物理学报Acta Physica Sinica

Institute of Physics, CAS

二维范德瓦尔斯异质结构的制备与物性研究

吴燕飞 朱梦媛 赵瑞杰 刘心洁 赵云驰 魏红祥 张静言 郑新奇 申见昕 黄河 王守国

The fabrication and physical properties of two-dimensional van der Waals heterostructures Wu Yan-Fei Zhu Meng-Yuan Zhao Rui-Jie Liu Xin-Jie Zhao Yun-Chi Wei Hong-Xiang Zhang Jing-Yan Zheng Xin-Qi Shen Jian-Xin Huang He Wang Shou-Guo

引用信息 Citation: Acta Physica Sinica, 71, 048502 (2022) DOI: 10.7498/aps.71.20212033 在线阅读 View online: https://doi.org/10.7498/aps.71.20212033 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

二维材料的转移方法

Methods of transferring two-dimensional materials 物理学报. 2021, 70(2): 028201 https://doi.org/10.7498/aps.70.20201425

二维平面和范德瓦耳斯异质结的可控制备与光电应用

Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures 物理学报. 2021, 70(2): 027901 https://doi.org/10.7498/aps.70.20201419

二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展

Recent progress of transfer methods of two-dimensional atomic crystals and high-quality electronic devices 物理学报. 2021, 70(13): 138202 https://doi.org/10.7498/aps.70.20210929

准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱

Quasi-two-dimensional van der Waals semiconducting magnet CrSiTe, studied by using THz spectroscopy

物理学报. 2020, 69(20): 207302 https://doi.org/10.7498/aps.69.20200682

应力调控BlueP/XTe₂ (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究

Tunable electronic structure and optical properties of BlueP/X Te₂ (X = Mo, W) van der Waals heterostructures by strain

物理学报. 2021, 70(6): 067101 https://doi.org/10.7498/aps.70.20201728

电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控

Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field 物理学报. 2020, 69(15): 157302 https://doi.org/10.7498/aps.69.20191987 综述

二维范德瓦尔斯异质结构的制备与物性研究*

吴燕飞^{1)#} 朱梦媛^{1)#} 赵瑞杰¹) 刘心洁¹) 赵云驰²) 魏红祥²) 张静言¹) 郑新奇¹) 申见昕¹) 黄河¹) 王守国¹)[†]

1) (北京科技大学材料科学与工程学院材料物理与化学系,北京 100083)

2) (中国科学院物理研究所/北京凝聚态物理国家研究中心,北京 100190)

(2021年11月2日收到; 2021年12月1日收到修改稿)

二维范德瓦尔斯材料(可简称二维材料)已发展成为备受瞩目的材料大家族,而由其衍生的二维范德瓦 尔斯异质结构的集成、性能及应用是现今凝聚态物理和材料科学领域的研究热点之一.二维范德瓦尔斯异质 结构为探索丰富多彩的物理效应和新奇的物理现象,以及构建新型的自旋电子学器件提供了灵活而广阔的 平台.本文从二维材料的转移技术着手,介绍二维范德瓦尔斯异质结构的构筑、性能及应用.首先,依据湿法 转移和干法转移的分类,详细介绍二维范德瓦尔斯异质结构的制备技术,内容包括转移技术的通用设备、常 用转移方法的具体操作步骤、三维操纵二维材料的方法、异质界面清洁.随后介绍二维范德瓦尔斯异质结构 的性能和应用,重点介绍二维磁性范德瓦尔斯异质结构,并列举在二维范德瓦尔斯磁隧道结和摩尔超晶格领 域的应用.因此,二维材料转移技术的发展和优化将进一步助力二维范德瓦尔斯异质结构在基础科学研究和 实际应用上取得突破性的成果.

关键词:二维材料,范德瓦尔斯异质结构,转移方法,自旋电子学器件 PACS: 85.40.Hp, 42.82.Cr, 68.65.-k, 79.60.Jv DOI: 10.74

DOI: 10.7498/aps.71.20212033

1 引 言

石墨烯的发现开启了二维范德瓦尔斯材料 (可 简称二维材料)的研究热潮,性质各异的二维材料 已经形成一个庞大的材料家族^[1-3],拥有丰富的电子 能带特性,比如金属 (例如 VSe₂、NbSe₂、Fe₃GeTe₂)、 半导体 (例如 MoS₂、WSe₂、黑磷)、绝缘体 (例如 h-BN、Bi₂Se₃、WTe₂)性质^[4,5],同时兼具本征磁性^[3,6-9] 或拓扑学特性^[4,10].二维材料具有不同于体相材料 的电子结构、比表面积、量子效应等新奇的性质, 使其可广泛应用于电子/光电子、催化、储能、生物 医学等众多领域^[11-13]. 二维范德瓦尔斯异质结构 (two-dimensional van der Waals heterostructures, 2D vdWHs)是 把不同的二维材料通过层间范德瓦尔斯力在垂直 方向上层层堆叠形成的异质结构.制备范德瓦尔 斯异质结构就像制作三明治一样可以将原材料随 意堆叠组合,而不用考虑晶格失配的问题.种类繁 多的二维材料为制备 2D vdWHs 提供了一个广阔 的材料基础.基于二维材料可剥离至不同原子层厚 度的特点,可以采用新型的薄膜异质结构制备技 术——二维材料的转移技术来制备原子级厚度且 性质各异的 2D vdWHs.这种制备范德瓦尔斯异 质结构的转移技术使得材料结构设计更简单,能制 备种类繁多的异质结构功能层,而且能为解决高性

© 2022 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 51625101, 51971026, 52071026, 52130103, 12174426) 和中央高校基本科研业务费 (批准号: 06500140, FRF-MP-20-05) 资助的课题.

[#] 同等贡献作者.

[†] 通信作者. E-mail: sgwang@ustb.edu.cn

能的二维器件的制造问题提供新途径.

与外延生长的异质界面不同,二维范德瓦尔斯 异质界面不存在共价键, 而是靠层间的范德瓦尔斯 力结合形成异质结构,因此制备过程中不受晶格匹 配的限制. 通过剥离可以获得单层或几个原子层厚 度的二维材料,这方便制备锐利的界面且无界面悬 挂键的范德瓦尔斯异质结构.利用石墨烯的费米能 级和功函数可栅压调节的特点,石墨烯常作为金属 电极和二维半导体材料之间的接触以减小接触电 阻,可用于解决二维半导体材料的电学接触问题¹⁴. 这种通过转移堆叠使石墨烯与二维半导体材料形 成范德瓦尔斯接触,再连接金属电极的方式能实现 良好的二维半导体电学接触,极大促进了二维半导 体的电学输运性质研究, 例如观察到 InSe 中的整 数量子霍尔效应^[15], NbSe₂的超导特性^[16]. 而且利 用超高载流子迁移率的特性,石墨烯作为接触电极 能减少半导体材料内的横向扩散[17],有效地提高 二维光电探测器的响应速度[18].此外,这种制备范 德瓦尔斯异质结构的转移技术也可以把预先图案 化的金属电极转移到二维材料上或二维材料转移 到金属电极上,从而形成范德瓦尔斯接触^[19-21],这 避免了传统的沉积金属电极工艺使界面处产生大 量的缺陷、金属扩散和应变,从而避免出现缺陷态 诱导的费米能级钉扎[21]. 二维磁性材料厚度依赖 的磁各项异性、磁相变温度等磁学特性,为调制磁 阻提供了更多可能[22]. 二维材料还具有丰富的能 带结构特性¹¹,例如石墨烯的零带隙、六方氮化硼 (hexagonal boron nitride, h-BN) 等二维绝缘体的 大带隙、以及过渡金属硫化物半导体中可调直接至 间接带隙等多样的能带结构特性,使得 2D vdWHs 在调整其电子特性方面具有极大的灵活性. 总之, 2D vdWHs不受晶格匹配的限制,可逐层控制厚 度、界面形貌、磁学特性、能带结构等特性,在解决 晶格失配和电导失配导致的接触问题,超薄绝缘层 的漏电流问题,异质界面性能的可优化程度上具备 优势.

各种类型的二维材料通过转移技术可堆叠形 成性质各异的 2D vdWHs,为探索丰富多样的物 理效应和新奇的物理现象提供了可靠的平台.而 且,这种 2D vdWHs 易于通过磁场、电压、应力和 光辐射等外部手段调控界面效应,有利于构建高性 能的微纳功能器件^[11,12,23,24].截至目前,具有基础 研究和实际应用价值的 2D vdWHs 已经被实现或 提出,包括隧穿晶体管、光电检测器、忆阻器和磁存储单元等,在自旋电子学、光电子学、谷电子学、转角电子学和超导体等领域展现巨大的应用潜力^[14,25-28].

基于此,本文首先介绍二维材料的转移技术, 侧重在 2D vdWHs 的制备技术:通用设备、湿法转 移技术、干法转移技术、三维操纵二维材料的转移 方法、2D vdWHs 的界面清洁.随后介绍基于这种 转移技术制备的 2D vdWHs 的性能及应用,重点 关注基于二维磁性材料构建的二维磁性范德瓦尔 斯异质结构,以及 2D vdWHs 在磁隧道结、摩尔超 晶格领域的典型应用.

2 2D vdWHs 的制备技术

二维材料的转移技术可以把二维材料从生长 基底转移到目标基底进行表征测量,或者转移堆叠 多种二维材料来制备 2D vdWHs. 现有的转移技 术可分为湿法转移技术和干法转移技术. 干法转移 技术是指在转移过程中待转移的二维材料没有暴 露或直接暴露在溶液中,例如刻蚀液,而多聚物作 为转移介质可阻止二维材料被液体污染. 湿法转移 技术是指转移过程中二维材料需要在溶液中与原 基底分离,再转移到另一目标基底,例如,化学气 相沉积法 (chemical vapor deposition, CVD) 在 Cu 或 Ni 衬底上生长的单层石墨烯通过湿法转移技术 转移到 SiO₂/Si 等任意衬底. 这两种转移技术根据 转移过程中采用的不同转移介质材料或不同的化 学过程,可进一步细分为多种转移方法.湿法转移 技术主要分为基底刻蚀法[29-34]、液体楔入的转移 法[35-38]、电化学鼓泡法[39-41]、乙醇辅助转移法[42] 等;干法转移技术可分为基于聚二甲基硅氧烷 (Polydimethylsiloxane, PDMS) 的全干性转移法 (也称 为 PDMS 剥离的转移法或 PDMS 辅助的转移 法)[43,44]、范德瓦尔斯作用力拾取的转移法[45-48]、 热塑性牺牲层的方法 (thermoplastic sacrificial laver method)^[49]、卷对卷 (roll to roll) 转移法^[50] 等.

在制备 2D vdWHs 的过程中,通常是把微机 械剥离法或 CVD 法制备的二维材料转移到目标 衬底的特定位置,并精准地把不同二维材料垂直堆 叠成异质结构.这个转移过程通常需要一个配置有 长工作距离的光学显微系统与三维微操纵平台相 结合,同时还需要加热温控装置,以及某些聚合物 层作为转移介质.目前,有几种比较常用的聚合物 类型: 聚甲基丙烯酸甲酯 (polymethyl methacrylate, PMMA)/牺牲层 (牺牲层一般选择水溶性的多聚 物)[51], 热塑性聚合物[49]、黏弹性的 PDMS[44,52]、复 合聚合物 PDMS/PPC [47,48,53] 或 PDMS/PC [46]. 其 中, PPC 是聚碳酸亚丙酯 (poly-propylene carbonate) 的简称, 是一种玻璃化温度在 37—41 °C 的热塑性 材料. PC 是聚碳酸酯 (polycarbonate) 的简称, 是 玻璃化温度在 150°C 左右的一类分子链中含有碳 酸酯结构的高分子聚合物.在有些转移过程中,聚 合物层作为转移介质能避免二维材料与液体的直 接接触,二维材料可以不暴露或不直接暴露于液体 中,减少溶液对二维材料的污染.以 PMMA/牺牲 层作为转移介质, 牺牲层一般采用能被水溶解的水 溶层, 例如, 聚乙烯醇 (Polyvinyl alcohol, PVA)、 Mitsubishi Rayon aquaSAVE. 在有些文献中, 干 法转移技术定义为在转移过程中待转移的二维材 料没有暴露或直接暴露在化学溶液中,因此在转移 过程只用到水溶液的方法也被归属于干法转移技 术[54,55]. 在本文中, 我们把转移过程中用到水溶液 的方法归属于湿法转移技术.

