综述

液氩探测器在稀有事例探测中的应用和发展*

郑昊哲1) 刘圆圆1)† 王力2)‡ 程建平1)

1) (北京师范大学核科学与技术学院, 生态环境部 北京师范大学 锦屏极低辐射本底测量联合实验室,

射线束技术教育部重点实验室,北京 100875)

2) (北京师范大学物理学系,北京 100875)

(2022年10月27日收到; 2022年12月10日收到修改稿)

稀有事例探测是近几年热门的粒子物理前沿课题,如暗物质、无中微子双贝塔衰变、中微子-核子相干弹 性散射等实验都在逐渐被规划和实施.进行稀有事例探测要求探测器有极佳的性能,同时对环境本底有很高 的要求,因此探测器和相关材料的选择是稀有事例探测的一个重要课题.液氩因为成本低、闪烁性能好、体积 限制较小等优势成为稀有事例探测器的一种重要介质.经过几十年的发展,单相液氩闪烁体探测器和两相氩 时间投影室成为两种常见的液氩探测器类型,并开始被国内外各实验组应用于稀有事例探测实验中.本文首先 对两种常见的液氩探测器的原理和特性进行介绍,然后详细介绍国内外相关稀有事例探测实验组对液氩探 测器的研究和应用现状以及未来规划,最后讨论未来液氩探测器在稀有事例探测中的应用前景和优化方向.

关键词:稀有事例探测,闪烁体探测器,时间投影室,反符合测量 PACS: 29.40.-n, 29.40.Mc, 95.35.+d, 23.40.-s

DOI: 10.7498/aps.72.20222055

1 引 言

在粒子物理实验中,通常把对反应截面极小或 半衰期非常长的核反应或核衰变过程的测量称为 稀有事例探测.目前国际上较为关注的稀有事例探 测实验包括暗物质 (dark matter, DM) 探测^[1]、无中 微子双贝塔衰变^[2] (neutrinoless double beta decay, 0νββ)测量、中微子-核子相干弹性散射^[3](coherent elastic neutrino-nucleus scattering, CEνNS) 测量 等.这些稀有事例探测实验有的与超出粒子物理标 准模型的新物理密切相关,有的是对标准模型的验 证和扩充,是当今前沿物理的热门课题.

稀有事例由于发生概率极低,因此这类实验对 实验环境以及探测器的要求极为苛刻.对于实验环 境,稀有事例探测实验通常需要在很深的地下实验 室进行,以便降低宇宙线对实验的影响,同时需要 采取建设屏蔽体、放射性筛选等多种方式尽可能地 减少实验装置自身以及周围材料产生的放射性本 底. 对于探测器,首先其灵敏区质量要尽量大,这 样可以有效地提高实验的曝光量,从而增加待测稀 有事例的事例率;其次,探测器的能量分辨率要尽 可能高,因为稀有事例探测结果一般是基于对实验 测量能谱的分析,高的能量分辨率有利于感兴趣能 区目标信号和本底信号的甄别与筛选. 最后, 探测 器自身的本底水平也应当尽可能低,最好同时还具 备粒子甄别能力.此外,对于目标信号极其微弱的 DM 直接探测、CEvNS 测量等还需要探测器具有 低的能量阈值. 基于稀有事例探测对探测器的共性 要求,目前稀有事例探测实验中常用的探测器包括 液态惰性气体探测器[4,5]、高纯锗探测器[6]、极低温 量热器 [7] 等. 不同探测器的优势和不足如表 1 所列.

© 2023 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划 (批准号: 2022YFA1604701) 和国家自然科学基金 (批准号: 1222200227) 资助的课题.

[†] 通信作者. E-mail: yyliu@bnu.edu.cn

[‡] 通信作者. E-mail: wangl@bnu.edu.cn

	Table 1.	Comparison of detector types	in rare event detection.		
	液态惰性气体	本探测器	百姑撑探测翠	招任泪昌劫鬼	
	液氩探测器	液氙探测器	一 同地的状例	似區里然前	
优势	成本低,有粒子甄别能力, 探测效率高	有粒子甄别能力, 探测效率高	低阈值,极高能量分辨率	高能量分辨率, 有粒子甄别能力	
缺点	能量分辨率相对较低	成本较高,能量 分辨率相对低	成本较高,探测器生产 工艺复杂,单个晶体 质量增加困难	需要极低温环境 (mK量级)	

