



Institute of Physics, CAS

# 退火时间对 $Fe_{80}Si_9B_{10}Cu_1$ 非晶合金纳米尺度结构不均匀性和磁性能的影响

陈波 杨詹詹 王玉楹 王寅岗

# Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> amorphous alloy

Chen Bo Yang Zhan-Zhan Wang Yu-Ying Wang Yin-Gang

引用信息 Citation: Acta Physica Sinica, 71, 156102 (2022) DOI: 10.7498/aps.71.20220446 在线阅读 View online: https://doi.org/10.7498/aps.71.20220446 当期内容 View table of contents: http://wulixb.iphy.ac.cn

# 您可能感兴趣的其他文章

#### Articles you may be interested in

非晶材料与物理近期研究进展

Recent progress of the glassy materials and physics 物理学报. 2018, 67(12): 126101 https://doi.org/10.7498/aps.67.20180681

基于剪切模量和热分析数据研究 $Zr_{50v}Cu_{34}Ag_8Al_8Pd_v$  (x = 0, 2)非晶合金缺陷浓度演化

Evolution of defect concentration in  $Zr_{50x}Cu_{34}Ag_8Al_8Pd_x$  (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data

物理学报. 2021, 70(14): 146401 https://doi.org/10.7498/aps.70.20210256

# 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响

Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses 物理学报. 2020, 69(11): 116101 https://doi.org/10.7498/aps.69.20191781

非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究

Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd<sub>40</sub>Ni<sub>10</sub>Cu<sub>30</sub>P<sub>20</sub> 物理学报. 2020, 69(12): 126401 https://doi.org/10.7498/aps.69.20200331

# 铁基软磁非晶/纳米晶合金研究进展及应用前景

Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys 物理学报. 2018, 67(1): 016101 https://doi.org/10.7498/aps.67.20171473

非晶态Gd45Ni30Al15Co10合金的制备与磁热性能

Preparation and magnetocaloric properties of  $Gd_{45}Ni_{30}Al_{15}Co_{10}$  amorphous alloy

物理学报. 2022, 71(2): 026102 https://doi.org/10.7498/aps.70.20211530

# 退火时间对 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金纳米尺度 结构不均匀性和磁性能的影响

陈波<sup>1)†</sup> 杨詹詹<sup>2)</sup> 王玉楹<sup>1)</sup> 王寅岗<sup>2)‡</sup>

(江苏扬电科技股份有限公司,泰州 225500)
 (南京航空航天大学材料科学与技术学院,南京 211106)
 (2022 年 3 月 12 日收到: 2022 年 4 月 7 日收到修改稿)

研究了经历不同时间退火后, Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金结构弛豫过程中纳米尺度结构不均匀性的演变及 其对合金磁性能的影响. 基于小角 X 射线散射和原子力显微镜分析, 随着弛豫的进行, 合金的纳米尺度结构 不均匀性逐渐衰减. 结合穆斯堡尔谱分析结果, 弛豫态合金综合软磁性能的提高可归因于纳米尺度结构不均 匀性的减弱. 从流变单元模型来看, 随着弛豫程度的加深, 流变单元的体积分数显著降低, 部分流变单元湮灭 并转化为理想弹性基体. 一方面, 弛豫态样品的原子结构排列更加紧密, 磁交换相互作用更强, 饱和磁感应强 度也更高; 另一方面, 准位错偶极子的数量密度随着流变单元在弛豫过程中的湮灭而逐渐减小, 磁畴壁的钉 扎效应减弱, 合金的磁各向异性下降, 矫顽力降低. 本文从结构不均匀性的角度研究了 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合 金弛豫过程中磁性能变化的结构机制, 有助于建立铁基非晶合金结构和磁性能之间的关联性.

