

Institute of Physics, CAS

Graphene/Ag₂ZnSnSe₄诱导p-n结薄膜太阳电池数值模拟

肖友鹏 王怀平 李刚龙

Numerical simulation of graphene/Ag₂ZnSnSe₄ induced p-n junction solar cell

Xiao You-Peng Wang Huai-Ping Li Gang-Long

引用信息 Citation: Acta Physica Sinica, 70, 018801 (2021) DOI: 10.7498/aps.70.20201194 在线阅读 View online: https://doi.org/10.7498/aps.70.20201194 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

硒化锑薄膜太阳电池的模拟与结构优化研究

Simulation and optimal design of antimony selenide thin film solar cells 物理学报. 2018, 67(24): 247301 https://doi.org/10.7498/aps.67.20181745

基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究 Nickel oxide as back surface field buffer layer in CdTe thin film solar cell 物理学报. 2017, 66(11): 117301 https://doi.org/10.7498/aps.66.117301

p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究

Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells 物理学报. 2019, 68(19): 196103 https://doi.org/10.7498/aps.68.20191042

Ag@SiO,耦合结构设计及其对薄膜太阳电池的响应调控

Ag@SiO2 coupled structure' s design and regulation and control of response to thin film solar cells

物理学报. 2020, 69(18): 188801 https://doi.org/10.7498/aps.69.20200334

GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟

Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons

物理学报. 2020, 69(9): 098802 https://doi.org/10.7498/aps.69.20191878

石墨烯与复合纳米结构SiO₂@Au对染料敏化太阳能电池性能的协同优化

Significant enhancement of the performance of dye–sensitized solar cells with photoelectrode co–doped graphene and hybrid $SiO_2@Au$ nanostructure

物理学报. 2020, 69(16): 160201 https://doi.org/10.7498/aps.69.20191722

Graphene/Ag₂ZnSnSe₄ 诱导 p-n 结薄膜 太阳电池数值模拟^{*}

肖友鹏1)2)† 王怀平1)2) 李刚龙2)

(东华理工大学,核技术应用教育部工程研究中心,南昌 330013)
 2)(东华理工大学机械与电子工程学院,南昌 330013)
 (2020 年 7 月 26 日收到; 2020 年 8 月 28 日收到修改稿)

银锌锡硒 (Ag₂ZnSnSe₄) 是一种禁带宽度为 1.4 eV 的 n 型半导体材料.本文提出一种由 n 型 Ag₂ZnSnSe₄ 与石墨烯 (Graphene) 组成的 Graphene/Ag₂ZnSnSe₄ 诱导 p-n 结薄膜太阳电池,并借助 wxAMPS 软件对电池 的物理机理和性能影响因素进行模拟研究.模拟结果表明,高功函数的石墨烯与 n 型 Ag₂ZnSnSe₄ 半导体接触 时,Ag₂ZnSnSe₄ 吸收层的前端能带向上弯曲,在 n 型 Ag₂ZnSnSe₄ 吸收层表面诱导形成 p 型 Ag₂ZnSnSe₄ 反型 层,p型 Ag₂ZnSnSe₄和 n 型 Ag₂ZnSnSe₄ 组成 p-n 同质结.模拟发现石墨烯和背接触的功函数会影响载流子的 分离、输运和收集,严重影响器件性能,石墨烯功函数达到 5.5 eV,背接触功函数不高于 4.4 eV,都有利于提 高器件性能.Ag₂ZnSnSe₄ 吸收层的掺杂浓度主要影响器件的短路电流,而 Ag₂ZnSnSe₄ 吸收层的体内缺陷对 器件整体性能产生影响.在石墨烯和背接触功函数分别为 5.5 和 3.8 eV, Ag₂ZnSnSe₄ 吸收层的掺杂浓度和缺 陷密度分别为 10¹⁶ 和 10¹⁴ cm⁻³ 时,Graphene/Ag₂ZnSnSe₄ 诱导 p-n 结薄膜太阳电池能够取得高达 23.42% 的 效率.这些模拟结果为设计新型高效低成本太阳电池提供了思路和物理阐释.