在这一部分,我们将介绍制备 2D vdWHs 的 二维材料转移技术,从转移技术所需的通用设备着 手,再详细介绍目前常用的多种转移方法、三维操 纵二维材料的转移方法、2D vdWHs 的界面清洁, 为制备不同类型的 2D vdWHs 提供技术参考.

2.1 转移技术的通用设备

在二维材料的转移过程中, 经常需要用到如 图 1 所示的设备, 即光学显微系统和三维微操纵系 统组合的转移平台. 该平台包括一台配置有长物镜 工作距离和显微相机的光学显微镜、衬底载物台 (可 XY方向两轴平移)、转移支架 (或称为载玻片 移动台, 可 XYZ 三轴移动)、显示器、电脑主机. 其 中, 衬底载物台连接加热系统且由真空卡盘辅助固 定衬底样品, 转移支架用于夹住粘有聚合物转移介 质的载玻片. 此转移平台常用于干法转移, 流程大 致如下:

 二维材料直接微机械剥离到聚合物转移介 质上,或者聚合物转移介质先粘取衬底上的二维 材料;

2) 衬底平台上放置含有另一个二维材料的衬 底样品;

Fig. 1. Schematic diagram of the experimental setup for dry transfer.

3)缓慢下降转移支架上的二维材料直至接触 另一个二维材料,在此过程中反复对齐两种二维材料的位置;

4) 热释放转移介质上的二维材料于另一个二 维材料上, 或者加热使得转移介质上的多聚物和二 维材料留在另一个二维材料上.

当范德瓦尔斯异质结构中包含对大气、水分等 敏感的二维材料时,通常将上述转移平台系统放置 于充满惰性气体 (一般为高纯氩气)的手套箱中, 可以最大程度地减少氧气和水对二维材料结构和 性能的影响.因此,手套箱内的转移平台不适用于 液体辅助的转移方法.需要指出的是,尽管手套箱 内的二维材料转移可以在一定程度上降低二维材 料的被污染度,但材料仍可能受到如表面吸附气体 的污染,这也是转移过程中气泡等杂质产生的主要 原因.我们将在本文的 2.5 节详细讨论 2D vdWHs 的界面清洁问题.

2.2 湿法转移技术

2.2.1 基底刻蚀法

对于在不同衬底上生长的大面积二维材料,湿 法转移技术中的基底刻蚀法可以把二维材料从生 长基底转移到任意目标基底^[29-31,56],例如柔性基 底、透射电子显微镜的载网、电极.基底刻蚀法有 时候也可称为化学刻蚀法,因为通常需要经历化学 反应过程使得二维薄膜的生长基底溶解在刻蚀液 中.大多数的二维材料是生长在 Cu、Ni、Au、Pt、

图 2 PMMA 为转移介质的基体刻蚀法 Fig. 2. Substrate etching method with PMMA as transfer medium.

SiO₂、Si等衬底上,因此需要将二维材料从生长衬 底转移到透明玻璃、Si片、聚对苯二甲酸乙二酯 (Polyethylene terephthalate, PET)等各种目标基 体上,以方便表征、应用或器件制备.基底刻蚀法 一般需要经历在二维材料上方旋涂多聚物支持层 (如 PMMA、PDMS),刻蚀液中进行基底刻蚀,水 溶液中清洗掉残留的刻蚀液,转移二维材料到目标 衬底和清洗掉多聚物的过程.

以 PMMA 为转移介质的基底刻蚀法是目前 应用广泛的湿法转移技术[30,32-34,57,58],主要流程如 图 2 所示. 首先, 在金属基体上生长的二维材料表 面旋涂 PMMA 膜, 加热使其固化, 如步骤①②所 示;随后把 PMMA/二维材料/金属基底放入刻蚀 溶液中,金属基底被刻蚀溶液溶解掉,如步骤③所 示;把悬浮在刻蚀液内的 PMMA/二维材料捞起来 并清洗, PMMA 作为转移介质也起到了保护二维 材料的作用,如步骤④所示;将 PMMA/二维材料 的复合体转移到任意目标衬底上,如步骤⑤;最后 用丙酮清洗去除 PMMA, 如步骤⑥所示, 即完成转 移流程.截止目前,在转移过程中用到多种刻蚀液, 例如,用稀释的 HCl 或 HNO3 溶液刻蚀石墨烯下 方的 Ni 箔^[33,59]; Fe(NO₃)₃ 溶液刻蚀 Cu 箔^[31]; FeCl₃ 溶液刻蚀石墨烯下方的 Cu 或 Ni 基底^[29]; NaOH 溶液刻蚀 SiO₂ 基底^[34,57,58]; Au 刻蚀剂 tape TFA 刻蚀 MoS2 下方的 Au 箔基底^[32]. 采用卷对卷生产 方式和基底刻蚀法可以把大面积的石墨烯从 Cu 箔上转移到透明的柔性 PET 薄膜衬底上, 已成功 制备出石墨烯触摸屏^[50].

这种基底刻蚀法的优点是可实现大规模地转 移大面积的二维材料,但是也存在几个显著的问题.例如,所刻蚀的金属基底成本一般较高进而导 致大量资源浪费,二维材料表面会存在刻蚀液金属 离子和 PMMA 残留物从而影响二维材料的性质 及其器件的性能.改进方案是选择无金属离子的刻 蚀液,增加 PMMA 残留物清理步骤,或者选择其 他类型多聚物作为转移介质等方法来改善上述提 到的问题.例如,选择 HNO₃、HCl、或 (NH₄)₂S₂O₈ 刻蚀液,采用退火处理、深紫外曝光后丙酮清洗等 多种方法清除 PMMA 残留物,用热释放胶带、PC、 或松香取代 PMMA 等方案^[60,61].

2.2.2 PMMA/牺牲层的转移法

PMMA/牺牲层的转移法以 PMMA 作为支撑 层,多数以水溶性聚合物作为牺牲层,此情况下可 称为 PMMA/水溶层的转移法或 PMMA 支撑的 转移法.此转移方法采用水溶液去溶解水溶层使得 下方衬底脱落,比较适合转移微机械剥离的二维材 料.2010年 Dean 等^[62]用 PMMA 作为支撑层和 结合水溶层的转移方法将微机械剥离的石墨烯转 移至六方氮化硼 (h-BN)上,获得具有优良电输运 性能的石墨烯器件.此方法采用水溶液而不是化学 溶液来溶解水溶层,因此在有些文献中此方法被归 属于干法转移技术^[55].

PMMA/牺牲层的转移法流程如图 3 所示,以 石墨烯和 h-BN 的异质结构制备为例,具体操作如 下:首先,在硅衬底上旋涂水溶层后再旋涂 PMMA 膜,水溶层可选择 Mitsubishi Rayon aquaSAVE^[62]、 聚乙烯醇 (Polyvinyl alcohol, PVA)^[63]、聚二甲基 戊二酰亚胺 (Polymethylglutarimide, PMGI)^[64]等; 用胶带微机械剥离石墨烯至 PMMA 膜上;将石墨 烯/PMMA/水溶层/Si 衬底一并浸入去离子水中, 待水溶层溶解后,石墨烯/PMMA 膜与硅衬底分离 后漂浮在去离子水中;使用含孔的特定支架从水中 舀起石墨烯/PMMA 膜,并确保石墨烯位于支架上 的孔位置,在加热板上烘干后倒置放入转移支架上; 将一个 SiO₂/Si 衬底上的 h-BN 薄膜放置在光学显 微镜下方的衬底台上,调整光学显微镜和三维微 操纵部件使石墨烯和 h-BN 精确对准且缓慢靠近; 加热衬底台至 100 °C 以干燥石墨烯,同时软化 PMMA 膜,控制三维微操纵部件的 Z 轴继续缓慢 降低转移支架,直至石墨烯和 h-BN 接触;衬底加 热台升温至 140 °C 使得 PMMA 膜与转移支架上 的金属环完全脱离;最后,在丙酮中去除石墨烯和 h-BN 异质结构表面的 PMMA 膜.为了进一步清 洁异质结构的界面污染,可在 350 °C 的 H₂/Ar 气 氛中保温 5 h 以清除聚合物残留,获得更干净的范 德瓦尔斯异质结构.

图 3 PMMA/牺牲层或者 PMMA 支持层的转移法^[51] Fig. 3. PMMA/sacrificial layer or PMMA supporting layer method^[51].

PMMA 辅助的转移技术一直在被优化. Taychatanapat 等^[65] 报道了一种基于 PMMA 支撑层的 全干性转移法,首先在硅片衬底上依次旋涂 PVA、 PMMA 形成载体层,用蓝色胶带固定载体层,再 将石墨烯机械剥离至载体层 PMMA/PVA上,避 免转移过程中二维材料与水的接触,该方法的优势 在于转移过程中不存在毛细管力,但仍需进一步退 火以除去表面聚合物残留.

2.2.3 液体楔入的转移法

2010 年 Schneider 等^[66] 报道一种液体楔入的 方法 (liquid wedging method). 该方法是通过在亲 水性衬底和疏水性聚合物薄膜间插入一层水 (楔形 水)来实现二维材料和聚合物薄膜从衬底剥离,水 能够把疏水性的二维材料从亲水性的衬底上剥离. 例如,用水把石墨烯从 SiO₂ 衬底表面剥离出来.此 方法利用材料与衬底的不同表面能可以驱动水分 子渗透到衬底与材料的界面,使二维材料和聚合物 从衬底分离,因此液体楔入的转移法也被称为表面 能辅助的转移法.被分离后的二维材料可转移至目 标衬底的特定位置,甚至是球形衬底等不平整表 面,实现二维材料及其他纳米材料的定点转移. 2014年,Li等^[36]提出了一种改进的液体楔入的转 移方法,通过在疏水性聚合物表面添加一层 PDMS 实现了 0D 纳米颗粒、1D 纳米线、2D 纳米片等不 同纳米结构材料的转移.这种液体楔入的转移方法 中二维材料仅仅与水溶液直接接触,而非化学溶 液,因此在有些文献中被归类于干法转移技术^[36,37], 若根据转移过程中二维材料与溶液直接接触进行 分类,也可归属于湿法转移技术.

采用液体楔入的转移法制备范德瓦尔斯异质 结构的流程如图 4 所示,具体操作步骤如下:机械 剥离二维材料至亲水性的 SiO₂/Si 衬底, 如图中①; 直接在其表面旋涂疏水性聚合物 (例如, 左旋聚乳 酸 PLLA),在 PLLA 边缘处划出一小块以暴露出 衬底的 SiO₂ 表面, 如图中②③; 在疏水性聚合物 PLLA 上方贴附 PDMS 膜后再在 SiO₂/Si 衬底的 暴露处滴水,水滴浸入疏水性的 PLLA 与亲水性 的 SiO₂界面会使得 PDMS/PLLA/二维材料从衬 底上脱离,如图中④⑤⑥;将 PDMS 另一面粘贴于 载玻片上并倒置放在转移平台的转移支架上,调节 转移支架和衬底载物台使得上下两个二维材料对 准,如图中⑦;当 PLLA 接触到衬底后加热衬底载 物台至 50 ℃, PLLA 软化后抬起 PDMS 印章使 得 PLLA 留在衬底上, 如图中⑧; 在 50 ℃ 的二氯 甲烷 (Dichloromethane, DCM) 溶液中溶解掉 PLLA,清洗和烘干后就获得二维材料的异质结构, 如图中⑨.

Gurarslan 等^[37]利用聚苯乙烯 (Polystyrene, PS) 作为支撑层,成功实现了蓝宝石衬底上合成的 大面积 MoS₂ 薄膜的转移,而且可尽量减小转移后 MoS₂ 薄膜的皱纹、裂缝和聚合物残留物.他们还 实验验证了该方法能将二维材料转移至多种衬底 上,如金薄膜、聚酰亚胺薄膜、玻璃碳、石英等.他 们把这种液体楔入法也称为表面能辅助转移法 (surface-energy assisted transfer),因为是利用疏 水性的 MoS₂和亲水性的蓝宝石衬底具有不同的 表面能,驱使水可以渗入到两者之间,实现在室温 下通过水渗透温和地剥离二维薄膜.中国科学院

Fig. 4. Liquid wedging method.