关键词:非晶合金,结构弛豫,结构不均匀性,磁性能 **PACS**: 61.43.Dq, 31.70.Hq, 79.60.Jv, 81.40.Rs

**DOI:** 10.7498/aps.71.20220446

# 1 引 言

非晶合金因其独特而优越的物理、化学和力学性能以及在各个领域的巨大应用潜力而备受关注<sup>[1]</sup>. 然而,与晶体材料相比,人们对非晶合金微观结构的全面认识还远远不够.这主要是由于非晶合金独特的无序原子结构,电子结构难以捉摸,很难用经典能带理论予以描述.研究表明非晶合金的无序结构并不是完全随机的,其原子排列在最近邻和次近邻中显示出一定的有序性<sup>[2,3]</sup>.非晶结构中的局域有序可通过多种实验技术来检测.例如Hirata等<sup>[4]</sup>利用球差矫正透射电子显微镜和纳米束电子衍射技术首次直接观察到非晶合金的短程有序(SRO)结构.除了SRO之外,Sheng等<sup>[5]</sup>结合扩展X射线

吸收精细结构、反蒙特卡罗模拟与 Voronoi 分形等 手段,研究了非晶合金的中程有序 (MRO) 结构, 认为 MRO 是原子团簇通过特定连接所形成的必 然结果.尽管非晶合金的局域有序结构特征已经有 了大量的实验证据,但仅从 SRO 和 MRO 的角度 出发仍然难以建立非晶合金的结构-性能关系.在 晶体学理论框架中,由于结构缺陷能够被轻易识 别,缺陷模型和理论已经较为完善,人们对于晶体 结构-性能关系的理解已经较为透彻.因此,若能在 非晶合金中找到类似的结构缺陷,并以此来探究非 晶合金的结构-性能关系会是一个比较好的思路.

与晶体材料所呈现的各向异性不同,非晶合金的原子结构在较大尺度上呈现各向同性,即非晶合金在宏观上是均匀的.因此很难明确定义传统意义上的结构缺陷.然而,近年来研究表明,非晶合金

<sup>†</sup> 通信作者. E-mail: chenbo@jsyddq.cn

<sup>‡</sup> 通信作者. E-mail: yingang.wang@nuaa.edu.cn

<sup>© 2022</sup> 中国物理学会 Chinese Physical Society

的结构在一定尺度下是不均匀的[6,7]. 正如前面提 到, 无论是 SRO 还是 MRO, 这都是非晶合金结构 不均匀性在某一长度尺度下的具体体现. 而当超过 一定长度尺度时,非晶合金的结构不均匀特性会被 掩藏而呈现出各向同性.借助于原子力显微镜 (AFM) 和小角 X 射线散射 (SAXS), 研究者们逐渐 揭示了非晶合金在纳米尺度的结构不均匀特征[8,9]. 基于此, Wang 等<sup>[10,11]</sup> 提出了用于描述非晶合金结 构特征的流变单元模型,即将真实非晶合金模型转 化为理想弹性基体 (类固区) 和流变单元 (类液区) 的组合. 流变单元是具有更快动力学的区域, 在实 验时间尺度上表现得像液体. 流变单元通常包含数 百个原子,在空间中占据数立方纳米的体积,其平 均有效尺寸因不同的成分和不同的能量状态而不 同. 研究者们将非晶合金中的流变单元视为"动态 缺陷",并成功解释了非晶合金中的诸多现象,如 力学行为和弛豫特性等[12-14].因此,基于流变单元 模型,以结构不均匀性为中间参量,可能是建立非 晶合金的结构-性能关系的有效方式.

铁基非晶合金是目前应用最为广泛的非晶体 系之一. 由于长程无序以及无晶界的微观结构, 铁 基非晶合金在磁畴上表现出极低的钉扎效应,从而 具有较低的矫顽力 He. 研究表明, 非晶合金 He 低 的原因是准位错偶极子的低数量密度,对应于较低 数量密度的畴壁钉扎位点<sup>15]</sup>.同时 Fe 含量较高使 得铁基非晶合金具有较高的饱和磁感应强度 B. 近年来,致力于进一步改善铁基非晶合金的软磁性 能以及提高热稳定性 (或非晶形成能力), 人们从多 个角度入手开展了大量研究. 如吕昭平等[16]利用 机器学习预测合金性能,寻求兼具高饱和磁感应强 度和热稳定性的铁基非晶合金新成分; Zhao 等<sup>[17]</sup> 基于高熵合金的设计思路开发出近等比例的多组 元非晶合金新体系; Fan 等<sup>[18]</sup> 以提高铁磁交换相 互作用为导向引入适量 Co元素提高了铁基非晶 合金的饱和磁感应强度. 然而, 以往的研究中往往 只重点关注提高宏观磁性能, 而对磁性能背后的结 构机制缺乏更加深入的探究.我们之前的研究表 明, Fe80Si9B11 非晶合金在冷却速率降低以及不同 温度退火诱导的弛豫过程中综合软磁性能的提高 均可以归因于纳米尺度结构不均匀性的减弱[19,20]. 此外,铁磁性元素 Co/Ni 引入时所导致 Fe<sub>80</sub>Si<sub>9</sub>B<sub>11</sub> 非晶合金磁性能的变化与纳米尺度结构不均匀性 紧密相关<sup>[21]</sup>. 这些工作表明从纳米尺度结构不均 匀性的角度来理解铁基非晶合金磁性能的结构起 源是可行的.事实上,除了改变退火温度以外,调 节退火保温时间也可以诱导结构弛豫的发生.本文 利用 SAXS 和 AFM 表征 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金 在弛豫过程中纳米尺度结构不均匀性的演变,通过 软磁直流测试系统和室温穆斯堡尔谱获得合金的 磁性能.最后,基于流变单元模型,从结构不均匀 性的角度讨论合金磁性能的变化.

