界面动力学参数对深胞晶界面形态整体波动 不稳定性的影响^{*}

钮迪1) 蒋晗1)†

1) (桂林电子科技大学, 数学与计算科学学院, 桂林 541004)

(2022年2月22日收到; 2022年4月25日收到修改稿)

研究界面动力学对定向凝固中深胞晶形态稳定性的影响.应用多重变量法和匹配渐近法,通过寻找系统的模式解,导出了胞晶界面扰动振幅的变化率满足的色散关系,得到了界面形态的量子化条件.结果表明,考虑了界面动力学参数的深胞晶生长的定向凝固系统有两种整体不稳定性机制,整体振荡不稳定机制和低频 不稳定性.稳定性分析表明,界面稳定性参数 ε 与胞晶相对参数 λ₀有关,低阶时界面动力学参数 M*越大,中 性模式产生强振荡的枝晶结构的整体波动不稳定性的稳定区域越大.

关键词: 定向凝固, 深胞晶生长, 界面动力学, 形态稳定性 **PACS**: 81.10.Aj, 81.30.Fb, 68.35.Ja

DOI: 10.7498/aps.71.20220322

1 引 言

定向凝固是一种在合金制备的过程中常用的 工艺,其固液界面的传播速度可以受到人为控制. 在定向凝固过程中,固液界面形态会受到凝固速度 的影响.随着凝固速度的提高,界面形态将由低速 生长的平直界面,依次演变为小振幅的胞晶界面、 大振幅的深胞晶界面、枝晶界面、细胞晶界面,最 后变为高速生长的平直界面.固液界面形成的典型 微结构是枝晶和胞晶,其生长的稳定性是材料学中 重要的研究课题.合金中胞晶生长的稳定性会影响 合金的微结构,对最终成品合金的性能造成影响. 例如 Peng 等^[1]通过实验发现,在定向凝固过程中 会出现雀斑缺陷,且凝固过程中的枝晶形貌与 Gibbs-Thomson效应密切相关.

许多学者也对晶体生长进行了研究. Mullins 和 Sekerka^[2,3]研究了晶体生长的界面稳定性, 提出了

界面稳定性动力理论,称为 M-S 理论,为固液界面 形态特征理论奠定了基础.随后 Nash 和 Glicksman^[4] 提出最大生长速度理论,他们在原有的系统上额外 加上了两个边界条件并求解了数值解.Kruskal 和 Segur^[5]提出了微观可解性条件 (MSC)理论的 3 个 断言,考虑了各向异性界面能,在 Nash-Glicksman 的模型中加入了各向异性参数.Xu 等^[6,7]提出了界 面波 (IFW)理论,该理论对 Nash-Glicksman 模型 进行了重要修正,使用摄动方法推导出了自由枝晶 稳定性生长的理论模型.Pocheau 和 Georgelin^[8]、 Ding 等^[9]通过实验发现了定向凝固中胞晶形态选 择具有历史相关性.

另一方面,界面动力学对于晶体的生长和界面 稳定性有着重要影响. Coriell 和 Sekerka^[10] 研究发 现晶体的界面动力学特性也是影响晶体生长的因 素. Trivedi 等^[11] 研究了界面动力学各向异性对定 向凝固中胞晶微结构产生的影响,发现界面动力学 各向异性会使得胞晶界面倾斜. 李金富和周尧和^[12]

© 2022 中国物理学会 Chinese Physical Society

^{*} 广西科技基地与人才专项 (批准号: 桂科 AD18281053) 资助的课题.

[†] 通信作者. E-mail: jiangh1986@163.com

通过理论分析,发现引入动力学项,扩大了共晶耦 合生长的过冷度范围,降低了共晶生长速度. Tan 等[13] 研究了 Ag-Cu(质量分数为 15%) 合金的快速定向 凝固的枝晶生长模型,并与实验结果进行对比,发 现引入界面动力学会使得模型与实验结果更接近. 蒋晗等[14]研究了各向异性界面动力学对定向凝固 的深胞晶的影响,发现界面动力学各向异性和表面 张力各向异性偏好方向的角度差值不同会影响深 胞晶的形态. Chen 等^[15,16] 通过解析方法研究了界 面动力学对球晶生长的影响,发现界面动力学对球 晶的生长有较强的稳定作用. 他们发现, 与忽略了 界面动力学的情况相比,界面动力学会使界面过冷 度显著减小,界面更稳定,这与实验[17,18]的结论一 致. 但是, 数值和实验方法并不能解释其内在的机 制,需要使用解析的方法才能解释.本文将采用多 重变量展开法,对考虑了界面动力学参数的深胞晶 界面稳定性进行研究.

2 定向凝固系统的数学模型

考虑样本材料细长的二元合金熔体定向凝固 过程中的深胞晶生长. 样本位于 Hele-shaw 生长 室,这是一个细长的生长室,因此可以看作是二维 空间Oxy下的定向凝固过程,其中原点位于胞晶尖 端. 忽略溶质在固相内的扩散, 且除了扩散系数外, 其他热力学性质在固相内相同,且系统内无对流. 界面提拉速度V的方向指向上液相方向. 温度梯度 为 G_T ,浓度为C,远场浓度为 C_∞ ,胞晶列周期为 $l_{\rm w}$, 纯熔体温度为 $T_{\rm M0}$, 溶质扩散率为 $\kappa_{\rm D}$, 溶质扩 散长度 $l_{\rm D} = \kappa_{\rm D}/V$,单位体积内固相产生的潜热为 ΔH , 毛细长度为 $l_{c} = \gamma c_{p} \rho T_{M0}$, 其中 γ 为表面张力, ρ为密度, c_n为比热容. 胞晶生长满足热传导方程、 溶质扩散方程和界面方程,满足热平衡条件、Gibbs-Thomson 条件、熵守恒条件、溶质守恒条件和界面 分离条件. 然后对系统进行无量纲化, 选取深胞晶尖 端半径4,为长度尺度,V作为速度尺度,4/V作为时 间尺度. 选取小参数为界面稳定性参数 $\varepsilon = \sqrt{\Gamma} =$ $\sqrt{l_{\rm c}/l_{\rm t}}$, Péclet 数 $Pe = l_{\rm t}/l_{\rm D}$, 且有 $Pe = \varepsilon \hat{P}e$, 其中 $\widehat{P}e =$ O(1). 无量纲化的温度梯度为 $G = \frac{l_{\rm D}}{\Delta H / (c_{\rm p} \rho)} G_T$, 形态学参数为 $M = -\frac{mC_{\infty}}{\Delta M / (c_{p}\rho)}, 其中 m < 0 是相$ 图中液相线的斜率.参数 $\lambda_{\rm G} = l_{\rm D}/l_{\rm G}$,其中 $l_{\rm G} =$ $-mC_{\infty}/G_T$. 主间距参数为 $W = l_w/l_t$, 参数E = $\frac{\Delta H}{c_{\rm p}\rho T_{M}}$.于是可以将深胞晶生长满足的热传导方程、溶质扩散方程转化为无量纲的控制方程.假设深胞晶尖端半径远远小于溶质扩散长度,即 $l_t \ll l_{\rm D}$.基于 Saffmen-Taylor 解构造曲线坐标系 ^[19](ξ , η),如图 1 所示.曲线坐标系与原来的(x,y)平面坐标的关系如下:

$$x = WX(\xi, \eta) = W\left\{\lambda_0 \xi - \frac{2(1-\lambda_0)}{\pi} \times \arctan\left[\frac{(1-e^{\pi\eta})\sin(\pi\xi)}{(\cos(\pi\xi)+1)(1+e^{\pi\eta})}\right]\right\}, \quad (1)$$

$$y = WY(\xi, \eta) = W \left[(2\lambda_0 - 1) \eta + \frac{(1 - \lambda_0)}{\pi} \ln \frac{e^{2\pi\eta} + 2e^{\pi\eta} \cos(\pi\xi) + 1}{4} \right], \quad (2)$$

其中 λ_0 为胞晶的相对宽度,其与主间距参数 W有关. 温度场的线性描述为 $T(\xi, \eta, \varepsilon) = \varepsilon \hat{P}[WY(\xi, \eta) - y_0].$

图 1 基于 Saffmen-Taylor 解构造的曲线坐标系 $(\xi, \eta)^{[20]}$ Fig. 1. Curve coordinate system (ξ, η) based on Saffmen-Taylor solution.

