Li 含量对 Li_{3x}La_{(2/3)-x} $\dagger_{(1/3)-2x}$ TiO₃ 固态电解质 表面稳定性、电子结构及 Li 离子输运性质的影响*

孙宝珍1)2)† 王靖轩1) 石晶1) 华彪1) 徐波1)

1) (江西师范大学物理与通信电子学院, 南昌 330022) 2) (江西师范大学, 氟硅能源材料与化学教育部重点实验室, 南昌 330022)

(2022 年 9 月 16 日收到; 2022 年 10 月 15 日收到修改稿)

Li_{3x}La_{(2/3)-x}†(1/3)-2x</sub>TiO₃ (LLTO) 是一类颇具前景的锂离子电池固态电解质.本文采用第一性原理结合 分子动力学方法对贫锂相和富锂相两种类型的LLTO表面进行研究,分析表面Li含量对其稳定性、电子结 构及 Li 离子输运性质的影响.结果表明,具有 La/O/Li-原子终端的 (001) 面为最稳定晶面.对于 LLTO (001) 面,当贫锂相/富锂相终端Li含量为0.17/0.33,0.29/0.40,0.38/0.45时,其表面结构更为稳定.电子结构分析 表明, 随着 Li 含量的增大, 不论是贫锂相还是富锂相, 其 (001) 表面均发现金属至半导体的转变. Li 离子输运 性质的研究结果表明,贫锂相和富锂相 LLTO (001) 表面均具有沿 ab 平面的二维扩散通道,且当终端 Li 含量 分别达到 0.38 和 0.40 时具有最大的 Li 离子扩散系数及最低的 Li 离子扩散能垒, 最低扩散能垒分别为 0.42 eV 和 0.30 eV. 因而, 改变终端 Li 含量有利于提高 LLTO(001) 表面稳定性、打开表面带隙、改善 Li 离子迁移性 能,这有助于抑制 LLTO 表面锂枝晶的生长.

关键词:全固态锂离子电池,锂含量, $Li_{3x}La_{(2/3)-x}\dagger_{(1/3)-2x}TiO_3$ 表面 PACS: 82.47.Aa, 71.15.Mb, 71.15.Pd, 61.66.Fn

DOI: 10.7498/aps.72.20221808

1 引 言

全固态锂离子电池由于其优异的安全性能及 潜在的高能量密度等优势,有望改善电池的安全性 问题,在动力电池和大容量新型储能领域具有广阔 的应用前景^[1-3]. 固态电解质作为全固态锂离子电 池的核心,从根本上决定了电池体系的性能.在诸 多固态电解质中,钙钛矿型 (ABO3) 固态电解质由 于其化合物的多样性和高离子电导率而备受关注[4-9]. 其中, 钛酸锂镧 Li_{3x}La_{(2/3)-x}†_{(1/3)-2x}TiO₃(缩写为 LLTO, †代表 A 位空穴) 被认为具有最高的离子电 导率 (室温下高达 10⁻³ S/cm)^[10], 是一类潜在的固

态电解质材料.

LLTO 被称为 A 位缺陷型钙钛矿型氧化物. 在 LLTO 结构中, La 和空穴占据 ABO3 中的 A 位, Ti占据 B位, Li可在一定范围内取代部分 A位 La. 尽管 LLTO 固态电解质具有诸多潜在的优势, 但是基于 LLTO 的全固态锂离子电池的实际应用 还存在问题,其中一个主要问题是锂枝晶生长问 题. Han 等^[11] 的实验研究结果表明固态电解质 的高电子导电率是导致金属锂枝晶产生和生长的 重要因素.他们认为在具有导电电子的固态电解质 中, 电子与 Li+复合然后沉积形成金属锂. Wu 等^[12] 的实验结果也证实了这一观点. 他们对比了 Li/Li₆₁Ga₀₃La₃Zr₂O₁₂ (LLZO) 和 Li/Li₂O-Al₂O₃-

© 2023 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号: 12064015, 12164019)和江西省自然科学基金(批准号: 20212BAB201017)资助的课题。

[†] 通信作者. E-mail: bzsun@jxnu.edu.cn

[‡] 通信作者. E-mail: bxu4@mail.ustc.edu.cn

P₂O₅-TiO₂-GeO₂ (LATP)两种界面,发现在 LATP 和锂电极之间形成了一层电子绝缘但离子导电的 界面层,该界面层缓解了锂枝晶的生长; LLZO 与 锂电极则不易形成界面层,从而容易产生锂枝晶. 可见,锂枝晶生长与固态电解质表面的电子导电性 息息相关.另一方面,Li+在 LLTO 固态电解质表 面迁移的快慢也与锂枝晶的形成直接相关.如果 Li+ 迁移速度较慢,这些 Li+被还原成金属锂的概率会 增大.为了有效抑制锂枝晶,有必要弄清楚 LLTO 表面的电子导电性及 Li+在其表面迁移的快慢.

目前仅有少数研究工作报道了 LLTO 的表面 性质. 例如, Cervantes 等^[13]和 Zhao 等^[14]分别对 比了 LLTO 体相与其 (001) 面的电子结构的差异. Cervantes 等^[13]的结果表明当 3x = 0.25 时, LLTO 体相为半导体; 而当 3x = 0.5 时, LLTO 体相为绝 缘体; LLTO(001) 表面以 LiO-, LaO-或 TiO2-为原 子终端时更为稳定,具有 LiO-或 TiO₂-终端的 LLTO(001) 表面表现为金属特性, 具有 LaO-终端 的 LLTO(001) 表面则为半导体. Zhao 等^[14] 的理 论计算则表明 Li_{0.5}La_{0.5}TiO₃体相是一种带隙为 1.967 eV 的间接带隙半导体, 而 Li_{0.5}La_{0.5}TiO₃(001) 面显示出金属性. 很明显, LLTO 表面可能呈现出 完全不同于其体相的性质. 而且, 材料表面由于表 面悬挂键、未饱和键、表面弛豫等表面效应而拥有 一些特别的特性. 这些表面特性亦将影响全固态锂 离子电池的性能[15,16]. 例如, 本课题组的前期研究[17] 表明, Li₃OCl (100) 表面上的锂离子迁移对 Li₃OCl 总导电性的贡献不容忽视. Jung 等^[18]的研究结果 也指出,锂离子在不同表面上的扩散速率不尽相 同. 然而有关 LLTO 表面的研究却十分欠缺, 研究 人员更多地关注其体相. 例如, Nakayama 等^[19]的 理论研究表明 La2/3 TiO3 呈现出金属特性, 随着 Li+ 的插入, Li1/3La2/3TiO3 转变为带隙约为 2.0 eV 的 半导体. Inaguma 等^[20] 报道了 LLTO 中 Li+电导 率与其浓度之间的关系. 当 Li+浓度 3x = 0.33 时, Li+电导率最大,为1.4×10⁻³ S/cm. Yasuaki 等^[21] 的分子动力学模拟结果表明,当Li+浓度较低时,Li+ 在 LLTO 中以二维迁移为主; 而当 Li+浓度较高 时,则以三维扩散为主.这些结果表明,LLTO体 相的电子导电率、Li+导电率及迁移机制均与 Li+浓 度密切相关. 由于电解质内部 Li+浓度的改变会影 响到其表面的 Li+浓度, 进而影响 LLTO 表面性

质,因此最终影响锂枝晶的形成^[22].然而,Li+浓度 依赖的 LLTO 表面稳定性、表面电子结构及 Li+迁 移性质并不清楚,这些基本问题有待研究.

