

Institute of Physics, CAS

石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用

白占斌 王锐 周亚洲 吴天如 葛建雷 李晶 秦宇远 费付聪 曹路 王学锋 王欣然 张帅 孙力玲 宋友 宋凤 麒

Selective enhancement of Kane Mele-type spin-orbit interaction in graphene

Bai Zhan-Bin Wang Rui Zhou Ya-Zhou Wu Tian-Ru Ge Jian-Lei Li Jing Qin Yu-Yuan Fei Fu-Cong Cao Lu Wang Xue-Feng Wang Xin-Ran Zhang Shuai Sun Li-Ling Song You Song Feng-Qi

引用信息 Citation: Acta Physica Sinica, 71, 067202 (2022) DOI: 10.7498/aps.71.20211815 在线阅读 View online: https://doi.org/10.7498/aps.71.20211815 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

纳米尺度硼烯与石墨烯的相互作用

Interaction between borophene and graphene on a nanoscale 物理学报. 2019, 68(18): 186801 https://doi.org/10.7498/aps.68.20190692

凹槽铜基底表面与单层石墨烯的相互作用特性研究

Characteristics of interaction between single-layer graphene on copper substrate and groove 物理学报. 2018, 67(3): 033101 https://doi.org/10.7498/aps.67.20172249

光束正入射至界面时的自旋--轨道相互作用及其增强

Spin-orbit interaction of a light beam under normal incidence at a sharp interface and its enhancement 物理学报. 2020, 69(3): 034202 https://doi.org/10.7498/aps.69.20191218

两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变

Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction 物理学报. 2021, 70(8): 083401 https://doi.org/10.7498/aps.70.20201456

变形及电场作用对石墨烯电学特性影响的第一性原理计算

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene 物理学报. 2018, 67(7): 076301 https://doi.org/10.7498/aps.67.20172491

石墨烯等离激元增强红外光谱

Graphene plasmon enhanced infrared spectroscopy 物理学报. 2019, 68(14): 148103 https://doi.org/10.7498/aps.68.20190903 专题: 固态单量子体系的调控与应用

石墨烯中选择性增强 Kane-Mele 型 自旋-轨道相互作用*

白占斌^{1)#} 王锐^{1)#} 周亚洲^{2)#} 吴天如^{3)#} 葛建雷¹⁾ 李晶⁴⁾ 秦宇远¹⁾ 费付聪¹⁾ 曹路¹⁾ 王学锋⁵⁾ 王欣然⁵⁾ 张帅¹⁾ 孙力玲^{2)†} 宋友^{4)‡} 宋凤麒^{1)††}

(南京大学物理学院,固体微结构国家重点实验室,人工微结构科学与技术协同创新中心,南京 210093)
2)(中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190)

3) (中国科学院上海微系统与信息技术研究所, 信息功能材料国家重点实验室, 上海 200050)

4) (南京大学化学化工学院, 配位化学国家重点实验室, 人工微结构科学与技术协同创新中心, 南京 210093)

5) (南京大学电子科学与工程学院,固体微结构国家重点实验室,人工微结构科学与技术协同创新中心,南京 210093)

(2021年9月29日收到; 2021年11月6日收到修改稿)

增强石墨烯中的自旋-轨道相互作用可能实现无耗散的量子自旋霍尔器件,这需要在石墨烯样品中引入 独特的 Kane-Mele 型自旋-轨道相互作用,并保持较高的迁移率.然而,对石墨烯的外在修饰往往会引入"外禀 型" Rashba 自旋-轨道相互作用,会破坏可能存在的拓扑态,并带来一定程度的杂质散射,降低样品迁移率.在 石墨烯表面修饰 EDTA-Dy 分子后,载流子迁移率得到了提高,并且可以看到显著的量子霍尔电导平台.其弱 局域化效应相比被修饰之前得到了抑制,这意味石墨烯中可能引入了内禀的 Kane-Mele 型自旋-轨道相互作 用,增强了 Elliot-Yafet型电子自旋弛豫机制.进一步通过矢量磁体磁阻测量,发现该分子覆盖在石墨烯上后 造成了石墨烯微弱的涟漪,这种涟漪引起的弯曲声子效应模拟了 Kane-Mele 型自旋-轨道相互作用.