假设胞晶列具有周期性,每个胞晶宽度都为 W.此时只需要考虑单个区间即可.因此模型等价 于在固定侧壁 $x = \pm W$ 的通道中的胞晶生长.使用 曲线坐标系(ξ , η),控制方程化为

$$\frac{\partial^2 C}{\partial \xi^2} + \frac{\partial^2 C}{\partial \eta^2} = \varepsilon \widehat{P}e \left(G^2 \frac{\partial C}{\partial t} - Y_{\xi} \frac{\partial C}{\partial \xi} - X_{\xi} \frac{\partial C}{\partial \eta} \right), \quad (3)$$

其中 $M_* = \frac{V}{\mu T_M}$ 为界面动力学参数, μ 是界面动力 学系数. 假设 $M_* = O(\varepsilon^2) = \varepsilon^2 m_*, m_* = O(1).$

此外边界条件: 1) 远场条件, 当 $\eta \to \infty$ 时, 有 $C \to 1$; 2) 侧壁区域, 当 $\xi = \pm 1$ 时有 $\frac{\partial C}{\partial \xi} = 0$; 3) 在 界面 $\eta = \eta_s(\xi, t, \varepsilon)$, 有:

$$C = y_* - \varepsilon \lambda_G W \widehat{P} eY(\xi, \eta_s) - \frac{\varepsilon^2}{MW} \Big(K_0 + K_1 \eta_{s'} + K_2 \eta_{s''} \Big) - \frac{\varepsilon^2 \widehat{P} eE^{-1} m_*}{M}, \quad (4)$$

其中:

$$K_{0} + K_{1}\eta_{s'} + K_{2}\eta_{s''} = -\frac{1}{G\left(\xi,\eta_{s}\right)} \left\{ \frac{\eta_{s''}}{\left(1+\eta_{s'}\right)^{3/2}} + \frac{\Pi_{0}\left(\xi,\eta_{s}\right)}{G^{2}\left(\xi,\eta_{s}\right)\left(1+\eta_{s'}^{2}\right)^{1/2}} - \frac{\Pi_{1}\left(\xi,\eta_{s}\right)}{G^{2}\left(\xi,\eta_{s}\right)\left(1+\eta_{s'}^{2}\right)^{1/2}}\eta_{s'} \right\}$$

是两倍平均曲率算子,且有:

$$\Pi_{0} = Y_{\xi\xi}X_{\xi} - X_{\xi\xi}Y_{\xi}, \quad \Pi_{1} = X_{\xi\xi}X_{\xi} + Y_{\xi\xi}Y_{\xi}, \quad K_{0} = -\frac{\Pi_{0}}{G^{3}(1+\eta_{s}^{\prime 2})^{1/2}},$$
$$K_{1} = \frac{\Pi_{1}}{G^{3}(1+\eta_{s}^{\prime 2})^{1/2}}, \quad K_{2} = -\frac{1}{G^{3}(1+\eta_{s}^{\prime 2})^{3/2}}, \quad G = \sqrt{X_{\xi}^{2}+Y_{\xi}^{2}}.$$

质量守恒条件:

$$\frac{\partial C}{\partial \eta} - \eta_{s'} \frac{\partial C}{\partial \xi} + \varepsilon W \widehat{P} e \left(1 - \kappa\right) C \left(G^2 \frac{\partial \eta_s}{\partial t} - Y_{\xi} \eta_{s'} + Y_{\eta}\right) = 0.$$
(5)

3 外部渐近解

3.1 定常基态解与线性扰动态

将定常胞晶生长的整体基态解作为基态,则当 $\varepsilon \to 0$ 时,在界面 $\eta = O(1)$ 附近的子区域,定常解可简化为 $C_B(\xi,\eta,\varepsilon) = y_{*0} + \varepsilon \hat{P}e\{y_{*1} - W\lambda_G Y(\xi,\eta) + W\eta[\lambda_G - (y_{*0} - 1)]\} + \cdots,$ (6)

$$y_{*0} = \frac{1 + \lambda_G (1 - \lambda_0)}{1 - \lambda_0 (1 - \kappa)}, \quad y_{*1} = \frac{W (1 - \kappa) \lambda_0 \lambda_G \beta_0}{(1 - \kappa) \lambda_0 - 1}, \quad \beta_0 = -\frac{2 (1 - \lambda_0)}{\pi} \ln 2,$$
$$\lambda_0 = \frac{y_{*0} - 1 - \lambda_G}{(1 - \kappa) y_{*0} - \lambda_G}, \quad W = \frac{\pi (1 - \lambda_0)}{2\lambda_0^2} + \cdots, \quad (\varepsilon \to 0).$$

非稳态解可写成两部分:

$$C\left(\xi,\eta,t,\varepsilon\right) = C_B\left(\xi,\eta,\varepsilon\right) + \widetilde{C}\left(\xi,\eta,t,\varepsilon\right),\tag{7}$$

$$\eta_S(\xi, t, \varepsilon) = \eta_B(\xi, \varepsilon) + \widetilde{\eta_s}(\xi, t, \varepsilon).$$
(8)

且假设胞晶相对宽度 λ₀是给定的常数,则主间距W 和胞晶尖端位置 y*是无扰动的.将(7)和(8)式代 入系统并进行线性化处理,得到线性扰动系统.扰动系统可写为

$$\frac{\partial^2 \widetilde{C}}{\partial \xi^2} + \frac{\partial^2 \widetilde{C}}{\partial \eta^2} = \varepsilon W \widehat{P} e \left(G^2 \frac{\partial \widetilde{C}}{\partial t} - Y_{\xi} \frac{\partial \widetilde{C}}{\partial \xi} - X_{\xi} \frac{\partial \widetilde{C}}{\partial \eta} \right).$$
(9)

边界条件: 1) 远场区域, 当 $\tilde{\eta} \to \infty$, 有 $\tilde{C} \to 0$; 2) 侧壁区域, 当 $\xi = \pm 1$, 有 $\frac{\partial \tilde{C}}{\partial \xi} = 0$; 3) 在界面 $\eta = \eta_B \psi$, 齐次的 Gibbs-Thomson 条件:

$$\frac{\partial C_B}{\partial \eta_B} \widetilde{\eta_s} + \widetilde{C} = -\varepsilon \lambda_G W \widehat{P} e \frac{\partial Y\left(\xi, \eta_B\right)}{\partial \eta_B} \widetilde{\eta_s} - \frac{\varepsilon^2}{MW} \left\{ K\left[\eta_B\right] + K_1 \widetilde{\eta_{s'}} + K_2 \widetilde{\eta_{s''}} + \frac{\partial K\left[\eta_B\right]}{\partial \eta_B} \widetilde{\eta_s} \right\} - \frac{\varepsilon^2 \widehat{P} e^2 E^{-1} m_*}{M}.$$
(10)

以及齐次的质量守恒条件:

$$\frac{\partial^2 C_B}{\partial \eta_B^2} \tilde{\eta_s} + \frac{\partial \tilde{C}}{\partial \eta_B} - \frac{\partial \tilde{\eta_s}}{\partial \xi} \left(\frac{\partial C_B}{\partial \xi} + \frac{\partial \tilde{C}}{\partial \xi} \right) - \frac{\partial \eta_B}{\partial \xi} \frac{\partial \tilde{C}}{\partial \xi} - \frac{\partial \eta_B}{\partial \xi} \tilde{\eta_s} \frac{\partial^2 C_B}{\partial \xi \partial \eta}
- \varepsilon W \hat{P} e \left(1 - \kappa\right) \left(\frac{\partial C_B}{\partial \eta_B} \tilde{\eta_s} + \tilde{C} \right) \left[Y_{\xi} \left(\frac{\partial \eta_B}{\partial \xi} + \frac{\partial \tilde{\eta_s}}{\partial \xi} \right) - Y_{\eta} - G^2 \left(\frac{\partial \eta_B}{\partial t} + \frac{\partial \tilde{\eta_s}}{\partial t} \right) + Y_{\xi\eta} \frac{\partial \eta_B}{\partial \xi} \tilde{\eta_s} - Y_{\eta\eta} \tilde{\eta_s} \right]
- \varepsilon W \hat{P} e \left(1 - \kappa\right) C_B \left(Y_{\xi} \frac{\partial \tilde{\eta_s}}{\partial \xi} - G^2 \frac{\partial \tilde{\eta_s}}{\partial t} + Y_{\xi\eta} \frac{\partial \eta_B}{\partial \xi} \tilde{\eta_s} - Y_{\eta\eta} \tilde{\eta_s} \right) + (h.o.t) = 0.$$
(11)

3.2 外部区域内扰动态的多重变量渐近展 开解

定义如下的快变量^[21] 来使用多重变量渐近展 开方法:

$$t_{+} = \frac{\partial T}{\beta(\varepsilon)},$$

$$\xi_{+} = \frac{\varphi(\xi, \eta)}{\beta(\varepsilon)} = \frac{1}{\beta(\varepsilon)} \int_{\xi_{0}}^{\xi} k(\xi_{1}, \eta) d\xi_{1},$$

$$\eta_{+} = \frac{\psi(\xi, \eta)}{\beta(\varepsilon)} = \frac{1}{\beta(\varepsilon)} \int_{0}^{\eta} k(\xi, \eta_{1}) d\eta_{1},$$
 (12)

