

Institute of Physics, CAS

基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控

孟勇军 李洪 唐建伟 陈学文

Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity

Meng Yong-Jun Li Hong Tang Jian-Wei Chen Xue-Wen

引用信息 Citation: Acta Physica Sinica, 71, 027801 (2022) DOI: 10.7498/aps.71.20211438 在线阅读 View online: https://doi.org/10.7498/aps.71.20211438 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

单颗粒稀土微/纳晶体上转换荧光行为的光谱学探究

Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals 物理学报. 2018, 67(18): 183301 https://doi.org/10.7498/aps.67.20172191

表面等离激元纳米聚焦研究进展

Research progress of plasmonic nanofocusing 物理学报. 2019, 68(14): 146201 https://doi.org/10.7498/aps.68.20190564

表面等离激元调控化学反应

Surface plasmon mediated chemical reaction 物理学报. 2019, 68(14): 147102 https://doi.org/10.7498/aps.68.20190345

等离激元材料和器件的动态调控研究进展

Advances in dynamically tunable plasmonic materials and devices 物理学报. 2019, 68(14): 147303 https://doi.org/10.7498/aps.68.20190469

基质材料对Yb3+浓度调控的上转换荧光红绿比的影响

Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio 物理学报. 2018, 67(8): 084203 https://doi.org/10.7498/aps.67.20171894

表面等离激元传播的调制 Modulation of propagating surface plasmons 物理学报. 2019, 68(14): 147302 https://doi.org/10.7498/aps.68.20190802

基于等离激元纳腔的单颗粒稀土掺杂 纳米晶上转换发光光谱调控^{*}

孟勇军 李洪 唐建伟† 陈学文‡

(华中科技大学物理学院,武汉 430074)

(2021 年 8 月 5 日收到; 2021 年 9 月 24 日收到修改稿)

等离激元纳腔可有效调控稀土掺杂纳米晶的上转换发光特性,其不仅能增强上转换发光强度,还可实现 上转换发光光谱的调节.然而,目前利用纳腔进行上转化发光光谱调节的研究主要基于系综实验.相比系综 实验,单颗粒实验由于可对同一颗上转换纳米晶进行对比研究,因而能够排除系综样品非均匀性对实验的影 响.本文基于原子力显微镜原位纳米操纵技术将单颗粒 Yb³⁺/Tm³⁺共掺杂纳米晶与由单根金纳米棒构成的 等离激元纳腔进行耦合,实验上对比了同一颗纳米晶与金纳米棒耦合前后上转换发光的光谱、发光寿命和激 发功率依赖特性的变化.实验结果与理论上通过结合电磁仿真和速率方程模拟得到的结果相符.研究结果表 明,等离激元纳腔调控纳米晶上转换发光光谱是激发场增强效应、Purcell效应和辐射效率变化三方面效应共 同作用的结果.

关键词:上转换纳米晶,等离激元纳腔,光谱调控,纳米操纵 **PACS**: 78.67.Bf, 73.20.Mf, 33.50.Dq, 82.37.GK

DOI: 10.7498/aps.71.20211438

1 引 言

上转换过程是一种可以通过反斯托克斯效应 将长波长 (近红外)的低能量光子转换为短波长 (近红外、可见光和紫外光)的高能量光子的发光过 程.与传统的下转换发光过程相比,上转换荧光具 有高信背比的优点.稀土离子掺杂的上转换纳米 晶 (UCNC)由于具有优异的光化学稳定性、低毒 性和丰富的辐射波长,是比较常用的上转换纳米材 料^[1,2],其在生物成像^[3-5]、传感^[6]、彩色显示^[7,8]和 加密^[9-11]等方面具有广泛的应用价值.特定的应 用要求上转换纳米晶具有特定的上转换荧光特性, 包括荧光强度、荧光寿命、偏振特性、光谱特性等. 这些特性可以通过设计上转换纳米晶的内部材料 和结构^[12-17]或其所处的外部电磁环境^[18-20]来进

行调节和优化. 等离激元纳腔被广泛用于设计上转 换纳米晶所处的外部电磁环境,从而调控上转换发 光特性[18-20]. 等离激元纳腔产生的局域表面等离 子体共振可以将光场局域在非常小的空间内[21], 使纳米晶所处的电磁环境发生显著变化,从而在不 改变纳米晶材料、尺寸和形貌的情况下实现对其发 光特性的调控[22-38]. 实验研究表明, 等离激元纳腔 可在上转换纳米晶性能优化的基础上进一步大幅 改善其上转换发光特性,例如大幅提高上转换发光 强度[26,27,29,34-36],显著加快上转换光动力学过程[27,35], 灵活调节辐射偏振[37,38]等.此外,等离激元纳腔还 可实现纳米晶上转换发光光谱的调节[32,39,40]. 然而, 目前基于纳腔的上转换发光光谱调节的研究主要 基于系综实验[32,39,40].相比系综实验,单颗粒实验 由于可对同一颗上转换纳米晶进行对比研究^[24,41], 因此能够排除系综样品非均匀性对实验的影响.

^{*} 国家自然科学基金 (批准号: 11874166, 12004130) 资助的课题.

[†] 通信作者. E-mail: phystang@hust.edu.cn

[‡] 通信作者. E-mail: xuewen chen@hust.edu.cn

^{© 2022} 中国物理学会 Chinese Physical Society

本研究基于原子力显微镜纳米操纵技术将单颗粒Yb³⁺/Tm³⁺共掺杂纳米晶与由单根金纳米棒 (GNR)构成的纳腔进行原位耦合,实验上对比同 一颗纳米晶与金纳米棒耦合前后的上转换发光光 谱、发光寿命、激发功率依赖特性的变化,理论上 结合电磁仿真和速率方程分析,从激发场增强效 应、Purcell效应和辐射效率变化三方面研究了等 离激元纳腔对上转换发光光谱的影响机制.