物理研究所张广宇教授课题组的余画等^[67]在2017年进一步改善了这种表面能辅助转移法,利用 PDMS 代替聚苯乙烯直接粘附在 MoS₂薄膜上,可省去有机溶剂溶解聚合物的步骤,实现蓝宝石衬底上晶圆级 MoS₂薄膜的完整且干净地转移.

总之,液体楔入的转移法(也称为表面能辅助 的转移法)适用于机械剥离以及 CVD 生长等方法 得到的多种二维材料的转移,具有操作简单,消耗 时间短,转移晶体质量高,可大面积转移以及方便 转移蓝宝石、云母等较难溶解的衬底上的二维材料 等优点.

2.3 干法转移技术

对于 2D vdWHs 的制备,常见的问题是界面 处形成的气泡、薄膜褶皱以及转移过程中的溶液和 多聚物的残留物^[68-70],这些会极大降低范德瓦尔 斯异质界面的耦合,最终导致器件性能变差.因此, 干法转移技术被发展用于提高范德瓦尔斯异质界 面的质量.接下来介绍干法转移技术中常用的几种 制备 2D vdWHs 的转移法.

2.3.1 基于 PDMS 的全干性转移法

基于 PDMS 的全干性转移法 (可称为 PDMS 剥离的转移法,或 PDMS 辅助的转移法) 是实验室 常用的二维材料的转移法. PDMS 是一种疏水类 的有机硅物料,其厚度均匀、透明度高,作为商业 产品较容易获得,很多课题组也会自制 PDMS 薄 膜作为转移介质或载体.作为转移介质的 PDMS 小块薄膜通常称为 PDMS 印章 (PDMS stamp). 此方法是基于 PDMS 膜的粘弹性,把二维材料直接 剥离到 PDMS 膜上,随后利用聚合物 PDMS 和二 维材料之间热膨胀系数的差异,通过聚合物 PDMS 的热收缩机械地将二维材料脱落在目标衬底上.

2006 年 Meitl 等^[71] 提出, 高粘弹性的柔性有 机高分子聚合物 (例如 PDMS) 与供体衬底上的固 体物体 (例如器件、材料、生物实体等) 接触后存在 粘附力,使用外力可将粘弹性 PDMS 印章与供体 衬底快速分离,且分离速率与二者间的粘附力存在 一定联系. 实验表明, 粘弹性 PDMS 印章与二维材 料间的粘附力主要取决于分离速度,这种特性可用 于将二维材料从供体衬底转移至目标衬底上. 2014年 Castellanos-Gomez 等^[4] 提出了一种基于 粘弹性 PDMS 印章的全干性转移法,实现了将一 种二维材料转移到另一种二维材料上方以形成异 质结构,转移流程如图5所示.该技术不使用任何 湿化学手段,可在提高转移速率的同时减少样品污 染,获得较高的成品率.粘弹性 PDMS 印章不仅可 作为剥离二维材料的基底,同时可作为转移介质实 现不同二维材料异质结构的自由组装. 他们通过 PDMS 全干性转移法成功实现了人工异质结构 (例如,石墨烯/BN 异质结构)和自由悬浮原子薄 层的制备以及二维材料在任意衬底上的转移,为二 维材料直接放置在预制电路器件和微机械系统上 提供了可能性.

图 5 基于 PDMS 的全干性转移法^[44] Fig. 5. PDMS-based fully dry transfer method^[44].

基于 PDMS 的全干性转移法的主要流程如 下:首先,将二维材料微机械剥离到 PDMS 膜上, PDMS 同时作为转移介质;然后将无二维材料的 PDMS 另一面粘贴在载玻片上,并倒置安装于转 移平台的转移支架上;利用转移平台精确对准,使 PDMS 膜上的二维材料与下方的目标衬底 (或另 一个二维材料)贴合;最后在一定温度下缓慢抬起 PDMS 并热释放二维材料在目标衬底 (或另一个 二维材料)上,即完成二维材料转移到目标衬底 (或形成两种二维材料的异质结构)^[43,44].

此转移法是全干性的确定性转移法,操作简单 快捷,而且转移后二维材料或其异质结构中污染比 湿法转移技术的少.此方法虽然适合直接热释放二 维材料到目标衬底或其他二维材料上,但较难实现 拾取二维材料制备三明治结构或多层的异质结 构^[72].此外,此方法在单层、双层、少层厚的石墨烯 和几层厚的 h-BN 中的应用能力有限,这是由于使 用 PDMS 机械剥离上述二维材料时的粘附力较弱, 难以在 PDMS 上获得较薄的二维材料,且剥离到 PDMS 上的二维材料可见度低.不可避免地,转移 的二维材料表面仍会有 PDMS 残留.

Uwanno 等^[72]用 PMMA 取代 PDMS, 把石 墨烯剥离到 PMMA 膜上, 转移后可使得石墨烯薄 膜的褶皱更少. 这是因为 PDMS 的玻璃化转变温 度 (~120 ℃) 比 PMMA 的 (~100 ℃) 高, PDMS 膜比 PMMA 膜更柔软, 导致上方石墨烯有更多的 褶皱.

2.3.2 范德瓦尔斯作用力拾取的转移法

在 2.3.1 中介绍的基于 PDMS 的全干性转移 法能够把二维材料通过热释放转移到任何目标衬 底上, 但是仅使用 PDMS 难以实现拾取 (pick-up) 不同的二维材料以堆叠多层的异质结构. 范德瓦尔 斯作用力拾取的转移法 (van der Waals pick-up method) 通常采用 PDMS 与高分子多聚物 PC 或 PPC 组成复合转移介质 PDMS/PC 或 PDMS/PPC, 因此也可进一步分为基于 PDMS/PC^[45-46] 或 PDMS/ PPC^[47,48]的转移方法. 这些转移用 PDMS/PC 或 PDMS/PPC 转移介质先拾取衬底上的二维材料 (例如 h-BN, 可简写为 BN), 再利用不同二维材料 之间的范德瓦尔斯力来拾取另一个二维材料,可重 复多次地拾取不同的二维材料,最终获得多层的范 德瓦尔斯异质结构. 此转移法最常用于制备 h-BN 封装的二维材料或多种二维材料堆叠的异质结 构, 例如 h-BN/graphene/h-BN^[46-48]、h-BN/WSe₉/ h-BN^[48,73]、h-BN/CrI₃/WSe₂/h-BN^[74]. 这种转移 法的显著优点是中间二维材料或活性界面在整个 转移过程中不会接触任何聚合物,从而大大减少了 异质界面的污染.

1) 基于 PDMS/PC 的转移方法. 基于 PDMS/ PC 转移方法的简要流程如图 6 所示,以制备 h-BN/石墨烯/h-BN 异质结构为例,具体操作步骤如 下:把小块 PDMS 和 PC 膜组成的复合转移介质 粘贴在载玻片上,把载玻片安装在转移支架上使 得 PDMS/PC 朝下,缓慢下降 PDMS/PC,用 PDMS/ PC 拾取下方衬底 1 上的 h-BN 薄膜,如步骤①② 所示;把衬底 1 换成负载有石墨烯的衬底 2,用 PDMS/PC/h-BN 在加热温度 70—100 ℃ 范围内 利用 h-BN 和石墨烯间较强的范德瓦尔斯力拾取 石墨烯,如步骤③④所示;随后把衬底 2 换成负载 有 h-BN 薄膜的衬底 3,把 PDMS/PC/h-BN/石墨

图 6 基于 PDMS/PC 的转移方法 Fig. 6. PDMS/PC-based transfer method.

烯贴合在另一个 h-BN 薄膜上, 加热温度至 PC 熔 点 (150-160 ℃) 以上使得 PC 膜软化在衬底 3 上, 随后抬起载玻片/PDMS, 则在衬底 3 上出现 PC/ h-BN/石墨烯/h-BN 结构, 如步骤⑤⑥所示; 把衬 底 3 拿出衬底台, 放在氯仿溶液中溶解掉 PC 薄 膜, 洗净吹干后只留下 h-BN/石墨烯/h-BN 的异 质结构, 即实现 h-BN 上下封装的石墨烯, 如步骤 ⑦所示. 在此转移方法中可以用其他二维材料替 换 h-BN 和石墨烯, 以制备不同类型且多层的 2D vdWHs.

2) 基于 PDMS/PPC 的转移方法. 2013 年, Wang 等[47] 介绍了一种全新的范德瓦尔斯力拾取 转移技术,也就是基于 PDMS/PPC 的转移方法. 该转移方法利用不同二维材料间的范德瓦尔斯相 互作用力,在不与任何聚合物接触的情况下实现二 维材料的确定性转移,提高转移速率的同时极大程 度上减少了二维异质界面的污染. 基于 PDMS/PPC 转移方法与基于 PDMS/PC 转移方法的步骤相似, 但在步骤①可以有所不同. 基于 PDMS/PPC 转移 方法的流程如图7所示,具体操作步骤如下:①在 硅片上旋涂约1 µm 的 PPC(聚丙烯碳酸酯) 薄膜,将 h-BN 薄膜直接微机械剥离到 PPC 薄膜上; ②随 后从硅片上手动剥离 PPC 膜至 PDMS 印章上,保 持 h-BN 面朝上,同时将 PDMS 另一面粘贴于玻 璃载玻片上,即形成 PDMS/PPC/h-BN 转移印章; ③④将 PDMS/PPC/h-BN 转移印章倒置后安装

在转移支架,使转移支架上的 h-BN 与下方衬底上的石墨烯精确对准,待二者接触后加热衬底台至45 ℃ (PPC 的玻璃化转变温度约 40 ℃)后缓慢抬起转移介质,此时 h-BN 与石墨烯间更强的范德瓦尔斯力使得石墨烯从衬底上脱离而被 h-BN 拾取; ⑤随后把衬底 2 换成上方有 h-BN 薄膜的衬底 3,把 PDMS/PPC/h-BN/石墨烯对准贴合在另一个h-BN 薄膜上;⑥加热衬底台至 90 ℃ 以软化 PPC 膜使其留在衬底 3 上,只移除载玻片/PDMS 印章; ⑦最后在氯仿中除去二维异质结构上方的 PPC 膜,即形成 h-BN/石墨烯/h-BN 异质结构.

2019年 Kinoshita 等^[75]利用 PPC 的热塑性 实现单层、双层石墨烯和少层 h-BN 的全干法转 移,采用 PDMS/PPC 复合转移介质制备出 h-BN 封装的石墨烯器件和石墨烯/少层 h-BN/石墨烯的 垂直隧道结器件. Pedrinazzi 等^[76]利用 PDMS/ PPC/h-BN 拾取了剥离在 PMMA/PVA 聚合物衬 底上的石墨烯并形成 h-BN 封装的石墨烯器件. 与 硅衬底相比, PMMA/PVA 聚合物衬底可降低应 变和掺杂对石墨烯器件的影响. Banszerus 等^[77,78] 提出了范德瓦尔斯力拾取和转移 CVD 法生长在 铜箔上石墨烯的方法. 该方法不同于 PMMA 为 转移介质的基体刻蚀法,属于无湿化学转移过程, 利用 PDMS/PMMA/PVA/h-BN 直接从铜箔上拾 取石墨烯,从而制备具有高载流子迁移率的石墨烯, 器件. 此外,对于 CVD 法生长在铜箔上的石墨烯,

图 7 基于 PDMS/PPC 的转移方法 Fig. 7. PDMS/PPC-based transfer method.

也可以先用基底刻蚀法将单层石墨烯转移至硅衬底,再用 PDMS/PC/h-BN 拾取后封装于 h-BN 中^[79],但此过程不能避免石墨烯与铜界面的铜氧 化和界面污染所引起的不良影响.

范德瓦尔斯力拾取的转移方法,例如基于 PDMS/PC或PDMS/PPC的转移方法,实现了高效快捷、无聚合物残留、任意层数的范德瓦尔斯异 质结构的制备,是范德瓦尔斯异质结构相关研究上的重要制备方法.