关键词:石墨烯,自旋-轨道相互作用,弯曲声子,弱局域化 **PACS**: 72.80.Vp, 73.22.Pr, 71.70.Ej, 73.20.Fz

DOI: 10.7498/aps.71.20211815

1 引 言

量子自旋霍尔效应^[1-4]最早在石墨烯体系中 提出,随后在 HgTe/CdTe 量子阱^[3]、InAs/GaSb 异质结^[4]、单层 FeSe^[5]、单层 WTe₂^[6,7]等系统中实 现.在石墨烯中实现量子自旋霍尔效应的关键在于 将石墨烯的化学势调控到狄拉克锥处由自旋-轨 道相互作用打开的带隙中.然而石墨烯中内禀的自 旋-轨道相互作用十分微小,所打开的能隙仅有 10⁻⁵—10⁻⁶ eV^[8,9].因此尽管目前做出了大量的尝试 去打开石墨烯狄拉克点的能隙,却依然没有突破性 的进展.目前提出的增强自旋-轨道相互作用的方 案主要有:用氢原子功能化石墨烯 (氢化石墨烯^[10]、

© 2022 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划 (批准号: 2018YFA0306004) 和国家自然科学基金 (批准号: U1732273, U1732159, 12025404, 11904166, 11904165, 61822403, 11874203, 11834006, 91622115, 11522432, 11574217, 21571097) 资助的课题.

[#] 同等贡献作者.

[†] 通信作者. E-mail: llsun@iphy.ac.cn

[‡] 通信作者. E-mail: yousong@nju.edu.cn

計通信作者. E-mail: songfengqi@nju.edu.cn

氟化石墨烯^[11]),用 In^[12],Au^[13,14],Ir^[15]等金属原 子^[16]修饰石墨烯表面,以及将石墨烯与强自旋-轨 道耦合材料结合形成异质结,如 Bi₂Te₂Se, Bi₂Se₃ 等拓扑绝缘体^[17]和一些过渡金属硫族化物^[18,19], 可以将石墨烯中的自旋-轨道相互作用提高到 10⁻² eV 的量级^[10,13,14,16,17].

但要想获得可靠的量子自旋霍尔态,石墨烯中 所引入的自旋-轨道相互作用须是 Kane-Mele(KM) 型,其哈密顿量为~ $\tau_z\sigma_zs_z$,而 Bychkov-Rashba (BR)型自旋-轨道相互作用(~ $(s \times \sigma)_z$)会使能带 中空穴分支发生劈裂,抬高价带使能隙变小,甚至 于使不同的电子和空穴分支接触到一起,从而破坏 量子自旋霍尔态的输运^[8].这里 τ , σ ,s都是 Pauli 矩阵, $\tau_z = \pm 1$ 对应于动量空间 K(K')点, $\sigma_z = \pm 1$ 对应于 A(B)两套子晶格, s_z 对应于电子的自旋. 考虑到 KM 型自旋-轨道相互作用源于石墨烯六角 蜂窝状晶格的对称性,实现这种有选择性的自旋-轨道相互作用增强存在困难也在情理之中,因为在 修饰石墨烯的时候必然会给这种周期性的晶格结 构带来额外的杂质原子.因此,即使能够引入微弱 的 KM 型自旋-轨道相互作用,往往会伴随着更大 的非对称 Rashba 型自旋-轨道相互作用, 且其引入的杂质也可能影响到石墨烯的迁移率并破坏脆弱的量子自旋霍尔边缘态.

本文以 Na[Dy(EDTA)(H₂O)₃]·5H₂O (EDTA-Dy 分子) 修饰石墨烯,不仅提高了石墨烯器件的 输运性能,并且提出一种耦合机制,即电子自旋与 弯曲的声子相互耦合,从而在石墨烯中引入了类似 于 KM 型的自旋-轨道相互作用.按照 Elliot-Yafet (EY) 机制^[20,21],由电子自旋弛豫时间可以得到所 引入的自旋-轨道耦合强度.修饰后的石墨烯中量 子霍尔效应也得到提升.

