当 ω , D_{θ} , v_0 及 ϕ 取最优值,1) $K_{\rm fb} > 6.0$, $\tau > 1.0$ 时,时间延迟反馈使得 CCW 粒子加快旋 转角速度,而对 CW 粒子几乎无影响, CCW 粒子 扩散完全由粒子之间相互作用控制, CW 粒子扩散 由自身参数和相互作用力大小共同决定, S > 0.8, 粒子分离. 2) 当 $K_{\rm fb} < 6.0$, $\tau < 1.0$ 时,时间延迟反 馈对两种粒子角速度调制差异较小,两种粒子扩散 不仅与粒子之间相互作用有关,也与自身参数 (角 速度、自驱动速度及转动扩散系数)有关, S较小, 粒子混合.所以,粒子是否实现分离是由两种粒子 扩散的控制因素决定.可以通过调节时间延迟反馈 的强度和反馈时间来控制 CCW 粒子扩散受到 CW 粒子扩散的影响程度,继而实现粒子分离.研 究结果在许多微生物中有潜在应用,如旋转外场中 的磁定向细菌,固体边界附近的细菌及做涡旋运动 的精子细胞等.

感谢华南师范大学艾保全教授对本文的指导.

参考文献

- Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006
- [2] Chen C, Liu S, Shi X, Chate H, Wu Y 2017 Nature 542 210
- [3] Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51
- [4] Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10
- [5] Xia Y Q, Zhan Z L, Guo Y K 2019 Acta Phys. Sin. 68 161101 (in Chinese) [夏益祺, 谌庄琳, 郭永坤 2019 物理学报 68 161101]
- [6] Zhang H, Zong Y W, Yang M C, Zhao K 2019 Acta Phys. Sin. 68 134702 (in Chinese) [张红, 宗奕吾, 杨明成, 赵坤 2019 物理学报 68 134702]
- [7] Vale R D, Milligan R A 2000 Science 288 88
- [8] Leptos K C, Guasto J S, Gollub J P, Pesci A I, Goldstein R E 2009 Phys. Rev. Lett. 103 198103
- [9] Howse J, Jones R, Ryan A, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102
- [10]~van Teeffelen S, Löwen H 2008 Phys. Rev. E $78~020101({\rm R})$
- [11] Tjhung E, Cates M E, Marenduzzo D 2017 Proc. Natl. Acad. Sci. 114 4631
- [12] Friedrich B M, Jülicher F 2007 Proc. Natl. Acad. Sci. 104 13256
- [13] Leonardo R D, Dell'Arciprete D, Angelani L, Iebba V 2011 Phys. Rev. Lett. 106 038101
- [14] Shenoy V B, Tambe D T, Prasad A, Theriot J A 2007 Proc. Natl. Acad. Sci. 104 8229
- [15] Von Lospichl B, Klapp S H L 2018 Phys. Rev. E 98 042605
- [16] Lopez B J, Kuwada N J, Craig E M, Long B R, Linke H 2008 *Phys. Rev. Lett.* **101** 220601
- [17] Gernert R, Klapp S H L 2015 Phys. Rev. E 92 022132
- [18] Popli P, Ganguly S, Sengupta S 2018 Soft Matter 14 104
- [19] Yang Y, Bevan M A 2018 ACS Nano 12 10712
- [20] Blickle V, Bechinger C 2011 Nat. Phys. 8 143
- [21] Hanes R D L, Jenkins M C, Egelhaaf S U 2009 Rev. Sci. Instrum. 80 083703