2.3.3 热塑性牺牲层的转移法

热塑性牺牲层的转移方法于 2011 年由 Zomer 等^[49] 提出, 该转移方法以热塑性聚合物层作为转 移二维材料的转移介质. 以制备石墨烯/h-BN 异质 结构为例,如图8所示,该转移方法的转移支撑层 由共聚物层、柔性透明胶带 (Pritt) 和玻璃载玻片 构成. 共聚物层由甲基丙烯酸甲酯和甲基丙烯酸正 丁酯 (Elvacite 2550 丙烯酸树脂) 溶于甲基异丁基 酮 (Methyl isobutyl ketone, MIBK) 溶液旋涂而 成.首先,柔性透明胶带粘于玻璃载玻片上(胶面 朝向玻片),在胶带背面旋涂上共聚物层,将三层物 质组成的转移支撑层置于 120 ℃ 下烘烤 10 min 以除去共聚物层中的 MIBK 和平整共聚物: 然后, 采用微机械剥离石墨烯至共聚物层,再将转移支撑 层倒置并安装在转移支架上;缓慢下降的同时将共 聚物层上的石墨烯与下方衬底上的 h-BN 薄片对 准,设置衬底载物台的加热温度为 75—100 ℃,当

共聚物层接触到加热的衬底会融化并与柔性透明 胶带脱离,此时抬起玻璃载玻片和透明胶带可释放 共聚物层和石墨烯在 h-BN 上方;转移完成后可通 过丙酮除去共聚物,再异丙醇清洗后获得石墨烯/ h-BN 异质结构. Hunt 等^[80]于 2013 年提出了一种 改进方法,在柔性透明胶带和载玻片间添加 PDMS 印章,并用甲基丙烯酸甲酯 (MMA)聚合物作为另 一种共聚物层,形成载玻片/PDMS/胶带/MMA/ 二维材料的转移介质结构.

2.4 三维操纵二维材料的转移方法

到目前为止,二维材料转移技术主要局限在简 单的拾取和释放操作.但是,范德瓦尔斯异质结构 的多样化需求,需要发展更多功能的二维材料操控 方法,比如二维材料的旋转、滑动和折叠等操作. 2020年东京大学的 Tomoki Machida 教授课题组 报道了一种二维材料的三维操纵方法^[81],通过使 用微拱形聚合物 (microdome polymer, MDP),成 功实现了二维材料的原位三维操纵,包括滑动、折

图 9 使用 MDP 实现二维材料的三维操纵^[81] Fig. 9. 3D manipulation of 2D materials using MDP^[81].

叠、切割、原位剥离、旋转和翻转(如图9所示),不 仅可以有效实现范德瓦尔斯异质结构的清洁制备, 更有助于集成更复杂的功能化三维结构,以期开发 出更多有趣且实用的新型范德瓦尔斯异质结构.此 三维操纵方法的关键是采用逐次滴加并固化 PDMS 小液滴得到几十微米的低曲率的 MDP,并在 MDP 上覆盖聚氯乙烯 (Polyvinyl chloride, PVC) 粘合 层,得到 PVC-MDP 结构.相比之前以 PDMS 或复 合结构作为转移介质的转移方法,这种 PVC-MDP 新结构具有以下优点:1) PVC-MDP 与二维材料 之间的接触面积较小且可调节,有利于选择性操纵 二维材料;2) PVC 无固定熔点,与二维材料之间 的粘附力可随温度调节,可在不同温度下实现二维 材料的拾取和释放;3) PVC 机械强度高,表面粘 附力强,无需清洁或更换,可实现重复的三维操纵.

2.5 2D vdWHs 的界面清洁

2.5.1 转移技术中的污染问题

尽管湿法转移技术和干法转移技术成功地把

二维材料从生长衬底转移到任意目标衬底,已制备 出各种类型的范德瓦尔斯异质结构,但这两类技术 存在不同程度的二维材料或异质界面的污染问题. 湿法转移技术存在转移过程中二维材料接触到溶 液而引入化学杂质污染,例如,基底刻蚀法中转移 后的二维材料表面会有刻蚀液金属离子和 PMMA 残留物,影响二维材料的性质及其器件的性能.干 法转移技术是转移过程中二维材料不与化学溶液 接触,能最大限度避免溶液吸附和毛细作用力对二 维材料的影响. 但是除了 PDMS 辅助的全干性转 移法,干法转移技术中的多数转移法都涉及到转移 后需要用有机溶剂溶解掉多聚物转移介质,例如范 德瓦尔斯作用力拾取的转移法、热塑性牺牲层转移 法等高分子多聚物辅助的转移法需要在转移后溶 解掉 PPC、PC、共聚物等多聚物. 在溶解多聚物的 过程中,有机溶剂会不同程度地渗透入异质界面而 造成化学污染,影响异质界面的质量从而最终影响 异质结构器件的性能.

此外,有些转移方法采用多聚物层作为转移介

质或二维材料剥离后的衬底与二维材料直接接触, 因此容易导致二维材料存在不同程度的聚合物残 留物.例如,热塑性牺牲层转移法和液体楔入转移 法中的二维材料均需直接与聚合物转移介质发生 接触并最后通过湿化学法溶解掉异质结构上方的 聚合物;在 PMMA 辅助的一些转移方法中, PMMA 与二维材料接触,但可在不溶解 PMMA 的情况下 完成转移;基于 PDMS 的全干性转移法中二维材 料与 PDMS 膜接触,也会有一定量的聚合物残留.

2.5.2 二维异质界面的清洁

界面洁净是获得高质量的范德瓦尔斯异质结构器件的关键.转移堆叠异质结构过程,除了有机 溶剂和聚合物残留,诸如碳氢化合物、空气或水等 污染物可能会被界面密封,形成几纳米到微米尺寸 不等的局部气泡.这些气泡、褶皱、杂质和聚合物 残留都会降低异质结构的质量并影响实际器件尺 寸 (通常为 1—10 μm)和性能.因此,开发异质界 面的清洁技术显得尤为重要.

Kretinin 等⁶⁴对石墨烯基异质结进行原子力显 微镜 (atomic force microscope, AFM) 和横截面的 透射电子显微镜 (transmission electron microscope, TEM) 表征分析, 可观察到石墨烯层上有明显的褶 皱和气泡,但气泡之间也会出现平坦、均匀的洁净 界面,这归因于异质结界面的自清洁机制.目前主 流的清洁异质结界面的方法是对已制备的异质结 构实施退火处理,该工艺通过促进污染物的扩散来 扩大异质结构的洁净区域. Uwanno 等^[82] 研究了 不同温度热退火对 h-BN/石墨烯异质界面处气泡 的影响, 200 ℃的 Ar/H2 气氛下退火会使小气泡 凝聚成大气泡, 当退火温度达到 500 ℃ 时气泡破 裂. 实验证明, 后退火处理的石墨烯表面将获得更 大的清洁、平坦区域,从而使异质结构具有更好的 性能. Haigh 等^[83] 尝试在测试中用 AFM 尖划破气 泡,污染物会逸出界面并再次被界面处的范德瓦尔 斯相互作用密封,从而形成新的气泡.此外,机械 挤压技术[76,77,84,85] 能够用于移除二维异质界面的 气泡和污染物,提高异质结构样品的品质.

除了上述提到的后退火处理,干法转移技术中的范德瓦尔斯力拾取转移法可有效地避免聚合物 PDMS/PC或 PDMS/PPC 与中间二维材料的接触,省去后退火处理,因此极大地提高了界面清洁 度并简化了异质结构制备过程.Pizzocchero 等^[86] 通过改进高温拾取方法实现了范德瓦尔斯异质结 构器件的高效批量制备, 证实了在 110 ℃ 下超低 速释放转移支架上的二维材料可去除界面杂质. 以 往的实验发现: 在进行二维材料堆叠时, 界面清洁 度与拾取速度、温度等因素密切相关,例如有些界 面聚合物需要更高的温度才能清除. Zomer 等 和 Purdie 等^[87] 使用聚碳酸酯 (PC, 其玻璃化转变 温度高达150 ℃) 代替 PPC, 在确保二维薄片界面 清洁的同时完成高质量异质结构的制备.此外,减 少聚合物与二维材料的接触面积也可以有效抑制 界面污染物,特别是气泡的产生.研究表明通过加 工转移介质的形状以减小拾取接触面积,有利于抑 制异质界面的气泡,例如,PDMS加工成透镜状印 章 (lens-shaped stamp)^[88], PDMS/PPC 印章的中 心形成半球形突起^[89]. Toyoda 等^[88] 通过把 PDMS 固化为具有透镜形状的转移印章来减小接触面积, 在转移过程中容易移除界面气泡,实现了界面无气 泡的范德瓦尔斯异质结构的制备. 此外还有其他清 洁方法, Jain 等[43] 发展了一种用 UV-O3 预清洁处 理 PDMS 表面, 再把二维材料薄膜剥离到 PDMS 表面,这样有利于减小采用 PDMS 转移后二维材 料表面的低聚物残留.

3 2D vdWHs 的性能及应用

通过二维材料的转移技术,不同的二维材料被 转移堆叠形成 2D vdWHs,极大丰富了异质结构材 料的种类,可以制造出自然界并不存在但却性能优 异的人工材料.对比传统制备异质结构需要用到脉 冲激光沉积、磁控溅射、分子束外延等大型仪器,且对 温度和真空度要求很高,2D vdWHs 的制备技术更 灵活简便.目前,2D vdWHs 逐渐成为研究二维材料 的主要平台,随着转移技术的发展优化和新型二维 材料的出现,大量新颖的物理现象和优良的性能不 断被发掘.在本部分我们将介绍 2D vdWHs,重点 介绍基于二维磁性材料构建的二维磁性范德瓦尔 斯异质结构,以及 2D vdWHs 的性能和应用研究.

3.1 二维磁性范德瓦尔斯异质结构

3.1.1 二维磁性材料

根据 Mermin-Wagner 定理^[90], 热波动将破坏 二维各向同性海森堡模型中的长程铁磁有序, 因此 在非零温度下长程磁有序在二维体系中无法稳定 存在.长期以来,人们认为很难像石墨烯、过渡金 属硫化物等二维材料通过微机械剥离方式获得原 子层级厚的二维本征磁性薄膜.因此,二维磁性异 质结构的制备主要局限在用物理气相沉积,比如真 空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜, 及分子束外延等直接沉积纳米级厚的二维磁性异 质结构. 然而在 2017 年, 二维本征磁性材料 (可简 称二维磁性材料)CrI3和 Cr2Ge2Te6(CGT)突破了 这一限制,通过微机械剥离可获得低维长程磁序且 本征磁性可保持至单原子层的二维磁性材料[6,7], 如图 10(a)—10(e) 所示. 2018 年, 另一个二维磁性 材料 Fe₃GeTe₂(FGT) 被发现, 它具有金属特性以 及很高的磁晶各向异性,同时经过外加栅压可以调 控其居里温度 (T_C) 到室温以上^[91,92] (图 10(f)— 10(k)), 这对于二维磁性材料的实际应用具有十分 重要的意义. 这些材料中二维长程磁序的发现引发 了二维磁性材料的研究热潮.借助于第一性原理计 算,科学家们预测并最终经实验证实了一大批二维 磁性材料^[7,9,22],如Cr₂Ge₂Te₆、RuCl₃、CrXTe₃(X= Si, Ge), CrX_2 (X = Se, Te, S), MnX_2 (X = Se, S)、 VX_3 (X = I, Br) 等. 目前, 已发现二维磁性的 绝缘体/半导体/金属材料具有丰富的磁性特性和 诸多新现象,比如垂直磁化或面内磁化的磁各向异 性可保持到单原子层、层间即可存在铁磁耦合也可 存在反铁磁耦合、层数依赖的磁学特性[6,22]. 基于 这些特性,二维磁性材料为人们研究低维磁性提供 了新的平台,也为自旋电子学器件的研发开辟了新 的方向,在磁学器件和高性能超薄自旋电子学器件 上具有很大的应用前景.与此同时,表面呈现原子 级洁净的二维磁性材料相互堆叠形成的范德瓦尔 斯异质结构可以展现出更加丰富的物理效应,逐渐 成为二维磁性材料领域的研究热点[93,94].