表 1 稀有事例探测常用探测器类型对比

le 1. Comparison of detector types in rare event detection

得益于较低的成本、成熟的提纯技术、良好的闪 烁性能以及较强的粒子甄别能力,液氩探测器在稀 有事例探测中有着十分广泛的应用.例如暗物质实 验中 Darkside 实验组采用了气液两相氩时间投影 室给出了 1.8—3.0 GeV/c² 区间弱相互作用大质量粒 子 (weakly interacting massive particles, WIMPs) 测量目前最灵敏的结果^[8];无中微子双贝塔衰变 实验中锗探测器阵列 (the germanium detector array, GERDA)实验组采用液氩闪烁体探测器作 为反符合系统,给出了目前⁷⁶Ge的 0υββ 半衰期限 制的世界最好结果^[9]; CEυNS 实验中 COHERENT 实验组使用液氩闪烁体探测器给出了第一个使用 氩核作为靶核的 CEυNS 结果^[10].

液氩开始被作为电离辐射探测器的灵敏材料 始于 20 世纪 40 年代, 当时主要的研究方向是液氯 的电离特性以及将液氯用作电离室介质的可行性[11]. 1954年, Marshall^[12]首次使用液氯电离室测量了 高能β粒子.在随后的研究和应用中,为了解决液 氩产生的电离信号的放大问题, 气液两相氩探测器 逐渐得到发展,读出液氩电离信号的同时也读出气 相的电离信号[13]. 此外, 为了能获取粒子的更多信息, 液氩时间投影室 (time projection chamber, TPC) 技术也开始发展起来^[14]. 时间投影室除了可以读 出电离信号以外,还可以读取粒子的漂移时间,从 而可以确定粒子的径迹. 宇宙线和地下稀有信号成 像 (imaging cosmic and rare underground signals, ICARUS) 实验组最早尝试使用液氩 TPC 来探测 中微子. 1977年, 该实验组的 Rubbia^[14] 提出了构 建液氩 TPC 的设想. 之后 ICARUS 实验组就开始 进行建设液氩 TPC 的尝试, 到 20 世纪 90 年代, 该实验组建成了3t规模的液氩时间投影室^[15,16].

除了对电离信号的探测,液氩的闪烁光信号也 可用于粒子探测.20世纪70年代末到80年代初, 开始对液氩的闪烁光特性进行研究,发现了液氩闪 烁光的快慢成分,也初步发现了液氩闪烁光信号的 粒子甄别能力^[17]. 1999年, ICARUS 实验组第一次在液氩时间投影室中收集闪烁光信号,发现读出闪烁光信号也可以获得粒子的漂移时间,从而确定粒子径迹^[18].

21世纪以来,围绕稀有事例探测,液氩探测器 得到了快速的发展.单相液氩闪烁体探测器开始在 稀有事例探测中获得应用,利用氩波形甄别的暗物 质实验 (dark matter experiment using argon pulseshape discrimination, DEAP)等实验组已经使用 单相液氩闪烁体探测器开展了多年的暗物质探测 实验^[19].同时,在气液两相氩探测器和 TPC 的技 术的基础上发展出了气液两相氩 TPC 探测器, DarkSide 等实验组^[20]使用气液两相 TPC 开展了 暗物质探测研究.除此以外,GERDA 实验组^[9]在 第二阶段实验中增加了基于液氩闪烁体探测器的 反符合系统,显著降低了实验本底.

经过几十年的发展,液氩探测器技术取得了巨 大的进步,发展出了几种成熟的探测器类型,并在 稀有事例探测领域获得了重要的应用.本文围绕液 氩探测器在稀有事例中的应用和发展,首先介绍液 氩的基本性质以及当前主要应用的单相液氩闪烁 体探测器和气液两相氩 TPC,然后根据不同的应 用类型介绍国内外相关实验组使用液氩探测器进 行稀有事例探测工作的现状和进展.最后给出未来 液氩探测器的优化方向,以及未来在稀有事例探测 实验中的应用前景.

2 液氩探测器

2.1 液氩的基本性质

氩元素是 18 号元素,常温下为气态,沸点约 为 87 K. 液氩通常由大气中分离的氩气液化产生, 密度为 1.40 g/cm³. 氩的主要天然同位素有⁴⁰Ar, ³⁸Ar, ³⁶Ar,它们都是稳定核素.在大气环境中,存在氩的 宇生同位素 ³⁹Ar,它是 ⁴⁰Ar 与穿过大气层的宇宙射 线作用产生的核素.³⁹Ar 会发生β衰变,半衰期为 269年,Q值为565 keV.³⁹Ar 的放射性是液氩探 测器在低能区域一个重要的本底.

