面向第三代地基引力波探测的激光源需求分析*

李庆回1) 李卫1)2) 孙瑜1) 王雅君1)2) 田龙1)2)

陈力荣3) 张鹏飞1)2) 郑耀辉1)2)†

(山西大学光电研究所,量子光学与光量子器件国家重点实验室,太原 030006)
 2)(山西大学,极端光学协同创新中心,太原 030006)
 3)(山西大学,物理电子工程学院,太原 030006)
 (2022 年 3 月 26 日收到; 2022 年 4 月 15 日收到修改稿)

引力波探测是一项重大国际前沿科技研究,对探索许多基础科学问题具有重大意义,然而引力波探测装置的建设面临着极大的技术挑战.山西大学提出利用废弃地下矿井,建设臂长为10km、灵敏度达10⁻²⁴Hz^{-1/2}的地基引力波探测装置的建设计划.理论上,等臂迈克尔逊干涉仪的灵敏度不受光源噪声的限制.但是实际的激光干涉仪受臂腔线宽差异、腔镜反射率差异、腔镜质量差异、腔内功率差异等因素限制,灵敏度依赖于激光源的指标.本文定量分析了激光源指标参数对干涉仪灵敏度的影响,并从地基引力波探测装置的设计灵敏度出发,对激光源的波长、振幅噪声、频率噪声、光束指向噪声和基模纯度提出具体要求.该分析为建设我国的地基引力波探测装置(预期灵敏度达国际上第三代探测器水平)奠定了激光源噪声分析和干涉仪指标分解等方面的坚实基础.

关键词:引力波探测,应变灵敏度,低噪声激光源,噪声分解 PACS: 42.55.-f, 42.60.-v, 42.60.By, 42.60.Pk

DOI: 10.7498/aps.71.20220552

1 引 言

2015年,美国LIGO(laser interferometer gravitation waves observatory)第一次直接探测到两 个黑洞并合的引力波事件,标志着天文学研究进入 引力波时代^[1-2].天文事件的探测范围和速率依赖 于激光干涉仪灵敏度,且随灵敏度的提升而提升^[3-5]. 对基本物理学和宏观宇宙学更多基本问题认识的 需求驱动引力波探测器技术的不断进步和灵敏度 的不断提升.为此,美国加州理工学院和欧洲欧空 局 (European Space Agency, ESA) 计划建设第三 代地基引力波探测装置 (cosmic explorer, CE^[6]和 Einstein telescope, ET^[7]). 山西大学在山西省政府 的支持下提出在地下的废弃矿井中建设基于量子 光源的引力波探测大型地基观测装置, 第一阶段预 期灵敏度达 10⁻²⁴ Hz^{-1/2}, 阶段目标实现以后, 通过 继续优化升级各个分系统, 且引人频率依赖的压缩 光源, 探测灵敏度有望达到 10⁻²⁵ Hz^{-1/2} 量级, 其探 测频带、谱分辨能力、信号持续时间等均达到第三 代地基引力波天文台的要求. 该装置的部署能够填 补中国地基引力波探测装置的空白, 进一步提升现 有引力波探测网络的波源定位精度.

第二代探测装置受干涉仪臂长短、注入干涉仪 激光功率受限、测试质量基底和镀膜热噪声大等因 素限制, 灵敏度 (10⁻²³ Hz^{-1/2} 量级) 提升面临挑战^[8-9].

© 2022 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划 (批准号: 2020YFC2200402)、国家自然科学基金 (批准号: 62027821, 11874250, 62035015, 12174234)、山西 省重点研发计划 (批准号: 201903D111001) 和山西省三晋学者特聘教授项目资助的课题.

[†] 通信作者. E-mail: yhzheng@sxu.edu.cn

与第二代地基引力波探测装置相比,第三代探测装置,拟解决低频震动噪声,中频热噪声及高频散粒噪声等问题,实现灵敏度提升一个数量级的目标^[10].为了高效隔离低频震动噪声,选址为地下 200 m 左右的废弃矿井,并且采用准零刚度震动隔离系统设计^[11-12].为了解决热噪声导致的注入功率受限问题,第三代地基引力波探测装置预计选用硅作为测试质量基底材料,在降低热噪声的同时,提高注入干涉仪的激光功率,降低散粒噪声对灵敏度的限制. 硅的透明窗口对应激光的波段为 1.5—2.2 μm^[13],因此需要设计全新的激光源来满足大型引力波探测装置的需求.