关键词:石墨烯,银锌锡硒,诱导 p-n 结,薄膜太阳电池 **PACS**: 88.40.H-, 88.40.hj, 88.40.jn, 88.40.fc

DOI: 10.7498/aps.70.20201194

1 引 言

铜锌锡硫 (Cu₂ZnSnS₄, CZTS) 和铜锌锡硒 (Cu₂ZnSnSe₄, CZTSe) 锌黄锡矿半导体材料由于 储量丰富、无毒和吸收系数高等优点,一直被认为 是薄膜太阳电池吸收层材料的最佳选择^[1-3].不过 许多文献报道 Cu_{Zn}反位缺陷形成能低,在半导体 带隙中形成带尾态,限制了电池开路电压的进一步 提高^[4-6].一个解决的办法是利用具有更大离子半 径的其他元素取代 Cu 离子或 Zn 离子,从而提高反 位缺陷的形成能.银锌锡硒 (Ag₂ZnSnSe₄, AZTSe)

是一种新型的光伏半导体材料,理论计算和实验都 表明 AZTSe 中的 Ag_{Zn} 反位缺陷具有高的形成能^[7,8]. AZTSe 是一种 n 型半导体材料,禁带宽度为 1.4 eV, 非常适合作为太阳电池的吸收层^[9,10].最近 Gershon 等^[11]报道了一种基于 n 型 AZTSe 半导体材料的新 型肖特基光伏器件,器件采用 FTO/AZTSe/MoO₃/ ITO 结构并取得了 5.2% 的转换效率,这一效率高 于其他以 n 型薄膜作为吸收层的太阳电池,但是远 低于传统太阳电池所取得的效率,需要继续提升 AZTSe 半导体薄膜的品质并设计出新的电池结构 来提高电池的效率.石墨烯是一种具有优异电学和 光学性能的材料,与 AZTSe 结合形成 Graphene/

^{*} 东华理工大学博士科研启动基金 (批准号: DHBK2019170) 资助的课题.

[†] 通信作者. E-mail: xiaoypnc@ecut.edu.cn

^{© 2021} 中国物理学会 Chinese Physical Society

AZTSe 诱导 p-n 结薄膜太阳电池, 电池结构简单, 预期电池制造成本低. 目前还没有关于 Graphene/ AZTSe 结构太阳电池实验和理论方面的文献报道, 对器件工作物理机理和性能表现犹未可知. 利用数 值模拟方法对光伏器件进行研究多有报道^[12-15], 不仅深入认识了器件内在的物理机理, 还预测了器 件的性能表现. 因此本文利用数值模拟方法对 Graphene/AZTSe 结构太阳电池展开模拟分析, 主要目 的是提出一种新型的太阳电池并分析诱导 p-n 结 薄膜太阳电池工作的物理机理及其性能影响因素.

2 器件结构与模拟参数

利用一维微电子与光电子器件模拟软件 wxAMPS对Graphene/AZTSe薄膜太阳电池进行 模拟分析.模拟采用的电池结构如图1所示,其中 AZTSe为吸收层.表1为模拟使用的主要材料参 数^[11,16–19].模拟时电池的工作温度为300K,入射 光是标准的AM1.5G光谱.模拟时如无特别说明 AZTSe吸收层中的缺陷密度设定为10¹⁴ cm⁻³.

图 1 模拟器件结构

Fig. 1. Structure of the graphene/AZTSe induced p-n junction solar cell used in the numerical simulation.

	表 1	模拟使用	目的主要材料	科参数		
Table 1.	Main	material	parameters	used in	$_{\rm the}$	nu
merical s	imulatic	m				

merieur simulation.	
参数	AZTSe
厚度/µm	2
相对介电常数 $\varepsilon_{ m r}$	12.6
电子亲和能 $\chi_{\rm e}/{ m eV}$	4.2
禁带宽度 $E_{\rm g}/{ m eV}$	1.4
施主掺杂浓度 $N_{\rm D}/{\rm cm}^{-3}$	$10^{11} - 10^{16}$
导带有效态密度 $N_{\rm c}$ /cm ⁻³	2.2×10^{18}
价带有效态密度 $N_{\rm v}$ /cm ⁻³	1.8×10^{19}
电子迁移率 $\mu_{\rm n}/{ m cm}^2 \cdot { m V}^{-1} \cdot { m s}^{-1}$	100
空穴迁移率 $\mu_{\rm p}/{\rm cm}^2 \cdot {\rm V}^{-1} \cdot {\rm s}^{-1}$	2
缺陷密度 $N_{\rm t}/{\rm cm}^{-3}$	10^{13} — 10^{18}

