物理学报Acta Physica Sinica

Institute of Physics, CAS

单晶Ta₃FeS₆薄膜中巨大的矫顽场

刘晓伟 熊俊林 王利铮 梁世军 程斌 缪峰 **Giant coercivity in single crystal Ta₃FeS₆ film** Liu Xiao-Wei Xiong Jun-Lin Wang Li-Zheng Liang Shi-Jun Cheng Bin Miao Feng 引用信息 Citation: Acta Physica Sinica, 71, 127503 (2022) DOI: 10.7498/aps.71.20220699 在线阅读 View online: https://doi.org/10.7498/aps.71.20220699 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱

Quasi-two-dimensional van der Waals semiconducting magnet CrSiTe₃ studied by using THz spectroscopy

物理学报. 2020, 69(20): 207302 https://doi.org/10.7498/aps.69.20200682

电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控 Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field 物理学报. 2020, 69(15): 157302 https://doi.org/10.7498/aps.69.20191987

钙钛矿CsPbX₃(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究

First principle calculations of interface interactions and photoelectric properties of perovskite $CsPbX_3$ (X=Cl, Br, I) and pentagraphene van der Waals heterostructures

物理学报. 2021, 70(5): 056301 https://doi.org/10.7498/aps.70.20201246

垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运

 $\label{eq:expectation} \mbox{Epitaxial growth of $Ho_3Fe_5O_{12}$ films with perpendicular magnetic anisotropy and spin transport properties in $Ho_3Fe_5O_{12}$ /Pt heterostructures } \label{eq:expectation}$

物理学报. 2021, 70(7): 077501 https://doi.org/10.7498/aps.70.20201737

二维平面和范德瓦耳斯异质结的可控制备与光电应用

Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures 物理学报. 2021, 70(2): 027901 https://doi.org/10.7498/aps.70.20201419

应力调控BlueP/XTe₂ (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究

Tunable electronic structure and optical properties of $BlueP/X Te_2$ (X = Mo, W) van der Waals heterostructures by strain

物理学报. 2021, 70(6): 067101 https://doi.org/10.7498/aps.70.20201728

专题:低维材料的新奇物性

单晶 Ta_3FeS_6 薄膜中巨大的矫顽场*

刘晓伟1)# 熊俊林1)# 王利铮1) 梁世军1) 程斌2)† 缪峰1)‡

1) (南京大学物理学院,南京 210093)

2) (南京理工大学理学院, 物质科学交叉研究中心, 南京 210094)

(2022年4月15日收到; 2022年4月28日收到修改稿)

范德瓦耳斯层状铁磁材料不但为基础磁学的前沿研究提供了重要的平台,同时在下一代自旋电子器件 中展示了广阔的应用前景.本文利用化学气相传输方法生长了高质量的、具有本征铁磁性的 Ta₃FeS₆块材单 晶.通过机械剥离法得到厚度 19—100 nm 的 Ta₃FeS₆薄层样品,并发现相应的居里温度在 176—133 K之 间.低温反常霍尔测量表明 Ta₃FeS₆样品具有面外的铁磁性,其矫顽场在 1.5 K可达到 7.6 T,这是迄今为止 在范德瓦耳斯铁磁薄膜材料中报道的最大数值.此外,在变温过程中,还观察到磁滞回线极性的翻转.相比于 通常的范德瓦耳斯磁性材料,Ta₃FeS₆具有空气稳定性和极大的矫顽场,这为探索稳定的、可小型化的范德瓦 耳斯自旋电子器件研究开辟了全新的平台.

关键词: Ta₃FeS₆,反常霍尔效应,范德瓦耳斯磁性材料,矫顽场
PACS: 75.70.-I, 73.43.Qt, 75.50.Vv, 75.50.Ss
DOI: 10.7498/aps.71.20220699