2 实验系统和样品

选择 NaYF4@NaYF4:89%Yb³+/5%Tm³⁺@ NaYF4核@壳@壳结构上转换纳米晶,直径约为 28 nm,结构示意图如图 1(a)中的插图所示.其中, 最内层为直径 7 nm的NaYF4内核;中间层(图中 黄色部分)为Yb³⁺离子和Tm³⁺离子共掺杂层,厚 度为 5.5 nm;最外层为 5 nm 厚的NaYF4钝化层. 纳米晶通过改进型热注射法合成^[42].最内层无掺 杂 NaYF4核和最外层无掺杂NaYF4层一起作为钝 化保护层使中间层Yb³⁺和Tm³⁺离子尽量不被表 面缺陷所猝灭^[42].最内层无掺杂 NaYF4核作为外 延生长的种子,有利于纳米晶生长质量和尺寸的控 制.本研究中采用的内核直径约为 7 nm,纳米晶的 生长质量好,尺寸可控性好;且该直径的内核体积 仅相对于 5.5 nm 厚度的中间掺杂壳层体积的约 1/16, 因此该内核几乎不占用掺杂空间. 最外层 NaYF₄不仅可以保护中间层 Yb³⁺和 Tm³⁺离子尽 量不被表面缺陷所猝灭,还能使掺杂离子远离金属 表面,防止被高阶等离激元模式猝灭.本研究采用 的纳米晶最外层 NaYF₄ 厚度 5 nm, 对表面相关的 猝灭已能起到较好的抑制作用,进一步增大纳米晶 厚度对于提高量子效率作用不大,反而导致纳米晶 体积增大;若进一步减小最外层厚度则将导致较为 显著的表面猝灭效应,可能对本研究产生过多的 不可控干扰因素. 中间壳层的厚度主要影响掺 杂体积,从而影响总的掺杂离子数量,进而影响 总的上转换发光亮度. 本研究采用 5.5 nm 厚度 的中间掺杂层, 上转换发光亮度已足够进行单颗粒 荧光表征. 中间层厚度不同将使上转换发光亮度 不同,但不影响对光谱调控机制的研究.选择金 纳米棒作为等离激元纳腔,这是因为通过选择金 纳米棒的纵横比即可在整个可见和近红外范围内 选择等离激元共振波长.本文中金纳米棒直径约 为 40 nm.

实验系统如图 1(a) 所示,该系统主要由倒置 光学显微镜和原子力显微镜 (AFM) 组成. 倒置光

图 1 实验系统和样品 (a)实验系统和样品示意图,其中 DM 代表二向色镜, M 代表反射镜, 插图为核@壳@壳结构上转换纳 米晶的结构示意图 (黄色为 Yb³⁺-Tm³⁺共掺杂层); (b) 单颗粒上转换纳米晶 (灰色线框)、单根金纳米棒 (黑色线框)和两者耦合 形成的复合结构 (红色线框)的 AFM 表面形貌图, 图中标尺为 50 nm; (c) 与纳米晶耦合前后金纳米棒的散射谱线; (d) 金纳米棒 调控上转换发光的能级示意图

Fig. 1. Experimental system and sample. (a) Schematics of the experimental system and sample. M, mirror; DM, dichroic mirror. The inset displays the core/shell/shell structure of the upconversion nanocrystal (UCNC), where the yellow color denotes the Yb^{3+} - Tm^{3+} codoping layer. (b) AFM topographic image of the single UCNC (grey box), gold nanorod (GNR) (black box) and UCNC-GNR coupled nanohybrid (red box). (c) Scattering spectrum of the single GNR before and after coupling with the UCNC. (d) Energy diagram of the upconversion luminescence modulated by the GNR.

学显微镜主要用于表征材料的光学特性,如荧光强 度、荧光寿命和荧光光谱等. 波长为 980 nm 的连 续激发光经二向色镜反射到物镜上,由物镜聚焦在 样品表面激发纳米晶,使其发出上转换荧光.物镜 收集的上转换荧光经过滤光片后有两个路径:其中 一个路径是经反射镜反射至光谱仪测量光谱;另一 个路径是经过二向色镜分为近红外光和蓝光两部 分被雪崩光电二极管单光子探测器 (APD) 探测. 倒置光学显微镜上方的 AFM 既可以表征样品表 面形貌,又可以通过纳米操纵技术移动金纳米棒使 其与纳米晶耦合^[43,44].图 1(b) 中 3 幅 AFM 表面 形貌图分别展示了耦合前单颗粒纳米晶、单根金纳 米棒和两者耦合后形成的复合结构. 耦合前后金纳 米棒的散射谱线分别如图 1(c) 中的黑线和红线所 示. 可以看到, 耦合前后金纳米棒散射谱线共振峰 均在 750 nm 左右.

3 机理分析和电磁仿真

Yb³⁺-Tm³⁺共掺杂上转换纳米晶的能级结构 如图 1(d) 所示. Yb³⁺离子吸收一个 980 nm 波长 的光子从基态²F7/2 跃迁到激发态²F5/2, 其中激发 强度以Pyb表示, 然后通过Yb³⁺→Tm³⁺的能量转 移过程将能量传递给Tm³⁺离子^[45], Tm³⁺离子吸 收两个光子跃迁到第二亚稳态³H₄(Tm³⁺先吸收 一个光子从基态³H₆跃迁到³H₅态,然后迅速弛豫 到第一亚稳态³F₄,随后再次吸收一个光子后从³F₄ 态跃迁到³F₂₃态,然后再次迅速弛豫到第二亚稳 态³H₄). 除了通过Yb³⁺→Tm³⁺能量转移过程将能 量传递给Tm³⁺离子外,处于激发态的Yb³⁺离子也 会发生自发辐射跃迁,从激发态²F_{5/2}自发辐射跃 迁到基态²F_{7/2}, 跃迁速率为 γyb. Tm³⁺离子从激发 态³H₄自发辐射跃迁到基态³H₆并辐射一个 800 nm 波长的光子.除了自发辐射到基态³H₆,处于³H₄态 的Tm³⁺还会发生自发辐射跃迁到第一亚稳态³F₄, Tm³⁺→Tm³⁺交叉弛豫和Tm³⁺反向能量转移到 Yb³⁺离子等过程,这些过程均会降低上转换发光 的量子效率. 处于³H₄态的Tm³⁺离子进一步吸收 从 Yb³⁺传递过来的能量, 被泵浦到高能级的 ${}^{1}G_{4}$ 态. Tm³⁺离子的³H₄和¹G₄态能量布居还可通过 $Tm^{3+} \rightarrow Tm^{3+}$ 交叉弛豫过程 (${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ 和 ${}^{3}H_{4} \rightarrow {}^{1}D_{2}$ 交叉弛豫以及 ${}^{1}G_{4} \rightarrow {}^{1}D_{2} \pi {}^{3}H_{4} \rightarrow {}^{3}F_{4}$ 交叉弛豫)被 泵浦到¹D₂态,处于这一高能态的离子会发出波长 为 455 nm 的蓝光. 上述纳米晶发光过程可通过速 率方程描述 (附录 A)^[46].