当前, 地基引力波探测装置普遍采用等臂迈克 尔逊激光干涉仪结构,同时在干涉仪中设置法布 里-珀罗腔 (Fabry-Perot cavity, F-P 腔) 以延长等 效臂长[14-16]. 理想情形下, 等臂迈克尔逊干涉仪是 一个共模抑制比为无穷大的光学器件,灵敏度与激 光源的参数无关. 然而, 实际的激光干涉仪受诸多 因素的限制共模抑制比有限,包括干涉仪控制系统 中人为引入的臂长偏移及臂腔线宽差异、腔镜反射 率差异、腔镜质量差异、分束器不平衡等.基于以 上原因, 激光源的噪声不可避免的耦合到干涉仪探 测端,因此引力波探测装置的灵敏度紧密依赖于激 光源噪声. 1997年, Sigg 等^[17] 基于 LIGO 天文台 参数分析了激光源振幅和频率噪声与干涉仪噪声 的耦合关系. 随后, 2004年, Rana^[18]分析了 LIGO 天文台中激光振幅和频率噪声向装置噪声的传递, 给出在特定的参数要求下差模臂长 (differential arm length, DARM) 的表达式, 并指出振幅噪声传递函 数与干涉仪的臂长差相关,频率噪声的传递函数与 干涉仪对比度缺陷 (contrast defect) 相关. 2006 年, Somiva 等^[19] 进一步完善了激光源噪声传递模型, 提出激光源噪声还可以通过辐射压力差驱动测试 质量发生位移耦合到探测端. 2015 年, Izumi 等^[20-22] 分析了激光振幅和频率噪声对差模臂长的耦合传 递函数,包括由辐射压力差异和对比度缺陷引起的 耦合. 2021年, Cahillane 等^[23-24]分析了高阶模耦 合对干涉仪灵敏度的影响. 以上研究工作从振幅和 频率噪声两个指标入手,分析了 LIGO 天文台对激 光源的指标需求,为LIGO天文台的建造和升级提 供了理论支持.因此,噪声分解是"基于量子光源 的引力波探测大型地基观测装置"设计和建造过程 中首要解决的问题.

本文从"基于量子光源的引力波探测大型地基 观测装置"出发,根据干涉仪的设计灵敏度和参数 指标,全面分析了激光源与实际干涉仪的噪声耦合 及传递,给出由实际两臂臂腔线宽(约0.3%)、腔内 功率(约0.2%)、臂腔反射率(约0.003%)等差异引 起的对比度缺陷耦合、辐射压力差耦合、高阶模耦 合与 DARM 的传递函数,进一步给出上述参数对 DARM 的总传递函数.在此基础上,量化了该装置 对激光源指标参数的要求,为设计和建造符合要求 的激光源提供了重要前提.

2 山西大学引力波探测装置

2.1 装置概览

引力波探测器光路图如图 1 所示,为了获得最高的探测灵敏度,选择"L型"结构,主体是双循环法布里-珀罗迈克尔逊干涉仪 (dual-recycled Fabry-Perot Michelson interferometer, DRFPMI).干涉仪公里级长度的臂腔由输入测试质量 (input test mass, ITM) 和输出测试质量 (end test mass, ETM)构成,功率循环镜 (power recycling mirror, PRM)和 ITM构成功率循环腔 (power recycling cavity, PRC) 增大干涉仪中循环的激光功率,信号循环镜 (signal recycling mirror, SRM)和 ITM构成 信号循环腔 (signal recycling cavity, SRC) 拓宽探测器带宽^[25],分束器 (beam splitter, BS)和 ITMs构成迈克尔逊干涉仪 (Michelson Interferometer, MICH).

Fig. 1. Diagram of the optical layout of Gravitational wave detection.

X 臂和 Y 臂包含参数相同的 F-P 腔, 迈克尔 逊干涉仪可以测量共模臂长和差模臂长. 共模臂 长 (common arm length, CARM) 信号可以通过 BS 反射端探测, 而 DARM 信号则通过 BS 透射端 探测.干涉仪臂长通过臂长稳定系统 (arm length stabilization, ALS) 精确控制, 其包括5个长度自由 度, DARM = $(L_x - L_y)/2$; CARM = $(L_x + L_y)/2$; 功率循环腔腔长 PRCL(power recycling cavity length) = $l_{pr} + (l_x + l_y)/2$; 信号循环腔腔长 SRCL (signal recycling cavity length) = $l_{sr} + (l_x + l_y)/2$; 迈克尔逊长度 MICH(Michelson interferometer length) = $(l_x - l_y)/2$. CARM 和 DARM 是最基 本的长度自由度本征模. 当在干涉仪 X 臂中引入 微小偏移量 $\Delta L_{\rm DC}$ 时 ($L_x = n\lambda/2 + \Delta L_{\rm DC}$), Y臂偏 移量与 X 臂偏移量大小相同, 符号相反 (L_y = $n\lambda/2 - \Delta L_{\rm DC}$),因此 DARM 易受偏移量的影响, 而 CARM 几乎不随偏移量而变化. 因此, 引力波 信号的探测通过 DARM 来实现.

2.2 装置参数

理想的等臂迈克尔逊干涉仪可以抑制各种技术噪声,这一特性被称为"共模抑制 (commonmode rejection)".采用 DRFPMI 的配置,两个臂 腔初始设计相同,但由于制造公差,测试质量的质量 和反射率等参数会存在微小差异,因此会降低干涉 仪的共模抑制特性.山西大学筹建的基于量子光源 的地基引力波探测装置的设计灵敏度为 10⁻²⁴ Hz^{-1/2}, 其他关键参数如表 1 所示.