为此,本文采用第一性原理计算与分子动力学 模拟相结合的方法从微观层面上研究表面 Li 含量 对 LLTO 表面的稳定性、电子结构和 Li+迁移性质 的影响,以了解 Li 含量对 LLTO 表面锂枝晶形 成的决定程度,并预测最佳的 Li 含量,为优化实验 合成条件提供参考.本文同时考虑了贫锂相和富 锂相两种类型的 LLTO 表面,选取 3x = 0.125 的 贫 锂 相 (LiLa₅†₂Ti₈O₂₄)和 3x = 0.35 的富 锂 相 (Li₇La₁₁Ti₂₀†₂O₆₀)作为研究模型.计算结果表明, 不论是贫锂相还是富锂相,改变 LLTO 表面 Li 含 量能够降低其电子导电性,并显著提升 Li+的扩散 性能,从而有利于抑制 LLTO 表面锂枝晶的生长. 本研究工作将为抑制 LLTO 固态电解质中锂枝晶 生长提供指导.

2 模型和计算方法

2.1 计算模型

选取 3x = 0.125 的贫锂相 (Li_{0.125}La_{0.625}TiO₃) 和 3x = 0.35 的富锂相 (Li_{0 35}La_{0 55}TiO₃) 作为研究 模型,其体相结构分别采用 Catti 等^[23]和 Qian 等^[24] 获得的稳定结构模型,如图1所示.其中,贫锂相 含有 8 个 Li_{0.125}La_{0.625}TiO₃ 单元, 富锂相含有 20 个 Li_{0.35}La_{0.55}TiO₃ 单元. 由图 1(a) 可知, 在贫锂相 中, TiO₆ 八面体为整个模型的骨架, 富 La 层和贫 La 层在 c 方向交替嵌入, 形成类层状结构, 每一层 存在 4个 A位. 富 La 层由 4个 La 构成, 而贫 La 层由 1 个 La、1 个 Li 和 2 个空位 (1La+1Li+2†) 组成. 由图 1(b) 可知, 在富锂相中, 与贫锂相不同 地是,每一层上共有5个A位,两个贫La层分别 含有 4 Li+1[†]和 3 Li+1 La+1[†], 富 La 层含有 5 个 La. 基于 LLTO 体相的基态结构, 采用周期性平板 方法构建 LLTO 不同晶面指数的表面模型. 需要 指出的是,依据贫锂相体相的基态结构(图 1(a)) 构建而成的表面模型为 LLTO 贫锂相表面, 而依 据富锂相体相的基态结构 (图 1(b)) 构建而成的表 面模型则为 LLTO 富锂相表面. 相邻两层平板间 的真空层厚度设为 15 Å, 以消除相邻表面间的相 互作用.

图 1 未优化的 LLTO 体相结构 (a) Li_{0.125}La_{0.625}TiO₃; (b) Li_{0.35}La_{0.55}TiO₃ Fig. 1. Unrelaxed bulk structures of LLTO: (a) Li_{0.125}La_{0.625}TiO₃; (b) Li_{0.35}La_{0.55}TiO₃.

2.2 计算方法

本文关于 LLTO 体相与表面的优化及电子性 质的计算工作均采用基于密度泛函理论 (DFT) 的 第一性原理计算软件包 VASP (vienna ab initio simulation package)^[25,26] 完成. 电子间交换关联泛 函选择广义梯度近似 (GGA) 的 PBE (Perdew-Burke-Ernzerhof)^[27,28], 电子与离子间相互作用采 用投影缀加平面波 (PAW)^[29,30] 赝势来描述. 计算 过程中平面波截断能设置为 520 eV. 计算采用的 各元素价电子结构为: Li, 2s1; O, 2s22p4; Ti, 3d34s1; La, 5s²5p⁶5d¹6s². 结构优化过程中允许所有的原 子自由弛豫,总能和原子间作用力的收敛精度分 别设为 10⁻⁵ eV 和 10⁻² eV/Å. 布里渊区积分采用 Monkhorst-Pack 型网格^[31], LLTO 体相的 K 点取 值为3×3×3(贫锂相)和3×3×2(富锂相); LLTO 表面的 K点设为 $3 \times 3 \times 1$. 为评估 PBE 泛函的准确性,本文对比了不同泛函计算所得的贫 锂相 LLTO 体相 (LiLa5[†]2Ti8O24) 的晶格参数和带 隙,详细结果列于表1中.根据表1,相比于GGA+ PW91和LDA泛函,GGA+PBE泛函计算所得的 晶格参数与文献中 B3 LYP 泛函^[23]和 PBE+U方 法[24] 计算所得的值更为接近, 且获得的带隙也更 接近加 U时的带隙,说明 PBE 泛函符合精度要求. 由于缺乏相关实验数据,无法与实验进行比较.考 虑到 Ti 的强关联电子效应, 本文也对比了 Ti 加不 同 U值时贫锂相 LLTO 体相的晶格参数和带隙, 详见表 1. 对晶格参数而言, 加 U和不加 U 时并没 有明显的差别.对于带隙而言,加 U时的带隙比不 加 U时的带隙略大,但是所得结论是一致的,即贫

锂相 LLTO 体相表现为半导体特性. 可见, 加 U并 不会影响到最终结论, 本文所采用的 PBE 泛函可 以满足计算的精度.

表 1 不同泛函计算所得贫锂相 LLTO 体相的晶格参数 (a, b, c) 及带隙 (*E_a*)

Table 1. The calculated lattice parameters (a, b, c) and band gap (E_g) of Li-poor LLTO bulk with different functional.