2 实验方法

石墨烯器件是在用化学气相沉积法生长的单晶石墨烯基础上加工而成的 (如图 1(a) 所示).将单晶石墨烯转移到表面为 300 nm 厚的二氧化硅 绝缘层的硅片上.通过标准电子束曝光工艺和电子 束蒸发沉积金属电极形成 Hall-bar 器件. EDTA-Dy 分子是根据已有文献报道合成^[22].将 10 mL EDTA-Na₂ (7.44 g, 0.02 mol) 的水溶液搅拌加入

图 1 EDTA-Dy 修饰的石墨烯器件及其输运特性 (a) 石墨烯介观输运结构图,用橘色小球代表 EDTA-Dy 分子修饰在石墨烯 上面; (b) EDTA-Dy 分子修饰的石墨烯的拉曼光谱; (c) 在 2, 20 和 290 K 温度下, EDTA-Dy 修饰石墨烯的电阻随门电压的变化; (d) 在温度 2 K 和磁场 12 T 的条件下,分子修饰后的石墨烯的纵向电阻 ρ_{xx} 和霍尔电导 σ_{xy} 随门电压的变化

Fig. 1. The EDTA-Dy dressed graphene and its device transport: (a) Schematic configuration of the device, where the EDTA-Dy (orange balls) coats the graphene sheet; (b) Raman spectrum of EDTA-Dy dressed graphene, indicating that the sample is a single layer graphene sheet; (c) resistance as a function of back gate voltage (V_g) for EDTA-Dy dressed graphene at 2, 20 and 290 K; (d) V_g dependence of the longitudinal resistivity ρ_{xx} and the Hall conductivity σ_{xy} measured in a magnetic field of 12 T at a temperature of 2 K, where the Hall conductivity goes quantized and the longitudinal resistivity approaches zero.

到 10 mL Dy(NO₃)₃·5H₂O (8.77 g, 0.02 mol) 水溶 液中, 然后利用 1 mol/L 的 NaOH 水溶液将其 pH 值调为 6.5. 通过拉曼光谱、原子力显微镜和电学 输运测量可以研究 EDTA-Dy 修饰对石墨烯的影 响. 电输运测量是利用标准的锁相技术, 在 Cryomagnetics 公司的 C-Mag 系统中进行. 首先测量纯 石墨烯, 然后将 0.1 mL EDTA-Dy 分子溶液滴在 器件表面, 置于通风橱中几分钟使水分挥发, 之后 再次测量. 面内磁场的测量是在矢量磁体中进行 的. 一些电学输运的参数包括:载流子浓度 n = $1/(qR_{\rm H}), 其中q为载流子电荷, R_{\rm H}为霍尔系数, 可$ 通过低磁场下霍尔电阻线性拟合得到;载流子迁移 $率可以通过<math>\mu = \sigma/(nq)$ 得到, 其中 σ 是石墨烯电导; 平均自由程和扩散系数分别为 $l_{\rm e} = h\sigma/(2q^2\sqrt{\pi n})$ 和 $D = v_{\rm F}l_{\rm e}/2$, 其中费米速度 $v_{\rm F} \approx 10^{6}$ m/s.

3 实验结果与讨论

3.1 EDTA-Dy 分子修饰石墨烯的输运性能

图 1(b) 是 EDTA-Dy 修饰的石墨烯的拉曼光 谱, 2D 峰与 G 峰的峰高比为 1.44, 2D 峰半高宽 25.01 cm⁻¹, 这表明样品是单层石墨烯.图 1(c) 是 EDTA-Dy 修饰的石墨烯在不同温度 (2, 20, 290 K) 下纵向电阻 *R_{xx}* 随栅压 *V_g* 的变化.经过 EDTA-Dy 修饰后, 原本 p 型的石墨烯中空穴载流子浓度降 低, 这意味着有电子从分子转移到了石墨烯.这可 从分子本身的结构来理解. EDTA-Dy 复合体的 ED TA 配体中有 4 个—COO⁻官能团螯合着中心的 Dy^{III}离子.—COO⁻官能团中自由 O²⁻电子密度很 高, 其与石墨烯中 π 电子有强烈的相互作用趋势.

石墨烯被修饰之后,其输运性能得到了提高, 这与之前报道的 Pt-porphyrins 修饰石墨烯的情况类似^[23].修饰后石墨烯的载流子迁移率从 1919 cm²/(V·s)提高到 3626 cm²/(V·s),并表现出 量子霍尔效应 (图 1(d)).在低温 2 K 和强磁场 12 T 下,霍尔电导 σ_{xy} 和纵向电阻 ρ_{xx} 随栅压 V_g 变化, σ_{xy} 会量子化到4(n + 1/2) e^2/h 的平台,同时 ρ_{xx} 接近 0.4(n + 1/2) e^2/h 的霍尔电导平台体现了单层 石墨烯狄拉克费米子的量子霍尔效应的特性.