金纳米棒对纳米晶发光光谱的调控主要体现 在三方面效应:1)金纳米棒的等离激元共振模式 增强纳米晶处的局域激发场,导致激发增强;2)金 纳米棒的等离激元共振模式导致 Purcell 效应,加 快相关能态的辐射跃迁速率^[35,47],进而导致各能态 粒子数分布的变化和荧光量子效率的变化;3)由 于金纳米棒的欧姆损耗(由金的介电常数虚部引 起),与金纳米棒耦合后上转换系统的辐射效率会 发生变化.

下面结合电磁仿真来具体分析金纳米棒对纳 米晶发光光谱的影响.电磁仿真采用有限元方法, 通过 COMSOL Multiphysics 仿真软件具体实施. 电磁模拟计算中,金纳米棒直径和长度分别设为 40 nm 和 135 nm,纳米晶直径设为 28 nm,金纳米 棒距纳米晶中心设为 17 nm,如图 2(a) 所示.金的 介电常数通过拟合文献 [48] 中的实验结果得到,玻 璃的折射率来自于文献 [49],纳米晶折射率为 1.48^[50].

图 2 电磁仿真 (a)电磁仿真时使用的金纳米棒-上转换 纳米晶复合结构的几何参数; (b)平面波照射下的局域场 增强系数分布; (c) 仿真计算得到的纳米晶中心位置处 Purcell 系数与波长的关系; (d) 仿真计算得到的辐射效率 与波长的关系

Fig. 2. Electromagnetic simulations: (a) Geometric parameters of the GNR-UCNC coupled nanohybrid for electromagnetic simulations; (b)distribution of field intensity enhancement coefficient under plane wave irradiation; (c) simulated Purcell factor at the center of the nanocrystal as a function of wavelength; (d) simulated radiation efficiency as a function of wavelength. 图 2(b) 为仿真计算得到的平面波照射下的局域 场增强系数分布. 场增强系数定义为 f_E⁹⁸⁰ = |E|²/|E₀|², 其中 E₀ 和 E 分别是没有金纳米棒和存在金纳米棒 时的局域电场. 当平面波的偏振平行于金纳米棒的 长轴时,模拟结果如图 2(b) 中的上图所示,纳米晶 所处位置的局域电磁场表现为增强效应,此时纳米 晶中心位置局域电场强度增强约 14 倍. 为简单起 见,近似以纳米晶中心处的增强倍数代表掺杂层中 所有离子的平均增强倍数. 由于局域激发场增强效 应,激发强度 P_{Yb}将会被增强,更多的 Yb³⁺离子跃 迁到激发态 ²F_{5/2}. 当激发偏振垂直于金纳米棒长 轴时,模拟结果如图 2(b) 中的下图所示,此时纳米 晶处几乎没有场增强效应.

图 2(c) 为仿真计算得到的不同波长下的 Purcell 效应系数 f_{P}^{λ} . 在仿真计算中, Purcell 系数 f_{P}^{λ} 定义 为与金纳米棒耦合前后电偶极子辐射功率之比 P/P_{0} ,其中 P_{0} 为耦合前包含电偶极子的闭合曲面 的坡印廷矢量面积分, P为与金纳米棒耦合后包含 电偶极子但是不包含金纳米棒的闭合曲面的坡印 廷矢量面积分. 考虑到离子取向随机,图 2(c) 中 Purcell 系数为 x, y, z 三个方向偶极子 Purcell 系 数的平均值. 为简单起见,近似以纳米晶中心处的 Purcell 效应代表掺杂层中所有离子的平均 Purcell 效应.由于 Purcell 效应, Tm^{3+} 离子从高能级到低 能级的辐射跃迁速率也会增强 f_{P}^{λ} 倍,其中 λ 代表对 应的辐射波长.尽管从能级 $D_{2} \rightarrow {}^{3}F_{4}$ 的辐射跃迁 速率加快了 f_P^{455} 倍,但是从图 2(c)中可看到 800 nm 处Purcell效应 f_P^{800} 远大于 f_P^{455} .800 nm 处的Purcell效应不仅加快 Tm³⁺离子 ${}^{3}H_4 \rightarrow {}^{3}H_6$ 的辐射跃迁速率,从而增强 800 nm 发光的量子效率,同时抑制其从能级 ${}^{3}H_4$ 向更高的能级 ${}^{1}D_2$ 跃迁,从而抑制蓝光的产生.图 2(d)为仿真计算得到的不同波长下的辐射效率.辐射效率定义为 P_r/P ,其中 P_r 为包含电偶极子和金纳米棒的闭合曲面的坡印廷矢量面积分.辐射效率的计算也考虑了偶极子取向平均. 由图 2(d)可知,蓝光波段的辐射效率显著低于近红外波长,这将进一步降低蓝光的比例.

4 实验研究

为验证 Purcell 效应,在 980 nm 连续光激发下,测量了同一颗纳米晶与金纳米棒耦合前后的上转换荧光寿命,结果如图 3(a) 所示.寿命测量时, 通过电调制将 980 nm 连续激光调制成重复频率 为 500 Hz,占空比为 90% 的脉冲激光,使用该脉 冲激光激发,通过单光子探测器收集 800 nm 处荧 光.使用指数函数拟合上转换荧光寿命,得到耦合 前后荧光寿命分别为 $\tau_{\rm UCL}^0 = 116 \, \mu s \, \pi \, \tau_{\rm UCL}^{\rm cav} = 40 \, \mu s$, 耦合后荧光寿命减小为耦合前的 1/3.