其中, $\beta(\varepsilon) = \sqrt{\varepsilon}$. 同时按照多重变量 (ξ , η , ξ_+ , η_+ , t_+), 解可写成:

$$C\left(\xi,\eta,t,\varepsilon\right) = C_B\left(\xi,\eta,\varepsilon\right) + \widetilde{C}\left(\xi,\eta,\xi_+,\eta_+,t_+,\varepsilon\right),$$

$$\eta_s = \eta_B\left(\xi,\varepsilon\right) + \widetilde{\eta_s}\left(\xi,\xi_+,t_+,\varepsilon\right). \tag{13}$$

利用远场条件、侧壁条件和表面条件,把系统 (9)转变为多变量系统的形式,且(13)式有如下的 渐近展开:

$$\widetilde{C}(\xi,\xi_{+},\eta,\eta_{+},t_{+},\varepsilon) \sim \varepsilon[\widetilde{\mu_{0}}(\varepsilon)\widetilde{C_{0}}(\xi,\eta,\xi_{+},\eta_{+})+\widetilde{\mu_{1}}(\varepsilon)\widetilde{C_{1}}(\xi,\eta,\xi_{+},\eta_{+})]e^{t_{+}} + \cdots,$$

$$\widetilde{\eta_{s}}(\xi,\xi_{+},\varepsilon) \sim \left[\widetilde{b_{0}}(\varepsilon)\widetilde{h_{0}}(\xi,\xi_{+})+\widetilde{b_{1}}(\varepsilon)\widetilde{h_{1}}(\xi,\xi_{+})+\cdots\right]e^{t_{+}},$$

$$k(\xi,\eta,\varepsilon) \sim k_{0}(\xi,\eta)+\varepsilon k_{1}(\xi,\eta)+\cdots,$$

$$g(\xi,\eta,\varepsilon) \sim g_{0}(\xi,\eta)+\varepsilon g_{1}(\xi,\eta)+\cdots,$$

$$\overline{k}(\xi,\varepsilon) \sim \overline{k_{0}}(\xi)+\varepsilon \overline{k_{1}}(\xi)+\cdots,$$

$$\sigma(\varepsilon) \sim \sigma_{0}+\varepsilon \sigma_{1}+\cdots,$$
(14)

其中 $\overline{k} = k(\xi, 0).$

将 (9)—(14) 式代入线性扰动系统, 可得控制 方程:

$$\frac{\partial^2 \widetilde{C}_0}{\partial \xi_+^2} + \frac{\partial^2 \widetilde{C}_0}{\partial \eta_+^2} = 0.$$
 (15)

边界条件如下: 1) 远场区域, 当 $\eta \to \infty$ 时, 有 \widetilde{C}_0 $\to 0$; 2) 侧壁区域, 当 $\xi = 1$ 时, 有 $\frac{\partial \widetilde{C}_0}{\partial \xi_+} = 0$; 3) 在 界面 $\eta = \eta_+ = 0$ 处, Gibbs-Thomson 条件: $\widetilde{C}_0 = -W\widehat{P}e(\lambda_G - y_{*0} + 1)\widetilde{h_0} + \frac{\overline{k_0^2}}{MWG_0(\xi)}\frac{\partial^2 \widetilde{h_0}}{\partial \xi_+^2},$

$$\widetilde{C_0} = -W\widehat{P}e\left(\lambda_G - y_{*0} + 1\right)\widetilde{h_0} + \frac{k_0^2}{MWG_0\left(\xi\right)}\frac{\partial^2 h_0}{\partial\xi_+^2},$$
(16)

和质量守恒条件:

4) 尖端条件: 在
$$\xi = \xi_+ = 0$$
处, 有 $\widetilde{h_0} = 0$, $\frac{\partial h_0}{\partial \xi_+} = 0$; 5) 根部条件: 当 $\xi_+ \to \infty$ 时, 有 $\widetilde{h_0} \to \infty$.

考虑一般模式的解:

$$\widetilde{C}_0 = \widetilde{A}_0 \exp\left[i\xi_+ - \eta_+\right],\tag{18}$$

$$\widetilde{h_0} = \widehat{D_0} \exp\left[\mathrm{i}\xi_+\right],\tag{19}$$

其中系数 $\widehat{D_0}$ 是任意常复数.

把(19)代入(16)和(17)式,得到色散公式:

$$\sigma_0 = \frac{\overline{k_0}\lambda_0}{\overline{A_0}G_0^2} - \frac{k_0^3}{\overline{A_0}\overline{A_1}}G_0^3 + \frac{i\overline{k_0}Y_{\xi,0}(\xi,0)}{\overline{A_0}G_0^2}, \qquad (20)$$

其中:

$$\overline{\Lambda_0} = \frac{(1-\kappa) y_{*0}}{(1-\kappa) y_{*0} - \lambda_G} > 0,$$

$$\overline{\Lambda_1} = M W^2 \widehat{P} e \left[(1-\kappa) y_{*0} - \lambda_G \right] > 0.$$

色散式 (20) 是 $\overline{k_0}$ 的三次多项式, 它是 Mullins-Sekerka 色散公式的归一化. 对于给定的复参数 σ_0 , 可得到 3 个函数的波函数 $\left\{\overline{k_0^{(1)}}(\xi), \overline{k_0^{(2)}}(\xi), \overline{k_0^{(3)}}(\xi)\right\}$. 色散式 (20) 展示了胞晶列生长系统内扰动态的界 面波特征.

3.3 变量替换

为了进一步分析色散式 (20), 引入新变量 *ρ*来 代替ξ. 令:

$$\rho = -\frac{Y_{\xi,0}\left(\xi\right)}{\lambda_0} = \left(\frac{1-\lambda_0}{\lambda_0}\right) \tan\left(\frac{\pi\xi}{2}\right),\qquad(21)$$

当
$$\xi \to 1^-$$
时,有 $\rho \to \infty$.则有 $G_0(\xi) = \lambda_0 S(\rho)$ 和
 $G(\rho) = \frac{\pi}{2a} (\rho + ia) (\rho - ia), 其中 a = \frac{1 - \lambda_0}{\lambda_0}.$
运用新变量 ρ ,把色散式 (20) 转化为
 $\sigma_e = \frac{k_e(\rho)}{S^2(\rho)} \left[(1 - i\rho) - \frac{k_e^2(\rho)}{S(\rho)} \right],$ (22)

其中:

$$k_{\rm e}\left(\rho\right) = \frac{\widetilde{k_0}\left(\rho\right)G\left(\rho\right)}{\lambda_0\sqrt{\Lambda_1}}, \sigma_{\rm e} = \frac{\overline{\Lambda_0}}{\sqrt{\Lambda_1}}\sigma_0, S\left(\rho\right) = \sqrt{1+\rho^2}.$$

给定 σ_0 ,可得以下方程:

$$\sigma_{\rm e} = \frac{k_{\rm e}\left(\rho\right)}{S^2\left(\rho\right)} \left[\left(1 - \mathrm{i}\rho\right) - \frac{k_{\rm e}^2\left(\rho\right)}{S\left(\rho\right)} \right]. \tag{23}$$

(23) 式的 3 个根为

$$\begin{split} k_{\rm e}^{(1)}\left(\rho\right) &= M\left(\rho\right)\cos\left\{\frac{1}{3}{\rm arccos}\left[\frac{\sigma_{\rm e}}{N\left(\rho\right)}\right]\right\},\\ k_{\rm e}^{(2)}\left(\rho\right) &= M\left(\rho\right)\cos\left\{\frac{1}{3}{\rm arccos}\left[\frac{\sigma_{\rm e}}{N\left(\rho\right)}\right] + \frac{2}{3}\pi\right\},\\ k_{\rm e}^{(3)}\left(\rho\right) &= M\left(\rho\right)\cos\left\{\frac{1}{3}{\rm arccos}\left[\frac{\sigma_{\rm e}}{N\left(\rho\right)}\right] + \frac{4}{3}\pi\right\}, \end{split}$$
(24)

其中:

$$N(\rho) = -\frac{M(\rho)(1-i\rho)}{3S^2(\rho)},$$
$$M(\rho) = \sqrt{\frac{4S(\rho)}{3}}(1-i\rho)^{1/2}.$$

注意到 $\operatorname{Re}\left\{\widetilde{k_{0}^{(2)}}\right\} < 0$,因此波函数 $k_{e}^{(2)}(\rho)$ 的解 $H_{2}(\rho)$ 给出的扰动态的远场条件不能满足,需要排除.因此只有 $H_{1}(\rho)$ 和 $H_{3}(\rho)$ 有意义.从而外部区域的通解可用如下两个界面行波的组合表示:

$$\widetilde{h_0} = D_1 \exp\left[\frac{\mathrm{i}}{\sqrt{\varepsilon}} \int_{\rho_0}^{\rho} \left(\widetilde{k_0^{(1)}} + \varepsilon \widetilde{k_1^{(1)}} + \cdots\right) \mathrm{d}\rho_1\right] \\ + D_3 \exp\left[\frac{\mathrm{i}}{\sqrt{\varepsilon}} \int_{\rho_0}^{\rho} \left(\widetilde{k_0^{(3)}} + \varepsilon \widetilde{k_1^{(3)}} + \cdots\right) \mathrm{d}\rho_3\right],$$
(25)

常数 $\{D_1, D_3\}$ 是在复平面 ρ 上沿着 ρ 的实轴的分片 常数.

