

Institute of Physics, CAS

In掺杂h-LuFe03光吸收及极化性能的第一性原理计算

张小娅 宋佳讯 王鑫豪 王金斌 钟向丽

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO₂

Zhang Xiao-Ya Song Jia-Xun Wang Xin-Hao Wang Jin-Bin Zhong Xiang-Li

引用信息 Citation: Acta Physica Sinica, 70, 037101 (2021) DOI: 10.7498/aps.70.20201287

在线阅读 View online: https://doi.org/10.7498/aps.70.20201287

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质

First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13) 物理学报. 2018, 67(6): 067101 https://doi.org/10.7498/aps.67.20172356

Fe掺杂GaN光电特性的第一性原理研究

First-principles study on the optical properties of Fe-doped GaN 物理学报. 2018, 67(10): 107102 https://doi.org/10.7498/aps.67.20172290

内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究

Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study 物理学报. 2019, 68(8): 087101 https://doi.org/10.7498/aps.68.20182238

磷、铋掺杂半导体锗光学性质的第一性原理研究

First-principles study of optical properties of germanium doped with phosphorus and bismuth 物理学报. 2018, 67(13): 136101 https://doi.org/10.7498/aps.67.20172680

掺杂对金属-MoS2界面性质调制的第一性原理研究

First principles investigation of the tuning in metal-MoS2 interface induced by doping 物理学报. 2017, 66(11): 118201 https://doi.org/10.7498/aps.66.118201

Ti₃O₅弹性、电子和光学性质的第一性原理研究

First-principles investigation on elastic, electronic, and optical properties of Ti₃O₅ 物理学报. 2019, 68(20): 207301 https://doi.org/10.7498/aps.68.20190664

In 掺杂 *h*-LuFeO₃ 光吸收及极化性能的 第一性原理计算^{*}

张小娅 宋佳讯 王鑫豪 王金斌 钟向丽†

(湘潭大学材料科学与工程学院,湘潭 411105)

(2020年8月7日收到; 2020年9月7日收到修改稿)

h-LuFeO₃ 是一种窄带隙铁电半导体材料,已被证明在铁电光伏领域有较好的应用前景.然而,较低的极 化强度使光生电子-空穴对复合率大,限制了 *h*-LuFeO₃ 基铁电光伏电池效率的提高.为改善 *h*-LuFeO₃ 的极化 强度,提高光吸收性质,本文利用第一性原理计算方法研究了 In 原子在 *h*-LuFeO₃ 不同位置的掺杂形成能,得 到最稳定的掺杂位置,比较了 *h*-Lu_{1-x}In_xFeO₃ (*x* = 0, 0.167, 0.333, 0.667)的带隙、光吸收性能及极化强度等性 质. 计算结果表明,随着 In 掺杂比例的增加, *h*-LuFeO₃ 的晶格常数 *c*/*a* 比不断增大,铁电极化强度得到提高. 当 In:Lu = 2:1 时,材料杂质能级出现,Fe-O 轨道杂化得到增强,提高了 *h*-LuFeO₃ 的光吸收性能.此工作证 明了 In 掺杂是改善 *h*-LuFeO₃ 极化强度和光吸收系数的有效方法,对铁电光伏性能的提高提供一种新途径.