Purcell 效应得到验证后, 进一步测量纳米晶 上转换发光光谱, 结果如图 3(b) 所示. 在等离激元 纳腔的作用下, 纳米晶上转换荧光光谱发生了巨大

图 3 上转换发光寿命和光谱的调控实验 (a) 同一颗纳米晶与金纳米棒耦合前后的 800 nm 上转换荧光衰减曲线; (b) 同一颗 纳米晶与纳腔耦合前后的上转换荧光光谱

Fig. 3. Experimental modulation of the upconversion luminescence lifetime and spectrum: (a) Upconversion luminescence decay curves (excited at 980 and emission at 800 nm) for the same UCNC before and after coupling with the GNR; (b) upconversion luminescence (UCL) spectrum of the same UCNC before and after coupling with the GNR, in the measurements the luminescence intensities are set the same for the three cases by controlling the excitation power.

的变化,从图中可以看到耦合前(黑线),纳米晶存 在 455 nm 和 800 nm 两个主要辐射峰, 分别对应 Tm³⁺离子¹D₂→³F₄(455 nm) 和³H₄→³H₆(800 nm) 两个跃迁. 实验中, Tm³⁺离子的¹G₄→³H₆(476 nm) 特征峰几乎无法从发光光谱中分辨,这可能是由 于 Tm³⁺掺杂浓度较高, ¹G₄→³F₄和³H₄→¹D₂以及 ${}^{1}G_{4} \rightarrow {}^{1}D_{2}$ 和 ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ 交叉弛豫速率较大,交叉弛 豫使得 ${}^{1}G_{4}$ 能级的布居数减小,而 ${}^{1}D_{2}$ 能级的布居 数增加,从而导致 476 nm 发光远弱于 455 nm 发 光^[5]. 当纳米晶与金纳米棒耦合后, 在平行于金纳 米棒长轴偏振激发下 (x偏振激发), 调节激发功率 密度使上转换荧光强度与耦合前保持一致. 上转换 荧光光谱如图 3(b) 中的红色曲线所示, 可以看到 荧光光谱发生了显著改变. 此时上转换荧光以 800 nm 发光为主,455 nm 发光几乎被完全抑制.进一步将 激发偏振调整为垂直于金纳米棒长轴 (y偏振激 发),并调节激发功率使荧光强度仍然保持不变,测 得上转换荧光光谱如图 3(b) 中的蓝色曲线所示. 与红色谱线类似,该光谱曲线也无法显示 455 nm 处荧光峰.此时几乎没有场增强效应,但是荧光光 谱仍然发生变化,表明这里纳米晶发光光谱的改变 主要是由 Purcell 效应和辐射效率改变引起的.

以上光谱调控实验中,在对比光谱时特意使发 光强度保持一致,因此 Purcell 效应和辐射效率的 改变这两个因素在其中起到了主要作用.为进一步 探究局域激发场增强效应所起的作用,测量了纳米 晶与金纳米棒耦合前后的功率相关上转换荧光强 度曲线,结果如图 4(a)所示,800 nm 和 455 nm 处 荧光强度随着激发功率的升高逐渐增强,但两条曲 线斜率不同.功率相关荧光强度曲线斜率在 800 nm 处为 1.3,在 455 nm 处为 3.5,这意味着 800 nm 处 荧光辐射为双光子过程,而 455 nm 处荧光强度为 四光子过程,与前面介绍的发光过程吻合.比较两 条曲线发现随着激发功率的增强,近红外与蓝光辐 射强度之比逐渐降低,这意味着增强激发功率可以 使发光光谱发生变化,激发功率越高,455 nm 处荧 光占比也越多.

当纳米晶与金纳米棒耦合后,在 x 偏振激发下,激发功率相关的荧光强度曲线如图 4(a)所示, 耦合前 800 nm 和 455 nm 处上转换发光强度达到 50 counts/s 时所需的激发功率密度分别约为 40 和 1500 W/cm².耦合后,曲线均明显左移,上转换 发光强度达到 50 counts/s 所需的激发功率密度分 别减小至约 1 W/cm²和 400 W/cm².如果只考虑 激发场增强效应,则两个发光波长的曲线左移的程 度应该相同;考虑到 800 nm 和 455 nm 发光分别 为双光子过程和四光子过程,455 nm 处的发光增 强应该比 800 nm 处的增强要显著得多. 但根据实

图 4 激发功率相关上转换荧光调控实验及与模拟结果的对比 (a)实验测得的同一颗纳米晶与金纳米棒耦合前后的功率相关 上转换荧光强度曲线,黑色、蓝色和红色阴影竖线标示出了图 3(b)中对应颜色光谱的激发功率密度;(b)模拟得到的同一颗纳米 晶与金纳米棒耦合前后的功率相关上转换荧光强度曲线,实线和虚线分别代表 800 nm 和 455 nm 上转换发光

Fig. 4. Experimental modulation of the excitation-power-dependent upconversion luminescence intensity and comparison with simulation: (a) Measured excitation-power-dependent upconversion luminescence intensity curves for the same UCNC before and after coupling with the GNR, the black, blue and red vertical lines indicate the excitation power densities for the measurement of the correspondingly colored spectra in Fig. 3(b); (b) simulated excitation-power-dependent upconversion luminescence intensity curves for the UCNC before and after coupling with the GNR, solid and dashed curves represent 800 nm and 455 nm emission respectively.

验测得结果,800 nm 波长的曲线左移程度显著大 于 455 nm 波长的曲线. 实际上, 根据前面的分析, 此时的增强效果是激发场增强效应、Purcell效应 和辐射效率变化共同作用的结果. 虽然激发场增强 效应更有利于 455 nm 波长的发光增强, 但 Purcell 效 应和辐射效率改变这两个效应则有利于 800 nm 发光比例的增大.其中,Purcell效应会加快处于激 发态³H₄的Tm³⁺离子的辐射跃迁速率.该能级辐 射跃迁速率的增大一方面会增大 800 nm 荧光的 量子效率,从而使 800 nm 处荧光增强,另一方面 则会抑制处于激发态³H₄的离子向更高的¹D₂能级 跃迁,从而抑制 455 nm 处荧光辐射. 金纳米棒欧 姆损耗导致的辐射效率变化会同时降低 800 nm 和 455 nm 发光强度, 但两个波长发光降低的程度 差别很大. 如图 2(d) 所示, 800 nm处辐射效率依 然较高 (达到 70%), 而 455 nm 处的辐射效率则非 常低 (不到 20%). 在以上三方面因素的共同作用 下,最终形成了图 4(a) 中所示的增强效果.