Functional	a	b	с	$E_{\rm g}$
GGA+PBE	7.842	7.771	7.843	1.630
GGA+PW91	7.835	7.768	7.838	1.585
LDA	7.705	7.638	7.697	1.624
$\mathrm{PBE} + U \left(U_{\mathrm{Ti}} = 2.3 \text{ eV} \right)$	7.892	7.822	7.871	1.861
$\mathrm{PBE} + U \left(U_{\mathrm{Ti}} = 2.5 \ \mathrm{eV} \right)$	7.897	7.827	7.834	1.851
$PBE+U (U_{Ti} = 4.0 \text{ eV})$	7.935	7.852	7.899	1.853
B3LYP ^[23]	7.828	7.812	7.902	
${\rm PBE}\!+\!U(U_{\rm La}=7.5~{\rm eV})^{[24]}$	7.828	7.754	7.871	_

本文运用分子动力学模拟 Li+在体相以及表面的输运过程,该部分计算由 LAMMPS 程序包^[32]来实现.为了确保计算所得迁移性质的准确性,对 所计算的结构进行扩胞,使得模型总原子数在 1000—2000 个之间.模拟过程分两步进行:第一 步,等温等压系综 (NPT)下进行 100 ps 的初始结 构优化,时间步长设置为 1 fs,运行 100000 步;第 二步,正则系综 (NVT)下,运行分子动力学直到 锂离子达到扩散平衡,时间步长设为 1 fs,体系总 的模拟时间为 200 ps.模拟的温度范围为 550— 800 K,以 50 K 为间隔.采用混合势函数描述原子 间相互作用,即短程相互作用通过 Buckingham 势 函数描述,长程相互作用通过库伦势函数描述.其 中 Buckingham 势函数来源于文献 [33].

为了获得不同温度下的扩散系数, 计算 Li+随时间变化的均方位移 (MSD). 基于 MSD 的计算结果, 利用 (1) 式, 可以计算出 Li+的自扩散系数 D_{Li}:

$$D_{\mathrm{Li}} = \frac{1}{6} \lim_{t \to \infty} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \left| r_i\left(0\right) - r_i(t) \right|^2 \right\rangle, \qquad (1)$$

其中, $\langle |r_i(0) - r_i(t)|^2 \rangle$ 为计算所得的 MSD, t 为时 间. 然后由阿伦尼乌斯式公式求得 Li+的扩散能垒 $(E_a)^{[34]}$, 表示为

$$D_{\rm Li} = D_0 \exp\left(\frac{-E_{\rm a}}{RT}\right),$$
 (2)

其中 E_a 为 Li⁺的扩散能垒, T 是温度, R 是气体 常数.

3 结果与讨论

3.1 LLTO 表面稳定性

为研究表面稳定性,首先计算富锂相 LLTO 的 (001), (010), (100), (110) 和 (111) 晶面的所有 可能的原子终端的表面能.表面能 (*E*_{surf}) 定义为

$$E_{\rm surf} = \frac{1}{2S} [E_{\rm slab} - N_{\rm slab} E_{\rm bulk}], \qquad (3)$$

式中, S为表面的面积, N_{slab} 表示表面构型中所包 含的 LLTO 体相单元的个数, E_{slab} 和 E_{bulk} 分别 为 LLTO 表面构型和体相单元的总能.表面能越 低对应的表面越稳定.

需要指出的是,当表面模型的化学式不是体相 单胞的整数倍时,表面能计算将在(3)式的基础上 加上或减去 LLTO 材料实验合成过程中涉及的 La₂O₃, Li₂O, TiO₂及 O₂的能量.以具有 La/O/ Li-原子终端的富锂相(001)面为例,表面模型的化 学式(Li₁₀La₁₂Ti₂₀O₆₅)不是按富锂相体相单胞 (Li₇La₁₁Ti₂₀O₆₀)的整数倍进行配比,而是比整 数倍($N_{\text{slab}} = 1$)的富锂相体相单胞多了 3/2 个 Li₂O 分子、1/2 个 La₂O₃ 分子和 1 个 O₂ 分子,所 以在其表面能计算中 N_{slab} 取 1,再减去 3/2 个 Li₂O 分子、1/2 个 La₂O₃ 分子和 1 个 O₂ 分子的能 量,如下式:

$$E_{\text{surf}} = \frac{1}{2S} \Big[E_{\text{slab}} - N_{\text{slab}} E_{\text{bulk}} \\ - \frac{3}{2} E_{\text{Li}_{2}\text{O}} - \frac{1}{2} E_{\text{La}_{2}\text{O}_{3}} - \mu_{\text{O}_{2}} \Big], \qquad (4)$$

再以具有 Ti/O-原子终端的富锂相 (001) 面为例, 表 面 模 型 的 化 学 式 (Li₃La₆Ti₁₅O₄₀) 比 整 数 倍 ($N_{\text{slab}} = 1$) 的富锂相体相单胞 (Li₇La₁₁Ti₂₀O₆₀) 少 了 2 个 Li₂O 分子、5/2 个 La₂O₃ 分子、5 个 TiO₂ 分子和 1/4 个 O₂ 分子,在表面能计算中 N_{slab} 取 1,且加上 2 个 Li₂O 分子、5/2 个 La₂O₃ 分子、 5 个 TiO₂ 分子和 1/4 个 O₂ 分子的能量,如下式:

$$E_{\text{surf}} = \frac{1}{2S} \left[E_{\text{slab}} - N_{\text{slab}} E_{\text{bulk}} + 2E_{\text{Li}_{2}\text{O}} + \frac{5}{2} E_{\text{La}_{2}\text{O}_{3}} + 5E_{\text{TiO}_{2}} + \frac{1}{4} \mu_{\text{O}_{2}} \right],$$
(5)

式中, E_{Li_2O} 是 Li₂O 单胞中单个 Li₂O 的总能; $E_{La_2O_3}$ 为 La₂O₃ 单胞中单个 La₂O₃分子的总能; E_{TiO_2} 是 TiO₂ 单胞中单个 TiO₂分子的总能, μ_{O_2} 为 O₂的 化学势. 在表面能计算中均采用这种思路.