关键词: *h*-LuFeO₃, 掺杂, 光学性质, 极化强度, 第一性原理 **PACS**: 71.15.Mb, 71.15.-m, 71.20.-b

DOI: 10.7498/aps.70.20201287

1 引 言

铁电材料中的铁电极化可作为内建电场促进 光生载流子的分离,使铁电光伏电池能够实现光学 带隙以上的开路电压^[1-4].这种特殊的铁电光伏效 应,为突破传统 p-n 结型光伏电池的理论转换效率 瓶颈提供了全新的方法,在新能源领域表现出巨大 的应用潜力^[5].研究人员对众多铁电材料,例如钛 酸钡 (BaTiO₃)、锆钛酸铅 (Pb($\operatorname{Zr}_x\operatorname{Ti}_{1-x}$)O₃)、铌酸 锂 (LiNiO₃)等的光伏性质进行了大量研究^[6-8],然 而,较大的带隙使得大部分太阳光能量无法被吸 收 (太阳光能量范围约为 0.4—4 eV)^[9]. *h*-LuFeO₃ 是一种新型多铁材料,光学带隙在 2.0 eV 左右^[10], 在铁电光伏领域有较好的应用前景.由于本征 *h* LuFeO₃ 较低的极化强度 (仅为 4.7 μ C·cm⁻²)^[11],使 得 h-LuFeO₃ 基铁电光伏电池的光生载流子复合 率较大,不利于电池光电转换效率的提高.目前实 验上制备的 h-LuFeO₃ 基铁电光伏电池的光电转 化效率在 0.001% 左右^[12]. 先前的研究表明,提高 h-LuFeO₃ 的极化强度能够有效降低光生载流子的 复合率,增加电池的开路电压^[5],改善其光吸收性 质,提高 h-LuFeO₃ 基铁电光伏电池的性能.

室温条件下 *h*-LuFeO₃ 的铁电性不稳定,可以 通过应力使其稳定存在^[13,14]. 然而采用外延应力调 控 *h*-LuFeO₃ 铁电性能对实验条件的要求十分苛 刻^[15],极大地限制了应力对 *h*-LuFeO₃ 的调控效 果. 研究发现,采用掺杂的方法不仅能对 *h*-LuFeO₃ 性能进行调控,且能制备出铁电性在室温下稳定存 在的 *h*-LuFeO₃^[16–18]. 该方法对实验条件依赖小, 能够增强材料的铁电光伏相关性能. 在 Lu 位置 置换离子半径较小的离子,是获得稳定六角结构

© 2021 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 51872251, 11875229) 和电子元器件可靠性物理及其应用技术重点实验室开放基金 (批准号: ZHD201803) 资助的课题.

[†] 通信作者. E-mail: xlzhong@xtu.edu.cn

LuFeO3的一种重要方法. Lin 等^[16] 通过第一性原 理计算表明, Sc 掺杂可以使 LuFeO3 更稳定, 而其 多铁性不受影响.但 In 离子半径比 Lu 和 Sc 都要 小,理论上 InFeO3 也是六角结构. Liu 等^[17]利用 In 掺杂 h-LuFeO3 能得到六角结构的 h-Lu1-rInrFeO3 材料, X 射线全谱拟合结果表明, 随着 In 含量的增 加,材料结构逐渐由极性的 $P6_3 cm$ (x = 0.4—0.6) 转变为非极性的 $P6_3/mmc$ (x = 0.75), 即顺电相. 而目前并未深入研究 In 掺杂对 h-LuFeO3 光学性 能的影响.本文基于密度泛函理论 (density functional theory, DFT)的第一性原理计算方法对 h-Lu_{1-x}In_xFeO₃ (x = 0, 0.167, 0.333, 0.667) 的磁 结构、带隙、光吸收系数及自发极化等性质进行了 研究,揭示 In 掺杂对 h-LuFeO3 的极化性质及光 学性质的影响,为提高 h-LuFeO3 的铁电光伏性能 提供可靠的理论依据.

2 计算方法

使用的第一性原理计算方法均基于 Materials Studio 软件的 CASTEP 模块^[10],采用广义梯度近 似 (generalized gradient approximation, GGA) 和 平面赝势波的方法处理电子与离子间的相互作用, 利用 GGA 下的 Perdew-Burke-Ernzerhof (PBE) 泛函作为交换关联泛函^[19]. 赝势选取 Ultrasolft, 截断能为 572 eV, 计算中所有晶胞和原子都进 行弛豫,以达到最稳定状态.电子自洽精度为 10^{-5} eV/atom,原子受力小于 0.05 eV/Å,晶胞结 构优化时第一布里渊区的 k 点采用 4 × 4 × 2, 电 子结构优化时 k 点采用 6 × 6 × 3. 对于磁性元素 Fe 采用 GGA+U的方法来处理,其中 U是位库仑 势.参考先前的报道, U 值选择为 4.5^[20].