1 引 言

以电子自旋作为信息载体的自旋电子学,由于 其超低功耗、超快写入/读取速度、超高耐久度和 非易失性,被学术界和工业界一致认为有望用于实 现未来存算一体新计算范式^[1-5].在自旋电子器件 中,主要通过磁场或自旋转移/轨道转矩等方式^[6-9] 来操纵铁磁材料中的磁矩,从而实现存储、逻辑和 神经形态计算等多种器件应用功能^[10-14].磁性材 料作为自旋电子器件的信息载体,其研究推动了现 代自旋电子器件的发展,探索新的磁性材料已成为 提升器件性能的关键.近年来,多种范德瓦耳斯磁 性材料,如 CrI₃^[15], Cr₂Ge₂Te₆^[16]和 Fe₃GeTe₂^[17,18] 等陆续出现,因其具有可薄至原子级尺度的厚度、 内禀的长程磁有序、平整的界面和丰富的物性^[19], 从而受到广泛关注.此外,由于其原子级平整的表 面,范德瓦耳斯磁性材料对外界刺激响应灵敏,使 得利用外场调控其丰富的物性变得切实可行,这为 构建新型自旋电子器件提供了新的平台.譬如,对 于垂直各向异性的范德瓦耳斯铁磁材料 Fe₃GeTe₂, 可以通过离子栅压^[17]、应力^[20]等手段有效地调控 磁性来实现多模传感的感存算一体器件,进而可以 将 Fe₃GeTe₂ 与其他范德瓦耳斯材料进行堆叠组成 更多独特新奇的自旋电子器件^[21–23].

然而,大多数范德瓦耳斯磁性材料,例如 Fe₃ GeTe₂, CrI₃等对于外界环境(水、氧)十分敏感^[17,24], 极大地限制器件的应用场景.因此,寻找能在空气 中稳定存在的范德瓦耳斯磁性材料是该领域的研 究重点之一.此外,高密度信息存储一方面要求铁

© 2022 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 12074176, 62122036, 62034004, 61921005, 61974176)、中国科学院战略性先导科技专项 (批准号: XDB44000000) 和中央高校基本科研业务费 (批准号: 020414380179) 资助的课题.

[#] 同等贡献作者.

[†] 通信作者. E-mail: bincheng@njust.edu.cn

[‡] 通信作者. E-mail: miao@nju.edu.cn

磁材料具有垂直磁各向异性,另一方面要求磁性材 料具有大的矫顽场,在尺寸微缩后能够克服热扰动 和尺寸效应,从而保持稳定的磁状态^[25].然而,通 常的范德瓦耳斯磁性材料的矫顽场通常比较小(小 于1T),严重阻碍了基于范德瓦耳斯铁磁材料的 自旋电子器件的小型化.因此,寻找大矫顽场的垂 直磁各向异性的新型范德瓦耳斯铁磁材料,对于实 现低功耗和高密度自旋电子学器件具有十分关键 的意义.

本文利用化学气相传输 (chemical vapor transport, CVT) 的方法生长了高质量的范德瓦耳斯铁 磁材料 Ta₃FeS₆ 块材单晶,并在垂直磁场和变温条 件下,研究了其薄膜器件的磁输运性质.在 1.5 K 的低温条件下, Ta₃FeS₆ 薄膜的磁滞回线表明其具 有极大的矫顽场 (7.6 T).值得注意的是, Ta₃FeS₆ 薄膜的矫顽场对温度极其敏感,在 80 K 时矫顽场 就已减小至 0.5 T,这使得我们可以通过热辅助的 方式进行低功耗的磁矩翻转.Ta₃FeS₆ 的空气稳定 性和极大的矫顽场使其在构建稳定的、可小型化的 自旋电子器件方面具有巨大的潜力.

