物理学报Acta Physica Sinica

Institute of Physics, CAS

二维声子晶体中Zak相位诱导的界面态

高慧芬 周小芳 黄学勤

Zak phase induced interface states in two-dimensional phononic crystalsGao Hui-FenZhou Xiao-FangHuang Xue-Qin

引用信息 Citation: Acta Physica Sinica, 71, 044301 (2022) DOI: 10.7498/aps.71.20211642 在线阅读 View online: https://doi.org/10.7498/aps.71.20211642 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

基于二维声子晶体的大尺寸夹心式换能器的优化设计

Optimal design of large-sized sandwich transducer based on two-dimensional phononic crystal 物理学报. 2019, 68(2): 024303 https://doi.org/10.7498/aps.68.20181955

新型二维三组元压电声子晶体板的缺陷态及振动能量回收

Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate 物理学报. 2019, 68(23): 234206 https://doi.org/10.7498/aps.68.20190260

球形复合柱表面波声子晶体的带隙特性仿真

Numerical simulation study on band gap characteristics of surface phononic crystal with spherical composite column 物理学报. 2021, 70(14): 144301 https://doi.org/10.7498/aps.70.20210165

类声子晶体结构对超声塑料焊接工具横向振动的抑制

Suppression of lateral vibration in rectangular ultrasonic plastic welding tool based on phononic crystal structure 物理学报. 2018, 67(22): 224207 https://doi.org/10.7498/aps.67.20181150

新型二维压电声子晶体板带隙可调性研究

Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab 物理学报. 2018, 67(21): 214208 https://doi.org/10.7498/aps.67.20180611

流固耦合声子晶体管路冲击振动特性研究

Shock vibration characteristics of fluid-structure interaction phononic crystal pipeline 物理学报. 2020, 69(19): 194301 https://doi.org/10.7498/aps.69.20200414

二维声子晶体中 Zak 相位诱导的界面态*

高慧芬1)† 周小芳1) 黄学勤2)

(长治学院物理系,长治 046011)
(华南理工大学物理与光电学院,广州 510640)
(2021 年 9 月 5 日收到; 2021 年 10 月 21 日收到修改稿)

界面态具有巨大的实际应用价值,因此寻找界面态是一个既有科学意义也有应用前景的课题.在本文中,我们通过把二维正方晶格声子晶体的结构单元进行倾斜,构造出具有线性狄拉克色散的斜方晶格体系. 狄拉克色散引起体能带 Zak 相位的π跃变,使得位于狄拉克锥投影能带两边的带隙具有不同符号的表面阻抗,从而导致由正方晶体体系与由其"倾斜"的斜方晶格体系构成的界面处存在确定性的界面态.

关键词: 声子晶体, 线性色散, 界面态, Zak 相位 PACS: 43.40.+s, 43.20.+g, 43.35.+d

DOI: 10.7498/aps.71.20211642

1 引 言

界面态是指束缚在两种不同材料界面处传播 的态,其态分布沿着垂直于界面方向呈指数衰减. 由于局域的场增强效应和亚波长特性,界面态拥有 许多有趣的现象,并具有实际的应用价值[1-4].近 年来,受电子体系拓扑态研究的启发[5,6],拓扑声学 的概念也应运而生,并引起广泛关注¹⁷.作为经典 波体系的典型代表, 声子晶体是由质量密度和弹性 模量周期性排列而成的人工周期性结构晶体 [8]. 由 于其宏观尺寸,易于制备样品和实验测量,是一个 研究拓扑物态的良好平台. 根据体系体能带的闭合 情况,传统拓扑声子晶体可分为声学拓扑绝缘体和 声学拓扑半金属[9-21]. 声学拓扑绝缘体主要包括: 声学陈数拓扑绝缘体^[9-12]、声学量子自旋霍尔拓扑 绝缘体[13]、声学能谷拓扑绝缘体[14,15]和声学自旋 陈数拓扑绝缘体[16]; 而声学拓扑半金属主要包括: 声 学狄拉克半金属[17]、声学外尔半金属[18,19]和声学 节线简并拓扑半金属[20,21]. 根据体边对应关系, 这些 体系体能带的拓扑特性导致了不受缺陷和无序影 响的拓扑边界态的出现.这些边界态在信号处理、 声多功能器件设计等方面都具有潜在的应用价值.