3 结果与讨论

3.1 晶体结构

In 在 *h*-LuFeO₃的掺杂位置有两种,分别记 为 P1 和 P2^[21],如图 1(a)所示.在包含 30 个原子 的晶胞模型中,有 4 个 P1 位原子和 2 个 P2 位原 子,首先讨论 *h*-Lu_{1-x}Fe_xO₃ 最稳定的磁序.采用 A 型、C 型、G 型三种反铁磁结构和铁磁结构对相 同的晶胞模型进行优化.为了得到最稳定的晶胞结 构,以 G 型反铁磁序 *h*-Lu_{0.833}In_{0.167}FeO₃ 能量为 基准,比较了不同掺杂位置的 In 原子替换单个 Lu 原子对 h-LuFeO3 磁序的影响,并比较了相对 总能量,结果如表 1 所列.结果表明,四种磁序中 非线性 G 型反铁磁序的 h-Lu_{0.833}In_{0.167}FeO3 能量 最低,这与先前报道的计算结论一致^[22],且无论是 P1 位掺杂还是 P2 位掺杂均没有改变磁序.利用 (1) 式计算了不同掺杂位置的掺杂形成能:

$$E_{\rm f} = E_{\rm doped} - E_{\rm pristine} - \mu_{\rm Lu} + \mu_{\rm In}, \qquad (1)$$

其中 $E_{\rm f}$ 为 In 掺杂形成能, $E_{\rm doped}$ 和 $E_{\rm pristine}$ 分别代 表掺杂后和掺杂前的 h-LuFeO₃ 总能, $\mu_{\rm Lu}$ 和 $\mu_{\rm In}$ 分 别为 Lu 和 In 的化学势. 形成能反映了掺杂的难易 程度, 形成能越小越容易掺杂. 通过计算发现, P1 位置的掺杂形成能为 5.426 eV, P2 位置的掺杂形 成能为 5.581 eV, 表明 P1 位置相对 P2 位置更容 易掺杂.

图 1 h-Lu_{1-x}In_xFeO₃的球棍结构模型图 (a) P1, P2 位置; (b) h-Lu_{0.667}In_{0.333}FeO₃; (c) h-Lu_{0.333}In_{0.667}FeO₃

Fig. 1. Model of the ball-and-stick structure of h-Lu_{1-x}In_xFeO₃: (a) P1, P2 position; (b) h-Lu_{0.667}In_{0.333}FeO₃; (c) h-Lu_{0.333}In_{0.667}FeO₃.

表 1 不同磁序下不同位置的 In 掺杂相对能量变化 Table 1. Relative energy changes of In doping at different positions under different magnetic orders.

掺杂位置	G型/eV	C型/eV	A型/eV	铁磁型/eV	
未掺	0	0.01	1.37	0.01	
P1 位置	0	10.38	3.14	12.51	
P2 位置	0	0.03	0.25	1.41	

由于本征 InFeO₃ 稳定相是顺电相 $P6_3/mmc$, 计算时控制了 In:Lu最高为 2:1. *h*-LuFeO₃ 的 P1 位置比 P2 位置更容易掺杂,故均选择 In 原子 替换 P1 位原子, In:Lu分别为 1:2 和 2:1 时,对 应的晶胞优化结果如图 1(b) 和图 1(c) 所示.以非 线性 G 型反铁磁序的 *h*-Lu_{0.833}In_{0.167}FeO₃ 能量为 基准,比较了不同磁序的晶胞结构优化后相对能量 的变化,结果如表 2 所列.随着掺杂浓度的提高, *h*-Lu_{1-x}In_xFeO₃ (x = 0.333, 0.667) 磁序未发生变 化,非线性 G 型反铁磁序的 *h*-Lu_{0.833}In_{0.167}FeO₃ 能量最低.