引力波强度用无量纲振幅 $h = \Delta L/L$ 表示,当 信噪比为1时,h也可以视作噪声的无量纲振幅. 基于法布里珀罗迈克尔逊干涉仪,以等效无量纲振 幅表示的散粒噪声应变灵敏度为

$$h_{\rm shot}(f) = \sqrt{\frac{\hbar\pi\,\lambda}{cP_{\rm BS}}} \left[\frac{\sqrt{1 + (4\pi\,f\tau_{\rm s})^2}}{4\pi\,\tau_{\rm s}}\right]. \tag{1}$$

其中, $\tau_s=2FL/\pi c$ 为臂腔贮存时间。因此, 为 满足灵敏度目标, 且考虑 10% 的安全裕度 (safety margin), 要求 1550 nm 激光的功率约为 10⁵ W. 如此高功率的低噪声单频激光源实现面临挑战.

本文采用 DRFPMI 结构, 干涉仪探测灵敏度 受散粒噪声的限制, 其与激光输入功率的关系 如下:

表 1	山西大学引力波探	测干涉仪参约	敗表
Table 1.	Parameter of Shanx	i University	gravita-
tion waves	detection interferom	eter.	

tion wave	s detection interferometer.	
参数	符号表示	数值
臂长	L	$10 \mathrm{~km}$
激光波长	λ	$1550~\mathrm{nm}$
激光频率	$ u_0$	$1.94 \times 10^{14} \text{ Hz}$
ITM, ETM质量	М	200 kg
幼春香亭	$\mu = rac{m_{ m i}m_{ m e}}{m_{ m i}+m_{ m e}} = rac{M}{2}$	100 kg
约化灰里	$\delta\mu = \frac{\mu_x - \mu_y}{2}$	-0.001 kg
ITM透射率	$t_{ m i}^2$	1.4%
ETM透射率	$t_{ m e}^2$	$5 imes10^{-6}$
PRM透射率	$t_{ m p}^2$	3%
SRM透射率	$t_{ m s}^2$	20%
激光功率	P_{in}	$200 \mathrm{W}$
功率循环腔 増益	$g_{\rm p}^2 = \left(\frac{t_{\rm p}}{1 - r_{\rm p}r_{\rm a}}\right)^2$	120
信号循环腔 增益	$g_{\rm s}^2 = \left(\frac{t_{\rm s}}{1+r_{\rm s}r_{\rm a}}\right)^2$	0.06
臂腔增益	$g_{ m arm}^2 = \left(rac{t_{ m i}}{1-r_{ m e}r_{ m i}} ight)^2$	284
	$r_{\rm a} = \frac{-r_{\rm i} + r_{\rm e}}{1 - r_{\rm i}r_{\rm e}}$	0.99929
· □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	$\delta r_{ m a}=rac{r_{ m ax}-r_{ m ay}}{2}$	$31 imes 10^{-6}$
反射率导数	$r'_{\rm a} = \frac{t_{\rm i}^2 r_{\rm e}}{(1 - r_{\rm i} r_{\rm e})^2}$	283.5
臂腔线宽	$f_c = \frac{c}{4\pi L} \lg \left(\frac{1}{r_{\rm i}^2 r_{\rm e}^2} \right)$	14.6 Hz
	$\delta f_c = \frac{f_{cx} - f_{cy}}{2}$	$0.05~\mathrm{Hz}$
臂腔精细度	$F = \frac{\pi \sqrt{r_{\rm i} r_{\rm e}}}{1 - r_{\rm i} r_{\rm e}}$	445.5
	T	2.24 %
臂腔功率	$P_{\mathrm{a}}=rac{1}{2}P_{\mathrm{laser}}g_{\mathrm{p}}^{2}g_{\mathrm{arm}}^{2}$	3.4 MW
	$\delta P_{\rm a} = \frac{P_{ax} - P_{ay}}{2}$	$-6.5 \mathrm{~kW}$
CARM腔 线宽	$f_{cc} = \frac{c}{4\pi L} \lg \left(\frac{1 + r_{\rm i} r_{\rm p}}{r_{\rm i} r_{\rm e} + r_{\rm p} r_{\rm e} \left(t_{\rm i}^2 + r_{\rm i}^2 \right)} \right)$	0.06 Hz
DARM腔 线宽	$f_{\rm rse} = \frac{c}{4\pi L} \lg \left(\frac{1 - r_{\rm i} r_{\rm s}}{r_{\rm i} r_{\rm e} - r_{\rm s} r_{\rm e} \left(t_{\rm i}^2 + r_{\rm i}^2 \right)} \right)$	131 Hz
Schnupp 不对称	$l_{\rm sch} = l_x - l_y$	$0.08 \mathrm{~m}$
DARM偏移	形构构 $\Delta L_{\rm DC}$	
古队拱	qном	1×10^{-7} W/RAN
同凹 快柄台	k _{HOM}	$8 imes10^{-17}\ { m m/Hz}$

$$h(f) = \frac{T}{16\pi L} \sqrt{\frac{2hc\lambda}{\eta P g_p^2 g_{arm}^2}} \sqrt{1 + \left(\frac{f}{f_c}\right)^2}, \quad (2)$$

根据表达式 (2), 当输入激光功率大于 200 W, 且 功率循环腔增益为 120, 臂腔增益为 284 时, 可以 达到设计灵敏度 10⁻²⁴ Hz^{-1/2}, 如图 2 所示.其中 $\eta = \eta_{mm}\eta_{FI}\eta_{re}$,其中 $\eta_{mm} = 95\%$ 为激光和功率循环 腔的模式匹配效率, $\eta_{FI} = 95\%$ 为法拉第隔离器效 率, $\eta_{re} = 95\%$ 为剩余光学元件透过率,实际注入 干涉仪的功率小于激光源的输出功率.F-P 腔取代 简单的迈克耳逊干涉仪后,高频量子噪声中散粒噪 声得到改善,也降低了对输入功率的要求.