2 实验部分

通过 CVT 法生长了 Ta3FeS6 单晶块材, 具体 做法如下:将钽粉 (>99.9%)、铁粉 (>99.9%)、硫 粉 (>99.9%) 按照化学计量比 3:1:6 进行充分混合 并压制成片,然后利用分子泵组将其真空熔封在石 英管中 (真空度约为 10⁻⁵ mbar (1 mbar = 100 Pa)), 之后将石英管置于马弗炉中缓慢加热到 1000 ℃, 并保持该温度持续7d,反应结束后自然降温冷却 至室温,得到熔结成块的 Ta₃FeS₆ 多晶;随后将熔 结的 Ta₃FeS₆ 多晶和少量 I₂进行混合,再次将其 真空熔封在石英管中,之后将石英管放置在双温区 管式炉中进行二次生长,即在 1000—900 ℃ 的温 度梯度中保持7d,最终在低温区域附近得到高质 量的 Ta₃FeS₆ 单晶. Ta₃FeS₆ 单晶的化学成分是使 用 Hitachi S-3400 N II SEM-EDXS 来测量的. 利 用机械剥离法获得了厚度在 19—100 nm 之间的 Ta₃FeS₆薄层样品,并利用 Renishaw inVia 拉曼 光谱仪 H54304 在 514 nm 的激光波长下获得了 Ta₃FeS₆ 拉曼光谱, 同时利用 Bruker Multimode 8 原子力显微镜获得了样品的厚度信息. 之后通过聚 碳酸丙烯酯 (poly-propylene carbonate, PPC)转 移技术^[26,27]将薄层 Ta₃FeS₆样品转移到镀有霍尔 电极的 SiO₂/Si 衬底上. 金属电极 (5 nm Ti/30 nm Au) 是利用标准的电子束光刻 (electron beam lithography, EBL) 技术和电子束蒸镀 (electron beam evaporation, EBE) 技术制备的. 最后,将器件载入 牛津仪器低温恒温器中,其最低温度可达 1.5 K, 最高磁场可达 8 T,并利用低频锁相放大器 (Stanford Research System SR830) 对纵向磁阻和横向 霍尔信号进行了测量.

3 结果与讨论

如图 1(a) 所示, Ta₃FeS₆ 晶体结构是由 Fe 原 子和 H 相的 TaS,沿着 z 方向交替堆叠而成的,其 中 Fe 原子处于 TaS, 层间, 而且相邻层的 Fe 原子 互补占据构成六角蜂窝结构. Ta3FeS6 晶体结构的 空间群为 P6322 (No. 182), 属于六角晶系, 且不具 有中心反演对称^[28].图 1(b) 插图显示了利用 CVT 方法生长得到的 Ta₃FeS₆ 毫米级单晶的光学照片. 通过能量色散 X 射线光谱仪 (energy dispersive X-Ray spectroscopy, EDX) 对得到的 Ta₃FeS₆单 晶进行了元素含量分析,测量结果如图 1(b) 所示, 样品中 Ta, Fe, S 的原子占比分别为 33.3%, 7.5% 和 59.2%, 以 Ta 原子为基准进行归一化的结果为 Ta₃Fe_{0.7}S_{5.3}.相对于文献报道的结果^[29],本文样品 中可能存在较多的 S 原子空位和 Fe 原子空位, 这 些空位缺陷可能会对 Ta₃FeS₆ 晶体的磁有序性质 产生影响[30-32]. 为了进一步验证所得到的样品的 物相,进行了拉曼光谱表征,结果如图 1(c) 所示. 在 123.3, 223.9, 312.9 以及 387.3 cm⁻¹ 这四个波数 位置测到了明显的拉曼光谱信号,分别标记为 P₁, P₂, P₃和 P₄. 其中, P₂, P₃和 P₄属于 H 相的 TaS₂ 晶格的拉曼光谱特征,这里 P2是双声子振动信号, P3为纵光学声子振动模 (E20), P4为横向光学声 子振动模 (A1g)[33]. 而 P1 信号可能来源于 Fe-Ta 两 种原子之间的相互作用,这一结果和文献中报道的 结果类似[29].

薄层 Ta₃FeS₆器件的结构示意图和测量电路 如图 2(a) 所示,其中薄层 Ta₃FeS₆样品位于霍尔电 极上面.器件1和器件2的光学照片分别如图 2(b) 和图 2(c) 中插图所示,相应的样品厚度分别为19 nm (原子力显微镜数据如图 1(d) 所示)和100 nm.测 试过程中,在样品中通入纵向的交变电流,并通过

图 1 (a) Ta₃FeS₆的晶体结构. 左侧为 1 层 Ta₃FeS₆的原子结构俯视图, 右侧为 Ta₃FeS₆晶体的三维结构示意图, 其中铁原子嵌 在 H-TaS₂的层间; (b) Ta₃FeS₆单晶的能量色散 X 射线光谱, 插图为通过 CVT 方法生长的 Ta₃FeS₆单晶的光学照片; (c) Ta₃FeS₆ 单晶的拉曼光谱; (d) 原子力显微镜对 Ta₃FeS₆ 器件 1 的样品厚度测量结果