表 2 In:Lu 为 1:2 和 2:1 时 h-Lu_{1-x}In_xO₃ 不同磁 序的相对能量

Table 2. Relative energy of h-Lu_{1-x}In_xO₃ with different magnetic sequencewhen In:Lu is 1:2 and 2:1.

材料	G型/eV	C型/eV	A型/eV	铁磁型/eV
$h\text{-}\mathrm{Lu}_{2/3}\mathrm{In}_{1/3}\mathrm{FeO}_3$	0	0.0126	0.8604	0.8604
$h\text{-}\mathrm{Lu}_{1/3}\mathrm{In}_{2/3}\mathrm{FeO}_3$	0	0.0096	0.8952	0.9487

确定了最稳定的磁序后, 计算 P1 位的 In 掺杂 对 h-LuFeO₃ 晶格参数的影响, 与先前实验报道的 h-LuFeO₃ 晶格参数进行对比, 结果如表 3 所列, 表明非线性 G 型反铁磁序 h-Lu_{0.833}In_{0.167}FeO₃ 结 构优化结果与实验值符合较好. 随着 In 原子含量 的提高, h-Lu_{1-a}In_aFeO₃ 晶胞沿 c 轴拉伸, c/a 比 从 1.94 增加到 2.04, 这有利于材料自发极化率的 增强. 而晶胞略微缩小, 我们猜测可能是由于 In 的 离子半径比 Lu 离子半径小造成的.

3.2 电子结构

 $h-Lu_{0.833}In_{0.167}FeO_3$, $h-Lu_{0.667}In_{0.333}FeO_3$ 以及 $h-Lu_{0.333}In_{0.667}FeO_3$ 的能带图见图 2. 从图 2(a) 可 知, $h-Lu_{0.833}In_{0.167}FeO_3$ 的带隙大小为 1.16 eV, 小 于实验值 (2.0 eV)^[24], 与先前文献中利用了 Local Density Approximation (LDA), Perdew-Burke-Ernzerhof for solid (PBEsol)等方法计算的 h-LuFeO₃带隙对比如表 4 所列. 带隙偏小是因为利用 DFT 方法会低估材料带隙, 然而掺杂计算的主要 目的是为了预测相对变化趋势, 而非研究绝对值的 大小, 因此选取 DFT 方法并不影响最终结论.

三种计算模型的 *h*-Lu_{1-*x}</sub>In_{<i>x*}FeO₃ 导带底和价 带顶均在 *G*点,表明 *h*-Lu_{1-*x}</sub>In_{<i>x*}FeO₃ 为直接带隙 半导体材料.如图 2(b) 所示,当 In:Lu = 1:2 时, 即 In 占据晶胞中两个 P1 位置时,带隙减小到 1.05 eV,表明 In 原子的替换可减小材料的带隙.由 图 2(c) 可知,当 In:Lu = 2:1 时, In 完全占据 4 个 P1 位置,带隙的变化并不明显,仅下降了 0.01 eV;</sub></sub>

表 3 h-Lu_{1-x}In_xO₃的结构优化结果 Table 3. Structure optimization results of h-Lu_{1-x}In_xO₃.