3.1.2 二维磁性范德瓦尔斯异质结构的制 备及性能

基于 PDMS 的全干性转移法由于操作简便易 行,在二维磁性范德瓦尔斯异质结构的构筑过程中 有广泛应用.华中科技大学的韩俊波教授团队基于 此方法成功制备了 FePS₃/Fe₃GeTe₂ (FPS/FGT) 和 FePS₃/Fe₃GeTe₂/FePS₃ (FPS/FGT/FPS)异 质结构,如图 11(a)—11(d) 所示,结合低温 MOKE 表征发现异质界面处的近邻耦合效应可以有效地 提升 FGT 的 $T_{\rm C}$ ^[97];南洋理工大学的 Gao教授团 队同样基于此方法制备 CrBr₃/石墨烯异质结构并 结合非局域测量技术观测到了塞曼自旋霍尔效应 (图 11(e)—11(h))^[98];澳大利亚国立大学的 Lu 教授 团队也基于此方法构筑 CGT/WS₂ 异质结构并观 测到了显著增强的光致发光效应,再结合开尔文探 针显微镜测量了异质结构表面的功函数,诠释了异 质界面间的共振电荷转移现象(图 11(i)—11(l))^[99,100].

美国华盛顿大学的 Xu 教授团队采用基于范德 瓦尔斯作用力拾取的转移方法,运用 PDMS/PC 转 移介质成功制备了 WSe2/CrI3 异质结构, 如图 12(a)— 12(d), 通过光致发光光谱揭示了由磁近邻效应诱 导的自旋能谷耦合效应^[93],而后运用激发光源调 控异质结界面的近邻效应,进而诱导二维磁性材 料 CrI₃的磁化翻转, 经光谱测量观测到了能谷极 化和塞曼劈裂 (图 12(e) 和 12(f))^[101]. 运用同样的 转移方法,本实验团队构筑了 CrCl₃/双层石墨烯 (bilayer graphene, BLG) 异质结构器件 (图 12(g) 和 12(h)), 通过低温磁阻输运测量揭示了 CrCl3 磁 邻近效应在双层石墨烯中诱导出交换场,在无外加 磁场下双层石墨烯出现塞曼自旋霍尔效应,经非局 域测量探测到强非局域电阻信号;结合外加垂直磁 场, 交换场能调制双层石墨烯的量子霍尔基态, 形 成倾斜反铁磁相(图 12(i)和 12(j)),展现了二维磁 性材料调制石墨烯量子霍尔铁磁性的能力[102].

此外,二维磁性材料可替代传统的铁磁薄膜, 在过渡金属硫化物 (如 MoS₂ 或 WSe₂)/CoFeB 双 层材料体系中^[103],可通过转移技术制备过渡金属 硫化物与二维磁性材料的异质结构,强化 Rashba-Edelstein 效应产生的自旋-轨道转矩;在重金属/二 维磁性材料的异质结构中利用自旋-轨道矩驱动二 维磁性薄膜的磁化翻转^[104,105].二维磁性范德瓦尔 斯异质结构将为柔性磁光和磁电器件的研究提供 新方案.

3.2 2D vdWHs 的应用

依赖于转移技术和庞大的二维材料家族,种类 繁多的 2D vdWHs 可作为新型的范德瓦尔斯异质 结构的功能材料. 2010 年 Dean 等^[02] 用 PMMA/ 牺牲层的转移法将石墨烯转移到 h-BN 上,形成石 墨烯/h-BN 的范德瓦尔斯异质结构,在其器件中 观测到石墨烯优异的电输运性能.随后拓展到由 两个以上原子薄晶体组成的范德瓦尔斯异质结构, 由单原子层的石墨烯、h-BN、MoS₂、MoSe₂、WS₂

图 10 三种典型的二维磁性材料及其特性 (a)、(b)为 CrI₃的晶体结构及磁学特性^[95]: (a) CrI₃的晶体结构; (b) 一层、两层、三层 的 CrI₃ 在 15 K 下的磁光克尔 (magneto-optical Kerr effect, MOKE) 信号随着磁场的变化情况; (c)—(e)为 CGT 的晶体结构及特性^[96]: (c) CGT 的晶体结构; (d)不同层数的 CGT 的光学图片; (e)不同温度下 (d)中 CGT 的 MOKE 信号; (f)—(h)^[91]、(i)—(k)^[92] 均为 FGT 的晶体结构及特性: (f) FGT 的晶体结构; (g) FGT 的纵向电阻随着温度的变化关系, 左上角是霍尔器件的光学 图片; (h) FGT 的霍尔电阻随着温度的变化关系; (i) FGT 的 $T_{\rm C}$ 随着厚度的变化关系; (j) 被固体电解质 LiClO₄ 覆盖的 FGT 的纵向电导率随着栅压的变化关系, 器件结构如 (j)中插图所示; (k)不同温度下 (j)中器件在 $V_{\rm g} = 2.1$ V 时霍尔电压随着磁场的变化 关系

Fig. 10. Three typical two-dimensional magnetic materials and their properties. (a) and (b) show the structure and magnetic properties of $CrI_3^{[95]}$: (a) Crystal structure of CrI_3 ; (b) magnetic field dependence of the MOKE signal in monolayer, bilayer and trilayer CrI_3 at 15 K. (c), (d) and (e) show the structure and properties of $CGT^{[96]}$: (c) crystal structure of CGT; (d) optical images of CGT with different layers; (e) temperature dependence of the MOKE signal of CGT in (d); $(f)-(h)^{[91]}$ and $(i)-(1)^{[92]}$ all show the structure and properties of FGT: (f) crystal structure of FGT; (g) temperature dependence of the longitudinal resistance of FGT device. The upper-left inset shows an optical image of the Hall bar device; (h) temperature dependence of the Hall resistance of FGT device; (i) thickness dependence of the T_C of FGT; (j) conductance as a function of gate voltage V_g measured in a trilayer FGT device covered by solid electrolyte LiClO₄ and the inset shows the structure of the device; (k) Hall resistance of a four-layer FGT flake under a gate voltage of $V_g = 2.1$ V at different temperatures.

图 11 基于 PDMS 全干性转移法制备的二维磁性范德瓦尔斯异质结构 (a)—(d)为 FPS/FGT 和 FPS/FGT/FPS 异质结构^[97]: (a) FPS/FGT 异质结构的光学图片; (b) FPS/FGT 异质结构的原子力显微镜图; (c)—(d)两种异质结构与单一FGT 的 Kerr 信号随着温度的变化关系,结果显示异质结构的形成可以有效提升 *T*_C; (e)—(h)为 CrBr₃/石墨烯的异质结构与单一FGT 的 Kerr 信号随着温度的变化关系,结果显示异质结构的形成可以有效提升 *T*_C; (e)—(h)为 CrBr₃/石墨烯的异质结构与单一FGT 的 Kerr 信号随着温度的变化关系,结果显示异质结构的形成可以有效提升 *T*_C; (e)—(h)为 CrBr₃/石墨烯的异质结构与单一FGT 的 Kerr 信师 医的变化关系,结果显示异质结构的形成可以有效提升 *T*_C; (e)—(h)为 CrBr₃/石墨烯的异质结构与单一FGT 的 Kerr 信号随着温度的变化关系,结果显示异质结构的形成可以有效提升 *T*_C; (e)—(h)为 CrBr₃/石墨烯的异质结构与单一FGT 的 Kerr 信号随着加光学图片; (f)非局域测量技术探测塞曼自旋霍尔效应的示意图; (g)异质结构中石墨烯的非局域电阻在不同磁场下随栅压的变化情况; (h)非局域电阻随温度的变化情况. (i)—(l)为 CGT/WS₂异质结构的光学图片; (j)单层的 WS₂和不同 CGT/WS₂异质结构的光致发光光谱; (k)开尔文探针显微镜的示意图; (l) 室温下利用开尔文探针显微镜测量的 CGT、WS₂和异质结构的表面能或功函数

Fig. 11. Two-dimensional magnetic van der Waals heterostructures fabricated by all dry transfer method based on PDMS: (a)–(d) FPS/FGT and FPS/FGT/FPS heterostructures^[97]: (a) Optical image of FPS/FGT heterostructure; (b) Atomic force microscopy image of the FPS/FGT heterostructure in (a); (c) and (d) temperature dependence of the Kerr signal between two kinds of heterostructures and individual FGT, and it shows effective enhancement of $T_{\rm C}$ because of the fabrication of heterostructures; (e)–(h) CrBr₃/graphene heterostructure^[98]: (e) optical image of CrBr₃/graphene heterostructure; (f) diagram of non-local measurements for probing Zeeman spin Hall effect; (g) the non-local resistance $R_{\rm nl}$ as a function of the back gate $V_{\rm g}$ acquired under different external field; (h) temperature dependence of the non-local resistance $R_{\rm nl}$; (i)–(l) CGT/WS₂ heterostructure^[99]: (i)optical image of CGT/WS₂ heterostructure; (j) Photoluminescence spectra (PL spectra) of individual WS₂ and different CGT/WS₂ heterostructures; (k) schematic diagram of Kelvin probe force microscopy; (l) measured surface potential or work function of CGT, WS₂, and the heterostructure at room temperature.

和 WSe₂ 等构建具有不同功能和特性的异质结构 材料. 2011 年, Ponomarenko 等^[106] 报道了 PMMA 辅助转移方法制备的 h-BN/石墨烯/h-BN 双层异 质结构,从实验上证明了多层范德瓦尔斯异质结构 的存在. 此结构中的顶层 h-BN 主要用于封装石墨 烯/h-BN 异质结构,从另一角度揭示了 h-BN 既能 作为石墨烯的高质量衬底,又能作为石墨烯的保护 层,该发现开拓了 h-BN 封装构建空气敏感的 2D vdWHs 的新思路.紧接着,由多层石墨烯和 h-BN 交替构建的范德瓦尔斯超晶格的出现^[83] 为人工自 组装复杂的范德瓦尔斯异质结构提供了有力的依据. Xu 等^[107] 借助 PMMA 辅助转移方法成功获得了 MoSe₂/WSe₂ 异质结构,并在此异质结构的 PL 谱低能区域发现了明显的新低能峰,证实了层间激子的存在. 此外,以 PDMS 印章为基础的干法转移技术也广泛应用于制备范德瓦尔斯异质结构,例如MoS₂/MoSe₂^[109]、WSe₂/MoSe₂^[100]、MoSe₂/WSe₂^[110]、MoSe₂/WSe₂^[111], CrCl₃/graphene^[102]、FePS₃/Fe₃GeTe₂/MnPX₃ (X = S、Se)^[112].

图 12 范德瓦尔斯作用力拾取的转移法制备的二维磁性范德瓦尔斯异质结构 (a)—(d)为 WSe₂/CrI₃ 异质结构^[100]: (a) 1L WSe₂/3L CrI₃ 的结构示意图; (b) 在温度 15 K 和零磁场下的偏振分辨光致发光光谱; (c)、(d)分别为 1 L WSe₂/2 L CrI₃ 的结构示意图以及左、右偏振光激发下的光致发光强度随着磁场的变化情况; (e)、(f)亦为 WSe₂/CrI₃ 异质结^[101]: (e) WSe₂/CrI₃ 异质结构 的光学图片以及虚线框内的光致发光光谱强度分布; (f) 通过不同强度的圆偏振光调控的光致发光光谱; (g)—(j)为 CrCl₃/双层 石墨烯的异质结构^[102]: (g) 器件示意图; (h) 一个真实器件的光学图片; (i) 在垂直磁场 B_{\perp} = -14 T 下双层石墨烯的量子霍尔效应; (j) 无外磁场和外加垂直磁场下非局域磁阻测量结果

Fig. 12. Two-dimensional magnetic van der Waals heterostructures fabricated by van der Waals pick-up method. (a)–(d) WSe₂/ CrI₃ heterostructure^[100]: (a) Schematic of a monolayer WSe₂ and trilayer CrI₃ heterostructure; (b) polarization-resolved photoluminescence of a WSe₂/trilayer CrI₃ heterostructure at 15 K and zero magnetic field; (c) schematic of a monolayer WSe₂ and bilayer CrI₃ heterostructure; (d) photoluminescence intensity plot of σ^+ (left) and σ^- (right) polarized excitation and detection as a function of magnetic field and photoenergy; (e) and (f) WSe₂/CrI₃ heterostructure^[101]: (e) optical image of WSe₂/CrI₃ heterostructure and PL intensity in boxed region; (f) circularly polarized PL spectra at selected excitation powers; (g)–(j) CrCl₃/BLG heterostructure^[102]: (g) schematic of device; (h) optical image of an actual device; (i) quantum Hall effect at perpendicular magnetic field $B_{\perp} =$ -14 T, showing typical quantum Hall plateaus of BLG; (j) magneto-transport nonlocal measurement results at zero and perpendicular magnetic fields.