图 2 探测灵敏度与激光功率的关系图 Fig. 2. Detection sensitivity as a function of laser power.

3 激光源需求分析

为了满足第三代地基引力波探测装置对低噪 声激光源的要求,需要综合考虑光源的各项参数指 标对装置灵敏度的影响[26-27].1)激光源的波长会 影响测试质量热噪声,需要根据测试质量的性质选 取.2) 激光源的振幅噪声直接和引力波信号在探 测器上耦合;另一方面,激光源的振幅噪声引起两 个干涉臂上辐射压力的差异 (两个臂腔内的循环功 率不可能严格相等),使引力波信号淹没在辐射压 力噪声中,降低探测灵敏度.因此,需要抑制激光 源的振幅噪声.3) 激光源的频率噪声通过不等臂 迈克尔逊干涉仪耦合到干涉信号的强度上,降低干 涉仪的测量灵敏度.由于实际的迈克尔逊干涉仪不 可能完全等臂,激光源的频率噪声是低噪声激光干 涉仪设计必须考虑的问题. 4) 激光源的指向波动 引起干涉仪功率循环腔耦合效率的变化,进一步导 致腔内循环功率的波动,从而降低测量灵敏度.因

而,激光源的指向噪声是必须考虑的关键指标之 一.5)激光源的高阶横模不会耦合到干涉仪中,而 是从功率循环镜反射到控制探测器中,产生额外噪 声,降低控制环路性能.因此,需要尽可能提升激 光源的基模光束纯度.

通过抑制激光源噪声, 使激光源噪声的等效应 变噪声在探测频带 (10 Hz—10 kHz) 内不大于预 期设计灵敏度的 10%(安全裕度). 由于各个噪声源 是相互独立的, 噪声增大 10% 只会使干涉仪总噪 声基底增大 0.5%: (1²+0.1²)^{1/2} = 1.005(信噪比降 低不超过 0.5%). 相比于 PRCL, SRCL 和 MICH, DARM 对引力波信号更灵敏, 因此在本文的分析 计算中, 仅考虑臂腔内辐射压力噪声对测试质量产 生的微小位移, 而忽略激光源噪声耦合对其他镜片 的影响, 如 BS, PRM 和 SRM.

3.1 激光波长

表2对比了熔融石英和硅基底材料的物理性 质.由涨落-耗散定理(fluctuation-dissipation theorem, FDT)可知,热噪声的功率谱密度与镜片的杨 氏模量成反比,与镜片的泊松比、机械损耗成正比. 因此选用硅作为镜片基底,较高密度和较高折射率 会减小为实现高反射率所需的镀膜层数和膜层厚 度;在温度123 K 附近硅材料有较高热导率、较低 热膨胀系数^[28-29]、较低吸收、较低机械损耗角(高 Q值),可显著降低镜片的热梯度,降低高功率激光 场引起的热透镜效应和热光噪声^[30];另外,硅材料 有较大杨氏模量和较小泊松比,可显著降低高功率 引起的镜片热畸变,防止镜片因热弹性形变使曲率 半径发生变化.因此,我们选用硅作为干涉仪测试

表 2 熔融石英和硅材料的物理性质对比

 Table 2.
 Comparison of physical properties of fused

 silica and silicon materials.

比较参数		硅(~123 K)	熔融石英(~300 K)		
	密度/(g·cm ⁻³)	3.43	2.21		
折射率(@1.5 μm)) ~3.4841	1.445		
111	热膨胀系数/K-1	$0.001 imes10^{-6}$	5.5×10^{-7}		
	热导率/ (W•(m K) ⁻¹)	598.3	1.38		
TBILIDIE THE TOTAL	ጤ-1 ₪	$1.11{\times}10$ @1064 nm	$4{\times}10^{-6}\ensuremath{0}1064~\mathrm{nm}$		
	WAX N & CIII	$3.2{\times}10^{-8}$ @1550 nm	$2{\times}10^{{\scriptscriptstyle-}5}\ensuremath{\textcircled{@}}1550~\mathrm{nm}$		
1	机械损耗角/rad	$0.00139 imes10^{-6}$	1×10^{-4}		
	杨氏模量/GPa	131.1	73		
	泊松比	0.279	0.17		

质量的材料.由于硅的透明窗口位于 1.5—2.2 μm 激光波段^[13],综合材料成熟度和技术成熟度等因 素,决定采用 1.5 μm 波段激光源用于引力波探测 装置建造.