Fig. 1. (a) Crystal structure of Ta_3FeS_6 . The left panel is the top view of the atomic structure of single layer of Ta_3FeS_6 , and the right panel is the three-dimensional structure diagram of Ta_3FeS_6 crystal, in which iron atoms are embedded between the layers of H-TaS₂. (b) Energy dispersive X-ray spectrum of Ta_3FeS_6 single crystal. The inset is the optical photo of Ta_3FeS_6 single crystal grown by chemical vapor transport method. (c) Raman spectrum of Ta_3FeS_6 . (d) Measurement result of sample thickness of Ta_3FeS_6 device 1 by atomic force microscope.

图 2 (a) 器件结构和外部测量电路的示意图; (b) 器件 1 的纵向电阻 R_{xx} 的降温曲线. 插图为器件 1 的光学照片; (c) 器件 2 的纵向电阻 R_{xx} 的降温曲线. 插图为器件 2 的光学照片

Fig. 2. (a) Diagram of the device and external circuit. The cooling curve of longitudinal resistance R_{xx} of the device 1 (b) and device 2 (c). The inset is the optical photograph of the device 1 (b) and device 2 (c).

低频锁相放大器测量相应的纵向电压 (V_{rr}) 和横向 电压 (V_m). 在器件 1 中, 从室温附近开始降温, 纵 向电阻 R_{xx}开始随温度缓慢减小, 如图 2(b) 所示; 当温度降低到 176 K 附近, 电阻曲线出现明显的 拐点,随后电阻随着温度降低而快速下降.类似的 降温电阻行为在另一个厚层样品 (~100 nm) 中同 样出现,如图 2(c) 所示,厚层样品的降温电阻曲线 在133 K 附近出现明显拐点. 我们认为这些变温 电阻拐点对应了铁磁相变温度,即 Ta₃FeS₆铁磁薄 膜的居里温度,类似的现象在 Fe3GeTe2 铁磁样 品中也有观察到[18]. 我们注意到, 薄层样品 (器件1) 的居里温度比厚层样品 (器件 2)的居里温度高了 约40 K,这是一个比较反常的现象,和大多数已经 报道的范德瓦耳斯铁磁材料厚度依赖的铁磁性质 不一致 (对于 Cr₂Ge₂Te₆^[16], Fe₃GeTe₂^[17]等范德瓦 耳斯铁磁材料,样品的厚度越小,居里温度越低, 其原因一般认为是在二维体系中,长程的铁磁序会 受到热涨落强烈的抑制[34]). 然而这一反常现象在 最近报道的1T相的二维铁磁材料 CrTe2 也观察 到了[35],即随着样品厚度减薄,居里温度升高,原 因被认为和层数依赖的磁各向异性有关. 值得注意 的是,这一反常现象在另一个已经报道的 TagFeSe 的工作中却没有观察到[29]. 另一方面, 我们注意 到 Ta₃FeS₆ 样品中的 Ta/Fe 原子比会显著影响 Ta₃ FeS₆的居里温度^[29] (Ta/Fe 越大, 居里温度越高), 而根据 EDX 结果, 样品中存在较多的 Fe 原子空 位,因此认为在样品中观察到的反常的层数依赖的 铁磁性质可能是由于器件1比器件2中具有更高 的 Ta/Fe 原子比, 而这种差异来源于生长过程中 Fe 原子在 Ta₃FeS₆ 晶体中的不均一性分布^[29].