材料	晶格常数/Å		/ / ★∓⊓/Å3	轴角/(°)			
	a	b	с	144代/A8	α	β	γ
$(h-{\rm LuFeO_3})^{[15]}$	5.965	5.965	11.702				
$(h\text{-}\mathrm{LuFeO_3})^{[23]}$	5.985	5.985	11.770				
$h ext{-} ext{LuFeO}_3$	6.067	6.067	11.756	374.926	90.000	90.000	119.993
$h\text{-}\mathrm{Lu}_{0.833}\mathrm{In}_{0.167}\mathrm{FeO}_3$	6.042	6.042	11.880	374.770	90.047	90.004	120.214
$h\text{-}\mathrm{Lu}_{0.667}\mathrm{In}_{0.333}\mathrm{FeO}_3$	6.005	6.007	11.935	372.221	90.014	90.033	120.166
h-Lu _{0.333} In _{0.667} FeO ₃	5.922	5.923	12.119	367.516	89.999	90.001	120.173

图 2 h-Lu_{1-x}Fe_xO₃的能带图 (a) h-Lu_{0.833}In_{0.167}FeO₃; (b) h-Lu_{0.667}In_{0.333}FeO₃; (c) h-Lu_{0.333}In_{0.667}FeO₃ Fig. 2. Energy band diagrams of h-Lu_{1-x}Fe_xO₃: (a) h-Lu_{0.833}In_{0.167}FeO₃; (b) h-Lu_{0.667}In_{0.333}FeO₃; (c) h-Lu_{0.333}In_{0.667}FeO₃.

表 4 本工作带隙计算结果与已发表结果对比 Table 4. Comparison of calculated band gap results with published results.

	CASTEP ^[22]	WIEN2K ^[24]	$\mathrm{VASP}^{[25]}$	本工作
交换关 联泛函	LDA	GGA- PBE	GGA- PBEsol	GGA- PBE
U值	3	4.5	4.61	4.5
带隙/eV	0.54	1.1	1.35	1.16

图 3 分布态密度图 (a) 未掺杂的 h-LuFeO₃; (b) h-Lu_{0.333} In_{0.667}FeO₃

Fig. 3. Distribution density of states: (a) Undoped *h*-LuFeO₃; (b) *h*-Lu_{0.333}In_{0.667}FeO_3.

但此时导带底 (1—2 eV 范围内) 杂质能级的增多 有利于提升材料的光吸收系数.

为了深入研究 In 掺杂对 *h*-LuFeO₃ 带隙两 端电子跃迁的影响,分析了未掺杂 *h*-LuFeO₃ 和 *h*-Lu_{0.333}In_{0.667}FeO₃ 在带隙附近,即能量在-2— 2 eV间的态密度图,如图 3 所示.由图 3(a)可知, 未掺杂 *h*-LuFeO₃ 的导带底 (1—2 eV 范围内)大 部分由 Fe 3d 轨道占据,小部分由 O 2p 轨道占据; 价带顶 (-1—0 eV 范围内)主要是 O 2p 轨道占据; 而 Lu 对价带顶和导带底的贡献有限,从主要占据 价带顶的 O 2p 轨道电子转变为主要占据导带底 的 Fe 3d 轨道电子,表现出 Fe 3d 轨道与 O 2p 轨 道的高度杂化.因此调控 Fe 3d 轨道与 O 2p 轨道 杂化程度可以影响材料的光吸收性能.

图 3(b) 为 *h*-Lu_{0.333}In_{0.667}FeO₃ 的态密度图, 导带底 (1—2 eV 范围内) 大部分由 Fe 3d 轨道占 据,小部分由 O 2p 轨道及 In 4s 轨道占据; 价带 顶 (-1—0 eV 范围内) 主要由 O 2p 轨道占据. 相 对未掺杂的 *h*-LuFeO₃, *h*-Lu_{0.333}In_{0.667}FeO₃ 杂质能 级的出现及导带底 Fe 3d 轨道赝势峰强度的增大, 使材料带隙缩小,接收价带电子的能力增强.分析 结果表明, In 掺杂影响了材料 Fe-O 间的轨道杂 化,提高了 *h*-Lu_{0.333}In_{0.667}FeO₃ 的光吸收系数.

图 4 In 掺杂前后 h-LuFeO₃ 光学吸收系数随入射光子能量的变化

Fig. 4. Change of optical absorption coefficient of $h\text{-}\mathrm{LuFeO}_3$ with incident photon energy before and after In doping.