如图 1 所示,当电离辐射进入液氩时,会使液 氩电离或者激发,转化为分子激发态 (Ar^{*}₂).二聚 态氩原子不稳定,会经过退激过程回到基态,退激 过程中会释放波长约为 128 nm 的闪烁光^[21].因 此,液氩探测器既可以通过闪烁光信号,也可以通 过建立漂移电场收集电子或氩离子来测量入射粒子.

图 1 激发态氩原子形成原理 Fig. 1. Formation mechanism of excited argon.

表 2列出了液氩与闪烁性能相关的主要参数. 液氩的光产额约为 40000 光子/MeV^[22], 与经典的 无机和有机闪烁体相比要大得多. 闪烁光产生过程 包括上升过程和衰减过程, 通常认为上升过程是瞬 时过程, 而衰减过程服从指数衰减规律. 对于液氩 来说, 它的闪烁光包含快慢两种成分, 液氩的快慢 成分衰减时间常数分别是 6 ns 和 1.59 μs^[23]. 当入 射粒子是不同类型的粒子时, 液氩产生的闪烁光时 间响应曲线是不一样的, 这表明液氩闪烁光中快慢 成分的比例和入射粒子种类有关^[23]. 利用这一点 可以发展出波形甄别 (pulse shape discrimination, PSD) 技术, 用于甄别入射信号中的不同粒子.

需要注意的是液氩的闪烁性能受到杂质浓度 等因素影响变化较大.弱相互作用大质量粒子氩实 验组 (wimp argon programme, WArP)研究结果 表明,液氩中氮气、氧气杂质的存在会显著降低液 氩的光子产额^[25,26].光子产额对于辐射能谱的测量 有直接的影响,因此控制液氩中相关杂质的浓度对 探测器性能提高至关重要.研究结果还表明氮气、 氧气杂质对液氩的慢成分衰减常数也有较大影 响^[25,26].当杂质浓度过大时,采用 PSD 技术来进行 入射粒子种类的甄别就很难实现.此外,液氩中杂 质的存在会影响闪烁光的传输过程,导致闪烁光能 传播的距离减小.根据氩暗物质实验 (the argon dark matter experiment, ArDM) 实验组对液氩闪 烁光衰减长度与杂质浓度关系的研究,液氩闪烁光 的衰减长度随杂质浓度增加而迅速下降^[27].因此 从能谱测量和粒子甄别等要求考虑,都需要对液氩 中的杂质浓度进行控制.

表 2	液氩闪烁光特性[24]
-----	-------------

Table 2. Scintillation properties	of liquid arg	gon.
闪烁特性相关物理量	符号	数值
光产额/(光子·keV ⁻¹)	Y	41 ± 2
发光峰值波长/nm	$\lambda_{ m max}$	128
单态时间常数/ns	$\tau_{\rm s}$	6
三重态时间常数/μs	$ au_{\mathrm{t}}$	1.59
β事件快慢成分比	$I_{\rm s}/I_{\rm t}~({\rm e}^{\scriptscriptstyle -})$	0.3
α事件快慢成分比	$\mathit{I_{s}/I_{t}}\left(\alpha\right)$	1.3
裂变碎片事件快慢成分比	$I_{\rm s}/I_{\rm t}~({\rm ff})$	3

2.2 液氩探测器类型

目前稀有事例探测中使用较多的氩探测器主 要有两类,分别是单相液氩闪烁体探测器和两相 氩 TPC.

2.2.1 单相液氩闪烁体探测器

单相液氩闪烁体探测器就是以液氩为灵敏介 质,只收集液氩产生的闪烁光信号进行读出的探测 器类型.液氩闪烁光的有效收集和读出是影响液氩 闪烁体探测器性能的主要因素之一.如图2所示, 入射粒子进入液氩后损失能量,转化为闪烁光子被 光读出器件收集.通常使用的光读出器件是光电倍 增管 (photomultiplier tube, PMT)和硅光电倍增 管 (silicon photomultiplier, SiPM).它们通常的工 作波长在约400 nm的可见光波段,为了保证高效 的闪烁光收集和读出,用液氩作为闪烁体材料时需 要额外加入移波剂,通常是加入四苯基丁二烯 (tetraphenyl butadiene, TPB),它能够将液氩产 生的紫外波段闪烁光转换为可见光波段.