根据这里测量得到的激发功率相关上转换发 光强度曲线图,可以更清晰地阐释图 3(b)中的光 谱测量结果.图 4(a)中黑色和红色阴影竖线代表 图 3(b)中对应颜色光谱的激发功率密度.耦合前 后,分别在这两个激发功率密度下,800 nm 处的发 光强度保持基本一致,约 6 × 10⁴ counts/s.可以 看到,耦合前,由于没有纳腔的发光增强,这种发 光强度已经达到双光子过程发光(800 nm)的饱和 区,因此四光子过程发光(455 nm)在光谱中占据 了可观的比例.而耦合后,由于纳腔的发光增强效 应,这种发光强度下双光子过程发光(800 nm)还 远没有到达饱和区,因此四光子过程发光(455 nm) 远弱于双光子过程发光,其在图 3(b)的光谱测量 中几乎探测不到.

当激发偏振为 y 偏振时, 对应的功率相关荧光 强度曲线如图 4(a) 中的蓝线所示. 根据图 2(b) 中 的模拟结果, 可知此时几乎没有激发场增强效应. 对于 800 nm 处的发光, 800 nm 处的 Purcell 效应 将增强其强度, 而 800 nm 处的辐射效率也较高. 因此, 虽然没有激发场增强效应, 800 nm 处的发光 强度仍然表现出增强效果. 而对于 455 nm 的发光, 由于 800 nm 处的 Purcell 效应会抑制其发光, 且 455 nm 处辐射效率较低, 从而导致 455 nm 处的上 转换发光表现出显著的抑制效果. 800 nm 发光被 增强而 455 nm 发光被抑制, 所以 800 nm 和 455 nm 发光在强度上的差距比 x 偏振激发时更大, 在图 3(b) 的光谱测量中自然更加无法显示 455 nm 发光峰.

5 实验结果与数值仿真结果的对比

结合前面的电磁仿真结果和速率方程,定量模 拟等离激元纳腔对纳米晶发光的影响,并与实验结 果进行对比. 将电磁仿真得到的激发场增强效应系 数和 Purcell 效应系数代入到附录 A 中的速率方 程.具体地,将速率方程中的Pyb乘上激发场增强 系数 f_E⁹⁸⁰,将所有辐射跃迁速率都乘上相应波长处 的 Purcell 系数 f^{λ} . 通过速率方程可以计算得到不 同激发功率下各能态粒子数密度,然后根据纳米晶 掺杂区的体积 V. 相应自发辐射跃迁速率以及相应 波长处纳腔的辐射效率等即可得到各个自发辐射 跃迁对应的发光强度 $I = n_i V f_{\mathbf{P}}^{\lambda} \gamma_{ij} \eta_{\lambda}$,其中, $n_i (i = n_i V f_{\mathbf{P}}^{\lambda} \gamma_{ij} \eta_{\lambda})$ 0, 1, 1', 2, 2', 3, 4) 表示处于能级 i的 Tm³⁺离子密 度, γ_{ij} 表示Tm³⁺离子从能级*i*到能级*j*的自发辐射 跃迁速率, $f^{\lambda} \pi \eta_{\lambda}$ 分别为 λ 处的 Purcell 系数和纳 腔辐射效率 (λ为能级 i 到能级 j 跃迁所对应的波 长). 最终, 在适当考虑晶体缺陷导致的非辐射损 耗(附录A速率方程中的 ィッゴ 和 ィッゴ)后,理论模拟 得到与图 4(a) 中单颗粒实验相符的结果, 如图 4(b) 所示. 耦合前纳米晶近红外光和蓝光辐射的功率相 关强度曲线如图 4(b) 中的黑色实线和虚线所示, 近红外光和蓝光辐射强度与激发功率分别成 1.4 次方和3次方关系,理论计算与实验结果基本一 致. 当纳米晶与金纳米棒耦合后, 在 x 偏振激发下 近红外和蓝光辐射如图 4(b) 中的红色实线和虚线 所示. 此时 800 nm 和 455 nm 的曲线均明显左移, 且 800 nm 曲线的左移程度显著大于 455 nm 的曲 线, 与实验结果一致. 当激发偏振沿 y 轴时, 场增 强效应消失,模拟结果如图 4(b) 中的蓝色实线和 虚线所示.此时 800 nm 发光仍然表现出增强效应, 但 455 nm 发光则表现出显著的抑制作用, 与实验 结果一致. 进一步的数值仿真表明, 当金纳米棒的 直径发生变化时,金纳米棒对纳米晶上转换光谱调 控效果仅有数值上的差异, 调控规律并无显著变 化 (数值模拟结果见附录 B).

6 结 论

本文基于原位纳米操纵实验系统将单颗粒上 转换纳米晶与单根金纳米棒耦合,实验上对比了同

一颗纳米晶与金纳米棒耦合前后上转换发光光谱、 发光寿命和激发功率依赖特性的变化. 理论上, 结 合电磁仿真和速率方程,模拟得到了与单颗粒实验 相符的结果.相互印证的实验结果和理论模拟结果 表明,纳米晶上转换发光光谱发生改变的机理符合 本文的分析,是激发场增强效应、Purcell效应和辐 射效率变化三方面效应共同作用的结果,其中激发 场增强效应导致 800 nm 与 455 nm 发光强度之比 显著减小, Purcell 效应和辐射效率的变化则均导 致 800 nm 与 455 nm 发光强度之比显著增大. 激 发场增强效应导致 800 nm 与 455 nm 发光强度之 比显著减小的机制在于,800 nm 发光是双光子过 程而 455 nm 发光是四光子过程, 后者对激发强度 更为敏感; Purcell 效应导致 800 nm 与 455 nm 发 光强度之比显著增大的机制在于, Purcell 效应会 加快处于激发态³H₄的Tm³⁺离子的辐射跃迁速率, 从而一方面导致 800 nm 荧光量子效率的提升, 使 800 nm 处荧光增强, 另一方面则导致处于激发态 ${}^{3}\text{H}_{4}$ 的离子快速消耗,抑制其向更高的 ${}^{1}\text{D}_{2}$ 能级跃 迁, 使 455 nm 处荧光减弱; 辐射效率变化导致 800 nm 与 455 nm 发光强度之比显著增大的机制 在于 800 nm 处金纳米棒的远场辐射效率远高于 455 nm 处. 本研究有助于加深对上转换发光光谱 调控机理的理解,也为进一步深入开展单颗粒水平 的上转换发光调控研究提供了参考.