# 2 材料与方法

通过电弧熔炼技术在氩气保护下制备得到名 义成分为 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 母合金锭,反复熔炼 4次 以保证成分混合均匀.随后将打磨成一定大小的合 金锭置于底部圆孔直径约为1 mm 的石英喷嘴中, 并通过单辊旋淬法制备得到厚度约为25 μm 的 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub>非晶合金带材.整个制备过程均在氩 气保护下进行以防止带材发生氧化.利用快速退火 炉对淬态合金带材进行等温退火处理,即在573 K 下分别保温3,5和8 min,获得不同弛豫程度的样 品.随着退火时间的延长,可将样品分别称为轻度 弛豫、中度弛豫以及高度弛豫样品.

所有样品的非晶性质通过 X 射线衍射 (XRD, 型号: Rigaku Smartlab9) 和高分辨透射电子显微镜 (HRTEM, 型号: Talos F200X) 来确定.利用差示 扫描量热仪 (DSC, 型号: Netzsch DSC 449F3) 来 测定样品升温后的热力学行为.采用小角 X 射线 散射 (SAXS, 型号: Bruker Nanosta) 和配备超尖 探针的原子力显微镜 (AFM, 型号: MFP-3D) 来表 征样品的纳米尺度结构不均匀性.在室温下对所有 样品进行了穆斯堡尔谱测试,并以<sup>57</sup>Co 作为γ射 线放射源,采用高纯 α-Fe 进行速度标定.利用 WinNormos 软件拟合得到实验光谱和超精细场分 布.通过软磁直流测试系统 (型号: MATS-2010SD) 测得的 B-H 回线来获得样品的磁性能,包括饱和 磁感应强度 B<sub>s</sub>和矫顽力 H<sub>c</sub>,测试系统外加磁场范 围为-8000—+8000 A/m.

# 3 实验结果与讨论

图 1 为淬态和弛豫态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金 的 XRD 图谱以及 DSC 曲线. 从图 1(a) 可以看出 所有样品的 XRD 图谱呈现出非晶合金典型的宽 泛"馒头峰",表明实验中不同时间退火诱导的弛豫 不会影响合金的非晶性质.从 DSC 曲线中可以看 出淬态和弛豫态合金随着退火时间的延长表现出 相同的热流轨迹,依次经历铁磁-顺磁转变、玻璃转 变、初始晶化以及二次晶化.随着弛豫的进行,合 金的玻璃转变温度 *T*g 和晶化温度 (包括初始晶化 温度 *T*x1 和二次晶化温度 *T*x2) 均向高温方向移动, 表明合金的热稳定性以及抗结晶能力的提高.同时 标志铁磁-顺磁转变的居里温度 *T*c 也随着弛豫程 度的加深而逐渐增加,表明合金在发生弛豫后原子 间交换相互作用的增强,这与我们之前报道的不同 温度退火诱导 Fe<sub>80</sub>Si<sub>9</sub>B<sub>11</sub> 非晶合金发生弛豫的分 析结果是一致的<sup>[19]</sup>.因此,与提高退火温度相同, 通过延长保温时间也会使得非晶合金热稳定性以 及交换相互作用提高.



Fig. 1. (a) XRD and (b) DSC curves of the as-quenched and different relaxed  $Fe_{s_0}Si_9B_{10}Cu_1$  alloys.