图 2 液氩闪烁光产生和收集过程示意图

Fig. 2. Schematic diagram of the generation and collection process of liquid argon scintillation.

2.2.2 两相氩 TPC

与单相的液氩闪烁体探测器不同,两相氩 TPC 探测器同时利用氩原子电离或激发过程中产 生的闪烁光信号和氩原子电离过程中产生的电离 信号来进行辐射探测.

探测器装置如图 3 所示^[28], 一般采用圆柱形, 在探测器的下半部分充满液氩, 上半部分则充入氩 气, 探测器顶部和底部布置大量的 PMT. 当有辐 射进入探测器灵敏体积时, 可以得到初始的闪烁光 信号. 将这个初始信号称为"S1"^[29]. 从 S1 信号中 可得到辐射的能量信息.

探测器外部存在漂移电场、萃取电场和发光电场.这样电离过程中产生的电子会在电场的作用下向气相漂移.在萃取电场作用下,电子冲出液相进入气相.气相存在发光电场,进入气相的电子在电场的作用下可以发生次级电离,产生更多的电离电子,并产生二次发光,光信号可以被气相顶部的 PMT 阵列收集,这样产生的闪烁光信号称为"S2"^[29]. S2 的信号强度与电离电子的能量有关,所以 S2 与 S1 的强度比可以作为判断电子反冲或者核反冲 信号的依据.此外,根据 S2 信号被 PMT 收集的 位置可以重建出初始粒子的二维坐标.而粒子纵 向的位置可以由 S1 与 S2 信号的时间差得到, 这也是这类探测器被称为时间投影室 (TPC) 的主 要原因.

图 3 两相氩 TPC 装置示意图^[28] Fig. 3. Schematic diagram of double-phase argon TPC^[28].

3 稀有事例探测中的液氩探测器

自 20 世纪 70 年代开始, 正是稀有事例探测实 验的需求与发展推动了液氩探测器技术的发展.目 前液氩探测器已经成为稀有事例探测领域一种重 要的探测器.无论是单相液氩闪烁体探测器还是两 相氩 TPC, 在近些年都受到了国内外多个稀有事 例探测实验组的关注.这些实验组已经针对液氩探 测器开展了深入的研究和测试, 表 3 列出了目前主 要的使用液氩探测器进行稀有事例探测的国内外 实验组的相关情况.

表 3 国内外液氩探测器相关实验组概况

	Table 3. (General situation of liquid argon detector related experimental groups at home and abroad.				
实验组 名称	稀有事例 探测类型	探测器类型	液氩探测 器质量	光读出	运行状态	主要特点
DEAP	暗物质	单相液氩闪烁体	3260 kg	PMT+光导	运行中	较早采用液氩为介质探测暗物质
WArP	暗物质	两相氩TPC	$140 \mathrm{~kg}$	PMT	已结束	最早尝试用TPC探测暗物质
DarkSide	暗物质	两相氩TPC	46.4 kg	PMT	运行中	地下氩、中子反符合
GERDA	0νββ	高纯锗探测器+单相液氩 闪烁体(反符合)	$1400~{\rm kg}$	SiPM+光 纤/PMT	已结束	系统地研究液氩反符合 系统并应用
LEGEND	$0\nu\beta\beta$	高纯锗探测器+单相液氩 闪烁体(反符合)		SiPM+光纤	建设中	实验组合并, 新的读出方案研究
COHERENT	$CE\nu NS$	单相液氩闪烁体	79.5 kg	PMT	运行中	第一个尝试用液氩探测器探测 CEνNS事例
Taishan	$CE\nu NS$	两相氩TPC+单相液氩闪 烁体(反符合)	200 kg	PMT	建设中	尝试用液氩探测器作为CEvNS 事例的反符合系统

		表 3	国内外	收虱状测	川畚相大	:头验组慨况		
1	aituation	of linesid		detector	related	orren ontino on tol	 a # 1	1 .

3.1 暗物质探测实验

大量的天文观测已经证实了暗物质的存在^[1]. 目前暗物质粒子模型比较热门的有弱相互作用大 质量粒子 (WIMPs)、轴子、惰性中微子等.对暗物 质粒子的探测包括直接探测、间接探测、对撞机产 生三种方法,其中直接探测法通过测量暗物质粒子 与普通物质相互作用产生的反冲信号来实现对暗 物质粒子的测量. DEAP 和 DarkSide 等实验组采 用液氩探测器开展了暗物质直接探测实验.