依表面能计算方法得出了富锂相 LLTO 不同 表面终端的表面能,其详细结果见表 2. (001), (010) 和 (100) 晶面均是以 La/O/Li-为原子终端时 表面能最小, 而 (110) 和 (111) 晶面分别是 O-原子 终端和 Ti/O-原子终端的表面能最低, 对应的表面 能分别为 0.69, 0.82, 0.83, 0.98 和 0.85 J/m². 很明 显,以La/O/Li-为终端的(001)表面的表面能最 低,说明富锂相 LLTO 的最稳定表面为 (001) 面. 由此,本文进一步计算了贫锂相(001)面在不同原 子终端的表面能, 计算结果也列于表 2 中, 见括号 中的数据. 由于贫锂相 (001) 面不存在 Li/O-原子 终端,本文只考虑了 La/O-, Ti/O-和 La/O/Li-这 三种原子终端. 由表 2 可知, 贫锂相 (001) 晶面以 La/O-, Ti/O-和 La/O/Li-为原子终端的表面能分 别为 1.95, 1.33 和 0.78 J/m². 其中, 以 La/O/Li-为终端的表面能最低.可见,不论是贫锂相还是富 锂相,其(001)面均以La/O/Li-为终端时最稳定. 因此,后续研究均基于具有 La/O/Li-原子终端的 LLTO(001) 表面进行.

图 2 给出了具有 La/O/Li-终端的 LLTO(001) 表面的结构图.对于贫锂相 LLTO(001)表面,其 原子终端层含有 2 种空位,分别为 V₁和 V₂.V₁位 于两个相邻的 La 原子之间,V₂则位于 4 个 La 原 子构成的正方形窗口的中心,如图 2(c)所示.对于 富锂相 LLTO(001)表面,其原子终端层只含有 1 种空位,即图 2(d)所示的 V₁空位,此时 V₁位于 最表层 4 个 O 构成的正方形窗口的中心.

表 2 富锂相 LLTO 不同表面终端的表面能 (E_{surf}) 和化学式 (SFs), 括号中的值对应贫锂相 Table 2. Surface energy (E_{surf}) and structural formulas (SFs) of Li-rich LLTO surfaces with different terminations. The data of Li-poor LLTO (001) is shown in parentheses.

Facets	Termination	SFs	$E_{ m surf}/(m J{\cdot}m^{-2})$
(001)	La/O-	$Li_3La_{11}Ti_{10}O_{35} (Li_2La_{14}Ti_{16}O_{52})$	2.89(1.95)
	Ti/O-	$Li_{3}La_{6}Ti_{15}O_{40}$ (LiLa ₉ Ti ₁₆ O ₄₄)	1.40(1.33)
	La/O/Li-	$\rm Li_{10}La_{12}Ti_{20}O_{65}~(\rm Li_{3}La_{11}Ti_{16}O_{52})$	$0.69\ (0.78)$
	Li/O-	${ m Li}_{11}{ m La}_{11}{ m Ti}_{20}{ m O}_{65}$	0.78
(010)	La/O-	${\rm Li}_7 {\rm La}_{13} {\rm Ti}_{20} {\rm O}_{64}$	0.93
	Ti/O-	$\mathrm{Li}_{7}\mathrm{La}_{11}\mathrm{Ti}_{24}\mathrm{O}_{68}$	0.87
	La/O/Li-	${\rm Li_9La_{13}Ti_{20}O_{64}}$	0.82
(100)	La/O-	$\mathrm{Li}_{7}\mathrm{La}_{13}\mathrm{Ti}_{20}\mathrm{O}_{64}$	1.05
	Ti/O-	$\mathrm{Li}_{7}\mathrm{La}_{11}\mathrm{Ti}_{24}\mathrm{O}_{68}$	0.90
	La/O/Li-	$\mathrm{Li}_{9}\mathrm{La}_{13}\mathrm{Ti}_{20}\mathrm{O}_{64}$	0.83
(110)	0-	$\mathrm{Li}_{7}\mathrm{La}_{11}\mathrm{Ti}_{20}\mathrm{O}_{68}$	0.98
	Ti/La/O-	$\mathrm{Li}_{7}\mathrm{La}_{13}\mathrm{Ti}_{24}\mathrm{O}_{64}$	3.40
	Ti/O/La/Li-	$\mathrm{Li}_9\mathrm{La}_{14}\mathrm{Ti}_{24}\mathrm{O}_{72}$	1.21
(111)	La/O-	$\mathrm{Li}_9\mathrm{La}_{13}\mathrm{Ti}_{24}\mathrm{O}_{72}$	2.21
	Ti/O-	${ m Li}_{7}{ m La}_{11}{ m Ti}_{20}{ m O}_{60}$	0.85
	Ti/O/La/Li-	$Li_7La_{11}Ti_{20}O_{60}$	0.93

图 2 具有 La/O/Li-终端的 LLTO(001) 表面结构图 (a), (b) 分别为贫锂相和富锂相的侧视图; (c), (d) 分别为贫锂相和富锂相的俯视图

Fig. 2. La/O/Li-terminated LLTO(001) surfaces: (a), (b) The side views of Li-poor and Li-rich phases, respectively; (c), (d) the top views of Li-poor and Li-rich phases, respectively.

3.2 终端 Li 含量对表面稳定性和电子结构 的影响

3.2.1 终端Li含量对表面稳定性的影响

本文首先分析终端 Li 含量对贫锂相和富锂相 LLTO(001) 表面稳定性的影响.通过增加/减少 slab 模型终端的锂原子个数来改变表面 Li 含量, 其中+n 表示在 LLTO(001) 初始表面上下终端层 各增加 $n \uparrow Li 原子, -n 表示在 LLTO (001) 初始$ $表面上下终端层各减少 <math>n \uparrow Li 原子.$ 与此同时, 用 C_{Li} 表示表面终端的 Li 含量, $C_{Li} = N_{Li}/N_{total}$, 其中 N_{Li} 和 N_{total} 分别表示表面终端所含的 Li 原 子个数及原子总数. 由图 2(a) 可知, 贫锂相 (001) 初始表面的 La/O/Li-原子终端共有 6 个原子,其 中 Li 原子个数为 1, 故对应的 Li 含量为 0.17. 相 应地, 富锂相 (001) 初始表面的 La/O/Li-原子终 端共有 9个原子, 其中有 3个 Li 原子, 所对应的 Li含量为 0.33. 图 3 给出了不同 Li含量下的表面 能数据.对于贫锂相,当Li含量从0增至0.38时, 表面能从 1.27 J/m² 降至 0.34 J/m²; 而当 Li 含量 从 0.38 进一步提高到 0.62 时, 表面能从 0.34 J/m² 急剧增至 4.07 J/m². 对于富锂相, 当 Li 含量从 0 增大到 0.45 时, 表面能从 1.62 J/m² 降到 0.48 J/m²; 随后当 Li 含量进一步增大到 0.57 时, 表面能则增 至 1.98 J/m². 由此可见, 不论是贫锂相还是富锂 相,其 LLTO(001) 面的表面能随 Li 含量的增大先 呈现线性下降趋势然后表现线性上升趋势. 这种变 化趋势意味着贫锂相和富锂相均存在一个 Li 含量 的极值点,在这个极值点时 LLTO(001)表面最为 稳定. 由图 3 可知, 贫锂相 Li 含量的极值点为 0.38, 富锂相 Li 含量的极值点为 0.45, 而且贫锂相 和富锂相均是通过在其 LLTO(001) 初始表面上下 终端层各增加2个Li原子达到极值点.当增加 2个 Li 原子时, 贫锂相 LLTO(001) 表面的化学式 变为 Li₆La₆Ti₈O₂₈, 富锂相 LLTO(001) 表面的化 学式则变为 Li₁₄La₁₂Ti₂₀O₆₅, 此时 Li, La, Ti 和 O 的价态分别为+1,+3,+4,-2,各元素的价态处于 各自的稳定价态,因而 LLTO(001) 表面结构在极 值点时最为稳定.此外,根据图4所示的态密度, 在极值点时 LLTO(001) 表面为半导体特性, 而非 极值点时为金属特性.由此可知,导电电子在半导 体特性的固态电解质的迁移速度较金属特性的固 态电解质更慢,更慢的电子迁移有利于阻碍 Li+与 电子结合成金属锂,抑制锂枝晶的形成,从而使得 固态电解质能稳定存在.显然,从化学价态和态密 度角度均能说明极值点时 LLTO(001) 表面结构最 为稳定.