线性狄拉克锥能带关系首次在石墨烯中被发 现,并伴随着许多奇特的输运现象,如 Zitterbewegung 颤动^[22]、Klein 隧穿等^[23]. 由于狄拉克点拥有 π Berry 相位,随着参数的变化,体系从带隙的打开到关闭 (出现狄拉克点),再到带隙的打开,这个变化过程 往往会伴随拓扑相变的发生,于是,也可利用它来 实现界面态. 研究表明, 根据体能带 Zak 相位与表 面阻抗的关系,构成界面的两个体系体能带 Zak 相位的跃变能导致界面态的出现,这些体系包括: 布里渊区中心处存在类狄拉克点体系^[24]、正反结 构构成体系^[25]、原结构与其平移结构构成体系等^[26]. 众所周知,蜂巢结构体系由于对称性的保证,具有 确定性的线性狄拉克点. 通过改变最近邻相互作 用,可以实现狄拉克在对称性线方向上的移动,利 用狄拉克点的这种移动,可以实现赝磁场,从而实 现朗道能级[27,28].

本工作将研究正方晶格体系中由对称性保证

© 2022 中国物理学会 Chinese Physical Society

^{*} 长治学院国家自然科学基金资金项目院级子项目 (批准号:GZRZ2020002)、山西省高等学校科技创新项目 (批准号: 2019L905) 和山西省教育科学规划 (批准号:HLW-20121) 资助的课题.

[†] 通信作者. E-mail: huifen_gao@163.com

的二次型狄拉克点, 通过"倾斜"正方晶格形成斜方 晶格, 导致二次型狄拉克点演变成一对线性狄拉克 点.体能带在经过线性狄拉克点时发生能带翻转, 导致能带的几何相位出现π的跃变.于是, 被狄拉 克点投影能带分隔开的两部分带隙具有相反的表 面阻抗虚部, 从而保证由正方晶格与斜方晶体体系 构成的界面处一定存在界面态.该界面态同时也能 通过单一结构单元体能带的几何相位来解释.值得 一提的是, 这些界面态的实现并不需要改变结构单 元中散射体的材料参数和几何形状, 只需要通过将 正方晶格倾斜为斜方晶格即可获得, 这极大方便了 样品的制备和实验的测量.

2 声子晶体的体能带

首先构造晶格常数为 *a* 的二维正方晶格声子 晶体,其由半径 *R* = 0.15*a* 的橡胶圆柱置于水中所 构成.需要指出的是在数值模拟中,没有考虑橡胶 的黏弹性. 声子晶体的体能带如图 1(a) 所示. 由于 受*C*_{4v}对称性的保护, 在布里渊区的 *M* 点会出现二 重简并的二次型色散关系, 如图 1(a) 中的第一和第 二条能带所示. 为了形象展示这种色散关系, 图 1(b) 画出了 *M* 点附近的三维能带结构. Chong 等^[29]的 研究工作表明: *M* 点的二重简并点是一个二次型 狄拉克点, 具有 2π的 Berry 相位. 如果通过拉伸或 压缩体系来破坏*C*_{4v}对称性, 二次型狄拉克点就会 转变成—对线性狄拉克点.

本工作中, 在保持原胞边长不变的前提下, 把 正方晶体体系倾斜成斜方晶格体系, 从而打破体系 的 C_{4v} 对称性, 如图 2(a) 中的左插图所示. 对于倾 斜角 $\alpha = 70^{\circ}$ 时, 声子晶体的体能带如图 2(a) 所示. 其中, 在 K_1 - Γ 方向上, K_1 点附近存在二重简并的 线性色散关系, 其放大图如图 2(a) 中的右插图所 示. 这个线性狄拉克点产生机理与文献 [29] 一样. 斜方晶格的第一布里渊区如图 2(b) 所示. 图 2(c) 是狄拉克点附近的三维色散关系.