3 结果与讨论

3.1 石墨烯功函数的影响

在 Graphene/AZTSe 诱导 p-n 结薄膜太阳电 池中,石墨烯不仅充当透明导电电极和太阳光进入 电池的窗口层,发挥载流子收集功能,更重要的是 诱导半导体吸收层表面发生反型,直接参与光生载 流子的分离,因此石墨烯对诱导 p-n 结薄膜太阳电 池性能有很大的影响. 早期研究报道石墨烯的功函 数在 3.40—5.14 eV 之间^[20-22], 最近 Seo 等^[23]利 用化学气相沉积的方法制备了功函数高达 5.5 eV 的石墨烯.我们首先保持电池背接触为平带结构, 通过调整石墨烯的功函数来研究 Graphene/AZTSe 太阳电池的光伏性能.图 2(a) 给出的是电池的电 流密度-电压特性曲线,可以看出,随着功函数的增 加,电池的开路电压、短路电流和填充因子都得到 明显改善,功函数为 5.5 eV 时,电池的开路电压、 短路电流、填充因子和转换效率分别为 856.4 mV, 31.28 mA/cm², 84.04% 和 22.51%.

为了更深入理解石墨烯功函数对电池性能改 善的物理机理,图 2(b)给出了不同石墨烯功函数 情况下的电池能带结构. 高功函数的石墨烯与 (n)AZTSe 吸收层接触时, 两种材料之间的费米能 级差驱动着电子从 (n)AZTSe 吸收层流向石墨烯, (n)AZTSe吸收层前端的能带向上弯曲,导带远离 费米能级而价带靠近费米能级,在(n)AZTSe吸收 层前端诱导形成一个 p型 AZTSe 反型层, p型 AZTSe和n型AZTSe组成诱导 p-n同质结.在 以n型MoO_x作为空穴选择性接触的结构为TCO/ (n)MoO_x/(i)a-Si:H/(n)c-Si/(i)a-Si:H/(n)a-Si:H 的 硅异质结太阳电池中,高功函数的n型MoO_x与 n型 c-Si 接触时同样引起 c-Si 表面的能带弯曲,形 成 p 型反型层和诱导 p-n 同质结^[12,24,25], 而且取得 了 23.5% 的效率^[26]. 由图 2(b) 还可以看到, 随着 石墨烯功函数的增加, (n)AZTSe 吸收层前端能带 弯曲程度增大,越有利于光生载流子的分离,从而 提高电池的开路电压. 图 2(b) 中也可以看出石墨 烯功函数的增加对电池背接触的能带结构几乎没 有影响.

图 2(c) 给出了不同石墨烯功函数情况下电池 的电场分布情况. 图中显示的 (n)AZTSe 吸收层前 端负方向的电场也印证了前述的 p 型反型层. 石墨

图 2 不同石墨烯功函数情况下电池的 (a) 电流密度-电压特性曲线, (b) 能带结构, (c) 电场分布, (d) 载流子浓度, (e) 载流子复合率分布, (f) 量子效率

Fig. 2. Graphene/AZTSe induced p-n junction thin film solar cell with different values of graphene work function (a) current density-voltage curves, (b) energy band structure, (c) electric field, (d) carrier concentration, (e) carrier recombination rate profile, (f) quantum efficiency.

烯的功函数越大,负方向的电场越大,越有利于 (n)AZTSe吸收层中光生载流子的分离和光生空穴 向石墨烯输运从而被石墨烯收集.