感谢哈尔滨工业大学化工与化学学院的陈冠英教授和 黄定听为本文工作提供稀土掺杂上转换纳米晶样品.

附录A 速率方程

Yb³⁺-Tm³⁺共掺杂纳米晶上转换发光过程可以通过如下速率方程描述^[46]:

$$\frac{d}{dt}n_{Yb1} = P_{Yb}n_{Yb0} - \gamma_{Yb}n_{Yb1} - (w_0n_0 + w_1n_1 + w_2n_2)n_{Yb1} + w_bn_2n_{Yb0}, \qquad (A1)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}n_1' = w_0 n_{\mathrm{Yb1}} n_0 - \beta_1' n_1' + \gamma_{31}' n_3, \qquad (A2)$$

$$\frac{d}{dt}n_{1} = -w_{1}n_{Yb1}n_{1} + \beta_{1}'n_{1}' + 2c_{1}n_{0}n_{2} + c_{2}n_{2}n_{3}
+ c_{3}n_{2}n_{3} - \gamma_{10}n_{1} + \gamma_{21}n_{2}
+ \gamma_{21}'n_{2}' + \gamma_{31}n_{3} + \gamma_{41}n_{4},$$
(A3)

$$\frac{\mathrm{d}}{\mathrm{d}t}n'_{2} = w_{1}n_{\mathrm{Yb}1}n_{1} - \beta'_{2}n'_{2} + c_{4}n_{0}n_{4} - \left(\gamma_{2'0} + \gamma'_{21}\right)n'_{2} + \gamma'_{42}n_{4}, \qquad (A4)$$

$$\frac{d}{dt}n_{2} = -w_{2}n_{Yb1}n_{2} + \beta_{2}'n_{2}' - c_{1}n_{0}n_{2} - c_{2}n_{2}n_{3} - c_{3}n_{2}n_{3} + c_{4}n_{0}n_{4} - (\gamma_{20} + \gamma_{21})n_{2} + \gamma_{32}n_{3} + \gamma_{42}n_{4} - w_{b}n_{Yb0}n_{2} - \gamma_{2}^{n}n_{2},$$
(A5)

$$\frac{d}{dt}n_3 = w_2 n_{Yb1}n_2 - c_2 n_2 n_3 - c_3 n_2 n_3 - \left(\gamma_{30} + \gamma_{31} + \gamma_{31}' + \gamma_{32}\right) n_3 - \gamma_3^{\text{nr}} n_3, \quad (A6)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}n_4 = c_2 n_2 n_3 + c_3 n_2 n_3 - c_4 n_0 n_4 \\ - \left(\gamma_{40} + \gamma_{41} + \gamma_{42'} + \gamma_{42}\right) n_4, \qquad (A7)$$

$$n_{\rm Yb0} + n_{\rm Yb1} = n_{\rm Yb},\tag{A8}$$

$$n_0 + n_1 + n_{1'} + n_2 + n_2' + n_3 + n_4 = n_{\text{Tm}}.$$
 (A9)

这里我们忽略被 980 nm 激光直接激发的 Tm³⁺离子.其中 $P_{Yb} = \sigma_{Yb}\rho/(h\nu)$ 表示 Yb³⁺离子的激发速率, σ_{Yb} 代表 Yb³⁺ 离子在 980 nm 处的吸收截面, ρ 代表 980 nm 激发光的功 率密度, $h \pi \nu$ 分别是普朗克常数和 980 nm 波长的光子频 率. $n_{Yb} \pi n_{Tm}$ 分别表示 Yb³⁺ 和 Tm³⁺的离子密度, n_{Ybi} (i = 0, 1)表示处于能级 ${}^{2}F_{7/2} \pi {}^{2}F_{5/2}$ 的 Yb³⁺离子密度. n_i (i = 0, 1, 1', 2, 2', 3, 4)表示处于能级 i的 Tm³⁺离子密度, w_i (i = 0, 1, 2)代表 Yb³⁺ \rightarrow Tm³⁺能量转移系数, w_b 表示 Tm³⁺ \rightarrow Yb³⁺能量转移回来的系数. γ_{Yb} 代表 Yb³⁺离子从 ${}^{2}F_{5/2}$ 能级 到 ${}^{2}F_{7/2}$ 能级的自发辐射跃迁速率. γ_{ij} (i = 1, 1', 2, 2', 3, 4; j = 0, 1, 1', 2, 2', 3)表示 Tm³⁺离子从能级 i到能级 j的自发 辐射跃迁速率. $\gamma_{2}^{rr} \pi \gamma_{3}^{rr}$ 分别代表 Tm³⁺离子能级 ${}^{3}H_{4} \pi$ ${}^{1}G_4$ 非辐射跃迁速率. β_i (i = 1', 2')代表处于能级 i的 Tm³⁺ 离子多光子弛豫速率. c_i (i = 1, 2, 3, 4)代表 Tm³⁺离子间 的交叉弛豫系数.模拟计算中所用到的参数如表 A1 所列.