3.3 光吸收性能及铁电极化强度

图 4 为光沿 c 轴入射 h-Lu_{1-x}In_xFeO₃ 的光吸 收系数变化情况,发现在 1.64—2.4 eV 范围内,掺 杂后的光吸收系数比未掺杂的 h-LuFeO₃ 略微减 小. 但在能量大于 2.4 eV 区域,材料光吸收系数随 着 In/Lu 比值的增大而增大,表明 In 掺杂能够有 效提高 h-LuFeO₃ 在太阳光能量范围内的光吸收 效率.

铁电极化是影响铁电光伏性能的另一个重要 性质.铁电光伏材料以自身铁电极化为内建电场, 增大铁电极化能够减少载流子复合概率^[26],因此 缩小带隙和增大铁电极化强度是提高铁电光伏材 料性能的两大研究方向.根据伯恩有效电荷定性计 算自发极化强度计算公式为^[27]

$$\Delta P_{\alpha} \cong \sum_{j\beta} \frac{\partial P_{\alpha}}{\partial u_{j\beta}} \left(u_{j\beta} - u_{0j\beta} \right) = \frac{e}{\Omega} \sum_{j\beta} Z_{j\alpha\beta}^* \Delta u_{j\beta},$$
(2)

其中 e表示电子电荷量, $Z_{j\alpha\beta}^*$ 表示伯恩有效电荷, $\Delta u_{j\beta}$ 表示原子相对位移, Ω 表示晶胞总体积.将 h-Lu_{1-x}In_xFeO₃ 沿 c轴的伯恩有效电荷代入 (2) 式, 计算得到 h-LuFeO₃, h-Lu_{0.833}In_{0.167}FeO₃, h-Lu_{0.667} In_{0.333}FeO₃ 及 h-Lu_{0.333}In_{0.667}FeO₃ 沿 c轴的铁电极 化强度, 分别为 3.93, 5.91, 7.92 和 11.02 μ C·cm⁻², 如图 5 中红色曲线所示.图 5 中蓝色曲线表示随 In/Lu比的增大, h-Lu_{1-a}In_aFeO₃ 晶胞的晶格参数 c/a比值的变化.可见材料的极化值与 c/a比有相 同的变化趋势,结果表明在保持铁电相的前提下, 提高材料的 c/a比可提高材料的极化强度.对铁电 光伏材料而言,极化强度的增大能够得到更高的光 生电压及光生电流^[11].此外,改变 c/a比相当于材 料受力沿 c轴产生拉应变,而拉应变能够减小六角 铁酸盐类多铁材料的带隙并增强光吸收性质^[13].

图 5 不同 In/Lu 比的 h-Lu_{1-a}In_{<math>a}FeO₃极化值 (红色曲线) 和晶格常数 c/a比 (蓝色曲线)</sub></sub>

Fig. 5. Polarization values (red curve) and lattice constant c/a ratios (blue curve) of $h\text{-}\mathrm{Lu}_{1\!-\!x}\mathrm{In}_x\mathrm{FeO}_3$ with different In/Lu ratios.

4 结 论

本文基于 DFT 的第一性原理计算方法, 研究 了 h-Lu_{1-x}In_xFeO₃ (x = 0, 0.167, 0.333, 0.667) 的 带隙、极化强度及光吸收性质.研究结果表明, In 原子在 h-LuFeO₃ 晶胞中会优先替换 P1 位置,随 着 In 掺杂量的增加, h-Lu_{1-x}In_xFeO₃ 的晶胞沿 c 轴 拉伸. 当 x 达到 0.667 时, 晶格常数 c/a 比从 1.94 增大至 2.04. 通过分析 h-LuFeO3 及 h-Lu0 333In0 667 FeO_3 的分态密度可知, c/a比的增大能够增强 h-Lu_{0 333}In_{0 667}FeO₃层间的 Fe-O 轨道杂化程度, 提高在太阳光范围内的光吸收系数.利用伯恩有效 电荷定性地计算 h-In1_,Lu,FeO3 的极化强度,发 现 In 掺杂能够提高材料沿 c 轴的极化强度, 且极 化值的变化趋势与晶格常数 c/a 比的变化趋势相 同.因此, In 掺杂能够有效提高 h-LuFeO3 的光吸 收系数及铁电极化强度,为提高铁电光伏性能提供 重要理论指导.