图 2(d) 给出了不同石墨烯功函数情况下电池 内的载流子分布情况.由图可见 (n)AZTSe 吸收层 前端的空穴浓度大于电子浓度,再次印证了前述 的 p 型反型层.随着功函数的增加, (n)AZTSe 吸收 层前端的空穴浓度增加,说明 (n)AZTSe 吸收层前 端的反型程度也在增强.能带弯曲程度的增加和反 型程度的增强有利于光生空穴流过 Graphene/(n) AZTSe 界面,同时也会阻挡光生电子流向界面.也 就是说石墨烯功函数的增加有利于空穴选择性流 过,从而提高了 Graphene/(n)AZTSe 接触的载流 子选择性,改善了光生载流子的输运性能,有利于 提高电池的填充因子.

图 2(e) 给出了不同石墨烯功函数情况下电池 内的载流子复合情况.由图可见石墨烯功函数越 大,(n)AZTSe 吸收层前端的空穴浓度越高,使得 前端载流子的复合率越高.不过整个 (n)AZTSe 吸 收层中则是石墨烯功函数越大,载流子复合率越小.

图 2(f) 给出了不同石墨烯功函数情况下电池 的量子效率. 由图可见石墨烯功函数越大, 光生载 流子的分离和收集越有效, 载流子复合率越小, 电 池的量子效率越高, 从而改善了电池的整体性能.

3.2 背接触功函数的影响

背接触主要影响太阳电池背端的能带结构和 光生载流子的收集,对太阳电池的性能也有很大影 响.接下来的模拟是在保持石墨烯功函数为 5.5 eV不变的情况下进行的,背接触功函数的变化 区间选择在 3.8—5.0 eV 之间.图 3(a)显示的是模 拟所得太阳电池的电流密度-电压特性曲线,可以 看到,背接触功函数为 3.8 eV时电池的效率可以 进一步提升到 22.59%.当背接触功函数从 3.8 eV 增加到 4.4 eV,电池性能变化很小,当功函数继续 增加,电池性能明显下降,并且主要是电池的开路 电压明显变差.图 3(b)显示的是不同背接触功函 数时电池的能带结构.当背接触功函数小于 4.4 eV 时,功函数影响的是 (n)AZTSe 吸收层背部近表面 区域,并且功函数小于 4.4 eV 时能带向下弯曲,光生 电子能够被背接触高效收集.当功函数继续增加, 由于器件为薄膜太阳电池,功函数的影响向 AZTSe 吸收层前端延伸,能带弯曲程度下降,电池开路电 压下降.同时背部的能带向上抬升,光生电子收集 受阻,影响载流子的输运特性进而影响电池的填充 因子.受阻的电子不能流过 (n)AZTSe/背接触界 面,在界面处电子浓度急剧下降,如图 3(c)所示. 而背接触功函数越小,电子浓度越高,容易在背接 触界面附近积累,使得载流子复合率升高,如图 3(d) 所示.

3.3 吸收层掺杂浓度的影响

继续模拟 AZTSe 吸收层掺杂浓度对电池性能 的影响,模拟时石墨烯和背接触的功函数分别为 5.5和3.8 eV,掺杂浓度从10¹⁰ cm⁻³ 增加到10¹⁶ cm⁻³. 不同吸收层掺杂浓度情况下电池的电流密度-电压 特性曲线如图 4 所示.可以看到掺杂浓度的增加对 电池的短路电流提升明显. 当掺杂浓度增加时,入

图 3 不同背接触功函数时电池的 (a) 电流密度-电压特性曲线, (b) 能带结构, (c) 电子浓度, (d) 载流子复合率分布 Fig. 3. Graphene/AZTSe induced p-n junction thin film solar cell with different values of back contact work function (a) current density-voltage curves, (b) energy band structure, (c) carrier concentration, (d) carrier recombination rate profile.

射同样通量的光子将产生更多的光生载流子,此时 电池的能带结构得到优化,光生载流子能够有效收 集,电池的填充因子和短路电流都会得到提升. AZTSe吸收层掺杂浓度为 10¹⁶ cm⁻³时电池的效 率可以进一步提升到 23.42%.