图 1 (a) 二维正方晶格声子晶体的能带结构, 插图是原胞示意图; (b) *M*点附近的三维能带结构, 对应于图 (a) 中的虚线区域. 橡胶与水的质量密度和声速分别为: $\rho = 1.3 \times 10^3 \text{ kg/m}^3$, v = 500 m/s; $\rho_0 = 1.0 \times 10^3 \text{ kg/m}^3$, $v_0 = 1500 \text{ m/s}$

Fig. 1. (a) Bulk band structure of a two-dimensional phononic crystal with a square lattice, consisting of a rubber cylinder in water. Inset: the unit cell. (b) 3 D bulk band structure around the *M* point, corresponding to the dashed region in (a). Here, the lattice constant and the radius of the cylinder are a = 1 m, and R = 0.15a, respectively. The mass densities and sound velocity of the rubber and water are: $\rho = 1.3 \times 10^3 \text{ kg/m}^3$, v = 500 m/s; and $\rho_0 = 1.0 \times 10^3 \text{ kg/m}^3$, $v_0 = 1500 \text{ m/s}$, respectively.

图 2 (a) 倾斜角 α = 70° 的斜方晶格体系的能带结构, 左插图是二维斜方晶格声子晶体的原胞, 右插图表示虚线区域的放大能带结构; (b) 斜方晶格的第一布里渊区; (c) 线性狄拉克点附近的三维能带结构, 对应图 (a) 中的虚线区域

Fig. 2. (a) Bulk band structure of an oblique lattice with the tilted angle $\alpha = 70^{\circ}$, Inset: the unit cell (left); the enlarged band structure around the Dirac point near K_1 point (right); (b) first Brillouin zone of the oblique lattice; (c) 3D bulk band structure around the Dirac point, corresponding to the dashed region in (a).

由于线性狄拉克点的特性,我们不禁要问:如 果把体能带沿某一方向(例如:x方向)作投影,狄 拉克锥的投影能带将把带隙分成左右两部分,这两 部分带隙的特性是一样的吗?众所周知,在无损耗 体系中,以体系的某一方向构造一界面,导带具有实 的表面阻抗,即: $Im(Z(\omega,k_{//})) = 0$,而带隙则具有 纯虚数的表面阻抗,即: $Im(Z(\omega,k_{//})) \neq 0$.换句话 说,线性狄拉克锥分隔开的这两部分带隙具有相同 符号的 $Im(Z(\omega,k_{//}))$ 吗?如果不是,那么根据界面态 的表面阻抗理论,只要满足 $Z_U(\omega,k_{//})+Z_L(\omega,k_{//}) =$ 0,则界面处一定存在界面态.其中, $Z_L(\omega,k_{//})$ 和 $Z_U(\omega,k_{//})分别表示在某一特定频率 <math>\omega$ 和平行于界 面的波矢 $k_{//}$ 的情况下,界面两边体系的表面阻抗. 也就是说,通过利用狄拉克锥两边不同符号的表面 阻抗,有可能构造出界面态.

3 声子晶体的界面态

正方晶格沿 *x*方向的投影能带如图 3(a) 所示. 首先通过把该声子晶体与水构成一个沿 *x*方向的 界面,可以计算此时投影能带不同区域的表面阻 抗. 由图 3(a) 可见,在导带的投影区域, Im(*Z*) = 0,

而在第一和第二带隙区域, Im(Z)分别小于 0 和大 于 0. 然后利用同样的方法, 计算 $\alpha = 70^{\circ}$ 时的斜方 晶格声子晶体沿 x方向的投影能带, 如图 3(b) 所 示. 类似地, 在导带的投影区域, Im(Z) = 0, 第一 带隙区域的Im(Z)还是小于0:不同的是,在斜方晶 格中的第二带隙被狄拉克锥投影分成两个区域,其 中, 左边区域的 Im(Z)仍然大于 0, 而右边区域的 Im(Z)则小于 0. 这验证了我们之前提出的设想: 狄 拉克锥把原来的带隙分成两个性质不同的带隙.需 要指出的是: 对于给定的 $k_{//}$,在Im($Z(\omega, k_{//})$) < 0带 隙中,随着频率的增大, $Im(Z(\omega, k_{//}))$ 从0到 $-\infty$ 单调 递减, 而在 $Im(Z(\omega, k_{//})) > 0$ 的带隙中, $Im(Z(\omega, k_{//}))$ 随频率增大从+∞单调递减到 0^[24,25]. 此外, 正方 晶格和斜方晶格体系在频率950 Hz 附近具有两个 共同的带隙, 左边共同带隙的 $Im(Z(\omega, k_{//}))$ 都大于 0, 而右边共同带隙具有相反符号的 $Im(Z(\omega, k_{//}))$. 因此,如果把这两个体系沿着 x方向构成一个界 面 (如图 3(d) 左图所示), 界面处一定存在界面态. 图 3(c) 是界面态的投影色散, 其中粉色线表示界 面态的色散.同时,图 3(d) 右图显示了处于频率 937.4 Hz的界面态声压场本征态分布. 由图中可清