3.2 受抑制的弱局域化效应和选择性增强的 KM 型自旋-轨道相互作用

电子的自旋-轨道相互作用会改变一对沿时间

反演路径运行的电子的干涉,而造成电子波函数相 位的改变以及低场下磁电阻曲线的量子修正^[24]. 对于石墨烯, McCann 等^[25]的弱局域化理论描述 了在低场下电导的弱局域化修正:

$$\Delta\sigma\left(B\right) = \frac{e^2}{\pi\hbar} \left[F\left(\frac{B}{B_{\phi}}\right) - F\left(\frac{B}{B_{\phi}+2B_i}\right) -2F\left(\frac{B}{B_{\phi}+B_*}\right) \right],$$
$$F\left(z\right) = \ln z + \psi\left(\frac{1}{2} + \frac{1}{z}\right), \ B_{\phi,i,*} = \frac{\hbar c}{4De}\tau_{\phi,i,*}^{-1}, \ (1)$$

其中, ψ 是 Digamma 函数; *D*是扩散系数; τ_{ϕ}^{-1} 是 电子退相干速率; τ_{*}^{-1} 是谷内对称性破缺散射速率, τ_{i}^{-1} 是谷间散射速率,可以从低场磁电阻曲线拟 合得到. 相应的弛豫长度与弛豫时间的关系为 $L_{\phi,i,*} = \sqrt{D\tau_{\phi,i,*}}$. McCann 和 Fal'ko^[26,27] 进一步 提出, 通过分析石墨烯弱局域化特征和自旋弛豫机 制,可以推测出自旋-轨道相互作用的类型. 当较强 的自旋-轨道相互作用被引入石墨烯当中,弱反局 域化增强的输运特征意味着 Rashba 型自旋-轨道 相互作用占主导作用, 而被抑制的弱局域化现象表 明 KM 型自旋-轨道相互作用占主导地位.

在低温2K下 EDTA-Dy 分子修饰前后石墨 烯的低磁场输运性能如图 2(a) 和图 2(b) 所示.器 件电导在零场附近迅速降低,这正是石墨烯中电子 的弱局域化效应. 通过调控门电压, 可以分别将修 饰前后的石墨烯器件中的载流子浓度调至基本相 同,这样可以在相同的费米能级处来比较修饰前后 石墨烯中的电子轨道相互作用的强度. 在相同载流 子浓度下修饰后石墨烯并没有发生弱反局域化转 变,而且在扩散系数 D 增大的情况下,弱局域化特 征稍弱于修饰前,这说明 EDTA-Dy 分子覆盖在石 墨烯上后弱局域化效应被抑制,这种特征恰恰与 McCann 理论中 KM 型自旋-轨道相互作用占主导 地位的情形相吻合[26,27].因此,可认为分子修饰后 的石墨烯中引入了新的电子自旋弛豫机制 $au_{\rm KM}^{-1}$ $(\tau_{\rm KM}^{-1}$ 是本征的 Kane-Mele 自旋弛豫速率), 导致修 饰后的石墨烯退相干速率 τ_{ϕ}^{-1} 由原来的 $\tau_{\phi pris}^{-1}$ 增强 为 $\tau_{\phi edta}^{-1} = \tau_{\phi pris}^{-1} + \tau_{KM}^{-1} (\tau_{\phi pris}^{-1} 和 \tau_{\phi edta}^{-1} 分别为修饰前$ 后的电子退相干速率). 通过拟合分子修饰前后石 墨烯的弱局域化曲线可以得到各自的电子退相干 速率随门电压调控的变化. 对比石墨烯被修饰前后 退相干速率的差异,可以获得相应温度下 EY 机制

所对应的自旋-轨道耦合强度: $\Delta_{EY}^2 = \varepsilon_F^2 \tau_p \tau_{KM}^{-1} = \varepsilon_F^2 \tau_p \tau_{\phi edta}^{-1} - \varepsilon_F^2 \tau_p \tau_{\phi pris}^{-1}$. 图 2(c) 所示为 2 K 温度下, 分 子修饰前后 $\varepsilon_F^2 \tau_p \tau_{\phi}^{-1}$ 与 $\varepsilon_F^2 \tau_p$ 的关系,其中 $\tau_p = h\sigma/(2e^2 v_F \sqrt{\pi n})$ 为电子动量弛豫时间 (弹性散射时间),实线和虚线分别是它们的拟合曲线.在本实验的载流子浓度范围内,两条拟合曲线的间距几乎不