4 根部解与量子化条件

4.1 一级奇异摄动系统

一级近似系统的控制方程可写成:

$$\frac{\partial^2 \widetilde{C}_1}{\partial \xi_+^2} + \frac{\partial^2 \widetilde{C}_1}{\partial \eta_+^2} = 0.$$
 (26)

该系统具有标准模式解:

$$\widetilde{C}_{1} = \widetilde{A}_{1} \left(\xi, \eta \right) \exp \left\{ i\xi_{+} - \eta_{+} \right\},$$

$$\widetilde{h}_{1} = \widetilde{D}_{1} \exp \left\{ i\xi_{+} \right\}.$$
(27)

则由 (27) 式可得 Gibbs-Thomson 条件:

$$\widetilde{A}_1 + J_1 \widetilde{D}_1 = I_1 \widetilde{D}_0, \qquad (28)$$

和质量守恒条件:

$$-k_0\widetilde{A_1} + J_2\widetilde{D_1} = I_2\widetilde{D_0},\tag{29}$$

其中:

$$\begin{split} J_{1} &= \widehat{P}eW\left(\lambda_{G} - y_{*0} + 1\right) + \frac{k_{0}^{2}}{MWG_{0}},\\ I_{1} &= -k_{0}h_{1} \Big[\widehat{P}eW\left(\lambda_{G} - y_{*0} + 1\right) \\ &+ \frac{k_{0}^{2}}{MWG_{0}}\left(1 - \alpha_{4}B_{0}\right) \Big] \\ &- \frac{2k_{0}k_{1}}{MWG_{0}} - \frac{\widehat{P}e^{2}E^{-1}m_{*}}{M}k_{0i},\\ J_{2} &= \widehat{P}eW[\lambda_{G} - (1 - \kappa) y_{*0}]Y_{\xi}\left(\xi, 0\right)k_{0i} \\ &+ W\widehat{P}e\left(1 - \kappa\right) y_{*0}G_{0}^{2}\sigma_{0},\\ I_{2} &= -Q_{0} + k_{0}^{2}h_{1} \left[\widehat{P}eW\left(\lambda_{G} - y_{*0} + 1\right) + \frac{k_{0}^{2}}{MWG_{0}} \right] \\ &- k_{1} \Big[\widehat{P}eW\left(\lambda_{G} - y_{*0} + 1\right) \\ &+ \frac{k_{0}^{2}}{MWG_{0}} + \widehat{P}eW\lambda_{G}Y_{\xi}\left(\xi, 0\right)i \Big] \\ &+ \widehat{P}eW\left[\lambda_{G} - (1 - \kappa) y_{*0}\right]Y_{\eta\eta}\left(\xi, 0\right) \\ &- \widehat{P}eW\left(1 - \kappa\right) y_{*0}G_{0}^{2}\sigma_{1} \\ &+ W\widehat{P}e\left(1 - \kappa\right) y_{*0}Y_{\xi}\left(\xi, 0\right)k_{1i} = 0. \end{split}$$

若令 (28) 和 (29) 式构成的非齐次线性系统的系数 矩阵的行列式为0, 则 $\left\{\widetilde{A_1}, \widetilde{D_1}\right\}$ 有非平凡解的相容 性条件为

$$I_2 + k_0 I_1 = 0. (30)$$

将
$$I_1$$
和 I_2 代人 (30) 式, 有:
 $k_1 = \frac{1}{F(\xi)} \left\{ Q_0 - \hat{P}eW \left[\lambda_G - (1 - \kappa) y_{*0} \right] Y_{\eta\eta}(\xi, 0) + W \hat{P}e (1 - \kappa) y_{*0} G_0^2 \sigma_1 - k_{0i}^2 \left(- \frac{\hat{P}eE^{-1}m_*}{M} \right) \right\},$
(31)

其中:

$$F(\xi) = -\hat{P}eW(\lambda_G - y_{*0} + 1) - \frac{3k_0^2}{MWG_0} + \hat{P}eW[(1 - \kappa) y_{*0} - \lambda_G] Y_{\xi}(\xi, 0) \, \mathrm{i.} \quad (32)$$

这表明解 k_1 在函数 $F(\xi)$ 的解处有奇异性,它位于 ξ 的扩展复平面 $\zeta = \xi + i\xi_1$ 内.

将 $F(\xi)$ 等函数解析延拓到复平面 $\zeta = \xi + i\xi_{I}$ 内,则波函数 $\overline{k_{0}}(\zeta, 0) \equiv \left\{\overline{k_{0}^{(1)}}(\xi), \overline{k_{0}^{(2)}}(\xi), \overline{k_{0}^{(3)}}(\xi)\right\}$ 服从扩展后的色散公式:

$$\sigma_{0} = \Sigma\left(\overline{k_{0}},\zeta\right)$$
$$= \frac{\overline{k_{0}}\left(\zeta,0\right)}{\overline{\Lambda_{0}}G_{0}^{2}\left(\zeta\right)} \left\{ \left[\lambda_{0} + iY_{\xi}\left(\zeta,0\right)\right] - \frac{\overline{k_{0}^{2}}\left(\zeta,0\right)}{\overline{\Lambda_{1}}G_{0}\left(\zeta\right)} \right\}.$$
 (33)

相应地,解析函数 $\tilde{k_0}(\rho) \equiv \left\{ \widetilde{k_0^{(1)}}(\rho), \widetilde{k_0^{(2)}}(\rho), \widetilde{k_0^{(2)}}(\rho), \widetilde{k_0^{(3)}}(\rho) \right\}$ 服从色散公式:

$$\sigma_{\rm e} = \frac{k_{\rm e}\left(\rho\right)}{S^2\left(\rho\right)} \left[-\frac{k_{\rm e}^2\left(\rho\right)}{S\left(\rho\right)} + (1-{\rm i}\rho) \right]. \tag{34}$$

用变量 ρ 表示的奇异点 ρ_c 位于复平面 ρ 内,并且服 从方程:

$$\left[\widetilde{k_{0}^{(1)}}(\rho) - \widetilde{k_{0}^{(3)}}(\rho)\right] = 0.$$
 (35)

(35) 式结合 (33) 和 (34) 式有:

$$\sigma_{\rm e} = \frac{2}{\sqrt{27}} \left(\frac{1 - i\rho c}{1 + i\rho c} \right)^{3/4} = \frac{\overline{\Lambda_0}}{\sqrt{\overline{\Lambda_1}}} \sigma_0.$$
(36)

由 (36) 式可得到 3 个复奇异点, 它们的位置与 σ_0 , $\overline{\Lambda_0}$ 和 $\overline{\Lambda_1}$ 有关.

4.2 特征值 *σ*₁的一级近似

对固定的 σ_0 ,通过对色散式 (33) 求关于 ζ 的 全导数和偏导数,对 (32) 式求导,可得:

$$F'(\zeta) = F_{0'}(\zeta) - \frac{3k_0}{MWG_0} \left(2\frac{R_0(\zeta)}{F(\zeta)} - \frac{G_{0'}}{G_0}\right).$$
 (37)

因此, 当
$$\zeta = \zeta_{c}$$
时, (31) 式化解为

$$k_{1}(\xi) = \frac{R_{1}(\xi)}{F(\xi)} - i\frac{R_{2}(\xi)}{F(\xi)}\frac{k_{0'}(\xi)}{k_{0}(\xi)}, \quad (38)$$

其中:

$$R_{1}(\xi) = -\frac{\mathrm{i}k_{0}^{2}}{MW} \frac{\partial}{\partial \xi} \left[\frac{1}{G_{0}(\xi)} \right]$$
$$- \widehat{P}eW \left[\lambda_{G} - (1-\kappa) y_{*0} \right] Y_{\eta\eta}(\xi, 0)$$
$$+ W \widehat{P}e(1-\kappa) y_{*0} G_{0}^{2} \sigma_{1} - k_{0\mathrm{i}}^{2} \left[-\frac{\widehat{P}eE^{-1}m_{*}}{M} \right],$$
$$R_{2}(\xi) = \frac{2k_{0}^{2}}{MWG_{0}(\xi)}.$$

从(38)式可知,当 ζ趋于孤立奇点 ζ。时,有:

$$k_{1}(\zeta) = \frac{m_{1}R_{1}(\zeta_{c})}{(\zeta - \zeta_{c})^{1/2}} + \frac{m_{2}}{\zeta - \zeta_{c}},$$
 (39)

其中 $m_1 = m_2 = O(1)$.