图 3 (a) 正方晶格声子晶体沿 x方向的投影能带; (b) 倾斜角 α = 70°的斜方晶格声子晶体沿 x方向的投影能带, Im (Z) 表示表面阻抗的虚部; (c) 由上述两个声子晶体构成的沿 x方向界面的界面态色散关系, 粉色线表示界面态色散; (d) 正方晶格和斜方晶格声子晶体构成的沿 x方向的界面 (左图), 频率为 937.4 Hz 的界面态本征声压场分布 (右图)

Fig. 3. (a)Projected band structures along the k_x direction of the phononic crystals with a square lattice; (b) projected band structures along the k_x direction of phononic crystals with an oblique lattice of $\alpha = 70^{\circ}$, Im(Z) represents the imaginary part of surface impedance; (c)interface state dispersion along the k_x direction of the interface constructed by two phononic crystals with the square and oblique lattices, the pink lines denote the interface states; (d) the interface constructed by two phononic crystals with the square and oblique lattices(left), the eigen pressure field distribution of the interface state at 937.4 Hz (right).

图 4 倾斜角 $\alpha = 70^{\circ}$ 的斜方晶格声子晶体在 $k_x = 0.6 \pi/a$ (a) 和 $k_x = 0.85 \pi/a$ (b) 时沿 k_y 方向的体能带; (c) 在 $k_x = 0.85 \pi/a$ 时, 正方晶格声子晶体沿 k_y 方向的体能带,其中红色区域和蓝色区域分别表示 Im (Z) < 0 和 Im (Z) > 0

Fig. 4. Bulk band structures along the k_y direction of the phononic crystal with an oblique lattice with $\alpha = 70^{\circ}$ for $k_x = 0.6 \pi/a$ (a) and $k_x = 0.85 \pi/a$ (b); (c) bulk band structures along the k_x direction of the phononic crystal with a square lattice for $k_x = 0.85 \pi/a$. The red and blue regions represent Im (Z) < 0 and Im (Z) > 0, respectively.

晰看出, 声压场局域在界面上, 并沿垂直于界面的 方向指数衰减.

除了利用表面阻抗理论来判定界面态的存在 与否,还可利用体能带的几何相位来预测界面态的 存在^[30].这样就可以通过体系的一个结构单元的 信息来预测界面态的存在性,不需要构造实际的界 面结构来进行相应的全波数值模拟,节省了计算内 存和时间.基于前期的研究可知,两个相邻带隙 Im (*Z*(ω ,*k*//))符号的比值与体能带的 Zak 相位之 间的关系可表示为^[30]

$$\frac{\operatorname{Sgn}\left[\operatorname{Im}\left[Z_{i}(\omega, k_{//})\right]\right]}{\operatorname{Sgn}\left[\operatorname{Im}\left[Z_{i-1}(\omega, k_{//})\right]\right]} = e^{i(\varphi_{i-1} + \pi)}, \qquad (1)$$