图 2 EDTA-Dy 修饰石墨烯引起的被抑制的弱局域化现 象及 EY 机制拟合 (a), (b) 2 K 时石墨烯被修饰前后的弱 局域化随门电压的调控; (c) 修饰前后石墨烯中 $\varepsilon_{\rm F}^2 \tau_{\rm p} \tau_{\phi}^{-1}$ 与 $\varepsilon_{\rm F}^2 \tau_{\rm p}$ 的关系, 实线和虚线是各自的二项式拟合

Fig. 2. Suppressed weak-localization in the EDTA-Dy decorated graphene device and EY plot: (a), (b) Weak localization of pristine and EDTA-Dy dressed graphene at different $V_{\rm g}$ while fixing the temperature of 2 K; (c) $\varepsilon_{\rm F}^2 \tau_{\rm p} \tau_{\phi}^{-1}$ as a function of $\varepsilon_{\rm F}^2 \tau_{\rm p}$ for the pristine and EDTA-Dy dressed graphene, where solid and dashed line are the fit for them, respectively.

变,也就是说 $\tau_{\rm P}\tau_{\rm KM}^{-1}$ 几乎保持为常数,这也验证了 EY型电子自旋弛豫机制.由两条拟合曲线外延截 距的差值,可得 EY 机制自旋耦合强度 $\Delta_{\rm EY}$ 约为 5.2 meV.

3.3 分子修饰后石墨烯在矢量磁场下的输运

3.2 节阐述的受抑制的弱局域化现象和 EY 机 制拟合结果均说明石墨烯被修饰后,其 KM 型自 旋-轨道相互作用被选择性地增强.这种对石墨烯 表面的修饰本该引入更多的电子散射,但研究发现 器件的量子输运性能得到提高,分析认为,EDTA-Dy 分子覆盖区域的涟漪增强了石墨烯中的弯曲声 子效应,并选择性增强了 EY 机制的电子自旋弛豫 效应.

首先通过室温下的原子力显微镜观察石墨烯 的形貌.如图 3(a)所示,未修饰的本征石墨烯粗糙 度的均方根约为 0.66 nm,而修饰并完成磁电阻的 测量后,将器件表面的分子覆盖层去除,再次用原 子力显微镜测量发现表面粗糙度均方根值提高到 1.64 nm.这种褶皱增强现象也有其他类似的文献 报道^[28].这是由于石墨烯和有机分子层随温度伸 缩具有不同的依赖关系.这种涟漪可能将某些区域 的石墨烯从衬底上分离开,从而减小了硅片衬底对 石墨烯载流子的散射,提高了迁移率^[29,30].

考虑去除分子覆盖层可能会造成石墨烯表面 的界面效应,我们通过矢量磁体测量磁电阻的方法 来获得石墨烯修饰前后的粗糙度.根据 Lundeberg 和 Folk^[31]提出的理论,石墨烯表面的涟漪会诱导 随机的矢量势场产生,进而改变面内磁场下磁电阻 的响应.对于普遍的高斯型涟漪,这种随机矢量势 调节的磁电阻 $\Delta\rho$ ($B_{//}$)可以通过玻尔兹曼方法计算:

$$\Delta \rho \left(n, \theta, B_{//} \right) = \frac{\sin^2 \theta + 3\cos^2 \theta}{4} \frac{1}{\hbar |n|^{3/2}} \frac{Z^2}{R} B_{//}^2, \quad (2)$$

其中 θ 是电流方向与面内磁场方向的夹角, Z 为粗 糙度均方根, R 为石墨烯涟漪起伏的关联长度.在 该器件中 EDTA-Dy 分子覆盖前后 θ 约为 10°和 80°. 施加面内磁场后, 通过方程 (2) 拟合得到修饰 前后 Z^2/R 约为 0.14 nm 和 0.67 nm (见图 3(b)).

处于面内平行磁场下,石墨烯的涟漪外形不仅 会造成磁电阻的响应,还会对垂直磁场下的弱局域 化现象造成影响.这是由于当平行磁场穿过涟漪 时,产生的磁通量会对电子的传导施加轨道效应,