函数 $k_1(\zeta)$ 在奇点附近可展开为 Laurent 级数. 由 (39) 式, $R_1(\zeta_c) = 0$, 且 ζ_c 是函数 $k_1(\zeta)$ 的单极点, 由此得 σ_1 为

$$\sigma_{1} = \frac{1}{W\widehat{P}e(1-\kappa)y_{*0}G_{0}^{2}(\zeta_{c})} \left\{ -i\frac{F_{0}(\zeta_{c})}{3}\frac{G_{0'}(\zeta_{c})}{G_{0}(\zeta_{c})} + \widehat{P}eW[\lambda_{G} - (1-\kappa)y_{*0}]Y_{\eta\eta}(\zeta_{c},0) - i\frac{F_{0}(\zeta_{c})\widehat{P}eE^{-1}m_{*}WG_{0}(\zeta_{c})}{3} \right\}.$$
(40)

由 (40) 式 σ_1 由自由参数 σ_0 确定. 接下来将研究奇 异点 ζ_c 附近的行为,导出 σ_0 的表达式,扩展(ξ,η) 平面内的全局波模式解.

4.3 奇异点 (ζ_c, 0) 附近的内解与近似

为求解 (ζ_c , 0)附近的内解, 在齐次系统内引进 内变量:

$$\zeta_* = \frac{\zeta - \zeta_c}{\varepsilon^{\alpha}},\tag{41}$$

$$\eta_* = \frac{\eta}{\varepsilon^{\alpha}},\tag{42}$$

其中α待定.使用上述内变量后,内解的控制方程变为

$$\frac{\partial^{2}\widetilde{C_{*}}}{\partial\zeta_{*}^{2}} + \frac{\partial^{2}\widetilde{C_{*}}}{\partial\eta_{*}^{2}} + \varepsilon^{\alpha+1}W\widehat{P}e\left[Y_{\xi}\frac{\partial\widetilde{C_{*}}}{\partial\zeta_{*}}\right] + X_{\xi}\frac{\partial\widetilde{C_{*}}}{\partial\eta_{*}} - G^{2}\frac{\sigma}{\beta(\varepsilon)}\frac{\partial\widetilde{C_{*}}}{\partial t_{+}} = 0.$$
(43)

界面条件为当 $\eta_* = 0$ 时,有 Gibbs-Thomson 条件:

$$\widetilde{C}_{*}\varepsilon^{\alpha} = -\varepsilon \widehat{P}eW\left[\lambda_{G} - (y_{*0} - 1)\right]\widetilde{\eta_{*s}}\varepsilon^{\alpha} - \frac{\varepsilon^{2}}{MW}\left\{-\frac{1}{\varepsilon^{\alpha}G_{0}}\widetilde{\eta_{*s}'} + \frac{\partial K[0]}{\partial\eta_{B}}\varepsilon^{\alpha}\widetilde{\eta_{*s}}\right\}, \quad (44)$$

和质量守恒条件:

$$-\varepsilon \widehat{P}eW\lambda_{G}Y_{\eta\eta}(\xi,0)\varepsilon^{\alpha}\widetilde{\eta_{*s}} + \frac{\partial\widetilde{C_{*}}}{\partial\eta_{*}} + \varepsilon \widehat{P}eW\lambda_{G}$$

$$\times Y_{\xi}(\xi,0)\frac{\partial\widetilde{\eta_{*s}}}{\partial\zeta_{*}} + \varepsilon^{\alpha+1}Y_{\eta}W\widehat{P}e(1-\kappa)\left\{\varepsilon\widehat{P}eW\right\}$$

$$\times \left[-\lambda_{G}Y_{\eta}(\xi,0) + \lambda_{G} - (y_{*0}-1)\right]\widetilde{\eta_{*s}} + \widetilde{C_{*}}\right\}$$

$$-\varepsilon W\widehat{P}e(1-\kappa)C_{B}Y_{\xi}(\xi,0)\frac{\partial\widetilde{\eta_{*s}}}{\partial\zeta_{*}} + \varepsilon^{\alpha+1}W\widehat{P}e$$

$$\times (1-\kappa)C_{B}G^{2}\frac{\sigma}{\beta(\varepsilon)}\frac{\partial\widetilde{\eta_{*s}}}{\partial t_{+}} + \varepsilon^{\alpha+1}W\widehat{P}e(1-\kappa)$$

$$\times C_{B}Y_{\eta\eta}\widetilde{\eta_{*s}} + (h.o.t) = 0.$$
(45)

然后把内解进行渐近展开:

$$\widetilde{C_{*}}\left(\zeta_{*},\eta_{*},t_{+},\varepsilon\right) = \varepsilon\left[\widetilde{v_{0}}\left(\varepsilon\right)\widetilde{C_{*0}}\left(\zeta_{*},\eta_{*}\right) + \widetilde{v_{1}}\left(\varepsilon\right)\widetilde{C_{*1}}\left(\zeta_{*},\eta_{*}\right) + \cdots\right]\mathbf{e}^{t_{+}},$$
(46)

 $\widetilde{\eta_{*s}}\left(\zeta_{*}, t_{+}, \varepsilon\right) = \left[\widetilde{v_{0}}\left(\varepsilon\right)\widetilde{h_{*0}}\left(\zeta_{*}\right) + \widetilde{v_{1}}\left(\varepsilon\right)\widetilde{h_{*1}}\left(\zeta_{*}\right) + \cdots\right] \mathbf{e}^{t_{+}}.$ (47)

去掉内解系统里的高阶无穷小,可得内解首级近似 下的控制方程:

$$\frac{\partial^2 \widetilde{C_{*0}}}{\partial \zeta_*^2} + \frac{\partial^2 \widetilde{C_{*0}}}{\partial \eta_*^2} = 0.$$
 (48)

界面条件为当 $\eta_* = 0$ 时,有 Gibbs-Thomson 条件:

$$\widetilde{C_{*0}} = -\widehat{P}eW\left[\lambda_G - (y_{*0} - 1)\right]\widetilde{h_{*0}} + \frac{\varepsilon^{1-2\alpha}}{MWG_0}\frac{\partial^2 \widetilde{h_{*0}}}{\partial \zeta_*^2},$$
(49)

和质量守恒条件:

$$\frac{\partial \widetilde{C_{*0}}}{\partial \eta_*} + \widehat{P}eW \left[\lambda_G - (1-\kappa) y_{*0}\right] Y_{\xi}(\xi,0) \frac{\partial \widetilde{h_{*0}}}{\partial \zeta_*} \\
+ \varepsilon^{\alpha - \frac{1}{2}} W \widehat{P}e(1-\kappa) y_{*0} \sigma_0 G_0^2 \widetilde{h_{*0}} = 0.$$
(50)

由解的解析性,可得 $\frac{\partial \widetilde{C_{*0}}}{\partial \eta_*} = i \frac{\partial \widetilde{C_{*0}}}{\partial \zeta_*}$.再运用变量 $\rho = -\frac{Y_{\xi}(\xi,0)}{\lambda_0}, G_0 = \lambda_0 S(\rho), \frac{d\rho}{d\xi} = P(\rho)$ 和相应的内变量 $\rho_* = \frac{\rho - \rho_c}{\varepsilon^{\alpha}},$ 得到转化后的 Gibbs-Thomson 条件: $i \frac{\partial \widetilde{C_{*0}}}{\partial \zeta_*} = i \frac{\partial}{\partial \zeta_*} \left\{ - \hat{P}eW[\lambda_G - (y_{*0} - 1)] \widetilde{h_{*0}} + \frac{\varepsilon^{1-2\alpha}}{MWG_0} \frac{\partial^2 \widetilde{h_{*0}}}{\partial \zeta_*^2} \right\}.$ (51)

以及转化后的质量守恒条件:

$$\varepsilon^{1-2\alpha} P^{3}(\rho) \frac{\partial^{3} h_{*0}}{\partial \rho_{*}^{3}} + \overline{A_{1}} \lambda_{0}^{2} S(\rho) P(\rho) (1 - i\rho)$$

$$\times \frac{\partial \widetilde{h_{*0}}}{\partial \rho_{*}} - i \varepsilon^{\alpha - \frac{1}{2}} W^{2} M \widehat{P} e(1 - \kappa) y_{*0} \sigma_{0} \lambda_{0}^{3}$$

$$\times S^{3}(\rho) \widetilde{h_{*0}} + (h.o.t) = 0.$$
(52)

为了求解 (52) 式, 对外部区域和内部区域对的解分 别运用变换 $\widetilde{h_0}(\rho) = \widetilde{W_0}(\rho) \exp\left\{\frac{i}{\sqrt{\varepsilon}} \int_{\rho_c}^{\rho} k_c(\rho_1) d\rho_1\right\}$ 和 $\widetilde{h_{*0}}(\rho_*) = \widetilde{W_{*0}}(\rho_*) \exp\left\{\frac{i}{\sqrt{\varepsilon}} \int_{\rho_c}^{\rho} k_c(\rho_1) d\rho_1\right\},$ 参照 波函数 $k_c(\rho)$ 待定,且满足 Re $\left\{k_0^{(3)}\right\} < \text{Re}\left\{k_c\right\} <$ Re $\left\{k_0^{(1)}\right\}$.于是外部区域的解 $\widetilde{h_0}$ 可写作两个W波 的组合:

$$\widetilde{W}_{0}(\rho) = D_{1}\widetilde{W_{0}^{(+)}}(\rho) + D_{3}\widetilde{W_{0}^{(-)}}(\rho), \qquad (53)$$