为了进一步确认退火不会影响合金的非晶性, 还对淬态和 573 K 下退火 8 min 后的高度弛豫态 样品进行了 HRTEM 观察,如图 2 所示.二者的 HRTEM 图像均观察不到任何有序的晶格条纹而 呈现"迷宫状"图案,并且选区电子衍射 (SAED) 花 样也为弥散的衍射环,表明淬态和高度弛豫态样品 均为完全非晶态,进而证明了所有样品的非晶性质.



图 2 (a) 淬态和 (b) 高度弛豫态  $Fe_{80}Si_9B_{10}Cu_1$  合金的 HR TEM 图像及相应 SAED 花样 (插图)

Fig. 2. HRTEM images and corresponding SAED patterns (inset) of (a) as-quenched and (b) highly-relaxed  $Fe_{80}Si_9$   $B_{10}Cu_1$  alloys.

图 3(a) 为淬态和不同弛豫态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金的 SAXS 曲线.可以看到所有样品的散 射强度 *I*(*q*) 均随着 *q* 的增大而逐渐衰减,表现出典 型的小角散射行为.这意味着非晶合金结构中存在 某种纳米尺度电子密度不均匀的散射体,因此非晶 合金可以视为散射体和非晶基体的两相体系<sup>[9]</sup>.从 图 3(a) 可以看出,散射强度 *I*(*q*) 随着退火时间的 延长而逐渐减弱,表明合金中纳米尺度电子密度起 伏减小.进一步,根据 Porod 定律和 Guinier 定律 分析散射曲线可获得散射体与基体间界面信息以 及散射体的特征尺寸.Porod 定律指出,当*q*大于 某一值时,若体系的两相间存在明锐界面,则散射 强度 *I*(*q*) 与 *q*<sup>3</sup>乘积趋于常数 *K*,表达式为<sup>[9]</sup>

$$\lim_{q \to \infty} \ln\left[q^3 I\left(q\right)\right] = \ln K. \tag{1}$$

图 3(b) 为从散射曲线中得到的 Porod 曲线, 可以看出所有样品的 ln[q<sup>3</sup>I(q)] 值在大 q 区域均呈 现出近似为一条斜率为正的直线 (即正偏离),表明 了淬态与不同弛豫态合金中纳米尺度结构不均匀 性的存在.此外,可通过 Guinier 定律分析小 q 区 域的散射强度 I(q) 来进一步获得系统内部散射体 的特征尺寸,可表达为<sup>[22]</sup>

$$\ln I(q) = \ln I(0) - \frac{1}{3}R_{g}^{2}q^{2}, \qquad (2)$$

其中, I(0) 为在 q = 0 处的散射强度;  $R_g$  被定义为 散射体的回转半径, 是衡量散射体特征尺寸的参 量. 图 3(c) 为合金的 Guinier 定律分析结果. 通过 线性拟合小 q 区域的散射曲线能得到淬态和不同



图 3 (a) 淬态和不同弛豫态  $Fe_{80}Si_9B_{10}Cu_1$  合金的 SAXS 曲线; (b) Porod 定律与 (c) Guinier 定律分析样品的散射曲线; (d) 线性 拟合小 q 区域的散射曲线所得到的回转半径  $R_g$ 

Fig. 3. (a) SAXS profiles of the as-quenched and relaxed  $Fe_{80}Si_9B_{10}Cu_1$  alloys; the analysis results of (b) Porod's law and (c) Guinier's law of scattering curves for all specimens; (d) the average radius of gyration  $R_g$  obtained by linearly fitting scattering curves for small q regions.

弛豫态合金的散射体回转半径 R<sub>g</sub>,如图 3(d) 所示,随着弛豫的进行 (退火时间的增加), R<sub>g</sub>由 5.32 nm 逐渐减小到 3.51 nm. 这与我们之前报道的不同温 度退火所导致的变化趋势是一致的<sup>[19]</sup>,表明非晶 合金的纳米尺度结构不均匀性在结构弛豫过程中 会单调衰减,并伴随着结构不均匀性标志物特征尺 寸 (即回转半径)的减小.