图 4 不同吸收层掺杂浓度时电池的电流密度-电压特性 曲线

Fig. 4. Current density-Voltage curves of graphene/AZTSe induced p-n junction solar cell with different values of absorber layer doping concentration.

3.4 吸收层缺陷密度的影响

AZTSe 吸收层是诱导 p-n 结薄膜太阳电池载 流子光照产生和输运的场所, 吸收层中的缺陷特别 是深能级缺陷对电池性能有很大影响. 模拟时隙间 缺陷态为高斯分布, 缺陷能级位于禁带中央, 特征 能为 0.1 eV, 缺陷密度从 10¹³ cm⁻³ 增加到 10¹⁸ cm⁻³, 电子俘获截面和空穴俘获截面分别为 10⁻¹⁴ 和 10⁻¹⁵ cm², 模拟结果如图 5 所示.可以看出, 深能级 缺陷密度不超过 10¹⁴ cm⁻³ 时, 缺陷对电池性能影

图 5 不同吸收层缺陷密度时的电流密度-电压特性曲线 Fig. 5. Current density-Voltage curves of graphene/AZTSe

induced p-n junction solar cell with different values of absorber layer defect densities. 响很小. 当缺陷密度超过 10¹⁴ cm⁻³ 时, 缺陷对电池的整体性能都会产生影响. 随着缺陷密度的增加, 更多的光生载流子被复合, 直接对电池的短路电流 产生影响. 复合形成更高的暗电流, 电池的开路电 压会下降. 载流子的复合会影响载流子的输运和收 集, 还会影响电池的填充因子. 因此电池制备过程 中提升 AZTSe 吸收层薄膜质量非常重要, 需要将 薄膜中缺陷密度控制在 10¹⁴ cm⁻³ 及以下.

4 结 论

本文利用高功函数的石墨烯与 AZTSe 吸收层 组成一种 Graphene/AZTSe 诱导 p-n 结薄膜太阳 电池,并借助 wxAMPS 软件对电池的物理机理和 性能影响因素进行模拟与分析.模拟结果表明,高 功函数的石墨烯与 n型 AZTSe 半导体接触时, AZTSe 吸收层的前端能带向上弯曲,在n型AZTSe 表面诱导形成 p型 AZTSe 反型层, p型 AZTSe 和 n 型 AZTSe 组成诱导同质 p-n 结. 模拟发现石 墨烯和背接触的功函数、AZTSe 吸收层的掺杂浓 度和体内缺陷都会对电池性能产生影响. 石墨烯功 函数越高, AZTSe 吸收层前端能带弯曲程度越大, 有利于提高电池的开路电压和光生空穴向石墨烯 输运,从而提高电池的填充因子.背接触功函数同 样能引起 AZTSe 吸收层背面能带的弯曲, 功函数 太高时对能带弯曲的影响还会向 AZTSe 吸收层前 端延伸,严重影响电池性能.在石墨烯和背接触功 函数分别为 5.5 和 3.8 eV, AZTSe 吸收层的掺杂 浓度和缺陷密度分别为 1016 和 1014 cm-3 时, 电池 能够取得高达 23.42% 的效率. 这些模拟结果有助 于理解诱导 p-n 结薄膜太阳电池工作的物理机理, 并在未来电池制备过程中起到一定的理论辅助作用.

参考文献

- Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A, Noufi R 2012 Sol. Energy Mater. Sol.Cells 101 154
- [2] Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A 2014 Appl. Phys. Lett. 104 051105
- [3] Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H 2014 Sol. Energy Mater. Sol. Cells 124 55
- [4] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902
- [5] Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506

- [6] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522
- [7] Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289
- [8] Patil R M, Nagapure D R, Chandra G H, Subbaiah Y P V, Gupta M, Rao R P 2020 Phys. Status Solidi 217 1900752
- [9] Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733
- [10] Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704
- [11] Gershon T, Sardashti K, Gunawan O, Mankad R, Singh S, Lee Y S, Ott J A, Kummel A, Haight R 2016 Adv. Energy Mater. 6 1601182
- [12] Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66
 158801 (in Chinese) [肖友鹏, 高超, 王涛, 周浪 2017 物理学报
 66 158801]
- [13] Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301 (in Chinese) [曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明 仁, 周静 2018 物理学报 67 247301]
- [14] Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901 (in Chinese) [梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901]
- [15] Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin. 69 118801 (in Chinese) [张翱, 张春秀, 陈云林,