其中:

$$\widetilde{W_{0}^{(+)}}(\rho) = H_{1}(\rho) \exp\left\{-\frac{\mathrm{i}}{\sqrt{\varepsilon}} \int_{\rho_{\mathrm{c}}}^{\rho} k_{\mathrm{c}}(\rho) \,\mathrm{d}\rho_{1}\right\},\$$
$$\widetilde{W_{0}^{(-)}}(\rho) = H_{3}(\rho) \exp\left\{-\frac{\mathrm{i}}{\sqrt{\varepsilon}} \int_{\rho_{\mathrm{c}}}^{\rho} k_{\mathrm{c}}(\rho_{1}) \,\mathrm{d}\rho_{1}\right\}.$$

此时,可把(52)式重写成以下形式的控制方程:

$$\varepsilon^{1-2\alpha} \Omega_3(\rho) \frac{\partial^3 \widetilde{W_{*0}}(\rho_*)}{\partial \rho_*^3} + \varepsilon^{1/2-\alpha} \Omega_2(\rho) \frac{\partial^2 \widetilde{W_{*0}}(\rho_*)}{\partial \rho_*^2} + \Omega_1(\rho) \frac{\partial \widetilde{W_{*0}}(\rho_*)}{\partial \rho_*} + \Omega_4(\rho) \widetilde{W_{*0}}(\rho_*) - \mathrm{i}\varepsilon^{\alpha-1/2} W^2 M \widehat{P} e(1-\kappa) y_{*0} \sigma_0 \lambda_0^3 S^3(\rho) \widetilde{W_{*0}}(\rho_*) + (h.o.t) = 0,$$
(54)

其中:

$$\begin{split} \Omega_{0}\left(\rho\right) &= \Sigma\left(k_{c},\zeta\right) = \frac{k_{c}\left(\rho\right)P\left(\rho\right)}{\overline{\Lambda_{0}}\lambda_{0}S^{2}\left(\rho\right)} \\ &\times \left[-\frac{k_{c}^{2}\left(\rho\right)P^{2}\left(\rho\right)}{\overline{\Lambda_{1}}\lambda_{0}^{2}S\left(\rho\right)} + \left(1-\mathrm{i}\rho\right)\right], \\ \Omega_{1}\left(\rho\right) &= -3k_{c}^{2}\Omega_{3}\left(\rho\right) + \overline{\Lambda_{1}}\lambda_{0}^{2}S\left(\rho\right)P\left(\rho\right)\left(1-\mathrm{i}\rho\right), \\ \Omega_{2}\left(\rho\right) &= 3\mathrm{i}k_{c}\Omega_{3}\left(\rho\right), \ \Omega_{3}\left(\rho\right) = P^{3}\left(\rho\right), \\ \Omega_{4}\left(\rho\right) &= \mathrm{i}\varepsilon^{\alpha-1/2}\left[W^{2}M\widehat{P}e(1-\kappa)y_{*0}\lambda_{0}^{3}S^{3}(\rho)\right]\Omega_{0}(\rho). \\ & \mathring{\Xi}\mathfrak{R}\,k_{c} = \sqrt{\frac{\overline{\Lambda_{1}}\lambda_{0}^{2}S\left(\rho\right)\left(1-\mathrm{i}\rho\right)}{3P^{2}\left(\rho\right)}}\,\overrightarrow{\Pi}\,\overrightarrow{\Pi}\,\Omega_{1}\left(\rho\right) = 0, \\ \mathrm{full}\left(54\right)\overrightarrow{\pi}\,\overrightarrow{\mathbb{H}}\mathfrak{A}\mathcal{A}\,\mathcal{K}\,\mathcal{H} \end{split}$$

$$\varepsilon^{1-2\alpha}P^{3}\left(\rho\right)\frac{\partial^{3}W_{*0}\left(\rho_{*}\right)}{\partial\rho_{*}^{3}} + \varepsilon^{1/2-\alpha}i\lambda_{0}P^{2}\left(\rho\right)$$

$$\times\sqrt{3\overline{A_{1}}S\left(\rho\right)\left(1-i\rho\right)}\frac{\partial^{2}\widetilde{W_{*0}}\left(\rho_{*}\right)}{\partial\rho_{*}^{2}}$$

$$\times\left[\sigma_{0}-\frac{2}{\sqrt{27}}\frac{\sqrt{\overline{A_{1}}}}{\overline{A_{0}}}\frac{\left(1-i\rho\right)^{2/3}}{S^{2/3}\left(\rho\right)}\right]$$

$$\times\lambda_{0}^{3}S^{3}\left(\rho\right)\widetilde{W_{*0}}\left(\rho_{*}\right) + (h.o.t) = 0.$$
(55)

(55) 式有 5 个孤立奇点和转向点: $\rho = \pm i, \pm i\alpha, \rho_c$, 其中 ρ_c 是方程中复平面 ρ 内的一个简单转向点, $\rho = \pm i, \pm i\alpha$ 分别是函数 $S(\rho)$ 和 $P(\rho)$ 的零点.由于:

$$\sigma_0 = \frac{2}{\sqrt{27}} \frac{\sqrt{\overline{A_1}}}{\overline{A_0}} \left(\frac{1 - i\rho_c}{1 + i\rho_c}\right)^{3/4},\tag{56}$$

因此,要研究转向点 ρ_c 附近内解行为以得出一致有 效渐近解,需要考虑以下两种情况: 1) $|\sigma_0| = O(1)$; 2) $|\sigma_0| \ll 1$.情况 1)可得如下的连接条件:

$$H^{(2)} = v \left(z e^{i\pi} \right) - 2\cos \left(v\pi \right) H_v^{(2)} \left(z \right) + e^{iv\pi} H_v^{(1)} \left(z \right)$$

$$= 2\cos \left(v\pi \right) \sqrt{\frac{2}{\pi z}} e^{-iz + i\left(v/2 + 1/4 \right) \pi}$$

$$+ e^{iv\pi} \sqrt{\frac{2}{\pi z}} e^{iz - i\left(v/2 + 1/4 \right) \pi}$$

$$= e^{i\left(1/6 + 1/4 \right) \pi} \sqrt{\frac{2}{\pi z}} e^{-iz} - i e^{i\left(1/6 + 1/4 \right) \pi} \sqrt{\frac{2}{\pi z}} e^{iz}$$

$$= D_3 e^{-iz} + D_1 e^{iz}.$$
(57)

则 $D_1/D_3 = -i = e^{-\frac{1}{2}\pi i}$, $D_3 = D'_3$,其中 $H_v^{(2)}(z)$ 是第 二类 v阶 Hankel 函数. 情况 2) 又包含两种情况: 一个是奇异点 $\rho = -i d \pm \rho_c$ 附近的内部区域,但 $\rho = -ia$ 不在;另一种则是两个奇异点都在 ρ_c 附近 的内部区域. 前一种情况下,可得以下的连接条件:

$$\begin{split} D_1/D_3 &= -i2\cos\left(v\pi\right) = 2\cos\left(v\pi\right) e^{-\frac{1}{2}\pi i}, \\ D_3 &= D'_3 : \rho \in S_1; \rho \in (0, \rho_c), \ D_1/D_3 = 0, \\ D_3 &= D'_3 : \rho \in S'_2 \cup S_2; \rho \in (\rho'_c, \infty). \end{split}$$

后一种情况则无法与外解匹配, 故排除.

4.4 内解结果总结

内部区域远离远场的内部方程可写成如下的 Airy 方程:

$$\frac{\partial^2 \widehat{W_{*0}}\left(\widehat{\rho_*}\right)}{\partial \widehat{\rho_*^2}} + \widehat{\rho_*^{p_0} \widehat{W_{*0}}}\left(\widehat{\rho_*}\right) = 0.$$
 (58)

且远场处内解的首级近似具有 $\widetilde{W_{*0}}(\widehat{\rho_*}) = D_* \widehat{\rho_*^{1/2}}$ $H_v^{(2)}(z)$ 的形式,其中 $z = 2v \widehat{\rho_*^{1/(2v)}}, v = 1/(p_0+2)$.对于 情况 1,有 $\widehat{\rho_*} = A^{\frac{1}{3}} \rho_*, A = O(1), p_0 = 1, \theta_L = \frac{2}{3}\pi,$ $\alpha = 1/3, v = 1/3;$ 对于情况 2,则有 $\widehat{\rho_*} = A_*^{4/15} \rho_*, A_* = O(1), p_0 = \frac{7}{4}, \theta_L = \frac{8}{15}\pi, \alpha = \frac{2}{7}, v = \frac{4}{15}.$ 参数 θ_L 表 示两条 Stokes 线的夹角. 通过匹配内解和外解, 最 终得到两种情况下的统一形式的连接条件:

1)
$$D_1/D_3 = -i2\cos(v\pi) = 2\cos(v\pi)e^{-\frac{1}{2}\pi i}, \ D_3 = D'_3,$$

(59)
2) $D_1/D_3 = 0, \ D_3 = D'_3.$ (60)

在这基础上运用尖端光滑条件后,复特征值 σ_0 可以确定 ε 和其他参数.