其中, $Z_i(\omega, k_{//})$ 和 $Z_{i-1}(\omega, k_{//})$ 分别是两个相邻带 隙的表面阻抗, φ_i 是这两个带隙之间体能带的 Zak 相位.因为最低带隙 $Im(Z(\omega, k_{//}))$ 总是负的,所以 只要知道每条体能带的 Zak 相位, 相应地就可以 通过 (1) 式来确定其他带隙 $Im(Z(\omega, k_{//}))$ 的符号. 固定 $k_{//} = k_x$,可以得到体系沿 k_y 方向的体能带. 根据图 2(a) 体能带中狄拉克点的位置, 可以分别 得到 k// < k_{D,x} (狄拉克点左边) 和 k// > k_{D,x} (狄拉 克点右边)的体能带,如图 4(a) 和 4(b) 所示. 最低 能带的 Zak 相位都是π, 而第二条能带的 Zak 相位 则分别是0和 π ,这是由于从 $k_{//} < k_{D,x}$ 变化到 $k_{//} > k_{D,x}$ 时,经历了能带的翻转,从而导致 Zak 相 位的跳变.利用(1)式,就可得到第二和第三带隙 $Im(Z(\omega, k_{//}))$ 的符号. 对于 $k_{//} < k_{D,x}$ 情况, 第三带 隙的 $\operatorname{Im}(Z(\omega, k_{//})) > 0$, 而对于 $k_{//} > k_{D,x}$ 情况, $Im(Z(\omega, k_{//})) < 0.$ 同时也计算了正方晶格固定

 $k_{//} = k_x$ 情况下的体能带以及相应的 Zak 相位,如 图 4(c) 所示. 其最低两个带隙的 Im($Z(\omega, k_{//})$) < 0, 而最高带隙的 Im($Z(\omega, k_{//})$) > 0. 这些结果与图 3 中通过全波数值模拟得到的结果完全一致. 仔细比 较图 4(b) 和 4(c),可以发现在频率950 Hz 附近,两 个体能带存在共同带隙,而且对应 Im($Z(\omega, k_{//})$)的 符号正好相反. 因此,可以判断它们之间一定存在 界面态.

在上述讨论中,选择了倾斜角 $\alpha = 70^{\circ}$ 的斜方 晶格.事实上,对于固定大小的圆柱体,倾斜角 α 可以从 20°到 90°变化.图 5 是由 $\alpha = 50^{\circ}$ 的斜方晶 格与正方晶格构成的界面的界面态色散,除了发现 由于狄拉克点引起的界面态(粉色线)之外,在低 频处还存在额外的界面态色散(绿色线).该界面态 色散的存在同样可以由体能带的 Zak 相位来解释.

图 5 由 α = 50° 斜方晶格与正方晶格声子晶体构成的沿 x方向界面的界面态色散, 红色线和绿色线分别表示两个 共同带隙中的界面态色散

Fig. 5. Interface state dispersion along the k_x direction of the interface constructed by two phononic crystals with the square and oblique lattices with $\alpha = 50^{\circ}$, the red line and the green line represent the interface state dispersion in the two common band gaps, respectively. 基于能带翻转的思路,本文结论可以拓展到固体-固体体系中.将铁柱子置于环氧树脂中进行周期性排列,构成晶格常数为a = 1m的二维声子晶体.其中,铁柱子的半径R = 0.215a,铁与环氧树脂的质量密度分别为: $\rho_{Fe} = 7.7 \times 10^3$ kg/m³; $\rho_{EP} = 1.18 \times 10^3$ kg/m³,它们的纵波声速和横波声速分别为: $v_{I-Fe} = 5850$ m/s, $v_{I-Fe} = 3230$ m/s; $v_{I-EP} = 2605$ m/s, $v_{I-Fe} = 1068$ m/s.正方晶格和斜方晶格($\alpha = 70^\circ$)结构的体能带如图 6(a)和 6(b)所示. 二次型狄拉克点和线性狄拉克点仍然存在.同样将这两种声子晶体构成沿 x方向的界面,虽然共同带

图 6 铁柱子在环氧树脂中周期性排列构成二维声子晶体 (a) 二维正方晶格声子晶体的能带结构; (b) 倾斜角 α = 70°的斜方晶格体系的能带结构; (c) 由上述两个声子 晶体构成的沿 *x*方向界面的界面态色散关系 (左),粉色线 表示界面态色散,频率为 529.6 Hz的界面态本征位移场分 布 (右)

Fig. 6. Two-dimensional phononic crystals are constructed by steel cylinders in epoxy: (a) Bulk band structure of a square lattice; (b) bulk band structure of an oblique lattice with the tilted angle $\alpha = 70^{\circ}$; (c) the interface state dispersion along the k_x direction of the interface constructed by these two phononic crystals(Left), the pink line denotes the interface states, the eigen displacement field distribution of the interface state at 529.6 Hz (right). 隙很小,但是界面态仍然存在,如图 6(c) 左图的粉 色线所示.此外,图 6(c) 右图清晰地展示了频率为 529.6 Hz的界面态本征位移场分布.