Table A1. Parameters used in the rate equations.			
参数/单位	值	参数/单位	值
$n_{ m Yb}/(10^{22}~{ m cm}^{-3})$	1.2	$\gamma_{20}/{ m s}^{-1}$	425
$n_{ m Tm}/(10^{22}~{ m cm}^{-3})$	6.8	$\gamma_{21}/{ m s}^{-1}$	75
$\sigma_{ m Yb}/(10^{-20}~{ m cm^2})$	1	$\gamma_{20}^{\prime}/\mathrm{s}^{-1}$	2127.7
$w_0 /(10^{-17}~{ m cm}^3{ m \cdot s}^{-1})$	1.2	$\gamma_{21}^{\prime}/\mathrm{s}^{-1}$	1250
$w_1 / (10^{-16} \ { m cm}^3 {\cdot} { m s}^{-1})$	4.2	$\gamma_{30}/{ m s}^{-1}$	855.3
$w_2 /(10^{-18}~{ m cm}^3{ m \cdot s}^{-1})$	4.2	$\gamma_{31}/{ m s}^{-1}$	197.4
$w_{ m b}/(10^{-18}~{ m cm}^3{ m \cdot s}^{-1})$	1.1	$\gamma_{31}^\prime/{ m s}^{-1}$	210.5
$c_1/(10^{-18}~{ m cm^3\cdot s^{-1}})$	4.3	$\gamma_{32}/{ m s}^{-1}$	52.6
$c_2/(10^{-18}~{ m cm^3\cdot s^{-1}})$	5.3	$\gamma_{40}/{ m s}^{-1}$	8545.5
$c_3 / (10^{-18}~{ m cm}^3 {\cdot} { m s}^{-1})$	5.3	$\gamma_{41}/{ m s}^{-1}$	7272.7
$c_4 \ / (10^{-17} \ { m cm}^3 {\cdot} { m s}^{-1})$	1.5	$\gamma_{42}/{ m s}^{-1}$	545.5
$eta_1'/(10^4~{ m s}^{-1})$	3.4	$\gamma_{42}^{\prime}/\mathrm{s}^{-1}$	1636.4
$eta_2'/(10^5~{ m s}^{-1})$	5	$\gamma_2^{ m nr}/(10^5~{ m s}^{-1})$	1
$\gamma_{ m Yb}/{ m s}^{-1}$	476.2	$\gamma_3^{ m nr}/(10^3~{ m s}^{-1})$	2.5
$\gamma_{10}/{ m s}^{-1}$	162.6		

当纳米晶与等离激元纳米结构耦合后,不仅激发强度 会因局域场增强而增大,辐射跃迁速率也会因 Purcell 效应 而加快.具体地,激发强度 P_{Yb} 的增强倍数为 f_E^{980} ,所有的 辐射跃迁速率 γ_{Yb} 和 γ_{ij} (i = 1, 1', 2, 2', 3, 4; j = 0, 1, 1', 2, 2', 3) 的增强倍数为 f_P^{λ} . 这里 f_P^{λ} 为相应跃迁波长处的 Purcell 因子.

附录B 金纳米棒直径对纳米晶上转换 光谱调控的影响

图 B1 数值仿真了纳米晶与不同直径金纳米棒耦合前 后在 x 偏振激发下单颗粒纳米晶的功率相关荧光强度曲线. 从图中可以看到, 当金纳米棒的直径减小到 30 nm 或增大 到 50 nm 时, 金纳米棒对纳米晶上转换光谱调控效果仅有 数值上的差异, 调控规律并无显著变化.

图 B1 金纳米棒直径对纳米晶上转换荧光调控的影响. 仿真得到的同一颗纳米晶与不同直径金纳米棒耦合前和 耦合后的功率相关上转换荧光强度曲线.实线和虚线分别 表示 800 nm 和 455 nm 上转换发光.激发偏振为 x 偏振

Fig. B1. Influence of the diameter of the GNR on the upconversion luminescence modulation. Simulated excitationpower-dependent upconversion luminescence intensity curves for the UCNC before and after coupling with the GNR. Solid and dashed curves represent 800 nm and 455 nm emission respectively. The excitation polarization is *x*-polarization.

参考文献

- Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061
- [2] Wu S, Han G, Milliron D J, Aloni S, Altoe V, Talapin D V, Cohen B E, Schuck P J 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10917
- [3] Zhan Q, Liu H, Wang B, Wu Q, Pu R, Zhou C, Huang B, Peng X, Ågren H, He S 2017 Nat. Commun. 8 1058
- [4] Wang F, Wen S, He H, Wang B, Zhou Z, Shimoni O, Jin D 2018 Light-Sci. Appl. 7 18007
- [5] Chen G, Ohulchanskyy T Y, Liu S, Law W-C, Wu F, Swihart