5 整体稳定性机制

5.1 复特征值的频谱及整体振荡 (GTW) 不稳定性

对于 4.4 节的情况 1, $p_0 = 1$, v = 1/3. 假设 $\sigma_0 =$

 $\sigma_{\rm R} - i\omega (\omega > 0)$,只考虑生长速度较小的模式,即 $|\sigma_{\rm R} \ll 1|$ 进行稳定性分析.在外部区域使用复特征 值 σ_0 表示物理解:

$$\operatorname{Re}\left\{\widetilde{h_{0}}\left(\rho,t\right)\right\} = \operatorname{Re}\left\{H\left(\rho\right)e^{\frac{\sigma_{0}t}{\sqrt{\varepsilon}}}\right\}$$

其中 $H(\rho) = D_1H_1 + D_3H_3$, D_1, D_3 是H波的系数, H_1, H_3 是H波, 且有:

$$d_1 = D_1 e^{-i\chi_1}, d_3 = D_3 e^{-i\chi_3},$$

其中 $\chi_1 = \frac{1}{\sqrt{\varepsilon}} \int_0^{\rho_c} \widetilde{k_0^{(1)}} d\rho, \chi_3 = \frac{1}{\sqrt{\varepsilon}} \int_0^{\rho_c} \widetilde{k_0^{(3)}} d\rho.$
然后根据 (59) 式, 则有:

$$\frac{d_1}{d_3} = \frac{D_1}{D_3} = -ie^{-i(\chi_1 - \chi_3)} = -ie^{-i\chi},$$

其中
$$\chi = \frac{1}{\sqrt{\varepsilon}} \int_0^{\rho_c} \left(\widetilde{k_0^{(1)}} - \widetilde{k_0^{(3)}}\right) d\rho.$$

由尖端光滑性条件, $d_1 \pi d_3$ 要满足:

1) 对称 S-模式:

$$\frac{d_3}{d_1} = -\frac{k_0^{(1)}(0)}{\bar{k}_0^{(3)}(0)};\tag{61}$$

2) 反对称 A-模式:

$$d_1 = -d_3.$$
 (62)

$$\frac{1}{\varepsilon_e} \int_0^{\rho_c} \left(\widehat{k_0^{(1)}} - \widehat{k_0^{(3)}} \right) \mathrm{d}\rho$$

$$= \left(2n + 1 + \frac{1}{2} + \theta_0 \right) \pi - \mathrm{i} \ln\alpha_0,$$

$$n = 0, \pm 1, \pm 2, \cdots, \qquad (63)$$

$$\widehat{k_e^{(i)}}(\rho) = \widehat{k_e^{(i)}}(\rho) = 1 - \sqrt{\varepsilon_e}$$

其中
$$\widehat{k_0^{(i)}}(\rho) = \frac{k_e^{(i)}(\rho)}{G(\rho)} = \frac{k_0^{(i)}(\rho)}{\lambda_0\sqrt{\Lambda_1}}; \varepsilon_e = \frac{1}{\lambda_0}\sqrt{\frac{\varepsilon}{\Lambda_1}}.$$

S-模式下 $\alpha_0 e^{i\theta_0\pi} = \frac{\widetilde{k_0^{(i)}}(0)}{\widetilde{k_0^{(3)}}(0)}, A-模式下\alpha_0 = 1,$
 $\theta_0 = y_{*0} = \frac{1 + \lambda_G (1 - \lambda_0)}{1 - \lambda_0 (1 - \kappa)}, 因此当前系统的参数$
 $\overline{\Lambda_1} = MW^2 \widehat{P}e\left[(1 - \kappa)y_{*0} - \lambda_G\right]\lambda_0$ 的函数.

量子化条件 (63) 确定了复特征值 $\sigma_0(|\sigma_0| = O(1))$ 的频谱: { $\sigma_{0,n}$ }, n = 0, 1, 2,它们是胞晶相对 宽度 λ_0 和小参数 ε 的参数. 这个频谱产生了两个离 散的特征模式列: S-模式和 A-模式. 给定 λ_0 , $\hat{P}e$ 和其他物理参数, 系统允许一组中性稳定模式 $\sigma_R = 0$, 此时 $\varepsilon = \varepsilon_{*n}$, n = 0, 1, 2, 且 $\varepsilon_* = \varepsilon_{*0} > \varepsilon_{*1} > \varepsilon_{*2}$, 它们表示沿着界面传播的行波, 因此也称作 整体振荡不稳定为整体行波机制.在首级近似下,可以使用 $R\{\sigma_0\}=0$ 来计算 ε_* 取值,一级近似下使用 $R\{\sigma_0+\varepsilon\sigma_1\}=0$.为了方便计算,使用新的操作数:

$$\varepsilon_{\rm c} = \sqrt{\frac{l_{\rm c} V}{\kappa_{\rm D}}}, \lambda_G = \frac{G_{\rm c}}{\varepsilon_{\rm c}^2}, \overline{\Lambda_1} = \widehat{Pe}\widehat{\Lambda_1},$$

其中:

$$\begin{split} G_{\mathbf{c}} &= \frac{l_{\mathbf{c}}}{l_{G}}, \widehat{\Lambda_{1}} = MW^{2} \left[\left(1 - \kappa \right) y_{*0} - \frac{G_{\mathbf{c}}}{\varepsilon_{\mathbf{c}}^{2}} \right] \\ \widehat{P}e &= \frac{\varepsilon_{\mathbf{c}}^{2}}{\varepsilon^{3}}, \varepsilon_{\mathbf{e}} = \frac{\varepsilon^{2}}{\lambda_{0} \sqrt{\widehat{\Lambda_{1}}} \varepsilon_{\mathbf{c}}}. \end{split}$$

由 (24), (56), (63) 式, 发现对于同一个n, GTW-S 模式增长率比 GTW-A 模式更大, 也称 GTW-S 模式比 GTW-A 模式更危险. 此外还可以得到 ε_* 和 λ_0 的关系, 并得到不同的物理参数下 ε_* 和 λ_0 的 图像, 得到界面动力学参数 M_* 对系统稳定区域大 小的影响.

通过绘图发现, 一级近似下, 界面动力学参数 M_* 越大, 系统的稳定区域越大. 图 2 展示了首级近 似和一级近似下 ε_* 和 λ_0 的关系. 图像表示, 对于同 一个胞晶相对宽度 λ_0 , 一级近似下的 ε_* 小于首级 近似下的 ε_* . 图 3 展示了 n = 0, 1, 2时的 GTW-S 中 性曲线, 发现 GTW 机制下 n = 0时最危险. 图 4 和 5 分别展示了 E = 0.1, 0.25时和 $m_* = 1, 5, 10$ 时 的 GTW-S 中性曲线. 发现对于同一个 λ_0 , E越小, 系统的稳定区域越大, 或 m_* 越大, 系统稳定区域越

图 2 首级近似与一级近似的 GTW-S 中性模式曲线. 参数分 别为n = 0, $\lambda_G = 0.3991$, $\kappa = 0.29$, $G_c = 0.14485 \times 10^{-4}$, $\varepsilon_c = 0.5388 \times 10^{-2}$, M = 0.09552, E = 0.25, $m_* = 1$ Fig. 2. The neutral curves of GTW-S-modes with zero-thorder approximation and first-order approximation for the case n = 0, $\lambda_G = 0.3991$, $\kappa = 0.29$, $G_c = 0.14485 \times 10^{-4}$, $\varepsilon_c = 0.5388 \times 10^{-2}$, M = 0.09552, E = 0.25, $m_* = 1$.

大. 这里*m**是一个与界面动力学参数*M**有关的参数, 有*M** = $\varepsilon^2 m_*$; $E = \frac{\Delta H}{c_p \rho T_M}$ 是一个和纯熔体温度*T_M*相关的参数.

从以上分析发现, GTW-S 中性模式的曲线将 平面分成了稳定区域 (S) 和不稳定区域 (Os.U). 由 此得到振荡稳定性判断依据: 若 (ε , λ_0) \in (S), 则稳 定; 若 (ε , λ_0) \in (Os.U), 则振荡不稳定.