为了进一步研究 Ta₃FeS₆的铁磁性质,详细测量了器件 1 在不同温度下的磁阻 R_{xx} 和反常霍尔电阻 R_{xy} 随垂直磁场的变化关系.这里所测量的反常霍尔电阻被广泛用于垂直各向异性铁磁性质的研究,并遵循以下公式: $R_{xy} = R_0H + R_AM(H)$. 其中,第一项为普通霍尔效应,系数 R_0 仅与载流子密度有关;第二项为反常霍尔效应,系数 R_A 根据具体的散射机制与纵向电阻 R_{xx} 或 R_{xx}^2 成正比^[36–38]. 如图 3(a) 所示,在 1.5 K 的温度下来回扫描了垂直磁场,观测到了蝴蝶型的磁阻-磁场曲线,同时对应的霍尔电阻-磁场曲线出现了一个回滞窗口,表明 Ta₃FeS₆ 具有面外的铁磁极化.这里,为了消除器件结构的不对称性带来的测量误差,对 R_{xx} 和 R_m做了对称化处理. 值得注意的是, 矫顽场 H_e在 1.5 K 时达到了 7.6 T. 随着温度升高, 热涨落逐渐 增强,铁磁极化减弱,这使得反常霍尔信号的回滞 窗口变小, H。降低. 有趣的是在温度从 50 K 升高 到 70 K 后, 反常霍尔测量得到的磁滞回线的翻转 极性发生了反转,从原来的逆时针变成顺时针.对 器件2进行了同样的磁阻和反常霍尔信号测量,也 观察到了反常霍尔电阻信号的翻转极性发生了反 转. 对于这一现象文献中已有一些报道, 一般有如 下可能的解释:1) 主导电荷载流子输运的散射机 制在变温过程中发生了改变^[39,40],比如在 Pd/Co 多层膜中反常霍尔效应由斜散射机制主导,而斜散 射系数在变温过程中发生了变号,从而导致了反常 霍尔信号的翻转极性发生反转[41,42]; 2) 变温过程 中费米面在能带交叉处发生了移动[43]; 3) 变温过 程中能带结构和贝里相位发生了变化[44,45]. 值得注 意的是,如果能带结构在变温过程中发生了变化, 那么这种电子态上的改变应该会在降温电阻中有 所体现,实际上如图 2(a) 和图 2(b) 所示,在 50-70 K 这一段温区中并没有发现降温电阻的异常, 因此认为能带结构在变温过程中发生变化的可能 性比较小.考虑到样品中存在较多的 Fe 原子和 S原子空位缺陷,而这些缺陷通常会对低温电子输 运行为产生显著的影响[46],因此认为在样品中观 察到的磁滞回线的翻转极性发生反转可能是由于 电荷输运机制受到了温度依赖的缺陷调制,从而导 致了磁滞回线从逆时针 (1.5 和 50 K) 变成了顺时 针 (70 和 80 K), 对于其中更加细致的机制讨论需 要进一步的实验数据和理论研究.为了对比器件1 和器件2矫顽场随温度的变化,将器件1和器件2 矫顽场的数据放在了一张图里, 如图 3(b) 所示. 从 整体趋势上比较,器件1比器件2的矫顽场在高温 下要大一些,如图 3(b) 插图所示,这与器件1具有 更高的居里温度相一致.

实现对范德瓦耳斯磁性薄膜材料的磁性调控 不仅可以帮助理解二维铁磁的基础物理,而且对于 将范德瓦耳斯磁性材料用于真正的自旋器件中有 重要意义.通常,范德瓦耳斯铁磁材料的矫顽场可 以利用其他外在手段进行有效地调控.比如 h-BN 封装的 CrI₃样品可以通过栅压调控分别实现空穴 和电子掺杂,在调控范围内 (-10¹³—10¹³ cm⁻²) 实 现对矫顽场 75% 的提升^[47].另外,应力也是一种有 效的调控手段,通过施加应力改变晶体结构,从而

图 3 (a) 器件 1 温度依赖的磁阻和反常霍尔电阻. 红线代表正向扫描, 蓝线代表反向扫描; (b) 器件 1 和器件 2 矫顽场随温度的 变化关系. 插图为器件 1 和器件 2 温度依赖的矫顽场在高温区的局部放大图; (c) 器件 1 载流子浓度随温度的变化关系; (d) 已报 道的二维铁磁材料 (VSe₂^[56], VI₃^[57], Fe₃GeTe₂ 单层^[17], Fe₃GeTe₂ 12 nm^[18], Fe₂Co_{0.7}GeTe₂^[58], Cr₂Ge₂Te₆ 7 nm^[59], Cr₃Cl₂(pyrazine)₂^[60], Ta₃FeS₆ 纳米片^[29], Fe_{0.28}TaS₂ 80—180 nm^[55]) 不同温度下矫顽场的统计结果