- [22] Evers F, Hanes R D L, Zunke C, Capellmann R F, Bewerunge J, Dalle-Ferrier C, Jenkins M C, Ladadwa I, Heuer A, Castaneda-Priego R, Egelhaaf S U 2013 *Eur. Phys. J. Spec. Top.* **222** 2995
- [23] Bewerunge J, Egelhaaf S U 2016 Phys. Rev. A $\mathbf{93}$ 013806
- [24] Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 9 3232
- [25] Jones P, Marag O, Volpe G 2015 Optical Tweezers: Principles and Applications (Cambridge: Cambridge University Press)
- [26] Nishizawa K, Bremerich M, Ayade H, Schmidt C F, Ariga T, Mizuno D 2017 Sci. Adv. 3 e1700318
- [27] Leyman M, Ogemark F, Wehr J, Volpe G 2018 Phys. Rev. E 98 052606
- [28] Lavergne F A, Wendehenne H, Bäuerle T, Bechinger C 2019 Science 364 70
- [29] Adler J 1966 Science 153 708
- [30] Couzin I D, Franks N R 2003 Proc. R. Soc. London, Ser. B 270 139
- [31] Jin C, Hokmabad B V, Baldwin K A, Maass C C 2018 J. Phys. Condens. Matter 30 054003
- [32] Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659
- [33] Kumari S, Nunes A S, Araújo N A M, Margarida M Telo da Gama 2017 J. Chem. Phys. 147 174702
- [34] Maggi C, Lepore A, Solari J, Rizzo A, Di Leonardo R 2013 Soft Matter 9 10885
- [35] Berdakin I, Jeyaram Y, Moshchalkov V V, Venken L, Dierckx S, Vanderleyden S J, Sil-hanek A V, Condat C A, Marconi V I 2013 *Phys. Rev. E* 87 052702
- [36] Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175
- [37] Weber S N, Weber C A, Frey E 2016 Phys. Rev. Lett. 116 058301
- [38] Costanzo A, Elgeti J, Auth T, Gompper G, Ripoll M 2014 EPL 107 36003
- [39] Stenhammar J, Wittkowski R, Marenduzzo D, et al. 2015 *Phys. Rev. Lett.* **114** 018301
- [40] Ma Z, Lei Q, Ni R 2017 Soft Matter 13 8940
- [41] McCandlish S R, Baskaran A, Hagan M F 2012 Soft Matter 8 2527
- [42] Smrek J, Kremer K 2017 Phys. Rev. Lett. 118 098002
- [43] Harder J, Cacciuto A 2018 Phys. Rev. E 97 022603
- [44] Nourhani A, Crespi V H, Lammert P E 2015 *Phys. Rev. Lett.* 115 118101
- [45] Mijalkov M, Volpe G 2013 Soft Matter 9 6376
- [46] Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 1
- [47] Chen Q, Ai B 2015 J. Chem. Phys. 143 104113
- [48] Ai B, Shao Z, Zhong W 2018 Soft Matter 14 4388
- [49] Wysocki A, Winkler R G, Gompper G 2016 New J. Phys. 18 123030
- [50] Dolai P, Simha A, Mishra S 2018 Soft Matter 14 6137
- [51] Ai B 2016 Sci. Rep. 6 1
- [52] Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701
- [53] Agrawal A, Babu S B 2018 Phys. Rev. E 97 020401(R)
- [54] Ai B, He Y, Zhong W 2015 Soft Matter 11 3852
- [55] Reichhardt C, Reichhardt C J O 2013 Phys. Rev. E 88 042306
- [56] DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M 2005 *Nature* 435 1271
- [57] Shin J, Cherstvy A G, Metzler R 2014 New J. Phys. 16 053047
- [58] Di Leonardo R, Dell'Arciprete D 2011 Physical Review Letters 106 038101

[59] Cēbers A 2011 J. Magn. Magn. Mater. 323 279

[60] Hennig D 2009 Phys. Rev. E 79 041114

[61] Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10

6477

[62] Cates M E, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219

Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback^{*}

Liao Jing-Jing¹⁾²⁾ Lin Fu-Jun^{<math>1)3)†}</sup></sup>

1) (School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China)

2) (College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China)

3) (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China)

(Received 7 April 2020; revised manuscript received 8 July 2020)

Abstract

Considering the periodic boundary conditions, a new prescription for separating binary mixtures of chiral active particles by time-delayed feedback in a two-dimensional square box is proposed. We investigate the angular velocity, the feedback intensity, the delayed time, the rotational diffusion coefficient, the self-propelled speed and the packing fraction as functions of the effective diffusion coefficient and the separation coefficient numerically by the extensive Brownian dynamics simulations. It is found that mixed chiral active particles be separated without time-delayed feedback, but the dynamics of chiral active particles are different obviously and mixed chiral particles can be separated when the time-delayed feedback is introduced. The particle configuration (mixing or demixing) is determined by the dominant factor of particles' diffusion. We can control the extent to which the diffusion of counterclockwise (CCW) active particles is affected by the diffusion of clockwise (CW) active particles adjusting the strength and the delayed time of the feedback. The response to the feedback for different chiral particles show different behaviors under different system parameters. When the feedback intensity is strong and the delayed time is long enough, the angular velocity of counterclockwise particles is accelerated and the diffusion of which is dominated by the interactions between particles completely. However, the angular speed of clockwise particles change little and the diffusion of which is determined by its parameters and particle interactions jointly. In this case, the counterclockwise particles aggregate to form clusters easily, and the clockwise particles diffuse quickly, therefore, the mixed chirality active particles are separated. When the feedback intensity is weak and the delayed time is short, the chirality difference between different chiral particles modulated by the feedback is smaller than the former case. The diffusions of counterclockwise particles and clockwise particles are both determined by their parameters and particle interactions, and the particles are mixed. Our findings provide novel strategies for the experimental pursuit of separating mixed chiral active particles and could be applied practically in many biological circle swimmers, such as autochemotactic particles, the bacteria in an external light field and sperm cells with vortex motion.

Keywords: active particles, diffusion, time-delayed feedback, particle separation PACS: 05.10.Gg, 05.20.-y, 87.16.Uv, 05.40.Jc DOI: 10.7498

DOI: 10.7498/aps.69.20200505

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11905086, 11804131), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BAB212006), and the Foundation of Jiangxi Provincial Educationa Department, China (Grant Nos. GJJ191598, GJJ191599).

[†] Corresponding author. E-mail: fujun012@yeah.net