图 3 不同 Li 含量下贫锂相和富锂相 LLTO (001) 面的表 面能 (*E*_{surf})

Fig. 3. Surface energy (E_{surf}) of Li-poor and Li-rich LLTO (001) surfaces at different Li contents.

如上所述, 贫锂相 LLTO (001) 表面结构在 Li 含量为 0.38 时最稳定, 而富锂相 LLTO (001) 则 在 Li 含量为 0.45 时最为稳定. 由图 3 也可以看出, 当贫锂相的 Li 含量为 0.17, 0.29 和 0.38 时及富锂 相的 Li 含量为 0.33, 0.40 和 0.45 时, 表面能明显 小于 1; 而在其他 Li 含量下, 表面能均大于或接近 1, 说明 Li 含量为 0.17, 0.29 和 0.38 时, 贫锂相表 面结构较其他 Li 含量时更为稳定; 富锂相表面结 构则在 Li 含量为 0.33, 0.40 和 0.45 时更为稳定. 为验证此结论, 本文进一步计算了单个 Li 的顺序 吸附能. 单个 Li 的顺序吸附能 (E_{ads}) 定义为

$$E_{\rm ads} = \frac{E_{\rm slab/Li_{n+1}} - E_{\rm slab/Li_n} - 2E_{\rm Li}}{2},\tag{6}$$

其中, *E*_{slab/Lin+1}和 *E*_{slab/Lin}分别表示终端含有 n+1 和 n 个 Li 原子时 slab 体系的总能, *E*_{Li}表示锂体 相晶格中单个 Li 的能量.吸附能为负值表示稳定 吸附, 负值越大表示吸附体系越稳定.计算结果列于 图 5 中. 由图 5 给出的吸附能数据可以看出, 不论 是贫锂相还是富锂相, Li 的吸附能均随着终端 Li

图 4 贫锂相和富锂相 LLTO (001) 面在极值点附近的总态密度

Fig. 4. Total density state (TDOS) of Li-poor and Li-rich LLTO (001) surfaces near the minimum point.

图 5 Li 在贫锂相和富锂相 LLTO(001) 表面的顺序吸附能 (E_{ads}). 蓝色字体代表 Li 吸附能

Fig. 5. The adsorption energies $(E_{\rm ads})$ per Li on the poor-Li and rich-Li LLTO(001) surfaces. The blue texts denote the values of $E_{\rm ads}$.

含量的增大而减小.具体而言,贫锂相(见图 5(a))在 Li 含量为 0.29 和 0.38 时 Li 吸附能分别为-4.12 eV 和-3.72 eV, 而当 Li 含量进一步增大到 0.44 时, Li吸附能急剧下降到-0.33 eV, 之后 Li吸附能随 Li含量的进一步增大保持下降趋势,直至大于 0; 富锂相 (见图 5(b))则在 Li 含量为 0.40 和 0.45 时 Li 吸附能较大, 分别为-3.67 eV 和-3.31 eV, 而随 Li含量进一步增大,Li吸附能明显下降,直至大 于 0. 这也就是说, 贫锂相的 Li 含量为 0.29 和 0.38 及富锂相的 Li 含量为 0.40 和 0.45 时, Li 吸附能 的绝对值均大于 3.00 eV, 为较强的化学吸附; 而 当 Li 含量大于 0.38(贫锂相) 或大于 0.45(富锂相) 时,由于Li原子之间的排斥力,Li在LLTO(001) 表面表现为物理吸附或很弱的化学吸附. 这说明贫 锂相和富锂相 LLTO(001) 面的最大 Li 含量分别 为 0.38 和 0.45, 此结果与表面能数据相吻合. 从表 面能和 Li 吸附能看, Li 含量为 0.17, 0.29 和 0.38 的贫锂相 LLTO(001) 表面和 Li 含量为 0.33, 0.40 和 0.45 的富锂相 LLTO(001) 表面是比较稳定的, 因而在后续研究中,贫锂相和富锂相分别仅考虑以 上3种不同Li含量.