结合电压、磁场、应力和光辐射等外部手段调 控 2D vdWHs,可制造各种具有非凡性能的范德 瓦尔斯异质结构器件,在自旋电子学、光电子学、 谷电子学、转角电子学和超导体等领域展现巨大的 应用潜力^[14,25-28].由于涉及领域比较广,我们以磁 隧道结、摩尔超晶格的应用为例介绍 2D vdWHs 的应用.

3.2.1 二维范德瓦尔斯磁隧道结

在自旋电子学中应用最广泛的磁隧道结 (magnetic tunnel junctions, MTJs) 通常以铁磁层/ 非磁绝缘层 (势垒层)/铁磁层作为传统结构, MTJs可用于非易失性磁随机存储, 通过控制磁隧 道结中两铁磁层的相对磁化方向 (平行或反平行排 列) 来获得不同的电阻态, 从而应用于磁存储技术. 一直以来, MTJs 的研究是致力于不断提高隧穿磁阻 (tunneling magnetoresistance, TMR) 比率, 但在进一步提高性能和小型化过程中碰到诸多挑战, 主要在氧化物势垒层和界面的控制、热稳定性和设备使用寿命的稳健性等方面^[113–116]. 例如, 在传统的MTJs 中, 铁磁层和非磁性绝缘层的界面质量是影响 MTJs 性能的关键之一^[115–117], 界面悬挂键、晶格失配导致的晶格扭曲和界面重构、界面热激发等带来的自旋散射会影响隧穿磁阻; 界面处原子的扩散对 TMR 的影响; 金属氧化物绝缘层的厚度减小使得绝缘层漏电流急剧增大, 导致隧穿结构失效, 抗击穿能力变差; 晶格失配和电导失配使得金属磁性层和绝缘体势垒层接触差, 影响自旋有效地注入; 非磁绝缘层材料往往能带固定,使得隧穿结界面性能的优化受限.基于二维材料构建的 2D vdWHs为解决其中一些问题提供有潜力的途径^[22,113,118],利用逐层可控的厚度、尖锐的界面、高热稳定性的势垒层、高垂直磁各向异性、种类繁多的能带结构等优势制备二维范德瓦尔斯磁隧道结 (two-dimensional van der Waals magnetic tunnel junctions, 2D vdW MTJs),为 MTJs 增加灵活性和极高的缩放性等特征^[113,118],甚至可以提供新功能,例如自旋过滤^[119].因此, 2D vdW MTJs 有望在提升 MTJs器件的性能和小型化过程中取得突破,为进一步实现高磁阻比奠定了理论和材料基础.

特别地,原子层级厚的二维磁性材料为提升 MTJs 性能或构建新型的 MTJs 提供了更多的可 能性. 以 CrI₃、Cr₂Ge₂Te₆和 Fe₃GeTe₂为代表的 二维磁性材料 [3,22,95,96,120] 具备二维长程磁有序和 垂直磁各向异性,可以是绝缘体、半导体或金属, 这为设计 2D vdW MTJs 提供了材料基础. 例如, 绝缘体或半导体特性的二维磁性材料可作为 MTJs 的中间隧穿层. CrI3 是一个典型的二维磁性绝缘 体材料,可作为 MTJs 的隧穿势垒层,且在低温下 表现出独特的层间反铁磁性和厚度依赖的磁相特 性,可以高效控制电子流动. Song 等[119]利用转移 技术把 CrI3 置于两层导电的石墨烯之间, 组成类 似三明治结构的石墨烯/Crl₃/石墨烯自旋过滤磁 性隧道结 (spin-filter Magnetic Tunnel Junctions, sf-MTJs), 如图 13(a)—13(c), 利用 CrI₃ 磁化方向 平行/反平行的状态来控制电子隧穿过 CrI₃的几 率,以达到对电子流动的调控,从而实现"0"和"1" 的信息编码. 实验发现增加 CrI₃ 的层数可提高 MTJs 的自旋极化,当增加到四层时隧穿磁阻率达到 19000%. 这种 sf-MTJs 与传统 MTJs 不同, 上下两 层的石墨烯并非铁磁性导体,完全是通过 CrI3实 现"隧穿磁阻效应",每一层 CrI3 都是独立的隧穿 势垒,其磁性决定电子自旋方向,从而实现自旋过滤.

反过来,这种磁隧道结的电子隧穿特性可用于 研究二维磁性材料的磁学特性^[121],如图 13(d)— 13(e)所示,通过隧穿电导随磁场的变化情况可解 析 CrI₃ 隧穿层的磁化状态.而且这种以二维磁性 材料作为中间势垒层的二维范德瓦尔斯磁隧道结 可以实现电学手段调控二维磁性材料的磁性. Jiang 等^[122]采用逐层干燥转移法构筑了 h-BN 封 装的石墨烯/CrI₃/石墨烯的范德瓦尔斯异质结构, 通过栅压控制静电掺杂来调控单层和双层 CrI₃ 的 磁性,特别地,当电子掺杂浓度达到一定程度可实现无磁场下双层 CrI₃的反铁磁-铁磁相变.二维磁性材料中原子薄层级的磁性意味着利用静电掺杂、化学掺杂、光学辅助和邻近效应等手段来增强MTJs性能的更多可能性^[9].

在传统的 MTJs 中, 常以 MgO 等绝缘氧化物 作为隧穿势垒层, 其质量对 TMR 的影响很大.如 何制备出纳米级厚度的绝缘性势垒层, 且减少针 孔、氧缺陷和界面缺陷也是提高 MTJs 性能的关 键^[114,115]. 较常见的解决措施之一是采用原子层级 干净界面的二维绝缘材料作为隧穿势垒层^[123], 例 如 h-BN. 非磁绝缘的 h-BN 可作为 MTJs 理想的 势垒层,易实现无针孔的纳米级势垒层,提供更高 的磁阻比率和交换耦合. Morpurgo 等^[124] 报道了 通过范德瓦尔斯力拾取的转移法制备 Fe₃GeTe₂/ h-BN/Fe₃GeTe₂ 隧道自旋阀(tunneling spin valves), 其中 h-BN 和 Fe₃GeTe₂ 薄膜分别作为非磁绝缘层 和铁磁层, 在低温下此结构中观察到隧穿磁阻达 160%, 并推算出 Fe₃GeTe₂ 的自旋极化率为 66% (图 13(f) 和 13(g)).

金属性的二维磁性材料, 例如 Fe₃GeTe₂(简称 FGT), 可以作为 2D vdW MTJs 中的磁性电极, 产生高自旋极化. Zhang 等^[125]以 Fe₃GeTe₂作为 铁磁电极,理论计算预期 Fe3GeTe9/InSe/Fe3GeTe9 磁隧道结的隧穿磁阻可达 700 %. 同样利用范德瓦 尔斯力拾取的转移法, Wang 等^[126]在 Fe₃GeTe₂/ 石墨/Fe₃GeTe₂隧道结中观测到了罕见的反对称 磁阻效应. 不同于传统巨磁阻 (giant magneto resistive, GMR) 效应中的高、低两种电阻态, 实验观 测到磁阻具有明显的高、中和低电阻态 (图 13(h) 和 13(i)), 且能带结构计算结果显示这三电阻态现 象归因于在石墨/Fe₃GeTe₂异质界面处自旋-动量 锁定诱导的自旋极化电流. Zhou 等^[127] 通过密度 泛函理论计算研究以 1T-CrTe2 作为铁磁电极层, 石墨烯或 h-BN 作为势垒层的磁隧道结 (图 13(j) 和 13(k)), 结果显示以石墨烯作为势垒层的磁隧道 结可通过调节石墨烯费米能级位置实现可调的隧 穿磁阻比率.

随着二维材料家族的不断壮大,未来将涌现出 更多新型的 2D vdW MTJs. 这种 2D vdW MTJs 可以将磁信息存储发展到原子级厚度,尽管多数器 件还需要一定的磁场和低温条件,但器件的设计和 工作原理是全新的,有望为新型磁存储技术带来突 破性的改变.

图 13 二维范德瓦尔斯磁隧道结 (a)—(c) 层状反铁磁 CrI₃ 的自旋过滤效应^[119]: (a) 双层 CrI₃ 在无磁场、垂直磁场和平面磁场 下的磁化状态,其中在无磁场下能抑制隧穿电流; (b) 石墨烯/CrI₃/石墨烯的自旋过滤磁隧道结 (sf-MTJs) 的示意图,顶层的 BN 作为保护层以提高器件的稳定性; (c) 不同磁场条件下 sf-MTJ 的隧穿电流,其中势垒层为双层 CrI₃; (d), (e) 一个 4层 CrI₃ 的隧道结^[121]: (d) 一个 4层 CrI₃ 隧道结的光学图像,虚线显示隧道结区域; (e) 在 500 μ V 交流激励下,通过一个双层 CrI₃ 隧穿层 的电导随垂直外加磁场的变化; (f), (g) FGT/hBN/ FGT 隧道结^[124]: (f) 范德瓦尔斯异质结构示意图; (g) 在温度 T = 4.2 K 下隧 穿电阻随磁场 (平行于 FGT c轴方向)的变化,在 $B \approx \pm 0.7$ T 出现电阻急剧地跳跃,隧穿磁阻变化达到~160 %; (h), (i) FGT/ graphite/FGT 异质结构的磁阻效应^[126]: (h) 一个 FGT/graphite/FGT 的光学和 AFM 图像; (i) 一个典型的 GMR 效应的输运现象 示意图; (j), (k) CrTe₂/石墨烯/CrTe₂ 磁隧道结^[127]: (j) 1T-CrTe₂/三层石墨烯/1T-CrTe₂ vdW MTJ 的结构图; (k) 两种 vdW MTJ 的隧穿磁阻率,分别以未掺杂和掺杂的石墨烯作为势垒层,隧穿磁阻率随着 B 掺杂的石墨烯 (Gr–B) 层数增加而增大

Fig. 13. 2D van der Waals magnetic tunnel junctions. (a)–(c) Spin-filter effects in layered-antiferromagnetic $\operatorname{CrI}_3^{[119]}$: (a) Schematic of magnetic states in bilayer CrI_3 . (Left) Layered-antiferromagnetic state suppresses the tunneling current at zero magnetic field; (b) schematic of graphene/ CrI_3 /graphene sf-MTJ, with bilayer CrI_3 as the spin-filter tunnel barrier; (c) tunneling current of a bilayer CrI_3 sf-MTJ at selected magnetic fields; (d)–(e) a tetralayer CrI_3 tunnel junction device^[121]: (d) optical micrograph of a tetralayer CrI_3 tunnel junction device. The dashed line encloses the tunnel junction area; (e) conductance through a bilayer CrI_3 tunnel barrier as a function of an out-of-plane applied magnetic field with 500 μ V AC excitation; (f), (g) FGT/hBN/ FGT MTJs^[124]: (f) schematic representation of the van der Waals heterostructure; (g) Tunneling resistance measured at T = 4.2 K with B applied parallel to the FGT c-axis. Very sharp resistance jumps are observed for $B \approx \pm 0.7$ T, showing the variation in TMR is ~160 %; (h), (i) the MR effect in FGT/graphite/FGT heterostructures^[126]: (h) optical and AFM images of an FGT/graphite/FGT heterostructure; (j) Schematic diagram for the transport behavior of a typical GMR effect; (j), (k) $\operatorname{CrTe}_2/\operatorname{graphene}/\operatorname{CrTe}_2$ MTJs^[127]: (j) structure of 1T-CrTe_2/Graphene(3 ML)/1T-CrTe_2 vdW MTJ; (k) TMR ratios of two vdW MTJs with graphene and doped graphene as barrier, showing TMR ratios increase with layer numbers of B-doped graphene.