张春梅, 孟涛 2020 物理学报 69 118801]

[16] Gershon T, Sardashti K, Lee Y S, Gunawan O, Singh S, Bishop D, Kummel A C, Haight R 2017 Acta Mater. 126 383

- [17] Gershon T, Gunawan O, Gokmen T, Brew K W, Singh S, Hopstaken M, Poindester J R, Barnard E S, Buonassisi T, Haight R 2017 J. Appl. Phys. 121 174501
- [18] Jia J, Li Y, Yao B, Ding Z, Deng R, Jiang Y, Sui Y 2017 J. Appl. Phys. 121 215305
- [19] Jiang Y, Yao B, Jia J, Ding Z, Deng R, Liu D, Sui Y, Wang H, Li Y 2019 J. Appl. Phys. 125 025703
- [20] Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F Z, Watanabe Y 2009 Phys. Rev. B 79 125437
- [21] Garg R, Dutta N K, Choudhury N R 2014 Nanomaterials 4 267
- [22] Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J, Park J Y 2013 Appl. Phys. Lett. 103 171604
- [23] Seo J, Bong J, Cha J, Lim T, Son J, Park S H, Hwang J, Hong S, Ju S 2014 J. Appl. Phys. 116 084312
- [24] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34
- [25] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260
- [26] Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495

Numerical simulation of graphene/ $Ag_2ZnSnSe_4$ induced p-n junction solar cell^{*}

Xiao You-Peng^{1)2†} Wang Huai-Ping¹⁾² Li Gang-Long²)

 (Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology, Nanchang 330013, China)

2) (School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China)

(Received 26 July 2020; revised manuscript received 28 August 2020)

Abstract

Ag₂ZnSnSe₄ is an n-type semiconductor with a suitable bandgap of 1.4 eV. In the present study, a $graphene/Ag_2ZnSnSe_4$ induced p-n junction thin film solar cell is proposed and the physical mechanism and performance influencing factors of the solar cell are simulated and analyzed by using the wxAMPS software. The simulation results show that when a high work function graphene contacts an n-type $Ag_2ZnSnSe_4$ semiconductor, the energy band of the $Ag_2ZnSnSe_4$ absorber layer bends upward, meanwhile a p-type $Ag_2ZnSnSe_4$ inversion layer is induced on the surface of n-type $Ag_2ZnSnSe_4$, therefore the p-type $Ag_2ZnSnSe_4$ and n-type $Ag_2ZnSnSe_4$ form an induced p-n homojunction. It is found that the work function of graphene and back contact significantly influence the photogenerated carrier separation, transportation and collection. The graphene work function should be 5.5 eV and the work function of back contact should not be greater than 4.4 eV, which is beneficial to the improving of the device performance. The doping concentration of $Ag_2ZnSnSe_4$ absorber mainly affects the short-circuit current of the device, however, the defect density of $Ag_2ZnSnSe_4$ absorber affects the whole device performance. When the work function of graphene and back contact are 5.5 eV and 3.8 eV, the doping concentration and defect density of Ag₂ZnSnSe₄ absorber are 10^{16} cm⁻³ and 10^{14} cm⁻³³, respectively, the conversion efficiency of the graphene/Ag₂ZnSnSe₄ induced p-n junction thin film solar cell can reach 23.42%. These simulation results provide the idea and physical explanation for designing a novel type of solar cell with high efficiency and low cost.

Keywords: graphene, Ag₂ZnSnSe₄, induced p-n junction, thin film solar cell **PACS:** 88.40.H–, 88.40.hj, 88.40.jn, 88.40.fc **DOI:** 10.7498/aps.70.20201194

^{*} Scientific Research Staring Foundation for Doctors of East China University of Technology, China (Grant No. DHBK2019170).

[†] Corresponding author. E-mail: xiaoypnc@ecut.edu.cn