3.2.2 终端 Li 含量对表面电子结构的影响

接下来将分析终端 Li 含量对 LLTO 表面电子 结构的影响. 图 6 给出了贫锂相 LLTO(001) 面在 0.17, 0.29 和 0.38 这 3 种 Li 含量以及富锂相 LLTO (001) 面在 0.33, 0.40 和 0.45 这 3 种 Li 含量下的 总态密度 (total density of states, TDOS) 和投影 态密度 (projected density of states, PDOS). 为方 便比较,同时给出了相应体相的 TDOS 和 PDOS, 图中以能量零点作为费米能级. 在 LLTO中, Li, La, Ti 和 O 的价态分别为+1, +3, +4, -2. 根据文 献 [35] 报道, 当 LLTO 体系中正负价态之和刚好 为0时,体系中没有多余的电子填充到导带,此时 LLTO 体系为具有一定带隙的半导体. 在所研究的 贫锂相 LiLa5(TiO3)8 和富锂相 Li7La11(TiO3)20 中, 正负价态之和均为 0, 故推测 LiLa₅(TiO₃)₈ 和富锂 相 Li₇La₁₁(TiO₃)₂₀ 均为半导体. 事实上, 我们的计 算正验证了这一推测,如图 6(a1), (b1) 所示,贫锂 相和富锂相均表现出半导体性质,带隙(E_s)分别 为 1.63 eV 和 1.78 eV. 然而, 对于 LLTO(001) 表 面,当Li含量为0.17(贫锂相)/0.33(富锂相)时,见 图 6(a2), (b2), 较体相而言, 价带和导带均向高能 级方向移动,使得费米能级穿过价带,故而表面显 示出金属特性;当Li含量进一步增至0.29(贫锂相)/ 0.40(富锂相)时,见图 6(a3),(b3),此时价带和导 带几乎没有移动,表面依然保留金属性;而当Li含 量增至 0.38(贫锂相)/0.45(富锂相) 时, 见图 6(a4) (b4), 价带和导带均往低能级方向移动, 出现金属 →半导体的转变,其带隙较相应体相的带隙更大, 为 2.27(贫锂相)/1.84(富锂相)eV. 这意味着可以通 过调节终端 Li 含量来调整 LLTO(001) 表面的带隙. 从成分上看,不论是贫锂相还是富锂相 LLTO(001) 表面,费米能级附近的价带主要由氧原子贡献,导 带主要由钛原子贡献,较体相而言并没有明显的变化.

3.3 终端 Li 含量对 Li+迁移性能的影响

最后,将分析 Li 含量对 Li+在 LLTO(001) 表 面上迁移性能的影响.本文采用分子动力学来模 拟 Li+在 LLTO(001) 表面于 550—800 K 温度区 间的输运过程.为了比较,同时也模拟了 Li+在 LLTO 体相的输运过程. MSD 与时间的曲线图可 以用来衡量离子的平均扩散能力.如果 MSD 随时 间推移而明显增大,则表示该类离子的扩散能力

图 6 LLTO(001) 表面的总态密度和投影态密度 (a) 贫锂相; (b) 富锂相 Fig. 6. TDOS and PDOS of LLTO(001) surfaces: (a) Li-poor phase; (b) Li-rich phase.

强,反之,如果 MSD 随时间推移变化不明显,表明 该离子扩散能力弱.为简单起见,本文只给出了 800 K 温度下 LLTO 体相及 (001) 面终端层全部 Li+沿 a, b和 c 轴的 MSD(见图 7).根据图 7 所示, 不论是贫锂相还是富锂相,不论是体相还是表面, Li+沿 a和 b 轴方向的 MSD 随时间几乎都是单调 上升的;相比之下,沿 c 轴方向的 MSD 与时间轴 几乎是平行的,表明 Li+沿 a和 b 轴方向的运动比 沿 z 轴方向要剧烈.由此可见,不论是贫锂相还是 富锂相, Li+在 LLTO 体相及 (001) 表面均呈现出 二维扩散特性.

为了进一步确定 Li+的扩散过程,本文同时获 取了 800 K 温度下 LLTO 体相贫 La 层及 (001) 表面终端层的 Li+运动轨迹 (见图 7 中插图). 对于 贫锂相 LLTO 体相,从图 7(a1)可以看出,Li+在 贫 La 层进行 V₁位置→绕过 90°转角→V₁位置这 种曲线迁移,而不是 V₁→V₂→V₁这种直线迁移路 径.对于富锂相 LLTO 体相,Li+同样显示出曲线 迁移路径,如图 7(b1)所示.显然,不论是贫锂相还 是富锂相体相,Li+均表现出二维曲线迁移特征,这 与上述 MSD 的结论相吻合,也与文献 [21,23,24,36] 结果相一致.对于 LLTO(001)表面,在本文所考 虑的 Li 含量范围内,Li+保留着类似地二维曲线迁 移特性.可见,Li 含量并不会改变 Li+的扩散路径.

基于 MSD 结果,进一步估算了 LLTO 体相及 (001) 表面结构中 Li+在不同温度下的总扩散系数 (D). 图 8 为 LLTO 体相及 (001) 表面原子终端 层中所有 Li+的总扩散系数与温度关系,表 3 列出

不同温度下贫锂相和富锂相 LLTO(001) 表面 Li+ 的最小和最大扩散系数. 对于 LLTO 体相, 在 550-800 K 温度区间 Li+的扩散系数与温度保持线性关 系,遵循 Arrhenius 方程,此时贫锂相和富锂相对 应的扩散能垒分别为 0.32 和 0.26 eV, 与实验^[37] 及 其他理论计算^[23,24,36] 值基本相当. 对于 LLTO(001) 表面,在本文所研究的Li含量范围内,其扩散系数 较体相更小,扩散能垒也较体相更大,说明Li+在 LLTO(001) 表面上的扩散速度比体相更慢. 除此之 外,同一温度下,贫锂相 LLTO(001) 表面的 Li+扩散 系数随着 Li 含量的增大而提升, Li 含量为 0.17 时 具有最小扩散系数 (值为 1.06×10⁻⁷—4.03×10⁻⁶), Li 4.28×10⁻⁶). 与此同时, 扩散能垒也随着 Li 含量的 增大而降低, Li含量为 0.17, 0.29 和 0.38 时对应的 扩散能垒分别为 0.58, 0.56 和 0.42 eV, 说明贫锂 相 LLTO(001) 表面上 Li 含量为 0.17 时具有最高 扩散能垒, Li含量为 0.38 时具有最低扩散能垒; 富锂相 LLTO(001) 表面上 Li+的扩散系数与扩 散能垒的变化规律与贫锂相不同.其扩散系数在 9.36×10-6),在Li含量为0.45时具有最小值(值为 7.02×10-7-6.33×10-6),在Li含量为0.33时介于 两者之间.对应的活化能分别为 0.30, 0.35 和 0.33 eV, 说明富锂相 LLTO(001) 表面则是在 Li 含量为 0.40 时具有最大的扩散系数和最低的扩 散能垒. 如 2.1 节所述, 富锂相 LLTO(001) 初始表 面的终端层共有5个A位,其中3个Li和1个

图 7 800 K 温度下 Li+沿不同轴向的 MSD 随时间的变化曲线图 (a1)—(a4) 贫锂相; (b1)—(b4) 富锂相. 插图代表 Li+的运动 轨迹

Fig. 7. The time dependence of MSDs for Li ions in a, b, and c directions: (a1)–(a4) Li-poor phase; (b1)–(b4)Li-rich phase. The inset shows the corresponding trajectories of Li⁺.

图 8 LLTO 体相及不同 Li 含量的 LLTO(001) 表面结构中 Li⁺的扩散系数与温度关系 Fig. 8. Arrhenius plot of Li⁺ diffusion coefficient for the LLTO bulk and its (001) surface with different lithium contents.