Fig. 3. (a) Temperature dependent magneto-resistance and anomalous Hall resistance of device 1. The red line represents forward scanning and the blue line represents reverse scanning. (b) The relationship between coercivity and temperature for device 1 and device 2. The inset shows a local enlarged view of the temperature-dependent coercive fields of device 1 and device 2 in the high temperature zone. (c) The carrier concentration as a function of temperature in device 1. (d) The statistical results of coercivity of the reported two-dimensional ferromagnetic materials (VSe₂^[56], VI₃^[57], Fe₃GeTe₂ monolayer^[17], Fe₃GeTe₂ 12 nm^[18], Fe₂Co_{0.7}GeTe₂^[58], Cr₂Ge₂Te₆ 7 nm^[59], Cr₃Cl₂(pyrazine)₂^[60], Ta₃FeS₆ nanosheet^[29], Fe_{0.28}TaS₂ 80–180 nm^[55]) at different temperatures.

影响铁磁材料的磁各向异性、自旋相互作用等也可 以增强矫顽力.比如王雨等^[20]发现在 Fe₃GeTe₂样 品中施加 0.32% 的单轴拉伸应力,就可以将矫顽 力提升 150% 以上.此外,缺陷工程也是调控材料 磁性的手段之一,譬如可以借助缺陷在石墨烯^[31], SrTiO₃^[32]和过渡金属硫族化合物 (transition metal chalcogenides, TMDs)^[48,49]等非磁材料中引入局 域的铁磁序.另外,已有相关文献报道例如在 VSe₂ 这种 TMD 材料中存在的 Se 空位会使其单层样品 存在室温铁磁性^[50],并有助于增强其铁磁序^[51].对 于 VS₂^[52]和 MoS₂^[53]等硫化物,也有文献报道可以 通过 S 空位缺陷诱导铁磁性的产生.

对于器件 1 在低温 1.5 K 测到的高达 7.6 T 的矫顽场 H_c, 认为是 Ta₃FeS₆ 样品中较多的 Fe 原子和 S 原子空位缺陷导致的. 对于我们生长的

Ta₃FeS₆单晶样品,通过EDX 对其元素含量的测 试,发现了样品中具有较多Fe和S的空位缺陷. 对于S空位缺陷,认为它的作用与之前的文献报道 一致^[51-53],可能会在Ta₃FeS₆样品中产生局域的 磁矩,并有助于其铁磁性.另一方面,Fe空位缺陷 越多有可能在样品中导致更多的相边界进而产生 更小的磁畴,最终会产生更强的钉扎效应^[29,54].由 于这些S空位缺陷和Fe空位缺陷所产生的更强的 铁磁性和钉扎效应,使得需要施加更大的磁场才能 让样品中的磁矩全部翻转,因此所测量的Ta₃FeS₆ 器件表现出了非常大的矫顽场.为了进一步说明样 品中存在着Fe原子和S原子空位缺陷,根据不同 温度下霍尔电阻随磁场的变化(图3(a)所示)提取 了样品载流子浓度随温度的依赖关系.从图3(c) 可以发现,随着温度升高,样品中的载流子浓度整 体呈现上升趋势,这可能是由于温度升高过程中 Fe原子和S原子空位缺陷杂质电离导致的,这一 变化趋势与样品中存在Fe原子和S原子空位缺陷 这一观点相吻合.为了和其他范德瓦耳斯磁性薄膜 材料做横向对比,统计了已报道的范德瓦耳斯铁磁 薄膜材料在不同温度下的矫顽场,如图 3(d)所示. 从图 3(d)可以看到,目前我们在 1.5 K下报道的 矫顽场是迄今为止在范德瓦耳斯铁磁薄膜材料中 的最大数值,达到了 7.6 T,比文献中在 1 K下测 到的数值^[55]还要高 22%.