对于 4.4 节的情况 2, 这种情况导致实特征值 (|σ₀| ≪ 1)的频谱.此时系统此时系统允许两种整 体低频模式,包括对称模式与反对称模式.但是在 该模式的首级近似下,界面动力学参数不起作用,

图 3 一级近似下的 GTW-S 中性模式曲线. 参数分别为 $n = 0, 1, 2, \lambda_G = 0.3991, \kappa = 0.29, G_c = 0.14485 \times 10^{-4}, \varepsilon_c = 0.5388 \times 10^{-2}, M = 0.09552, E = 0.25, m_* = 1$ Fig. 3. The neutral curves of GTW-S-modes with first-order approximation for the case $n = 0, 1, 2, \lambda_G = 0.3991, \kappa = 0.29, G_c = 0.14485 \times 10^{-4}, \varepsilon_c = 0.5388 \times 10^{-2}, M = 0.09552, E = 0.25, m_* = 1.$

图 4 一级近似下的 GTW-S 中性模式曲线. 参数分别为 $E=0.1, 0.25, n=0, \lambda_G=0.3991, \kappa=0.29, G_c=0.14485 \times 10^{-4}, \varepsilon_c = 0.5388 \times 10^{-2}, M = 0.09552, m_* = 1$ Fig. 4. The neutral curves of GTW-S-modes with first-order approximation for the case of $E=0.1, 0.25, n=0, \lambda_G = 0.3991, \kappa = 0.29, G_c = 0.14485 \times 10^{-4}, \varepsilon_c = 0.5388 \times 10^{-2}, M = 0.09552, m_* = 1.$

不影响系统在该模式下的稳定性.一阶近似下界面 动力学会影响稳定性,后续会跟进研究.

图 5 一级近似下的 GTW-S 中性模式曲线. 参数分别为 $m_* = 1, 5, 10, E = 0.25, \lambda_G = 0.3991, \kappa = 0.29, G_c = 0.14485 \times 10^{-4}, \varepsilon_c = 0.5388 \times 10^{-2}, M = 0.09552$ Fig. 5. The neutral curves of GTW-S-modes with first-order approximation for the case of $m_* = 1, 5, 10, E = 0.25,$ $n = 0, \lambda_G = 0.3991, \kappa = 0.29, G_c = 0.14485 \times 10^{-4}, \varepsilon_c = 0.5388 \times 10^{-2}, M = 0.09552.$

6 结 论

本文通过匹配渐近展开法和多重变量展开法, 研究了定向凝固过程中界面动力学参数对深胞晶 界面形态的稳定性造成的影响.通过定义快变量进 行变量替换,寻找外部系统和根部系统的模式解, 导出了胞晶界面扰动振幅的变化率满足的色散关 系,得到了整体模式解,界面形态的量子化条件, 内解与外解的匹配条件以及深胞晶生长的临界稳 定性判断依据.结果表明,界面动力学参数对定向 凝固中对整体波动不稳定性有影响.考虑了界面动 力学的胞晶拥有两种整体不稳定性机制:整体振荡 不稳定性和整体低频不稳定性.整体振荡不稳定性 出现在复特征值频谱的情况下,表示沿着界面传播 的行波,此时系统允许对称 S-模式和反对称 A-模 式. 而整体低频不稳定性出现在实特征值频谱的情况下, 此时系统允许允许对称模式和反对称模式. 稳定性分析表明, 在整体波动不稳定性中, GTW-S 模式 *n* = 0是最危险的模式, 其整体振荡模式中的枝晶结构的不稳定区域最大. 在其他参数固定的 情况下, 界面动力学参数 *M**越大, 则系统越稳定, 整体振荡模式中的枝晶结构的整体波动不稳定性 的稳定区域越大.

参考文献

- Peng P, Li S Y, Zheng W C, Lu L, Zhou S D 2021 Trans. Nonferrous Met. Soc. China 31 3096
- [2] Mullins W W, Sekerka R F 1963 Appl. Phys. 34 323
- [3] Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp345–352
- [4] Nash G E, Glicksman M E 1974 ScriptaMetal. 8 xxix
- [5] KruskalMD, Segur H 1991 Stud. Appl. Math. 85 129
- [6] Xu J J 1991 Phys. Rev. A. 43 930
- [7] Xu J J 1991 Eur. J. Appl. Math. 2 105
- [8] Pocheau A, Georgelin M 1999 J. Cryst. Growth 206 215
- [9] Ding G, Huang W, Xin L, Zhou Y 1997 J. Cryst. Growth 177 281
- [10] Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157
- [11] Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Mater. Trans. A. 22 585
- [12] Li J F, Zhou Y H 2005 中国科学: E 辑 35 10 (in Chinese) [李 金富, 周尧和 2005 Science in China(Series E) 35 10]
- [13] Tan Y, Wang H 2012 J. Mater. Sci. 47 5308
- [14] Jiang H, Chen M W, Wang T, Wang Z D 2017 Acta Phys. Sin. 66 10 (in Chinese) [蒋晗,陈明文,王涛,王自东 2017 物理 学报 66 10]
- [15]~ Chen M W, Wang Z D, Xu J J 2008 Sci.~China~Ser.~E51 225
- [16] Chen M W, Ni F, Wang Y L, Wang Z D, Xie J X 2011 Acta Phys. Sin. 60 068103 (in Chinese) [陈明文, 倪锋, 王艳林, 王自 东, 谢建新 2011 物理学报 60 068103]
- [17] Guo H M, Yang X J 2008 Chin. J. Nonferrous Met. 18 651 (in Chinese) [郭洪民, 杨湘杰 2008 中国有色金属学报 18 651]
- [18] Tong L L, Lin X, Zhao L N, Huang W D 2009 ActaMetall. Sin. 45 737 (in Chinese) [统雷雷, 林鑫, 赵力宁, 黄卫东 2009 金属学报 45 737]
- [19] Pelcé P 1988 Dynamics of Curved Fronts(New York: Academic. Press) pp155–174
- [20] Chen Y Q, Xu J J 2011 Phys. Rev. E 83 041601
- [21] Xu J J, Chen Y Q 2011 Phys. Rev. E 83 061605

Influence of interface kinetics parameters on the overall fluctuation instability of the interface morphology of deep cell crystal^{*}

Niu Di $^{1)}$ Jiang Han $^{1)\dagger}$

(School of Mathematics & Computing Science, Guilin University of Electronic Technology, Guilin 541004, China)
 (Received 22 February 2022; revised manuscript received 25 April 2022)

Abstract

The effect of interface kinetics on the stability of deep cell morphology in directional solidification is studied. By using the multiple variable method and the matching asymptotic method andby finding the mode solution of the system, the dispersion relation satisfied by the change rate of the disturbance amplitude of the cell-crystal interface is derived , and the quantization condition of the interface morphology is obtained. The results show that there are two global instability mechanisms in the directional solidification system with considering the growth of deep cell crystal with interfacial dynamic parameters : global oscillation instability mechanism and low-frequency instability. The stability analysis shows that the interface stability parameter ε is related to the cell relative parameter λ_0 , and that the larger the interface dynamic parameter M_* , the larger the stable region of the overall fluctuation instability of the dendrite structure in the overall oscillation mode is.

Keywords: directional solidification, deep cellular crystal growth, interface kinetics, morphological stabilityPACS: 81.10.Aj, 81.30.Fb, 68.35.JaDOI: 10.7498/aps.71.20220322

^{*} Supported by the Guangxi Science and Technology Base and Talent Project (Grant No. Guike AD18281053).

[†] Corresponding author. E-mail: jiangh1986@163.com

Institute of Physics, CAS

界面动力学参数对深胞晶界面形态整体波动不稳定性的影响

钮迪 蒋晗

Influence of interface kinetics parameters on the overall fluctuation instability of the interface morphology of deep cell crystal

Niu Di Jiang Han

引用信息 Citation: Acta Physica Sinica, 71, 168101 (2022) DOI: 10.7498/aps.71.20220322 在线阅读 View online: https://doi.org/10.7498/aps.71.20220322 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

各向异性表面张力对定向凝固中共晶生长形态稳定性的影响

Effect of anisotropic surface tension on morphological stability of lamellar eutectic growth in directional solidification 物理学报. 2018, 67(11): 118103 https://doi.org/10.7498/aps.67.20180186

浓度相关的扩散系数对定向凝固枝晶生长的影响

Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification 物理学报. 2019, 68(16): 166401 https://doi.org/10.7498/aps.68.20190603

温度梯度区域熔化作用下熔池迁移的元胞自动机模拟

Cellular automaton simulation of molten pool migration due to temperature gradient zone melting 物理学报. 2019, 68(4): 048102 https://doi.org/10.7498/aps.68.20181587

耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟

Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension 物理学报. 2022, 71(4): 044701 https://doi.org/10.7498/aps.71.20212061

定向凝固单晶冰的取向确定与选晶

Orientation determination and manipulation of single ice crystal via unidirectional solidification 物理学报. 2018, 67(19): 196401 https://doi.org/10.7498/aps.67.20180700

经典瑞利--泰勒不稳定性界面变形演化的改进型薄层模型

Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface 物理学报. 2018, 67(9): 094701 https://doi.org/10.7498/aps.67.20172613