La 共占据了 4 个 A 位, 还剩下 1 个 A 位未被占据. 当 Li 含量为 0.40 时, 也就是在富锂相 LLTO(001) 初始表面的上下终端层各增加 1 个 Li 原子, 此时 增加的这个 Li 原子正好占据剩余的 A 位. 而当 Li含量进一步增至 0.45 时,也就是在富锂相 LLTO(001)初始表面上下终端层增加 2个 Li 原 子,此时 1个 Li 原子占据剩余的 A 位, 另外 1 个 Li 原子将占据到表面 V₁空位.根据富锂相 LLTO (001) 表面上 Li⁺的迁移路径图可知 (见图 7), Li⁺ 正是沿着 V₁空位进行迁移, 当 V₁空位部分被占 据时, 这将阻碍 Li⁺的迁移, 从而使得 Li⁺的扩散系 数变小, 因而, 当 Li 含量为 0.40 时具有最大的扩 散系数, 而当 Li 含量为 0.45 时却具有最小的扩散 系数. 综上可知, 相比于 LLTO 体相, Li⁺在其 (001) 表面的扩散速度更慢, 需要跨越的势垒也更高. 但 是, 通过改变表面终端 Li 含量, 可提高 Li⁺的扩散 速度并同时降低其扩散能垒.

表 3 不同温度下贫锂相和富锂相 LLTO(001) 表面结 构中全部 Li+的最小 (D_{\min}) 和最大 (D_{\max}) 扩散系数 Table 3. The minimum (D_{\min}) and maximum (D_{\max}) Li⁺ diffusion coefficient of Li-poor and Li-rich LLTO(001) surfaces at different temperatures.

T/K-	Li-poor phase/(cm ² ·S ⁻¹)		Li-rich phase/(cm ² ·S ⁻¹)		
	D_{\min}	$D_{ m max}$	D_{\min}	$D_{ m max}$	
550	1.06×10^{-7}	$2.37{ imes}10^{-7}$	7.02×10^{-7}	$1.14{ imes}10^{-6}$	
600	2.02×10^{-7}	8.12×10^{-7}	$9.96 imes 10^{-7}$	$2.53{ imes}10^{-6}$	
650	$3.84{ imes}10^{-7}$	1.46×10^{-6}	2.26×10^{-6}	3.38×10^{-6}	
700	1.77×10^{-6}	2.01×10^{-6}	$3.34{ imes}10^{-6}$	4.80×10^{-6}	
750	$2.22{ imes}10^{-6}$	$3.27{ imes}10^{-6}$	4.69×10^{-6}	7.08×10^{-6}	
800	4.03×10^{-6}	4.28×10^{-6}	$6.33{ imes}10^{-6}$	$9.36 imes 10^{-6}$	

4 结 论

本文采用第一性原理计算与分子动力学模拟 相结合的方法研究终端 Li 含量对 LLTO 表面的稳 定性、电子结构及 Li+扩散性能的影响, 考虑了贫 锂相和富锂相两种类型的 LLTO 表面. 研究表明, 以La/O/Li-为原子终端的 (001) 表面具有最低的 表面能.不论是贫锂相还是富锂相,其(001)面的 表面能均随着 Li 含量的增大先呈现下降趋势然后 表现上升趋势. 贫锂相 LLTO(001) 表面结构在 Li含量为 0.17, 0.29, 0.38 时更为稳定, 而富锂相 LLTO(001)则在 Li 含量为 0.33, 0.40, 0.45 时更 为稳定. 通过计算 LLTO(001) 表面的电子结构可 知,不论是贫锂相还是富锂相,随着 Li 含量的增 大, 均观察到金属至半导体的转变. 表面带隙的打 开有助于缓解电子在表面的迁移,从而阻止锂枝晶 的形成. Li+输运性质的研究结果则表明, 贫锂相和 富锂相 LLTO(001) 表面均具有沿 ab 平面的二维 扩散通道. 就贫锂相而言, 当 Li 含量从 0.17 增至 0.38 时, Li+扩散系数和扩散能垒分别表现为单调

增大和单调下降的趋势,说明 Li 含量的增大有利 于 Li+的扩散.就富锂相而言,其变化规律与贫锂 相不同,当 Li 含量为 0.40 时具有最大的扩散系数 和最低的扩散能垒 (0.30 eV),当 Li 含量为 0.45 时 具有最小的扩散系数和最高的扩散能垒 (0.35 eV), 而当 Li 含量为 0.33 时,其扩散系数和扩散能垒 (0.33 eV)均介于两者之间.显然,通过改变终端 Li 含量有助于提高 LLTO(001)表面稳定性、打开 能带带隙及改善 Li+扩散性能,从而抑制锂枝晶的 形成.我们的研究结果将为抑制 LLTO 固态电解 质中锂枝晶的生长提供指导.

参考文献

- Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278
- [2] Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 1
- [3] Zhao Q, Stalin S, Zhao C-Z, Archer L A 2020 Nat. Rev. Mater. 5 229
- [4] Wu M S, Xu B, Lei X L, Huang K, Ouyang C Y 2018 J. Mater. Chem. A 6 1150
- [5] Yan S, Yim C H, Pankov V, Bauer M, Baranova E, Weck A, Merati A, Abu-Lebdeh Y 2021 *Batteries* 7 75
- [6] Sun Y D, Guan P Y, Liu Y J, Xu H L, Li S, Chu D W 2018 *Crit. Rev. Solid State* 44 265
- [7] Hua C, Fang X, Wang Z, Chen L 2013 Electrochem. Commun. 32 5
- [8] Stramare S, Thangadurai V, Weppner W 2003 Chem. Mater. 15 3974
- [9] Chen C H, Amine K 2001 Solid State Ion. 144 51
- [10] Inaguma o, Liquan C, Itoh M, Nakamura T 1993 Solid State Commun. 86 689
- [11] Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N, Wang H, Wang C S 2019 Nat. Energy 4 187
- [12] Wu B B, Wang S Y, Lochala J S, Desrochers D, Liu B, Zhang W Q, Yang J H, Xiao J 2018 Energy Environ. Sci. 11 1803
- [13] Cervantes J M, Pilo J, Rosas-Huerta J L, Antonio J E, Muñoz H, Oviedo-Roa R, Carvajal E 2021 J. Electrochem. Soc. 168 080516
- [14] Zhao Q S, Xue H T, Tang F L, Wei C D 2021 Solid State Ion. 373 115797
- [15] Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G Y, Doeff M 2015 ACS Appl. Mater. Interface 7 2073
- [16] Belousov V V 2007 Russ. J. Phys. Chem. A 81 441
- [17] Wu M S, Xu B, Luo W W, Sun B Z, Shi J, Ouyang C Y 2020 Appl. Surf. Sci. 510 145394
- [18] Jung S C, Han Y K 2011 Phys. Chem. Chem. Phys. 13 21282
- [19] Nakayama M, Usui T, Uchimoto Y, Wakihara M, Yamamoto M 2005 J. Phys. Chem. B 109 4135
- [20] Inaguma Y, Itoh M 1996 Solid State Ion. 86-88 257
- [21] Maruyama Y, Ogawa H, Kamimura M, Kobayashi M 2006 J.
 Phys. Soc. Jpn. **75** 064602
- [22] Ren Y Y, Shen Y, Lin Y H, Nan C W 2019 ACS Appl. Mater. Interface 11 5928
- [23] Catti M 2008 J. Phys. Chem. C 112 11068