参考文献

[1] Ji Y, Gao T, Wang Z L, Yang Y 2019 Nano Energy 64

103909

- [2] Teh Y S, Bhattacharya K 2019 J. Appl. Phys. 125 064103
- [3] Pal S, Swain A B, Biswas P P, Murali D, Pal A, Nanda B R K, Murugavel P 2018 Sci. Rep. 8 17
- [4] Butler K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838848
- [5] Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801 (in Chinese)
 [蔡田怡, 雎胜 2018 物理学报 67 157801]
- [6] Wang J, Wu X, Deng C Y, Zhu K J, Nan C W 2014 J. Inorg. Mater. 29 905911 (in Chinese) [王婧, 吴霞, 邓朝勇, 朱孔军, 南 策文 2014 无机材料学报 29 905911]
- [7] Chen Y, Chen J, Yang S, Li Y, Gao X, Zeng M, Fan Z, Gao X, Lu X, Liu J M 2018 *Mater. Res. Bull.* **107** 456
- [8] Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004
- [9] Zhang X L 2010 M. S. Thesis (Wuhan: Wuhan University Of Technology) (in Chinese) [张兴良 2010 硕士学位论文 (武汉: 武汉理工大学)]
- [10] Sinha K, Zhang Y, Jiang X, Wang H, Wang X, Zhang X, Ryan P J, Kim J W, Bowlan J, Yarotski D A, Li Y, DiChiara A D, Cheng X, Wu X, Xu X 2017 *Phys. Rev. B* 95 094110
- [11] Han H, Kim D, Chae S, Park J, Nam S Y, Choi M, Yong K, Kim H J, Son J, Jang H M 2018 Nanoscale 10 13261
- [12] Han H, Kim D, Chu K, Park J, Nam S Y, Heo S, Yang C, Jang H M 2018 ACS Appl. Mater. Interfaces 10 18461853
- [13] Akbashev A R, Semisalova A S, Perov N S, Kaul A R 2011 Appl. Phys. Lett. 99 122502
- [14] Wang W, Zhao J, Wang W, et al. 2013 Rev. Lett. 110 237601
- [15] Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 *Phys. Rev.* B 92 125201
- [16] Lin L, Zhang H M, Liu M F, Shen S, Zhou S, Li D, Wang X, Yan Z B, Zhang Z D, Zhao J, Dong S, Liu J M 2016 Phys. Rev. B 93 075146
- [17] Liu J, Sun T L, Liu X Q, Tian H, Gao T T, Chen X M 2018 Adv. Funct. Mater. 28 1706062
- [18] Fu Z, Nair H S, Xiao Y, Senyshyn A, Pomjakushin V, Feng E, Pomjakushin V, Su Y, Jin W T, Bruckel T 2016 *Phys. Rev. B* 94 125150
- [19] Clark S J, Segall M D, Pickard C J, Hasnip P, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567
- [20] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke X 2008 Phys. Rev. Lett. 100 136406
- [21] Holinsworth B S, Mazumdar D, Brooks C M, Mundy J A, Das H, Cherian J G, McGill S A, Fennie C J, Schlom D G, Musfeldt J L 2015 Appl. Phys. Lett. 106 082902
- [22] Ridzwan M H, Yaakob M K, Taib M F M, Ali A M M, Hassan O H, Yahya M Z A 2017 Mater. Res. Express 4 044001
- [23] Disseler S M, Borchers J A, Brooks C M, Mundy J A, Moyer J A, Hillsberry D A, Thies E L, Tenne D A, Heron J, Holtz M, Clarkson J D, Stiehl G M, Schiffer P, Muller D A, Schlom D G, Ratcliff W D 2015 *Phys. Rev. Lett.* **114** 217602
- [24] Wang W, Wang H, Xu X, Zhu L, He L, Wills E, Cheng X, Keavney D J, Shen J, Wu X, Xu X 2012 Appl. Phys. Lett. 101 241907
- [25] Das H, Wysocki A L, Geng Y, Wu W, Fennie C J 2014 Nat. Commun. 5 3998
- [26] Tu S, Zhang Y, Reshak A H, Auluck S, Ye L, Han X, Ma T, Huang H 2019 Nano Energy 56 840
- [27] Roy A, Mukherjee S, Gupta R, Auluck S, Prasad R, Garg A 2011 J. Phys. Condens. Matter 23 325902