除 SAXS 外, AFM 是能够直接探测非晶合金 纳米尺度结构不均匀性的另一有效手段.测试过程 中采用轻敲模式,同时记录样品的表面形貌和相位 移信息,而相位移图像能够反映样品的黏弹性等本 征特性<sup>图</sup>. 图 4 为淬态和不同弛豫态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金的相位移图像.在相位移图像中,高低相 位移区域表现出明显的颜色对比,反映了非晶合金 的纳米尺度结构不均匀性.随着弛豫的进行,合金 的纳米尺度结构不均匀性逐渐减弱,如图 4 所示, 主要表现为流变单元 (红色区域)所占的比例明显 下降且分布更加分散,理想弹性基体 (绿色和蓝色 区域)占据合金结构的绝大部分.因此,高度弛豫 态样品的相位移图像颜色分布最为均匀,纳米尺度 结构不均匀性的程度最弱,这与我们之前的研究中 所观察到的现象是一致的<sup>[19]</sup>.此外,AFM 针尖扫 过样品表面时产生的能量耗散 *E*<sub>dis</sub> 与相位移 Δ*φ* 满足<sup>[23]</sup>:

$$E_{\rm dis} = \frac{\pi k A}{Q} \left( A_0 \sin \Delta \varphi - \frac{A\omega}{\omega_0} \right), \qquad (3)$$

其中, k 为悬臂的弹性常数, A 为设定振幅,  $A_0$  为 探针自由振幅, Q 为探针品质因子,  $\omega$  为驱动频率,  $\omega_0$  为悬臂共振频率. 在测试过程中以上参数均是 确定值, 因此  $E_{dis}$  与  $\Delta \varphi$  呈正相关. 如图 4 所示, 随着弛豫程度的加深, 相位移角的范围整体逐渐减 小, 反映了能量耗散分布的降低, 表明非晶合金向 结构更为均匀的方向发展<sup>[24]</sup>. 根据相关文献 [24] 报 道, 非晶合金在弛豫过程中结构不均匀性的衰减与 合金的 sub- $T_g$  动力学密切相关. 由于弛豫过程中 过剩焓的释放, 合金通过近程扩散或原子协同运动 进行局部原子重排, 进而导致结构不均匀性的减弱.



图 4 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub>合金的相位移图像 (a) 淬态; (b) 轻度弛豫; (c) 中度弛豫; (d) 高度弛豫态 Fig. 4. Phase shift images of Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> alloys: (a) As-quenched; (b) slightly-relaxed; (c) intermediate-relaxed; (d) highly-relaxed.

为了详细分析不同时间退火诱导的弛豫对 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金纳米尺度结构不均匀性的 影响,还需对合金的纳米尺度结构不均匀性进行定 量分析.可以通过相位移关联函数来提取形貌以及 相位移图像的定量信息<sup>[25]</sup>:

$$P(r) = 2\sigma^2 \left\{ 1 - \exp\left[ -(r/\xi)^{2\alpha} \right] \right\} , \qquad (4)$$

其中, σ为相位移的均方根值, α为相位移指数, 关 联长度 ξ表示形貌或相位移图上任意两相关点间 的距离.根据相关文献 [8,24] 报道,关联长度 ξ 的 变化可以定量地表示非晶合金结构不均匀性的演 化. *P*(*r*) 可通过下式计算<sup>[25]</sup>:

$$P(r) = [p(r) - p(0)]^2,$$
(5)

其中, p(r) 和 p(0) 分别为任意坐标 (x, y) 以及参考 坐标 (x<sub>0</sub>, y<sub>0</sub>) 处的相位移值. 图 5 为淬态和不同弛 豫态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金相位移图像的关联函 数拟合曲线. 从图 5 可以看出, 关联长度随着退火 时间的延长由淬态的 8.62 nm 逐渐降低到高度弛 豫态的 5.29 nm. 与此同时, 图 5 中插图显示相位 移角的统计分布随着弛豫的进行逐渐向低角方向 移动且高斯拟合峰变得更加狭窄, 表明合金逐渐向 结构更为均匀的方向发展<sup>[26]</sup>.

淬态和不同弛豫态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 合金的室温 穆斯堡尔谱如图 6(a) 所示.可以看到所有光谱均 呈现出典型的展宽六线谱,表明了所有样品的非晶 性质.图 6(b)为从穆斯堡尔谱中提取出所有样品 的超精细场分布曲线,均由"高场峰"和"低场峰"组 成,分别与 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金的"富铁区"和 "贫铁区"密切相关<sup>[27]</sup>.随着退火时间的延长,超精 细场的"低场峰"和"高场峰"的峰高都逐渐增加,且 峰位逐渐向右移动,这可以归因于弛豫过程中 Fe 原子的聚集.