3.2 激光源的振幅噪声

根据工程实际,干涉仪中臂腔反射率差异约为0.003%、臂腔功率差异约为0.2%、臂腔线宽差 异约为0.3%、测试质量的质量差异约为0.005%. 这些差异均会引起激光源振幅噪声向 DARM 传 递,降低干涉仪的测量灵敏度.激光源振幅噪声的 耦合传递函数^[21]可以表示为

$$\begin{split} \frac{\Delta L_{-}}{\Delta A/A}(f) &= \frac{\Delta L_{\rm DC}(1+r_{\rm a})^{4}}{4} \frac{1}{(1+s_{cc})(1+s_{\rm rse})} \\ &+ \frac{\delta r_{\rm a}\lambda^{2}}{4r_{\rm a}'^{2}\Delta L_{\rm DC}(1+s_{cc})(1+s_{\rm rse})} \left[\delta r_{\rm a}(1+s_{c}) + \frac{\delta f_{c}}{f_{c}}s_{c}\right] \\ &\times (1+r_{\rm a}) - \frac{l_{\rm sch}r_{\rm a}f_{c}}{c}s_{c}\left(1-\frac{s_{c}}{r_{\rm a}}\right)(1+s_{c})\right] \\ &+ \frac{2P_{\rm a}}{cs_{\mu}^{2}(1+s_{cc})(1+s_{\rm rse})} \left[\frac{\delta P_{\rm a}}{2P_{\rm a}} - \frac{\delta f_{c}}{f_{c}}\frac{g_{\rm s}s_{c}(1-r_{\rm s})}{t_{\rm s}(1+s_{\rm rse})} \\ &- \delta r_{\rm a}\frac{g_{\rm s}r_{\rm s}(2+s_{\rm rse})}{t_{\rm s}(1+s_{\rm rse})} + 2\frac{\delta \mu}{\mu}\right] + \frac{q_{\rm HOM}\lambda^{2}}{g_{\rm p}^{2}g_{\rm s}^{2}\Delta L_{\rm DC}}(1+s_{\rm rse}), \end{split}$$
(3)

其中,所用参数均为表 1 中所列出的数值, Laplace 表示 $s_c = if/f_c$, $s_{cc} = if/f_{cc}$, $s_{rse} = if/f_{rse}$,机械 响应 $s^2_{\mu} = -\mu f^2$.第 1 项表示由 DARM 偏移 ΔL_{DC} 引起的直接耦合;第 2 项表示由臂腔反射率差异 δr_a 、臂腔线宽差异 δf_c 和 Schnupp 不对称 l_{sch} 导致 的对比度缺陷引起的耦合;第 3 项表示由臂腔功率 差异 δP_a 、约化质量差异 $\delta \mu$ 、臂腔反射率差异 δr_a 、 臂腔线宽差异 δf_c 产生的辐射压力差异引起的耦 合;第 4 项表示由高阶模引起的耦合.

激光源振幅噪声的耦合传递函数如图 3(a) 所 示. DARM 偏移 ΔL_{DC} 和辐射压力差异引起的振幅 噪声耦合呈线性关系. 辐射压力差异引起的振幅噪 声耦合 (也称光机耦合) 在低频 (100 Hz 以下) 显 著, 而高阶模引起的耦合在高频 (100 Hz 以上) 占 主导地位. 对比度缺陷引起的振幅噪声耦合在高 频 (100 Hz—10 kHz) 影响较大, 臂腔线宽差异 δf_c 引起的耦合大于臂腔反射率差异 δr_a引起的耦合, Schnupp 不对称 l_{sch} 引起的耦合较小. 图 3(b) 所示 为由臂腔功率差异 δP_a、线宽差异 δf_c、反射率差异 δr_a、测试质量的质量差异δμ产生的辐射压力差异 引起的振幅噪声耦合,其中臂腔功率差异δP_a引起 的耦合占主导地位.由于工程实际,干涉仪 X 臂和 Y 臂测试质量的质量存在微小差异,当辐射压力相 同时,测试质量产生的微小位移不同;同时辐射压 力与腔内功率的波动成正比 $F_{rp} = 2\delta P_a/c$.综上, 应最大可能地使 X 臂和 Y 臂测试质量的质量相 同, 臂腔中的循环功率相同.

图 3 激光源振幅噪声耦合传递函数图 (a) DARM 偏 移、辐射压力差异和对比度缺陷引起的振幅噪声耦合; (b) 辐射压力差异引起的振幅噪声耦合

Fig. 3. Coupling transfer function of laser amplitude noise: (a) Amplitude noise coupling due to DARM offset, radiation pressure difference and contrast defect; (b) amplitude noise coupling due to radiation pressure difference.

对于臂长为 10 km 的干涉仪, 要达到并突破 10⁻²⁴ Hz^{-1/2} 的设计灵敏度, 考虑 10% 的安全裕度, 在 100 Hz 时, 振幅噪声总耦合传递函数为 10⁻¹³ m/ RAN, 激光源振幅噪声要优于 10⁻⁸ Hz^{-1/2}. 在 10 Hz 时, 振幅噪声总耦合传递函数为 10⁻¹¹ m/RAN, 激光源振幅噪声要优于 10⁻¹⁰ Hz^{-1/2}, 与 100 Hz 相比, 激光源振幅噪声需提高两个数量级, 如图 4 所示. 山西大学引力波探测装置的灵敏度可以表示为

$$\begin{split} h(f) &\approx 10^{-25} \left(\frac{L}{10 \text{ km}}\right) \left(\frac{P_a}{3.4 \text{ MW}}\right) \left(\frac{\text{RAN}}{10^{-8} \text{ Hz}^{-1/2}}\right) \\ &\times \left(\frac{f}{100 \text{ Hz}}\right) \text{Hz}^{-1/2}. \end{split}$$

式中, RAN 为激光源振幅噪声, 此灵敏度是干涉仪第一阶段的预期结果.