图 3 原子力显微镜表征和矢量磁体测量的石墨烯涟漪结构 (a) 未修饰的的本征石墨烯 (上) 和分子修饰石墨烯 (下) 的原子力 显微镜形貌图, 图中比例尺为 100 nm; (b) 在水平磁场下, 分子修饰前后石墨烯的磁电阻随磁场强度的变化, 其中实线由 (2) 式拟 合得到, 拟合参数分别为 $n = 6.44 \times 10^{12}$ cm⁻² 和 4.27 × 10¹² cm⁻², 插图是矢量磁体测量示意图; (c), (d) 在一系列特定平行磁场 $B_{//}$ 下, 修饰前后石墨烯的磁电阻对垂直磁场 (B_{\perp} <0.04 T) 的弱局域化响应; (e) 拟合得到修饰前后石墨烯的退相干速率 τ_{ϕ}^{-1} 与平 行磁场 $B_{/}^{2}$ 的关系, 其斜率与 $Z^{2}R$ 相关

Fig. 3. Atomic force microscope characterization and ripple configuration revealed by the vector magnet measurement. (a) Atomic force microscope images of pristine graphene (upper) and EDTA-Dy dressed graphene (down). The scale bar is 100 nm. (b) Resistivity of pristine graphene and EDTA-Dy dressed graphene dependent on $B_{//}^2$. The solid lines are the fitting according to Eq. (2) using $n = 6.44 \times 10^{12}$ cm⁻² and 4.27 $\times 10^{12}$ cm⁻². The inset is the measurement configuration. (c), (d) B_{\perp} -dependent magnetoconductivity ($B_{\perp} < 0.04$ T), at a series of fixed $B_{//}$. Dashed lines are the fitting according to Eq. (3). Panel (c) and (d) correspond to the graphene before and after EDTA-Dy dressing, respectively. (e) Extracted values of τ_{ϕ}^{-1} plotted against $B_{//}^2$, the slope is related to $Z^2 R$.

因此电子相位相干导致的弱局域化会被抑制. 所以 我们选择在一系列特定的平行磁场下,分别测量修 饰前后由垂直磁场造成的弱局域化效应,结果如 图 3(c) 和图 3(d) 所示. Lundeberg 和 Folk^[31]提 出具有涟漪的石墨烯处于平行磁场下,其磁电阻弱 局域化曲线方程中的 τ_{ϕ}^{-1} 与平行磁场强度 $B_{//}^{2}$ 具有 如下相关性: $\tau_{\phi}^{-1} \rightarrow \tau_{\phi}^{-1} + \sqrt{\pi} (e^{2}/\hbar^{2}) vZ^{2}RB_{//}^{2}$. 拟 合弱局域化曲线可得到修饰前后的石墨烯器件中, $Z^{2}R$ 分别为1.07 nm³和7.06 nm³, 如图 3(e) 所示.

3.4 结果讨论

利用矢量磁体测量得到的 $Z^2/R 和 Z^2 R$ 数据, 可以得到未修饰的石墨烯高斯型涟漪的粗糙度 Z = 0.62 nm和关联程度R = 2.7 nm, 而修饰后的 石墨烯 $Z = 1.48 \text{ nm} \pi R = 3.2 \text{ nm}$. 这表明石墨烯 被 EDTA-Dy 修饰后确实产生了具有显著效果的 涟漪. 可认为这种涟漪的石墨烯具有的弯曲声子协 助了 EY 型的自旋弛豫. 根据之前关于全对称性适 应的自旋-声子耦合研究^[32], 与 B_2 不可约表示相关 的声子振动会引入一个电子运动的哈密顿量 $H_{\text{ph}} =$ $g\sigma_z s_z h(r)^2$,其中h(r)是碳原子的垂直位移, $\sigma \pi s$ 分别是根据晶格和自旋定义的泡利矩阵. 考虑到整 个布里渊区的热平均,这个声子振动会导出一个局 域项 $H_{\text{KM}} = \Delta(r)\sigma_z s_z$,其中 $\Delta(r)$ 是弯曲声子对于 Kane-Mele 耦合的贡献,它正比于 $\langle h^2 \rangle$. 所以,石 墨烯狄拉克点附近的电子低能量的等效哈密顿模 型为

$$H_{\rm eff} = -i\hbar v_{\rm F} \sigma \cdot \nabla + \Delta(r) \,\sigma_z s_z. \tag{3}$$

(3)式 KM 型的有效哈密顿量可以解释本实验中 出现的 KM 型自旋-轨道相互作用.