图 5 淬态和不同弛豫态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 合金的关联函数 拟合曲线 (插图为所有样品相位移角的统计分布及高斯函 数拟合)

Fig. 5. Correlation function curves of the as-quenched and different relaxed  $Fe_{80}Si_9B_{10}Cu_1$  alloys (Inset: the statistic distribution of phase shift angles and Gauss function fitting for all specimens).



图 6 (a) 淬态与不同弛豫态  $Fe_{s0}Si_{9}B_{10}Cu_{1}$  合金的室温穆斯堡尔谱; (b) 从穆斯堡尔谱中提取出的超精细场分布; (c) 淬态和不同 弛豫态样品的 *B*-H回线; (d) 饱和磁感应强度 *B*<sub>s</sub>、平均超精细场 *B*<sub>hfa</sub>、强度比 *A*<sub>23</sub> 以及矫顽力 *H*<sub>c</sub> 随关联长度的变化

Fig. 6. (a) Room-temperature Mössbauer spectra of as-quenched and different relaxed  $Fe_{80}Si_9B_{10}Cu_1$  alloys; (b) the hyperfine magnetic-field distributions extracted from these spectra; (c) *B-H* curves of as-quenched and different relaxed samples; (d) saturated magnetic flux density  $B_s$ , average hyperfine field  $B_{hfa}$ , intensity ratio  $A_{23}$ , and coercivity  $H_c$  as functions of the correlation length.

表1列出了穆斯堡尔谱的超精细参数,包括平 均超精细场 Bhfa、同质异能位移 IS、每一磁场下同 质异能位移变化量 DTI以及电四极矩 QS. 其中平 均超精细场 Bhfa 的增加也反映了峰位的移动, 表 明磁交换相互作用随着弛豫的进行而逐渐增强,这 与居里温度 T。的变化所反映的结果是一致的. 同 时,表1中不同时间退火的弛豫态样品的 IS 值要 低于淬态样品,这与我们之前工作中的研究结果是 一致的[28]. 根据相关文献 [29] 报道, 非晶合金的穆 斯堡尔谱参数与近邻 Fe 原子的 SRO 结构密切相 关. 随着弛豫的进行, Bhfa 的增加和 IS 的降低主要 是由两个原因导致:一方面,弛豫过程中自由体积 的减少使得近邻 Fe 原子间的键长变短, 从而使周 围近邻 Fe 原子周围的磁交换相互作用增强; 另一 方面, 非磁性的 Cu 原子持续地从非晶基体中析出, 减小了相应的磁屏蔽作用.

图 6(c) 为淬态和不同弛豫态的 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金的 *B*-*H*回线,可以看到所有样品均表现 出良好的软磁性能. 随着弛豫的进行, 合金的饱和 磁感应强度 B<sub>s</sub>逐渐增加且磁滞回线变得更为平 直. 从外磁场为0附近的局部放大图中可以看到, 合金的矫顽力 H<sub>c</sub>随着弛豫程度的加深而逐渐降 低. 因此,高度弛豫态的 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金 具有最优的综合软磁性能 (高 B<sub>s</sub>和低 H<sub>c</sub>). 图 6(d) 为 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金的各项磁性能参数随关 联长度的变化. 可以看出随着关联长度的减小,合 金的饱和磁感应强度 B<sub>s</sub>逐渐增加而矫顽力 H<sub>c</sub>逐 渐降低. 同时平均超精细场 B<sub>hfa</sub> 以及穆斯堡尔谱 第二峰和第三峰的强度比 A<sub>23</sub> 都随着关联长度的

表 1 穆斯堡尔谱超精细参数

 Table 1.
 Hyperfine parameters of the Mössbauer spectra.

| -               |                     |                                  |                           |                              |
|-----------------|---------------------|----------------------------------|---------------------------|------------------------------|
| Samples         | $B_{ m hfa}/{ m T}$ | $IS/\ ({ m mm}\cdot{ m s}^{-1})$ | $DTI/$ $( m mmmm s^{-1})$ | $QS/\ ({ m mm\cdot s^{-1}})$ |
| As-<br>quenched | 24.87               | -0.054                           | 0.0062                    | -0.014                       |
| $3 \min$        | 25.46               | -0.075                           | 0.0053                    | -0.023                       |
| $5 \min$        | 25.63               | -0.066                           | 0.0066                    | -0.018                       |
| $8 \min$        | 25.85               | -0.096                           | 0.0076                    | -0.019                       |

减小而逐渐增加,表明合金磁交换相互作用的增强 和磁各向异性的减弱.这与我们之前的研究结果是 一致的<sup>[19,20]</sup>,表明纳米尺度结构不均匀性和磁性能 具有紧密的关联性.总的来说,低关联长度(纳米 尺度结构不均匀性较弱)的合金往往具有更好的综 合软磁性能,这源自于其具有较强的磁交换相互作 用以及低的磁各向异性.