图 4 探测灵敏度与激光源振幅噪声关系图 Fig. 4. Detection sensitivity as a function of laser amplitude noise.

3.3 激光源的频率噪声

激光干涉仪具有较好的共模抑制特性,大多数 频率噪声不会到达探测端,但仍会不可避免的有少 部分频率噪声通过迈克尔逊干涉仪的不对称性耦 合至 DARM,降低干涉仪的测量灵敏度.引力波探 测装置主要通过前置稳频激光系统 (Pre-stabilized laser, PSL)、输入模式清洁腔 (input mode cleaner, IMC)和完整干涉仪 (in the full interferometer, ITF)抑制激光频率噪声.本文从第三代引力波探 测器的灵敏度出发,通过计算 ITF 对频率噪声的 传递函数,获得了激光源频率噪声的需求.由于激 光频率噪声耦合与振幅噪声耦合的影响因素相同, 故采用前述 3.2 节同样的分析方法进行阐述.激光

$$\begin{split} \frac{\Delta L_{-}}{\delta \nu}(f) &= \frac{1}{(1+s_{cc})(1+s_{rse})} \left(-\frac{8\pi P_{a}g_{s}^{2}r_{a}^{\prime}\Delta L_{DC}}{cs_{\mu}^{2}\lambda}\right) \\ &+ \frac{\pi \left(1+r_{a}\right)\lambda}{2r_{a}^{\prime}f_{c}} \frac{1}{(1+s_{cc})(1+s_{rse})} \left[\delta r_{a} + \frac{\delta f_{c}}{f_{c}}\left(1+r_{a}\right)\right. \\ &- \frac{l_{sch}r_{a}f_{c}}{c} \left(1-\frac{s_{c}}{r_{a}}\right)(1+s_{c})\right] + k_{HOM}. \end{split}$$
(5)

激光频率噪声耦合的第1项表示由 DARM 偏移 ΔL_{DC}导致辐射压力差异引起的耦合;第2项

表示由臂腔反射率差异 δr_a 、臂腔线宽差异 δf_c 、 Schnupp不对称性 l_{sch} 导致对比度缺陷引起的耦合; 第3项表示由高阶模引起的耦合.频率噪声耦合传 递函数如图5所示.DARM偏移 ΔL_{DC} 导致辐射压 力差异引起的频率噪声耦合在低频(20Hz以下) 显著,随着频率的增大耦合系数降低,因此应使 DARM偏移较小.臂腔线宽差异 δf_c 引起的耦合 在 20Hz以上影响显著,Schnupp不对称性 l_{sch} 引起的耦合影响最小.高阶模引起的耦合在1kHz以 上占主导地位.

对于臂长为 10 km 的干涉仪, 要达到并突破 10⁻²⁴ Hz^{-1/2} 的探测灵敏度, 并考虑 10% 的安全裕 度, 可获得激光频率噪声需求: 在 100 Hz 时, 频率 噪声总耦合传递函数为 10⁻¹⁵ m/Hz, 激光频率噪声 要优于 10⁻⁶ Hz/Hz^{1/2}. 在 10 Hz 时, 频率噪声总耦 合传递函数为 10⁻¹³ m/Hz, 激光频率噪声要优于 10⁻⁸ Hz/Hz^{1/2}, 与 100 Hz 相比, 激光频率噪声需提 高两个数量级, 如图 6 所示. 为了获得该激光频率 噪声, 需要高带宽和高增益的控制环路, 将频率噪 声抑制 8~10 个数量级, 因此, 激光源频率噪声 100 Hz/Hz^{1/2}@100 Hz 满足引力波探测需求. 山西大学 引力波探测装置的灵敏度可以表示为

$$h(f) \approx 10^{-25} \left(\frac{L}{10 \text{ km}}\right) \left(\frac{P_a}{3.4 \text{ MW}}\right)$$
$$\times \left(\frac{\delta\nu}{10^{-6} \text{ Hz/Hz}^{1/2} \times \kappa(f)}\right)$$
$$\times \left(\frac{f}{100 \text{ Hz}}\right) \text{ Hz}^{-1/2}, \tag{6}$$

式中, δν 为激光源频率噪声, κ(f) 为频率噪声抑制 因子, 此灵敏度是干涉仪第一阶段的预期结果.

图 6 探测灵敏度与激光源频率噪声关系图

Fig. 6. Detection sensitivity as a function of laser frequency noise.