由此模型可合理地预见, 自旋的 *z*分量守恒. 石墨烯中只有面内的自旋有可能在散射过程中经 历翻转. $\Delta(r)$ 可按照由高斯型 δ 函数表示的无序 来处理, 即 $\langle \Delta(r) \rangle = 0 \pi \langle \Delta(r) \Delta(r') \rangle = \overline{\Delta} \delta(r - r')$, 其中 $\overline{\Delta}$ 表示无序关联的强度. 无序系统配分函数 $Z = \int D\psi^{\dagger} D\psi e^{S}$, 式中 D是泛函积分; ψ 是费米 子产生算符; $S = S_0 + S_1$, 其中 S_0 是无质量狄拉克 费米子项, S_1 是无序项,

$$S_1 = \int \mathrm{d}\tau \sum_r \Delta(r) \,\psi_r^{\dagger} \sigma_z s_z \psi_r. \tag{4}$$

我们假设 S_1 是很小的能量修正,进行微扰展开.之 后通过无序平均^[33]的处理,得到 $Z = \int D\psi^{\dagger} D\psi e^S$, 式中 $S = S_0 + S'$,其中,

$$S' = \frac{\bar{\Delta}}{2} \int \mathrm{d}\tau \sum_{r} \psi_{r}^{\dagger} \sigma_{z} s_{z} \psi_{r} \psi_{r}^{\dagger} \sigma_{z} s_{z} \psi_{r}.$$
(5)

以平均场的方法处理得到

$$S = \int d\tau \sum_{k} \psi_{k}^{\dagger} \left[\left(-\partial_{\tau} + \tau_{z} k_{x} \sigma_{x} - k_{y} \sigma_{y} \right) s^{0} + \bar{\Delta} \sigma_{z} s_{z} \right] \psi_{k}, \tag{6}$$

式中, 第一项描述的是本征石墨烯电子在动量空间 狄拉克点附近的展开; 第二项是修饰后的石墨烯随 机矢量势场诱导的类似 KM 型的自旋-轨道耦合, 其耦合强度正比于 $\overline{\Delta}$. 这样, 就出现了一个全局的 等效的 KM 型自旋-轨道耦合.由(3)式这个等效 哈密顿量对应的薛定谔方程, 可以得到自旋翻转的 概率为 $\alpha = \overline{\Delta}^2/(4\epsilon_F^2)$, 符合 EY 型自旋弛豫机制.

4 结 论

修饰石墨烯可能会引入可观的 Rashba 型自 旋-轨道相互作用, 而通过 EDTA-Dy 分子修饰石 墨烯可能选择性地增强了 KM 型的自旋-轨道相互 作用,本文研究发现其受抑制的弱局域化效应证明 了这一点.同时石墨烯的量子输运性能得到了提 高,其狄拉克费米子的量子霍尔效应得以实现.石 墨烯修饰后造成的界面拉伸和局域的涟漪导致了 内禀自旋-轨道相互作用的增强和量子输运性能的 提高,并以此提出了自旋-弯曲声子耦合的模型.希 望本实验能够推进石墨烯中拓扑态的研究.