为了全面理解退火时间对 FesoSioB10Cu1 非晶 合金的纳米尺度结构不均匀性及磁性能的影响机 理,绘制了非晶合金的能量地形图以及结构不均匀 性在弛豫过程中的演变示意图,如图 7 所示.图 1(b) 中初始晶化温度 Tx 和居里温度 Tc 都随着退火时 间的延长而逐渐增加,表明与淬态合金相比,弛豫 态样品具有更低的构型势能<sup>[30]</sup>. 图 7 中蓝色和红 色原子代表更高势能和松散堆积密度的流变单元 (类液区), 而黑色原子为相对均匀且堆积紧密的理 想弹性基体 (类固区). 在不同时间退火诱导的结构 弛豫过程中,流变单元通过改变构型进行结构重 排,使非晶合金结构变得更有序、密度更大,并趋 于能量更低且更稳定的状态.结果流变单元的体积 分数将会减少,部分流变单元将湮灭并转化为理想 弹性基体.因此,退火处理对非晶合金的弹性基体 的影响是有限的,结构弛豫的总体结果是结构不均 匀性衰减的同时经历由类液区向类固区转化的过



Atomic packing density



Fig. 7. Schematic illustrations of the potential energy landscape and the evolution of structural heterogeneity in  $Fe_{80}Si_9B_{10}Cu_1$  amorphous alloys during structural relaxation induced by annealing. 程,具有较高原子运动能力的类液区的数量密度减 少以及体积收缩.根据相关文献 [29,31] 报道,磁交 换相互作用与原子间距关系密切.在这种情形下, 退火诱导的结构弛豫过程中类液区的湮灭导致了 结构致密化,原子排列更加紧密,从而增强了非晶 合金的磁交换相互作用,进而使得饱和磁感应强度 提高.与此同时,准位错偶极子的数量密度也会由 于弛豫过程中自由体积和流变单元的湮灭而显著 减少<sup>[15]</sup>,准位错偶极子对磁畴钉扎效应的减弱降 低了磁各向异性并使矫顽力减小.

# 4 结 论

淬态 Fe<sub>80</sub>Si<sub>9</sub>B<sub>10</sub>Cu<sub>1</sub> 非晶合金在 573 K 分别退 火3,5,8 min,获得不同弛豫程度的样品.利用 SAXS、AFM 以及穆斯堡尔谱揭示了合金在弛豫 过程中纳米尺度结构不均匀性和磁性能的演变规 律.结果表明合金的纳米尺度结构不均匀性随着弛 豫程度的加深而逐渐减弱,标志结构不均匀性程度 的回转半径和关联长度减小. 与此同时, 在结构弛 豫过程中,流变单元进行结构重排而逐渐收缩,部 分流变单元也逐渐湮灭并转化为原子排列更加紧 密的理想弹性基体.此外,与淬态合金相比,退火 后的弛豫态样品具有更高的饱和磁感应强度 B。以 及更低的矫顽力 H<sub>c</sub>,综合软磁性能更优异. 从流变 单元模型来看,原子排列松散的流变单元随着弛豫 的进行向排列更加紧密的弹性基体转化, 增强了原 子间的磁交换相互作用, 饱和磁感应强度 B。也相 应地提高.此外,流变单元的收缩和湮灭导致准位 错偶极子的数量密度减小,磁畴壁的钉扎效应减 弱,从而有效减弱了磁各向异性,进而使得合金的 矫顽力 H。降低.