4 结 论

本文提出了在二维正方晶格声子晶体与其倾 斜结构所形成的界面处一定存在界面态.该界面态 的存在既可以通过表面阻抗的理论来解释,也可以 通过单一结构单元体能带的 Zak 相位来判定.界 面态作为波传输能量的重要途径,具有广泛的应用 前景.这种构造确定性界面态的方法可以推广到其 他的经典波体系中.

参考文献

- [1] Wu F, Liu Z, Liu Y 2002 Phys. Rev. E 66 046628
- [2] Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, Sheng P 2005 *Phys. Rev. B* 72 064306
- [3] Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744
- [4] Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103
- [5] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
- [6] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
- [7] Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97
- [8] Sigalas M, Economou E 1992 J. Sound Vib. 158 377
- [9] Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301
- [10] Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260
- [11] Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 *Phys. Rev. Lett.* **122** 014302
- [12] Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016
- [13] He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124
- [14] Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901
- [15] Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369
- [16] Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227
- [17] Xie B, Liu H, Cheng H, Liu Z, Tian J, Chen S 2020 Light Sci. Appl. 9 201
- [18] Xiao M, Chen W, He W, Chen C T 2015 Nat. Phys. 11 920
- [19] Li F, Huang X, Lu J, Ma J, Liu Z 2018 Nat. Phys. 14 30
- [20] Deng W, Lu J, Li F, Huang X, Yan M, Ma J, Liu Z 2019 Nat. Commun. 10 1769
- [21] Lu J, Huang X, Yan M, Li F, Deng W, Liu Z 2020 Phys. Rev. Appl. 13 054080
- [22] Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419
- [23] Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

- [24] Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423
- [25] Huang X, Yang Y, Hang Z H, Zhang Z Q, Chan C T 2016 *Phys. Rev. B* **93** 085415
- [26] Yang Y, Xu T, Xu Y F, Hang Z H 2017 Opt. Lett. 42 3085
- [27] Guinea F, Katsnelson M I, Geim A K 2009 Nat. Phys. 6 30
- [28] Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F, Liu Z 2019 Nat. Phys. 15 352
- [29] Chong Y D, Wen X G, Soljacic M 2008 Phys. Rev. B 77 235125
- [30] Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

Zak phase induced interface states in two-dimensional phononic crystals^{*}

Gao Hui-Fen^{1)†} Zhou Xiao-Fang¹⁾ Huang Xue-Qin²⁾

1) (Department of Physics, Changzhi University, Changzhi 046011, China)

2) (School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China)

(Received 5 September 2021; revised manuscript received 21 October 2021)

Abstract

Interface states have great practical applications, therefore, searching for the existence of interface states has both scientific significance and application prospects. In this work, we tilt the structure unite of twodimensional phononic crystal with a square lattice to construct an oblique lattice possessing linear Dirac dispersion. The Dirac dispersion gives rise to a π jump of the Zak phases of the bulk bands, so that the projected band gaps at both sides of the Dirac cone have opposite signs of surface impedance, resulting in deterministic interface states at the interface formed by the phononic crystal with a square lattice and its tilted oblique lattice system.

Keywords: phononic crystal, linear dispersion, interface state, Zak phasePACS: 43.40.+s, 43.20.+g, 43.35.+dDOI: 10.7498/aps.71.20211642

^{*} Project supported by the College-level Sub-projects of Changzhi University of National Natural Science Foundation of China(Grant No. GZRZ2020002), Science and Technology Innovation Project of Colleges and Universities in Shanxi Province, China (Grant No. 2019L905), and Education Science Planning Project of Shanxi Province, China (Grant No. HLW-20121).

 $[\]dagger$ Corresponding author. E-mail: huifen_gao@163.com