- [24] Qian D N, Xu B, Cho H M, Hatsukade T, Carroll K J, Meng Y S 2012 Chem. Mater. 24 2744
- [25] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
- [26] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
- [27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
- [28] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982
- [29] Blochl P E 1994 *Phys. Rev. B* **50** 17953
- [30] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
- [31] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

- [32] Plimpton S 1995 J. Comput. Phys. 117 1
- [33] Chen C H, Du J C, Chen L Q 2015 J. Am. Ceram. Soc. 98 534
- [34] Symington A R, Molinari M, Dawson J A, Statham J M, Purton J, Canepa P, Parker S C 2021 J. Mater. Chem. A 9 6487
- [35] Ono S, Seki Y, Kashida S, Kobayashi M 2006 Solid State Ion.
 177 1145
- [36] Kim D H, Kim D H, Jeong Y C, Seo H I, Kim Y C 2012 Ceram. Int. 38 S S467
- [37] Bohnke O 2008 Solid State Ion. 179 9

Effects of Li content on stability, electronic and Li-ion diffusion properties of $\text{Li}_{3x}\text{La}_{(2/3)-x}\dagger_{(1/3)-2x}\text{TiO}_3$ surface^{*}

Hua Biao¹⁾ Sun Bao-Zhen^{1)2)†} Wang Jing-Xuan¹⁾ Shi Jing¹⁾ Xu Bo^{1)‡}

1) (College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China)

2) (Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education,

Jiangxi Normal University, Nanchang 330022, China)

(Received 16 September 2022; revised manuscript received 15 October 2022)

Abstract

 $Li_{3x}La_{(2/3)-x}\dagger_{(1/3)-2x}TiO_3(LLTO)$ is a promising solid-state electrolyte for Li-ion batteries. We study the effect of Li content on the stability, electronic and Li-ion diffusion properties of LLTO surface based on firstprinciples and molecular dynamics simulations. We consider both Li-poor and Li-rich LLTO surfaces. The results show that La/O/Li-terminated LLTO (001) is the most stable crystal surface. Further, LLTO (001) surface gives better stability when Li content is 0.17, 0.29, and 0.38 for Li-poor phase, while 0.33, 0.40, and 0.45 for Li-rich phase . Electronic structure calculations infer that in both Li-poor and Li-rich LLTO(001) surfaces there occurs the transition from conductor to semiconductor with the increase of Li content. Besides, we find that Li-ion always keeps a two-dimensional diffusion path for different Li content. As Li content increases from 0.17 to 0.38 for Li-poor LLTO (001) surface, Li-ion diffusion coefficient increases gradually and Li-ion diffusion barrier decreases from 0.58 eV to 0.42 eV. Differently, when Li content increases from 0.33 to 0.45 for Li-rich LLTO(001) surface, it does not follow a monotonic trend for diffusion coefficient nor for diffusion barrier of Liion. In this case, Li-ion diffusion coefficient is the largest and Li-ion diffusion barrier is the lowest (0.30 eV) when Li content is 0.40. Thus, our study suggests that by varying Li content, the stability, band gap, and Liion diffusion performance of LLTO (001) can be changed favorably. These advantages can inhibit the formation of lithium dendrites on the LLTO (001) surface.

Keywords: all-solid-state lithium-ion batteries, Li contents, $Li_{3x}La_{(2/3)-x}\dagger_{(1/3)-2x}TiO_3$ surface

PACS: 82.47.Aa, 71.15.Mb, 71.15.Pd, 61.66.Fn

DOI: 10.7498/aps.72.20221808

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 12064015, 12164019) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB201017).

[†] Corresponding author. E-mail: bzsun@jxnu.edu.cn

[‡] Corresponding author. E-mail: bxu4@mail.ustc.edu.cn

Institute of Physics, CAS

Li含量对Li_{3x}La_(2/3)-x[†](1/3)-2xTiO₃固态电解质表面稳定性、电子结构及Li离子输运性质的影响 华彪 孙宝珍 王靖轩 石晶 徐波

Effects of Li content on stability, electronic and Li-ion diffusion properties of $Li_{3x}La_{(2/3)-x(1/3)-2x}TiO_3$ surface

Hua Biao Sun Bao-Zhen Wang Jing-Xuan Shi Jing Xu Bo 引用信息 Citation: Acta Physica Sinica, 72, 028201 (2023) DOI: 10.7498/aps.72.20221808 在线阅读 View online: https://doi.org/10.7498/aps.72.20221808

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究

First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries

物理学报. 2019, 68(13): 138201 https://doi.org/10.7498/aps.68.20190509

阳离子调控对卤化物固态电解质性能的改善

Improvement of performance of halide solid electrolyte by tuning cations 物理学报. 2022, 71(20): 208201 https://doi.org/10.7498/aps.71.20221050

全固态锂离子电池内部热输运研究前沿

Frontiers of investigation on thermal transport in all-solid-state lithium-ion battery 物理学报. 2022, 71(2): 026501 https://doi.org/10.7498/aps.71.20211887

锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散

Electronic structures and Li diffusion in cathode material Li2FeO2 of Li-ion batteries

物理学报. 2019, 68(15): 157201 https://doi.org/10.7498/aps.68.20190213

Ga, Ge, As掺杂对锂离子电池正极材料Li₂CoSiO₄的电化学特性和电子结构影响的第一性原理研究

First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li₂CoSiO₄ serving as cathode material for Li-ion batteries 物理学报. 2019, 68(18): 187101 https://doi.org/10.7498/aps.68.20190503

锂磷氧氮(LiPON)固态电解质与Li负极界面特性 Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte – Li anode interfaces

物理学报. 2021, 70(13): 136801 https://doi.org/10.7498/aps.70.20202214