### 参考文献

- Jiang H Y, Shang T T, Xian H J, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W 2020 Small Struct. 2 2000057
- [2] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
- [3] Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, III G, Greer J R 2015 Science 349 1306
- [4] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28
- [5] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 *Nature* **439** 419
- [6] Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112 (in Chinese) [管 鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 物

理学报 66 176112]

- [7] Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388
- [8] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504
- [9] Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66 176109 (in Chinese) [孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强 2017 物理学报 66 176109]
- [10] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
- [11] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304
- [12] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823
- [13] Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965
- [14] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250
- [15] Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102
- [16] Lu Z, Chen X, Liu X, Lin D, Wu Y, Zhang Y, Wang H, Jiang S, Li H, Wang X, Lu Z 2020 npj Comput. Mater. 6 187
- [17] Zhao C C, Inoue A, Kong F L, Zhang J Y, Chen C J, Shen B L, Al-Marzouki F, Greer A L 2020 J. Alloy. Compd. 843 155917
- [18] Fan Y, Zhang S, Miao J, Zhang X, Chen C, Zhang W, Wei R, Wang T, Li F 2020 Intermetallics 127 106959
- [19] Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, Wang

Y G 2021 J. Non-Cryst. Solids 571 121078

- [20] Yang Z Z, Jiang S S, Ye L X, Zhu C, Gao X, Yang H, Wang Y G 2022 J. Non-Cryst. Solids 581 121433
- [21] Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloy. Compd. 904 164067
- [22] Liu Y, Pan J, Li L, Cheng H 2019 Appl. Phys. A: Mater. Sci. Proc. 125 297
- [23] Garcia R, Gomez C J, Martinez N F, Patil S, Dietz C, Magerle R 2006 Phys. Rev. Lett. 97 016103
- [24] Zhu F, Nguyen H K, Song S X, Aji D P, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516
- [25] Karabacak T, Zhao Y P, Wang G C, Lu T M 2001 Phys. Rev. B 64 085323
- [26] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
- [27] Babilas R, Mariola K G, Burian A, Temleitner L 2016 J. Magn. Magn. Mater. 406 171
- [28] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 J. Alloy. Compd. 695 1266
- [29] Pradell T, Clavaguera N, Zhu J, Clavagueramora M T 1995 J. Phys.: Condens. Matter 7 4129
- [30] Blazquez J S, Lozano-Perez S, Conde A 2000 Mater. Lett. 45 246
- [31] Gallagher K A, Willard M A, Zabenkin V N, Laughlin D E, McHenry M E 1999 J. Appl. Phys. 85 5130

# Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of $Fe_{80}Si_9B_{10}Cu_1$ amorphous alloy

Chen Bo<sup>1)†</sup> Yang Zhan-Zhan<sup>2)</sup> Wang Yu-Ying<sup>1)</sup> Wang Yin-Gang<sup>2)‡</sup>

1) (Jiangsu Yangdian Technology CO., LTD, Taizhou 225500, China)

2) (College of Materials Science and Technology, Nanjing University of Aeronautics and

Astronautics, Nanjing 211106, China)

(Received 12 March 2022; revised manuscript received 7 April 2022)

#### Abstract

The evolution of nanoscale structural heterogeneity and its effect on magnetic properties of  $Fe_{80}Si_9B_{10}Cu_1$ amorphous alloy during structural relaxation after being annealed for different times are investigated in this work. The nanoscale structural heterogeneity is found to degenerate gradually with relaxation by using the small-angle X-ray scattering and atomic force microscope. Combined with Mössbauer spectroscopy analysis results, the enhanced comprehensive soft magnetic properties of the relaxed alloys can be attributed to the degeneration of nanoscale structural heterogeneity. From the flow unit model, the volume fraction of flow units decreases with relaxation proceeding, and some of the flow units annihilate and transform into the ideal elastic matrix. On the one hand, the relaxed sample with greater packing density has stronger magnetic exchange interaction and higher saturation magnetic flux intensity. On the other hand, the number density of quasidislocation dipoles decreases with the annihilation of flow units in the relaxation process, leading the pinning effect of the domain wall to be weakened. Consequently, the magnetic anisotropy decreases after relaxation, which results in the relaxation process of  $Fe_{80}Si_9B_{10}Cu_1$  amorphous alloy is investigated from the perspective of structural heterogeneity, which is helpful in establishing the correlation between the structure and magnetic properties of Fe-based amorphous alloys.

Keywords: amorphous alloy, structural relaxation, structural heterogeneity, magnetic propertiesPACS: 61.43.Dq, 31.70.Hq, 79.60.Jv, 81.40.RsDOI: 10.7498/aps.71.20220446

<sup>†</sup> Corresponding author. E-mail: chenbo@jsyddq.cn

<sup>‡</sup> Corresponding author. E-mail: yingang.wang@nuaa.edu.cn