M T, Ågren H, Prasad P N 2012 ACS Nano 6 2969

- [6] Vetrone F, Naccache R, Zamarron A, de la Fuente A J, Sanz-Rodriguez F, Maestro L M, Rodriguez E M, Jaque D, Sole J G, Capobianco J A 2010 ACS Nano 4 3254
- [7] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237
- [8] Meruga J M, Baride A, Cross W, Kellar J J, May P S 2014 J. Mater. Chem. C 2 2221
- [9] Liu H C, Jayakumar M K G, Huang K, Wang Z, Zheng X, Agren H, Zhang Y 2017 Nanoscale 9 1676
- [10] Ren W, Lin G, Clarke C, Zhou J, Jin D 2020 Adv. Mater. 32 1901430
- [11] Liu X, Chen Z H, Zhang H X, Fan Y, Zhang F 2021 Angew. Chem. Int. Ed. 60 7041
- [12] Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D 2018 Nat. Commun. 9 2415
- [13] Chen G, Ågren H, Ohulchanskyy T Y, Prasad P N 2015 Chem. Soc. Rev. 44 1680
- [14] Han S, Deng R, Xie X, Liu X 2014 Angew. Chem. Int. Ed. 53 11702
- [15] Gargas D J, Chan E M, Ostrowski A D, Aloni S, Altoe M V, Barnard E S, Sanii B, Urban J J, Milliron D J, Cohen B E, Schuck P J 2014 Nat. Nanotechnol. 9 300
- [16] Liu Q, Zhang Y X, Peng C S, Yang T S, Joubert L M, Chu S 2018 Nat. Photonics 12 548
- [17] Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X 2011 Nat. Mater. 10 968
- [18] Wu D M, Garcia-Etxarri A, Salleo A, Dionne J A 2014 J. Phys. Chem. Lett. 5 4020
- [19] Park W, Lu D, Ahn S 2015 Chem. Soc. Rev. 44 2940
- [20] Qin X, Neto A N C, Longo R L, Wu Y, Malta O L, Liu X 2021 J. Phys. Chem. Lett. 12 1520
- [21] Zhou Q, Lin S P, Zhang P, Chen X W 2019 Acta Phys. Sin.
 68 147104 (in Chinese) [周强, 林树培, 张朴, 陈学文 2019 物理
 学报 68 147104]
- [22] Aisaka T, Fujii M, Hayashi S 2008 Appl. Phys. Lett. 92 132105
- [23] Esteban R, Laroche M, Greffet J J 2009 J. Appl. Phys. 105 033107
- [24] Schietinger S, Aichele T, Wang H Q, Nann T, Benson O 2010 Nano Lett. 10 134
- [25] Zhang H, Li Y, Ivanov I A, Qu Y, Huang Y, Duan X 2010 Angew. Chem. Int. Ed. 49 2865
- [26] Deng W, Jin D, Drozdowicz-Tomsia K, Yuan J, Wu J, Goldys E M 2011 Adv. Mater. 23 4649
- [27] Zhang W, Ding F, Chou S Y 2012 Adv. Mater. 24 OP236
- [28] Greybush N J, Saboktakin M, Ye X, Della Giovampaola C, Oh S J, Berry N E, Engheta N, Murray C B, Kagan C R 2014 ACS Nano 8 9482
- [29] Zhan Q Q, Zhang X, Zhao Y X, Liu J, He S L 2015 Laser Photonics Rev. 9 479
- [30] Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W 2016 Adv. Mater. 28 2518
- [31] Kwon S J, Lee G Y, Jung K, Jang H S, Park J-S, Ju H, Han I K, Ko H 2016 Adv. Mater. 28 7899
- [32] Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y 2017 Adv. Funct. Mater. 27 1701842
- [33] Xue Y X, Ding C J, Rong Y Y, Ma Q, Pan C D, Wu E, Wu B T, Zeng H P 2017 *Small* 13 1701155
- [34] Das A, Mao C, Cho S, Kim K, Park W 2018 Nat. Commun. 9 4828
- [35] Wu Y, Xu J, Poh E T, Liang L, Liu H, Yang J K W, Qiu C W, Vallée R A L, Liu X 2019 Nat. Nanotechnol. 14 1110

- [36] Xu J H, Dong Z G, Asbahi M, Wu Y M, Wang H, Liang L L, Ng R J H, Liu H L, Vallee R A L, Yang J K W, Liu X G 2021 Nano Lett. 21 3044
- [37] He J, Zheng W, Ligmajer F, Chan C F, Bao Z, Wong K-L, Chen X, Hao J, Dai J, Yu S-F, Lei D Y 2017 *Light-Sci. Appl.* 6 e16217
- [38] Chen L, Rong Y, Ren M, Wu W, Qin M, Pan C, Ma Q, Liu S, Wu B, Wu E, Xu J, Zeng H 2018 J. Phys. Chem. C 122 15666
- [39] Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W 2019 Adv. Mater. 31 1807900
- [40] Sun Q C, Ding Y, Nagpal P 2019 ACS Appl. Mater. Interfaces 11 27011
- [41] Chen G, Ding C, Wu E, Wu B, Chen P, Ci X, Liu Y, Qiu J, Zeng H 2015 J. Phys. Chem. C 119 22604
- [42] Li H, Tan M L, Wang X, Li F, Zhang Y Q, Zhao L L, Yang C H, Chen G Y 2020 J. Am. Chem. Soc. 142 2023

- [43] Tang J W, Xia J, Fang M D, Bao F L, Cao G J, Shen J Q, Evans J, He S L 2018 Nat. Commun. 9 1705
- [44] Xia J, Tang J, Bao F, Sun Y, Fang M, Cao G, Evans J, He S 2020 Light-Sci. Appl. 9 166
- [45] Malta O L 2008 J. Non-Cryst. Solids 354 4770
- [46] Nadort A, Zhao J B, Goldys E M 2016 Nanoscale 8 13099
- [47] Purcell E M 1946 Phys. Rev. 69 681
- [48] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
- [49] Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press)
- [50] Sokolov V I, Zvyagin A V, Igumnov S M, Molchanova S I, Nazarov M M, Nechaev A V, Savelyev A G, Tyutyunov A A, Khaydukov E V, Panchenko V Y 2015 Opt. Spectrosc. 118 609
- [51] Zhang H, Li Y J, Lin Y C, Huang Y, Duan X F 2011 Nanoscale 3 963

Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity^{*}

Meng Yong-Jun Li Hong Tang Jian-Wei[†] Chen Xue-Wen[‡]

(School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China)

(Received 5 August 2021; revised manuscript received 24 September 2021)

Abstract

Plasmonic nanocavities can effectively modulate the upconversion luminescence properties of lanthanide doped upconversion nanocrystals (UCNCs), which not only enhances the luminescence intensity, but also modifies the luminescence spectrum. However, currently reported studies of upconversion luminescence spectrum modulation by using nanocavities are mainly based on ensemble experiments. Compared with ensemble experiments, single-particle experiments facilitate the comparative studies for the same upconversion nanocrystal and therefore the influence of inhomogeneity in ensemble samples can be avoided. Here in this work, we couple a single particle of Yb^{3+}/Tm^{3+} co-doped nanocrystal with a plasmonic nanocavity composed of a single gold nanorod by using the in-situ nano-manipulation technique based on an atomic force microscope. Experimentally, we compare the upconversion luminescence spectra, upconversion luminescence lifetimes and excitation-power dependent upconversion luminescence intensities of the same single nanocrystal before and after coupling with the single gold nanorod. The experimental measurements are consistent with the theoretical calculations from rate equations combined with electromagnetic simulations. The results indicate that the plasmaonic nanocavity modulated nanocrystal upconversion luminescence spectrum is the combined result of three effects: the excitation field enhancement effect, the Purcell effect and the change of radiation efficiency.

Keywords: upconversion nanocrystal, plasmonic nanocavity, spectrum modulation, nano-manipulationPACS: 78.67.Bf, 73.20.Mf, 33.50.Dq, 82.37.GKDOI: 10.7498/aps.71.20211438

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11874166, 12004130).

[†] Corresponding author. E-mail: phystang@hust.edu.cn

[‡] Corresponding author. E-mail: xuewen_chen@hust.edu.cn