3.4 激光源的指向噪声与基模光束纯度

激光源的指向噪声通过改变基模与臂腔的耦合,引起干涉仪功率循环腔耦合效率的变化,导致 腔内循环功率的波动;其次,由于输入测试质量镀 膜不均匀,功率损耗存在差异,也会通过破坏干涉 臂的对称性将指向噪声耦合到探测端;最后,光束 指向噪声会降低光束与输出模式清洁器 (output mode cleaner, OMC)的耦合效率.光束在进入干 涉仪之前首先经过输入模式清洁器被动过滤指向 噪声 (部分衰减),剩余的指向噪声被干涉仪臂腔转 化为振幅噪声,因此指向噪声对测量灵敏度的影响 可以统一到振幅噪声的模型中分析.

高阶模的叠加严重降低引力波探测器输出信号的干涉对比度.通常情况下干涉仪存在准直误差 或模式不匹配,因此高阶模也会在臂腔中共振,使 测试质量表面的光强分布发生改变,产生附加的热 噪声;其次高阶模的振幅存在很大的不确定性,会 使测试质量受到的辐射压力发生变化,产生附加的 辐射压力噪声;最后当臂腔中高阶模的模式与测试 质量基底的弹性模 (elastic mode)匹配时,就会发 生参量不稳定性^[31](parametric Instability, PI),降 低干涉仪的锁定稳定性.因此需要尽可能提升激光 源的基模光束纯度.综合考虑灵敏度要求和激光源 实现面临的技术挑战,一般要求激光源的基模纯度 大于 95%.

4 总 结

山西大学地基引力波探测装置的设计灵敏度 为10⁻²⁴ Hz^{-1/2}@100 Hz. 全文从该装置对激光源的 需求出发,分析了激光振幅噪声、频率噪声、指向 噪声、基模纯度等与 DARM 的噪声耦合传递函数. 结果表明,在傅里叶频率100 Hz 处,要达到并突破设计灵敏度,激光源的输出功率应大于200 W,振幅噪声要优于10⁻⁸ Hz^{-1/2},频率噪声要优于100 Hz/Hz^{1/2}.下一步,通过优化升级各个分系统的参数,包括激光器性能、镜片质量、吸收等,探测灵敏度有望达到10⁻²⁵ Hz^{-1/2} 量级.本文为设计用于下一代地基引力波探测装置的激光源指明了方向,将有力推动山西大学地基引力波探测装置的建造进程,驱动我国在第三代地基引力波探测的研究中实现从追赶到与国际同步发展.

参考文献

- Abbott B P, Abbott R, Abbott T D, et al. 2016 *Phys. Rev.* Lett. **116** 061102
- [2] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241103
- [3] Vermeulen S M, Relton P, Grote H, et al. 2021 Nature 600 424
- [4] Bailes M, Berger B K, Brady P R, et al. 2021 Nat. Rev. Phys. 3 344
- [5] Abbott R, Abbott T D, Abraham S, et al. 2021 Astrophys. J. Lett. 915 L5
- [6] Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 *Phys. Rev. D* 104 042006
- [7] Hall E D, Kuns K, Smith J R, et al. 2021 Phys. Rev. D 103 122004
- [8] Buikema A, Cahillane C, Mansell G L, et al. 2020 Phys. Rev. D 102 062003
- [9] Adhikari R X 2014 Rev. Mod. Phys. 86 121
- [10] Bond C, Brown D, Freise A, Strain K A 2016 Living Rev. Relativ. 19 3
- [11] Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quant. Grav. 32 185003
- [12] P. Nguyen, Schofield R M S, Effler A, et al. 2021 Classical Quant. Grav. 38 145001
- [13] Adhikari R X, Arai K, Brooks A F, et al. 2020 Classical Quant. Grav. 37 165003
- [14] Hammond G, Hild S, Pitkin M 2014 J. Mod. Optic. 61 S10
- [15] Heurs M 2018 Philos. T. R. Soc. A 376 20170289
- [16] Danilishin S L, Khalili F Y, Miao H 2019 Living Rev. Relativ.
 22 2
- [17] Sigg D 1997 LIGO Report No. LIGO- T970084-00 D
- [18] Rana A 2004 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)
- [19] Somiya K, Chen Y 2006 Phys. Rev. D 73 122005
- [20] Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500325
- [21] Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500461
- [22] Izumi K, Sigg D, Kawabe K 2016 LIGO Report No. LIGO-T1500559
- [23] Cahillane C 2021 Ph. D. Dissertation (Pasadena: California Institute of Technology)
- [24] Cahillane C, Mansell G L, Sigg D 2021 Opt. Express 29 42144
- [25] Buonanno A, Chen Y 2001 Phys. Rev. D 64 042006
- [26] Pitkin M, Reid S, Rowan S, Hough J 2011 Living Rev.