参考文献

- [1] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
- [2] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
- [3] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp Laurens W, Qi X L, Zhang S C 2007 Science 318 766
- [4] Knez I, Rettner C T, Yang S H, Parkin S S P, Du L, Du R R, Sullivan G 2014 Phys. Rev. Lett. 112 026602
- [5] Wang Z F, Zhang H, Liu D, et al. 2016 Nat. Mater. 15 968
- [6] Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X, Cobden D H 2017 Nat. Phys. 13 677
- [7] Tang S, Zhang C, Wong D, et al. 2017 Nat. Phys. 13 683
- [8] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J 2009 Phys. Rev. B 80 235431
- [9] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401
- [10] Balakrishnan J, Kok Wai Koon G, Jaiswal M, Castro Neto A H, Özyilmaz B 2013 Nat. Phys. 9 284
- [11] Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403
- [12] Jia Z, Yan B, Niu J, Han Q, Zhu R, Yu D, Wu X 2015 *Phys. Rev. B* **91** 085411
- [13] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba E I, Rybkin A, Shikin A M, Rader O 2012 Nat. Commun. 3 1232
- [14] Wang Y, Cai X, Reutt-Robey J, Fuhrer M S 2015 Phys. Rev. B 92 161411
- [15] Qin Y, Wang S, Wang R, Bu H, Wang X, Wang X, Song F, Wang B, Wang G 2016 *Appl. Phys. Lett.* **108** 203106
- [16] Weeks C, Hu J, Alicea J, Franz M, Wu R 2011 Phys. Rev. X 1 021001
- [17] Lee P, Jin K H, Sung S J, et al. 2015 ACS Nano 9 10861
- [18] Wang Z, Ki D K, Khoo J Y, Mauro D, Berger H, Levitov L S, Morpurgo A F 2016 *Phys. Rev. X* 6 041020
- [19] Wakamura T, Reale F, Palczynski P, Gueron S, Mattevi C, Bouchiat H 2018 Phys. Rev. Lett. 120 106802
- [20] Ochoa H, Castro Neto A H, Guinea F 2012 Phys. Rev. Lett. 108 206808
- [21] Zomer P J, Guimarães M H D, Tombros N, van Wees B J 2012 Phys. Rev. B 86 161416
- [22] Nassimbeni L R, Wright M R W, van Niekerk J C, McCallum P A 1979 Acta Crystallogr. Sec. B 35 1341
- [23] Li C, Komatsu K, Bertrand S, Clavé G, Campidelli S, Filoramo A, Guéron S, Bouchiat H 2016 Phys. Rev. B 93 045403
- [24] Bergman G 1982 Phys. Rev. Lett. 48 1046
- [25] McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805
- [26] McCann E, Fal'ko V I 2014 Physics of Graphene (edited by Aoki H, S. Dresselhaus M) (Switzerland: Springer, Cham) pp327-345
- [27] McCann E, Fal'ko V I 2012 Phys. Rev. Lett. 108 166606
- [28] Singh A K, Iqbal M W, Singh V K, Iqbal M Z, Lee J H, Chun S-H, Shin K, Eom J 2012 J. Mater. Chem. 22 15168
- [29] Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano. Lett. 7 1643
- [30] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491
- [31] Lundeberg M B, Folk J A 2010 Phys. Rev. Lett. 105 146804
- [32] Ochoa H, Castro Neto A H, Fal'ko V I, Guinea F 2012 Phys. Rev. B 86 245411
- [33] Pruisken A M M, Schäfer L 1981 Phys. Rev. Lett. 46 490

SPECIAL TOPIC—Manipulation and applications of solid-state single quantum systems

Selective enhancement of Kane Mele-type spin-orbit interaction in graphene^{*}

Bai Zhan-Bin^{1)#} Wang Rui^{1)#} Zhou Ya-Zhou^{2)#} Wu Tian-Ru^{3)#} Ge Jian-Lei¹⁾ Li Jing⁴⁾ Qin Yu-Yuan¹⁾ Fei Fu-Cong¹⁾ Cao Lu¹⁾ Wang Xue-Feng⁵⁾ Wang Xin-Ran⁵⁾ Zhang Shuai¹⁾ Sun Li-Ling^{2)†} Song You^{4)‡} Song Feng-Qi^{1)††}

1) (Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China)

2) (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China)

3) (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

4) (Collaborative Innovation Center of Advanced Microstructures, State Key Laboratory of Coordination

Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China)

5) (Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China)

(Received 29 September 2021; revised manuscript received 6 November 2021)

Abstract

In order to enhance the spin orbit interaction (SOI) in graphene for seeking the dissipationless quantum spin Hall devices, unique Kane-Mele-type SOI and high mobility samples are desired. However, the common external modification of graphene often introduces "extrinsic" Rashba-type SOI, which will destroy the possible topological state, bring a certain degree of impurity scattering and reduce the sample mobility. Here we show that by the EDTA-Dy molecule dressing, the carrier mobility is even improved, and the quantum Hall plateaus are observed more clearly. The Kane-Mele type SOI is mimicked after dressing, which is evidenced by the suppressed weak localization at equal carrier densities and simultaneous Elliot-Yafet spin relaxation. This is attributed to the spin-flexural phonon coupling induced by the enhanced graphene ripples, as revealed by the in-plane magnetotransport measurement.

Keywords: graphene, spin-orbit interaction, flexural phonon, weak localization PACS: 72.80.Vp, 73.22.Pr, 71.70.Ej, 73.20.Fz **DOI:** 10.7498/aps.71.20211815

DOI: 10.1450/aps.11.20211010

^{*} Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306004), the National Natural Science Foundation of China (Grant Nos. U1732273, U1732159, 12025404, 11904166, 11904165, 61822403, 11874203, 11834006, 91622115, 11522432, 11574217, 21571097).

 $^{^{\#}\,}$ These authors contributed equally.

[†] Corresponding author. E-mail: llsun@iphy.ac.cn

[‡] Corresponding author. E-mail: yousong@nju.edu.cn

^{††} Corresponding author. E-mail: songfengqi@nju.edu.cn