4 结 论

通过 CVT 的方法生长了 Ta₃FeS₆ 单晶,并对 材料的成分和物相做了详细的表征,发现样品中存 在较多的 Fe 原子和 S 原子空位.通过低温下系统 性的纵向磁阻和反常霍尔电阻测量,发现了 Ta₃FeS₆ 薄膜样品中巨大的矫顽场 (~7.6 T),这是迄今为 止在二维铁磁薄膜材料里面报道的最高数值.此 外,还在反常霍尔信号测量中观察到了磁滞回线的 极性翻转,相关细致的机制解释需要进一步地研 究.我们的研究为基于范德瓦耳斯磁性材料的新型 自旋电子学研究开辟了全新的平台.

参考文献

- Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16
- [2] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 *IEEE Trans. Magn.* 57 1
- [3] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274
- [4] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530
- [5] Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784
- [6] Li Z, Zhang S F 2004 *Phys. Rev. B* **69** 134416
- [7] Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502
- [8] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548
- [9] Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582
- [10] Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139
- [11]~ Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L,

Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 *Nat. Commun.* **12** 1

- [12] Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282
- [13] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148
- [14] Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261
- [15] Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270
- [16] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
- [17] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94
- [18] Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778
- [19] Gong C, Zhang X 2019 *Science* **363** eaav4450
- [20] Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533
- [21] Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400
- [22] Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860
- [23] Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 *Sci. Adv.* 5 eaaw8904
- [24] Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1
- [25] Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598
- [26] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614
- [27] Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969
- [28] Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119
- [29] Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722
- [30] Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428
- [31] Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408
- [32] Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn.

Magn. Mater. 324 1770

- [33] Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1
- [34] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133
- [35] Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809
- [36] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818
- [37] Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539
- [38] Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006
- [39] Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 *Phys. Rev. B* 79 195129
- [40] Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809
- [41] Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416
- [42] Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901
- [43] Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647
- [44] Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141
- [45] Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116
- [46] Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 *Phys. Rev. Mater.* 5 L041001
- [47] Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549
- [48] Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang

Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465

- [49] Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672
- [50] Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693
- [51] Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. **31** 1903779
- [52] Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009
- [53] Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622
- [54] Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368
- [55] Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 *Phys. Rev. B* **91** 054426
- [56] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289
- [57] Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 *Phys. Rev. B* 99 041402
- [58] Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01
- [59] Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403
- [60] Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056

SPECIAL TOPIC—Novel properties of low-dimensional materials

Giant coercivity in single crystal Ta_3FeS_6 film^{*}

Liu Xiao-Wei^{1)#} Xiong Jun-Lin^{1)#} Wang Li-Zheng¹⁾

Liang Shi-Jun¹⁾ Cheng Bin^{2} [†] Miao Feng^{1)‡}

1) (School of Physics, Nanjing University, Nanjing 210093, China)

 (Institute of Interdisciplinary Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)

(Received 15 April 2022; revised manuscript received 28 April 2022)

Abstract

Van der Waals (vdW) layered ferromagnetic materials provide a unique platform for fundamental spintronic research, and have broad application prospects in the next-generation spintronic devices. In this study, we synthesize high-quality single crystals of vdW intrinsic ferromagnet Ta_3FeS_6 by the chemical vapor transport method. We obtain thin layer samples of Ta_3FeS_6 with thickness values ranging from 19 to 100 nm by the mechanical exfoliation method, and find that their corresponding Curie temperatures are between 176 and 133 K. The anomalous Hall measurement shows that the Ta_3FeS_6 has out-of-plane ferromagnetism with the coercivity reaching 7.6 T at 1.5 K, which is the largest value in those of the layered vdW ferromagnetic materials reported so far. In addition, we observe that the reversal polarity of the hysteresis loop changes sign with temperature increasing. Our work provides an opportunity to construct stable and miniaturized spintronic devices and present a new platform for studying spintronics based on van der Waals magnetic materials.

Keywords: Ta₃FeS₆, anomalous Hall effect, van der Waals magnetic material, coercive field PACS: 75.70.–I, 73.43.Qt, 75.50.Vv, 75.50.Ss **DOI**: 10.7498/aps.71.20220699

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 12074176, 62122036, 62034004, 61921005, 61974176), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 020414380179).

 $^{^{\#}\,}$ These authors contributed equally.

[†] Corresponding author. E-mail: bincheng@njust.edu.cn

[‡] Corresponding author. E-mail: miao@nju.edu.cn