3.2.2 摩尔超晶格

除了常规地逐层堆叠各种二维材料形成范德 瓦尔斯异质结构,研究者还可以把两层同质或异质 的二维材料按照一定的扭转角或晶格失配度进行 堆叠以形成摩尔超晶格 (Moiré superlattice, MSL). 摩尔超晶格结构具有新的全局对称性和周期性,如 图 14(a) 和 14(b) 所示,超晶格中的倒易空间会直 接影响动量空间^[128],动量空间失配产生新的布里 渊区. 层间耦合作用可以改变声子模式和电荷分 布,从而调节其能带结构、自旋态或拓扑相等 ^[128,129]. 超晶格中层间的耦合、周期性势及应变的 调制作用能够形成与原二维材料不同的新颖物性: 可调谐 Mott 绝缘态^[130]、超导态^[131]及 van Hove 奇点^[132]、Hofstadter 蝴蝶图案^[133]和摩尔激子^[134]

图 14 转角双层石墨烯的电子结构和非常规超导 (a) 双层扭转石墨烯中的摩尔图形和 (b) 两层的两个 K(K) 波矢量之间的差 异构成的迷你布里渊区^[130]; (c) 在魔角 ($\theta = 1.08^{\circ}$) 时出现的扁平带 (蓝色) 的电子结构, 和 (d) 在低温 (T = 0.3 K) 下测得的电导, 其中狄拉克点位于载流子 n = 0 位置, 较浅的阴影区指示 $n = \pm n_{\rm s} = \pm 2.7 \times 10^{12}$ cm⁻² 附近的超晶格能隙, 较暗的阴影区指示 在 $\pm n_{\rm s}/2$ 附近的半填充态; (c) 双层扭转石墨烯的器件和四端法测量示意图, 及 (f) 观测到的非常规超导^[131]

Fig. 14. Electronic structure and unconventional superconductivity of twisted bilayer graphene (TBG). (a) The moiré pattern in TBG; (b) the mini Brillouin zone (MBZ) is constructed from the difference between the two K(K') wave vectors from the two layers^[130]; (c) electronic band dispersion with a flat band of b); (d) measured conductance G of magic-angle TBG device with $\theta = 1.08^{\circ}$ and T = 0.3 K. Dirac point is located at n = 0. The lighter shaded regions are superlattice gaps at carrier density $n = \pm n_{\rm s} = \pm 2.7 \times 10^{12} \text{ cm}^{-2}$. The darker shaded regions denote half-filling states at $\pm n_{\rm s}/2$; (e) schematic of a typical twisted bilayer graphene device and four-probe measurement scheme and (f) unconventional superconductivity of a magic-angle ($\theta = 1.08^{\circ}$) twisted graphene moiré superlattice^[131].

等. 近年来在二维材料的异质结构中发现的摩尔超 晶格中涌现了一大批新奇的物理效应, 吸引了众多 科学家的兴趣. 摩尔超晶格的制备常采用本文介绍 的干法转移技术直接堆叠机械剥离的两层二维材 料, 由此获得超导电性的转角双层石墨烯^[131] 开启 了转角电子学 (twistronics) 的新时代.

对于转角的双层石墨烯 (twisted bilayer graphene, TBG), 理论和实验上已观测到了强关联效 应、超导、磁性、拓扑电子态等丰富的物理现象. 2018年,美国麻省理工学院的 Cao 等^[130,131]采用 范德瓦尔斯作用力拾取的转移法制备一定旋转角 度的双层石墨烯摩尔超晶格,由于狄拉克能带结构 对于转角比较敏感,在接近魔角 θ = 1.08°时电子 运动变缓慢,近似看成定域在超晶格中,费米能级 附近的摩尔带形成平带,如图 14(c) 所示.在平带 内电子间相互作用占主导地位,会出现新奇的电子 强关联效应:在半填充时 (图 14(d) 的阴影区) 表 现与 Mott 绝缘体态一致,在低温下可观测到金属 态到绝缘态的转变^[130]; 而且向绝缘态添加一定量 的电子, 能诱导出超导现象^[131], 如图 14(e) 和 14(f) 所示. 魔角双层石墨烯的这一重大发现对于认识高 温超导机制具有重要作用, 有望作为一个新的平台 去研究电子强关联和高温超导机理, 同时也打开了 非常规超导体研究的大门. 最近, 中国科学院物理 研究所的张广宇课题组^[135]利用转移堆叠技术构 筑 AB 堆垛的双层石墨烯的转角双层-双层石墨烯 体系, 研究了双层-双层石墨烯("2+2") 魔角体系 的电子强关联效应. 实验结果发现在转角双层-双 层石墨烯体系同样存在电子平带且平带结构可以 受到位移电场的调控.

除转角双层石墨烯之外,目前已经报道各种摩尔超晶格体系:石墨烯/h-BN 异质结构、硅烯、黑磷 (BP)、以及 MoSe₂/WSe₂、BP/MoS₂等过渡金属硫化物的异质结构.转角的石墨烯/h-BN 双层结构也是研究比较多的摩尔超晶格体系,可以产生丰富的物理效应.特别地,二维磁性材料及其异质结构中可观测到磁性斯格明子的拓扑磁结构^[136].有理论研究表明在 CrI₃/CrGeTe₃ 异质结构中形成的

摩尔超晶格可以有效调控层间磁耦合的强度,进而 影响异质结构的物理性质(图 15(a))^[137];针对铁磁/ 反铁磁这一类异质结构,理论研究表明在某些情况 下形成的摩尔超晶格可以有效调控层间磁耦合的 强度,进而诱导产生具有拓扑磁结构的斯格明子 (图 15(b)—15(e))^[138].在实验方面,加州大学洛杉 矶分校 Wang 教授团队^[139]采用基于范德瓦尔斯 作用力拾取的转移方法,结合 PDMS/PPC 转移介 质成功制备了WTe₂/Fe₃GeTe₂ 异质结,如图 15(f)— 15(h)所示,利用电输运测量技术成功探测到了拓 扑霍尔信号,同时利用洛伦兹透射电镜观测到了具 有拓扑磁结构的斯格明子. 此外, 过渡金属二硫族化物异质结构形成的摩尔超晶格中发现了光学领域很重要的激子现象. Jin 等^[134] 采用 PET 印章辅助的干法转移技术^[40]制备一定转角的 WSe₂/WS₂ 二维异质结构, 观测 到摩尔超晶格的激子态. Seyler 等^[140] 采用干法转移技术制备 h-BN 薄膜封装的 MoSe₂/WSe₂ 范德瓦尔斯异质结构, 在具有一定扭转角度的 MoSe₂/WSe₂ 双层异质结构中观察到受摩尔电势束缚的能谷激 子特征. Tran 等^[141] 采用 PDMS 辅助的全干法转移技术^[44] 制备 h-BN 封装且微小旋转角度的 MoSe₂/ WSe₂ 双层二维异质结构, 并在此异质结构中观测 到多个层间激子共振现象.

图 15 二维磁性材料的摩尔超晶格及拓扑磁结构 (a)为 CrI₃/CrGeTe₃异质结构形成摩尔超晶格的示意图^[137]; (b)—(e)^[138]: (b)二维铁磁材料堆叠在具有磁各向异性的奈尔型反铁磁基底上的示意图; (c)单层二维铁磁性材料(灰色)和层状反铁磁基底 (绿色)间由于晶格错配或扭转形成的摩尔超晶格; (d)层间磁耦合强度随摩尔超晶格周期的变化; (e)斯格明子形成的示意图; (f)—(h)范德瓦尔斯作用力拾取的转移法制备的WTe₂/Fe₃GeTe₂异质结构^[139]: (f)异质结构的光学图片; (g)霍尔电阻随着磁场 的变化情况,在发生磁化翻转的地方出现尖峰,表明存在拓扑霍尔效应; (h)样品在180 K和外加 510 Oe 的磁场下,WTe₂/40L Fe₃GeTe₂的样品在不同偏转角度下利用洛伦兹透射电镜观测到的斯格明子

Fig. 15. Moiré superlattice and topological magnetic structure in two-dimensional magnetic materials. (a) Schematic diagram of the proposed Moiré pattern in $CrI_3/CrGeTe_3$ heterostructure^[137]; (b)–(e)^[138]: (b) an ferromagnetic (FM) monolayer on a layered antiferromagnetic (AFM) substrate with lateral Neél order and perpendicular anisotropy; (c) The moiré pattern between the FM monolayer (gray) and AFM substrate (green) arises from the lattice mismatch and/or twisting; (d) phase diagram as a function of moiré period A and the magnitude of interlayer magnetic coupling; (e) schematic diagram of the formation of skyrmion. (f)–(h) WTe_2/Fe_3GeTe_2 heterostructure^[139]: (f) optical image of WTe_2/Fe_3GeTe_2 heterostructure; (g) magnetic field dependence of Hall resistivity, showing a peak and dip near the transition edge before the magnetization saturates, which is a sign of the topological Hall effect; (h) Lorentz transmission electron microscopy observation of skyrmion lattice from under focus to over focus on $WTe_2/40L$ Fe_3GeTe_2 samples at 180 K with a field of 510 Oe. 4 总结和展望

2D vdWHs 是构建新型的自旋电子学器件的 核心结构,伴随着二维材料的发展,受到越来越多 的关注.二维材料的转移技术可以突破异质薄膜晶 格匹配的限制,将性质迥异的二维材料堆叠组合成 种类繁多的 2D vdWHs,带来丰富多彩的新物理 效应和新奇的物理现象,可应用于构建新型的二维 功能器件.这种转移技术使得异质结构材料的设计 更为简单,界面可优化程度更高,在解决电导失配 导致的接触问题上也更具优势,此外,可以把二维 材料从生长基底转移到目标基底,以实现二维材料 的性能表征.可以说,二维材料的转移技术促进了 2D vdWHs 研究的迅速发展.

二维材料的转移技术可分为湿法转移技术和 干法转移技术两大类,每个类别又细分为多种转移 方法. 本文综述了制备 2D vdWHs 的多种转移方 法. 这些转移方法在实际应用中存在一定的差异 性. 干法转移技术, 如基于 PDMS 的全干性转移 法、范德瓦尔斯力拾取转移法 (例如基于 PDMS/PC、 PDMS/PPC 的转移法)和热塑性牺牲层转移法, 可在惰性气氛 Ar 或 N2 的手套箱中进行空气敏感 的二维材料的全干式剥离和转移,并用化学性能稳 定的 h-BN 绝缘薄膜置于上下方作为保护层提高 器件的稳定性. PMMA 辅助的转移法常用于 CVD 生长的大面积二维材料的转移. 液体楔入的转移 法 (又称表面能辅助的转移法) 适用于机械剥离以 及 CVD 生长等方法获得的二维材料, 对于转移蓝 宝石、云母等较难溶解的衬底上的二维材料极具优 势. 而范德瓦尔斯力拾取转移法在堆叠多层的异质 结构上更具优势.

在选择这些转移方法进行实际应用时,需要考虑转移的操作难易度、转移速度、转移后二维材料 及其异质界面的清洁度以及是否经济环保.清洁度 主要取决于异质界面存在聚合物和杂质残留物以 及气泡、褶皱的程度.转移速度主要取决于转移过 程中的具体操作步骤 (如:旋涂、干/湿转移、对准、 加热、清洗聚合物等).在实施难易度和转移速度 上,基于 PDMS 的全干性转移法具备最突出的优 势,这得益于 PDMS 膜是成熟的商业化产品,而且 可通过热释放二维材料直接从 PDMS 膜分离,不 需要溶解 PDMS 转移介质.范德瓦尔斯力拾取转 移法可提供最高的样品清洁度,适用于转移多层异 质结构或 h-BN 封装二维材料,是制备 2D vdWHs 最常用的方法.

目前,二维材料的转移技术已经成为独树一帜 的异质结构制备技术,但在应用过程中仍不断地被 发展优化,主要包括寻找更合适的刻蚀液、不易残 留的多聚物转移介质、易于退火去除的多聚物,以 及设计合适的转移介质结构,优化转移速度和 温度,最大程度地减少界面的化学杂质污染、气泡 和二维材料褶皱,以提高范德瓦尔斯异质界面的 质量.

尽管二维材料的转移技术在大规模量产上不 如传统的异质薄膜制备技术,多数只能实现个性化 的器件制备,界面洁净度还有待提高,但二维材料 的转移技术为二维材料的基础研究和应用提供了 强有力的技术支持.随着转移技术的发展优化和新 型二维材料的出现,可以预期 2D vdWHs 将在基 础科学研究和实际应用上取得突破性的进展.