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO₃ *

Zhang Xiao-Ya Song Jia-Xun Wang Xin-Hao Wang Jin-Bin Zhong Xiang-Li[†]

(School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China)

(Received 7 August 2020; revised manuscript received 7 September 2020)

Abstract

The h-LuFeO₃ is a kind of narrow band gap hexagonal ferrite material, with a good application prospect in the field of ferroelectric photovoltaic. However, the low polarization intensity of h-LuFeO₃ makes the recombination rate of photogenerated electrons and holes large, which is not conducive to the improvement of the efficiency of h-LuFeO₃-based ferroelectric photovoltaic cells. In order to improve the ferroelectricity and optical absorption properties of h-LuFeO₃, the first principles method is used to calculate the doping formation energy values of In atom at different positions of h-LuFeO₃, and the most stable doping position is determined. The comparisons of band gap, optical absorption performance and polarization intensity among $h-Lu_{1-x}In_xFeO_3$ (x = 0, 0.167, 0.333, 0.667) are made. With the increase of In doping, the cells of h-Lu_{1-x}In_xFeO₃ stretch along the c-axis. The ratio of the lattice constant c/a increases from 1.94 at x = 0 to 2.04 at x = 0.667 when all the positions of In replace P1 position. Using the qualitative calculation of Berne effective charge, the results show that the ferroelectric polarization intensity of h-LuFeO₃, h-Lu_{0.833}In_{0.167}FeO₃, h-Lu_{0.667}In_{0.333}FeO₃ and h-Lu_{0.333}FeO₃ and h-Lu_{0.333}FeO₃ and h-Lu_{0.333}FeO₃ and h-Lu_{0.333}FeO₃ and h-Lu_{0.334}FeO₃ and h-Lu_{0.335}FeO₃ an $In_{0.667}$ FeO₃ along the *c*-axis are 3.93, 5.91, 7.92, and 11.02 μ C·cm⁻², respectively. Therefore, with the increase of the number of In atoms replacing Lu atoms, the lattice constant c/a ratio of h-Lu_{1-x}In_xFeO₃ increases, which can improve the ferroelectric polarization strength of the material. By analyzing the density of states of h-LuFeO₃ and h-Lu_{0.333}In_{0.667}FeO₃, we can see that In doping enhances the Fe-O orbital hybridization in $h-Lu_{0.333}In_{0.667}FeO_3$, and makes the optical absorption coefficient of $h-Lu_{0.333}In_{0.667}FeO_3$ in the solar light range larger. In summary, In doped h-LuFeO₃ is an effective method to improve its polarization intensity and optical absorption coefficient, which is of great significance for improving the performance of ferroelectric photovoltaic.

Keywords: h-LuFeO3, doping, optical property, polarization intensity, first principlesPACS: 71.15.Mb, 71.15.-m, 71.20.-bDOI: 10.7498/aps.70.20201287

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51872251, 11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201803).

[†] Corresponding author. E-mail: xlzhong@xtu.edu.cn