Relativ. 14 5

- [27] Kwee P 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)
- [28] Chen Z, Guo M, Zhang R, Zhou B, Wei Q 2018 Sensors 18 02603
- [29] Degallaix J, Komma J, Forest D, Hofmann G 2014 Classical

Quant. Grav. **31** 185010

- [30] Khalaidovski A, Steinlechner J, Schnabel R 2013 Classical Quant. Grav. 30 165001
- [31] Biscans S, Gras S, Blair C D, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 *Phys. Rev. D* 100 122003

Laser parameters requirement for third-generation groundbased gravitational wave detection^{*}

Li Qing-Hui¹⁾ Li Wei¹⁾²⁾ Sun Yu¹⁾ Wang Ya-Jun¹⁾²⁾ Tian Long¹⁾²⁾

Chen Li-Rong³ Zhang Peng-Fei¹⁾² Zheng Yao-Hui^{1)2)†}

1) (State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

Shanxi University, Taiyuan 030006, China)

2) (Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China)

3) (School of Physical and Electronic Engineering, Shanxi University, Taiyuan 030006, China)

(Received 26 March 2022; revised manuscript received 15 April 2022)

Abstract

Gravitational waves (GWs), predicted by the general relativity of Albert Einstein, are ripples in space-time caused by massive accelerating objects. Since the first direct observation of GWs in 2015, more and more binary black hole mergers and neutron star merger were detected by the laser interferometer gravitational-wave observatory (LIGO) and the Virgo interferometric detector. The construction of the third-generation (3G) gravitational wave detector(GWD), whose sensitivity is ten times that of the second-generation (2G) GWD (Advanced LIGO and Virgo), can not only push the gravitational wave astronomy towards the edge of the observable universe, but also test the fundamental laws of physics and study the nature of matter. By utilizing the abandoned underground mines, Shanxi university proposes to construct a 3G ground-based gravitational wave detector with an arm length of 10 km and a strain sensitivity of 10⁻²⁴ Hz^{-1/2}, improving the location accuracy of wave source by participating in the global GWD network. The construction of 3G GWD has many technical challenges, including ultrahigh large-scale vacuum system, ultrastable seismic isolation system, highprecision control system, high-quality laser and quantum source. Theoretically, the sensitivity of GWD with equal arm length is not limited by the laser source noise. However, in the actual scenario, the sensitivity is limited by the differences in arm length, arm cavity linewidth, arm reflectivity, arm mass, arm power, and the laser parameters. In this work, based on the design sensitivity $(10^{-24} \text{ Hz}^{-1/2})$ of dual-recycled Fabry-Perot Michelson interferometer, we propose the requirements for an ultra low-noise laser, including wavelength, amplitude noise, frequency noise, beam pointing noise and fundamental mode purity. The results show that in order to achieve the design sensitivity at the Fourier frequency of 100 Hz, the wavelength of the laser source should be 1.5 μ m, the output power should be higher than 200 W, the amplitude noise should be better than 10^{-8} $Hz^{-1/2}$, and the frequency noise should be better than 100 $Hz/Hz^{1/2}$. To achieve the sensitivity of 10^{-24} $Hz^{-1/2}$ at 10 Hz analysis frequency, the requirements for the amplitude and frequency noise of the laser source are much more stringent. This study lays a solid foundation for the analysis of laser source noise and the decomposition of interferometer indexes .

Keywords: gravitational wave detection, strain sensitivity, low-noise laser, noise budget PACS: 42.55.-f, 42.60.-v, 42.60.By, 42.60.Pk DOI: 10.7498/aps.71.20220552

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62027821, 11874250, 62035015, 12174234), the Key Research and Development Projects of Shanxi Province (Grant No. 201903D111001), and the Program for Sanjin Scholar of Shanxi Province.

[†] Corresponding author. E-mail: yhteng@sxu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

面向第三代地基引力波探测的激光源需求分析

李庆回 李卫 孙瑜 王雅君 田龙 陈力荣 张鹏飞 郑耀辉

Laser parameters requirement for third-generation ground-based gravitational wave detection Li Qing-Hui Li Wei Sun Yu Wang Ya-Jun Tian Long Chen Li-Rong Zhang Peng-Fei Zheng Yao-Hui

引用信息 Citation: Acta Physica Sinica, 71, 164203 (2022) DOI: 10.7498/aps.71.20220552 在线阅读 View online: https://doi.org/10.7498/aps.71.20220552 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

基于光学-微波同步的低噪声微波产生方法

Low-noise microwave generation based on optical-microwave synchronization 物理学报. 2022, 71(4): 044204 https://doi.org/10.7498/aps.71.20211253

低噪声超导量子干涉器件磁强计设计与制备

Design and fabrication of low-noise superconducting quantum interference device magnetometer 物理学报. 2019, 68(13): 138501 https://doi.org/10.7498/aps.68.20190483

探测器对量子增强马赫--曾德尔干涉仪相位测量灵敏度的影响

Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer 物理学报. 2018, 67(23): 234202 https://doi.org/10.7498/aps.67.20181193

基于光学频率梳的超低噪声微波频率产生

Ultra-low noise microwave frequency generation based on optical frequency comb 物理学报. 2021, 70(13): 134204 https://doi.org/10.7498/aps.70.20201925

第三代半导体材料及器件中的热科学和工程问题

Thermal science and engineering in third-generation semiconductor materials and devices 物理学报. 2021, 70(23): 236502 https://doi.org/10.7498/aps.70.20211662

一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案

High sensitivity fiber displacement sensor based compound ring laser cavity with linear variation of beat frequency signal 物理学报. 2020, 69(18): 184217 https://doi.org/10.7498/aps.69.20200385