参考文献

- Das S, Robinson J A, Dubey M, Terrones H, Terrones M (Clarke D R Ed.) 2015 Annu. Rev. Mater. Res. 45 1
- [2] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 Acs Nano 7 2898
- [3] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983
- [4] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
- [5] Huang Y, Pan Y H, Yang R, Bao L H et al. 2020 Nat. Commun. 11 2453
- [6] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 *Nature* 546 270
- [7] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
- [8] Gao Y, Yin Q, Wang Q, Li Z, Cai J, Zhao T, Lei H, Wang S, Zhang Y, Shen B 2020 Adv. Mater. 32 2005228
- [9] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z, Zhao J 2021 Appl. Phys. Rev. 8 031305
- [10] Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 *Nat. Commun.* 8 659
- [11] He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 *Acta Phys. Sin.* 70 127501 (in Chinese) [何 聪丽, 许洪军, 汤 建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广 字, 王守国 2021 物理学报 70 127501]
- [12] Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B, Liu Y Q [2021 70 2021 Acta Phys. Sin. 70 027901 (in Chinese) [姚

文乾,孙健哲,陈建毅,郭云龙,武斌,刘云圻 2021 物理学报 70 027901]

- [13] Chang C, Chen W, Chen Y, Chen Y H, et al. 2021 Acta Phys. - Chim. Sin. 37 2108017
- [14] Liu Y, Zhang S, He J, Wang Z M, Liu Z 2019 Nano-Micro Lett. 11 13
- [15] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A et al. 2017 Nat. Nanotechnol. 12 223
- [16] Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208
- [17] Lee C-H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676
- [18] Massicotte M, Schmidt P, Vialla F, Schaedler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2016 Nat. Nanotechnol. 11 42
- [19] Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 *Phys. Rev. Lett.* 116 086601
- [20] Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 *Nat. Commun.* **11** 3860
- [21] Liu Y, Guo J, Zhu E, Liao L, Lee S-J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696
- [22] Gong C, Zhang X 2019 *Science* **363** eaav4450
- [23] Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese) [王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301]
- [24] Yang W, Han J C, Cao Y, Lin X Y, Zhao W S 2021 Acta Phys. Sin. 70 129101 (in Chinese) [杨维, 韩江朝, 曹元, 林晓 阳, 赵巍胜 2021 物理学报 70 129101]
- [25] Zhou X, Hu X, Yu J, Liu S, Shu Z, Zhang Q, Li H, Ma Y, Xu H, Zhai T 2018 Adv. Funct. Mater. 28 1706587
- [26] Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792
- [27] Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W, Zhang G 2020 Chinese Phys. B 29 128104
- [28] Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274
- [29] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490
- [30] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359
- [31] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
- [32] Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C, Zhang Y, Lang X Y, Zhang Y, Liu Z 2014 Acs Nano 8 10196
- [33] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30
- [34] Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J 2008 J. Phys. Chem. C 112 17741
- [35] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912
- [36] Li H, Wu J, Huang X, Yin Z, Liu J, Zhang H 2014 Acs Nano 8 6563
- [37] Gurarslan A, Yu Y, Su L, Yu Y, Suarez F, Yao S, Zhu Y, Ozturk M, Zhang Y, Cao L 2014 Acs Nano 8 11522
- [38] Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017

Acs Nano **11** 12001

- [39] Zhang Z, Ji X, Shi J, Zhou X, Zhang S, Hou Y, Qi Y, Fang Q, Ji Q, Zhang Y, Hong M, Yang P, Liu X, Zhang Q, Liao L, Jin C, Liu Z, Zhang Y 2017 Acs Nano 11 4328
- [40] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L-P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699
- [41] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 Acs Nano 5 9927
- [42] Yang X, Li X, Deng Y, Wang Y, Liu G, Wei C, Li H, Wu Z, Zheng Q, Chen Z, Jiang Q, Lu H, Zhu J 2019 Adv. Funct. Mater. 29 1902427
- [43] Jain A, Bharadwaj P, Heeg S, Parzefall M, Taniguchi T, Watanabe K, Novotny L 2018 Nanotechnology 29 265203
- [44] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Mater. 1 011002
- [45] Zomer P J, Guimarães M H D, Brant J C, Tombros N, Wees B J v 2014 Appl. Phys. Lett. 105 013101
- [46] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nat. Commun. 9 5387
- [47] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614
- [48] Wang J I J, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O H, Jarillo-Herrero P 2015 Nano Lett. 15 1898
- [49] Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104
- [50] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574
- [51] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722
- [52] Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33
- [53] Pedrinazzi P, Caridad J M, Mackenzie D M A, Pizzocchero F, Gammelgaard L, Jessen B S, Sordan R, Booth T J, Boggild P 2018 Appl. Phys. Lett. 112 033101
- [54] Leon J A, Mamani N C, Rahim A, Gomez L E, Silva M A P d, Gusev G M 2014 Graphene 03 25
- [55] Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005
- [56] Zhou W, Chen M, Guo M, Hong A, Yu T, Luo X, Yuan C, Lei W, Wang S 2020 Nano Lett. 20 2923
- [57] van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554
- [58] Ly T H, Perello D J, Zhao J, Deng Q, Kim H, Han G H, Chae S H, Jeong H Y, Lee Y H 2016 Nat. Commun. 7 10426
- [59] Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 *Appl. Phys. Lett.* **93** 113103
- [60] Zhuang B, Li S, Li S, Yin J 2021 *Carbon* **173** 609
- $[61] \quad \mathrm{Song}\;\mathrm{Y},\mathrm{Zou}\;\mathrm{W},\mathrm{Lu}\;\mathrm{Q},\mathrm{Lin}\;\mathrm{L},\mathrm{Liu}\;\mathrm{Z}\;2021\;\textit{Small}\;2007600$
- [62] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotechnology 5 722
- [63] Bertolazzi S, Brivio J, Kis A 2011 Acs Nano 5 9703
- [64] Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig

A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270

- [65] Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621
- [66] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M, Dekker C 2010 Nano Letters 10 1912
- [67] Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001
- [68] Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103
- [69] Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764
- [70] Pan W, Xiao J, Zhu J, Yu C, Zhang G, Ni Z, Watanabe K, Taniguchi T, Shi Y, Wang X 2012 Sci. Rep. 2 893
- [71] Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2005 Nat. Mater. 5 33
- [72] Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002
- [73] Wang J I, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O, Jarillo-Herrero P 2015 Nano Letters 15 1898
- [74] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, Xu X 2017 Sci. Adv. 3 e1603113
- [75] Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T, Machida T 2019 Npj 2D Mater. Appl. 3 22
- [76] Pedrinazzi P, Caridad J M, Mackenzie D M A, Pizzocchero F, Gammelgaard L, Jessen B S, Sordan R, Booth T J, Bøggild P 2018 Appl. Phys. Lett. 112 033101
- [77] Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222
- [78] Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2016 Nano Lett. 16 1387
- [79] De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, Koppens F H L, Hofmann S, Goykhman I, Ferrari A C, Lombardo A 2019 ACS Nano 13 8926
- [80] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 *Science* **340** 1427
- [81] Wakafuji Y, Moriya R, Masubuchi S, Watanabe K, Taniguchi T, Machida T 2020 Nano Lett. 20 2486
- [82] Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002
- [83] Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nature Materials 11 764
- [84] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 *Nature* 574 653
- [85] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nature Commun. 9 5387
- [86] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P, Booth T J 2016 Nat. Commun. 7 11894
- [87] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari

A C, Lombardo A 2018 Nature Communications 9 5387

[88] Toyoda S, Uwanno T, Taniguchi T, Watanabe K, Nagashio K 2019 Appl. Phys. Express 12 055008

- [89] Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T, Moriyama S 2020 Acs Appl. Mater. Interfaces 12 8533
- [90] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133
- [91] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X 2018 Nat. Mater. 17 778
- [92] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 *Nature* 563 94
- [93] Burch K S, Mandrus D, Park J G 2018 Nature 563 47
- [94] Gong C, Zhang X 2019 Science **363** eaav4450
- [95] Bevin H, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 *Natures* 546 270
- [96] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Natures 546 265
- [97] Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, Han J 2020 Adv. Mater. 32 e2002032
- [98] Tang C, Zhang Z, Lai S, Tan Q, Gao W B 2020 Adv. Mater. 32 e1908498
- [99] Rahman S, Liu B, Wang B, Tang Y, Lu Y 2021 ACS Appl. Mater. Interfaces 13 7423
- [100] Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187
- [101] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823
- [102] Wu Y, Cui Q, Zhu M, Liu X, Wang Y, Zhang J, Zheng X, Shen J, Cui P, Yang H, Wang S 2021 ACS Appl. Mater. Interfaces 13 10656
- [103] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 *Nano Lett.* 16 7514
- [104] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 *Sci. Adv.* 5 eaaw8904
- [105] Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400
- [106] Ponomarenko L A, Geim A K, Zhukov A A, Jalil R, Morozov S V, Novoselov K S, Grigorieva I V, Hill E H, Cheianov V V, Fal'ko V I, Watanabe K, Taniguchi T, Gorbachev R V 2011 Nat. Phys. 7 958
- [107] Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Commun. 6 6242
- [108] Ceballos F, Bellus M Z, Chiu H-Y, Zhao H 2014 Acs Nano 8 12717
- [109] Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518
- [110] Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai

H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2018 *Science* 360 893

- [111] Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Castro Neto A H, Matsuda K, Eda G 2016 Nano Lett. 16 4087
- [112] Dai H, Cheng H, Cai M, Hao Q, Xing Y, Chen H, Chen X, Wang X, Han J B 2021 ACS Appl. Mater. Interfaces 13 24314
- [113] Piquemal-Banci M, Galceran R, Martin M B, Godel F, Anane A, Petroff F, Dlubak B, Seneor P 2017 J. Phys. D Appl. Phys. 50 203002
- [114] Zhang L, Zhou J, Li H, Shen L, Feng Y P 2021 Appl. Phys. Rev. 8 021308
- [115] De Teresa J M, Barthelemy, Fert, Contour, Montaigne, Seneor 1999 Science 286 507
- [116] Velev J P, Dowben P A, Tsymbal E Y, Jenkins S J, Caruso A N 2008 Surf. Sci. Rep. 63 400
- [117] Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303
- [118] $\,$ Ahn E C 2020 NPJ 2D Mater. Appl. 4 17 $\,$
- [119] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214
- [120] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 *Natures* 563 94
- [121] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
- [122] Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549
- [123] Yamaguchi T, Inoue Y, Masubuchi S, Morikawa S, Onuki M, Watanabe K, Taniguchi T, Moriya R, Machida T 2013 Appl. Phys. Express 6 073001
- [124] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303
- [125] Zhang L, Li T, Li J, Jiang Y, Yuan J, Li H 2020 J. Phys. Chem. C 124 27429
- [126] Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer

D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409

- [127] Zhou H, Zhang Y, Zhao W 2021 Acs Appl. Mater. Interfaces 13 1214
- [128] Xiao Y, Liu J, Fu L 2020 Matter **3** 1142
- [129] Abbas G, Li Y, Wang H, Zhang W X, Wang C, Zhang H 2020 Adv. Funct. Mater. **30** 2000878
- [130] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80
- [131] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
- [132] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 *Phys. Rev. Lett.* 109 196802
- [133] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802
- [134] Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76
- [135] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520
- [136] Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 *Acta Phys. Sin.* 67 137507 (in Chinese) [董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王 超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 物理学报 67 137507]
- [137] Shang J, Tang X, Tan X, Du A, Liao T, Smith S C, Gu Y, Li C, Kou L 2019 ACS Appl. Nano Mater. 3 1282
- [138] Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194
- [139] Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 *Nature Communications* 11 3860
- [140] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 *Nature* 567 66
- [141] Kha T, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71

REVIEW

The fabrication and physical properties of two-dimensional van der Waals heterostructures^{*}

Wu Yan-Fei^{1)#} Zhu Meng-Yuan^{1)#} Zhao Rui-Jie¹⁾ Liu Xin-Jie¹⁾

Zhao Yun-Chi²) Wei Hong-Xiang²) Zhang Jing-Yan¹) Zheng Xin-Qi¹)

Shen Jian-Xin¹⁾ Huang He¹⁾ Wang Shou-Guo^{1)†}

 (Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

2) (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China)

(Received 2 November 2021; revised manuscript received 1 December 2021)

Abstract

Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D wan der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.

Keywords: 2 D materials, van der Waals heterostructures, transfer methods, spintronics devicesPACS: 85.40.Hp, 42.82.Cr, 68.65.-k, 79.60.JvDOI: 10.7498/aps.71.20212033

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51625101, 51971026, 52071026, 52130103, 12174426) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 06500140, FRF-MP-20-05).

 $^{^{\#}\,}$ These authors contributed equally.

[†] Corresponding author. E-mail: sgwang@ustb.edu.cn