3.1.1 DEAP 实验

DEAP 实验组采用单相液氩闪烁体探测器在 位于加拿大安大略省的 SNOLAB 实验室开展暗物 质探测实验.实验分阶段进行,第一阶段 DEAP-1 实验研制了 7 kg 的液氩原型机,测试并验证了液 氩的 PSD 能力^[30].在原型机的基础上,实验组开 展了第二阶段 DEAP-3600 实验.DEAP 实验组使 用 5 cm 厚,内径为 85 cm 的球形丙烯酸容器装载 3600 kg 的液氩作为主探测器灵敏介质,在容器周 围均匀布置了 255 个 PMT 用来收集液氩产生的 闪烁光^[5].稀有事例探测实验极易受本底信号的干 扰,因此,DEAP 实验组在主探测器外围布置了主 动反符合系统.整个主探测器被浸在超纯水屏蔽罐 中,罐外布置了 48 个 PMT,用来收集µ子穿过水 中时可能产生的切伦科夫光,从而可以把µ子产生 的干扰信号排除掉.

DEAP 实验所采用的单相液氩探测器只读出 液氩闪烁光信号,且探测器介质为单相液氩,探测 器结构相对简单,所以探测器的质量可以做得很 大,从表 3 可以看出,DEAP-3600 具有较大的探测 器质量.此外,DEAP 实验组有较成熟的液氩纯化 系统^[5],探测器中液氩的纯度可以维持在较高水平. 目前 DEAP-3600 实验主要本底来源于³⁹Ar 的β 衰变的连续谱.DEAP 实验组主要通过液氩脉冲 信号的 PSD 能力来排除³⁹Ar 产生的本底信号.根 据该实验组从 2016 年 11 月到 2020 年 3 月的实验 数据分析,结果表明探测器将³⁹Ar 本底信号判断 为目标信号的概率仅为 10⁻⁹数量级,对本底的抑 制效果在可接受范围^[31].

DEAP 实验组对截止到 2017 年 10 月底的近 一年的数据进行分析,得到了目前使用单相液氩探 测器进行暗物质探测的最好结果^[19]. 2022 年初, DEAP 实验组发表了最新的暗物质探测成果,第一 次使用液氩探测器得到了普朗克尺度 (10¹⁹ GeV/c²) WIMPs 粒子的截面约束 ^[32]. DEAP-3600 的数据 分析工作还在持续进行,未来 DEAP 实验组将与 DarkSide, ArDM 等实验组合作开展液氩探测器相 关的暗物质探测工作.

3.1.2 WArP 实验

WArP 实验组是在格兰萨索国家实验室 (Laboratori Nazionali del Gran Sasso, LNGS) 进行暗物 质探测的实验组,该实验组使用的主探测器是两相 氩 TPC. 2006 年开始,WArP 实验组利用 2.3 L 的 原型机进行数据采集测试,得到了初步的结果^[33]. 之后 WArP 实验组研制了 100 L 的氩 TPC 进行 暗物质探测实验,除了 100 L 的重探测器之外,该 实验组还部署了 5600 L 的液氩作为主动反符合系 统和被动屏蔽装置. 探测器整体在 2009 年设计制 造完毕后一直在进行测试工作,后因一些技术问题 导致实验终止^[29].

虽然 WArP 实验组的暗物质探测计划以失败 告终, 但是 WArP 是第一个提出将两相氩 TPC 技 术用于暗物质探测的实验组, 他们长达五年以上的 探测器设计和测试工作为其他采用两相氩 TPC 技 术进行稀有事例探测的实验组提供了宝贵经验. 此 外, 他们将液氩闪烁光信号用作反符合系统的构想 也对稀有事例探测相关实验组有重要的借鉴意义.

3.1.3 DarkSide 实验

DarkSide 实验组同样利用气液两相 TPC 在 LNGS 开展暗物质探测实验. 到目前为止, 该实验 分为三个阶段,分别为 DarkSide-10, DarkSide-50 和 DarkSide-20k. DarkSide-10 是该实验组在 2011 年制造的 10 kg 原型机. 基于原型机, 主要对 TPC 的闪烁光产额进行了测试^[34]. 第二阶段 DarkSide-50 是在 DarkSide-10 的基础上设计的, 包括 50 kg 的氯 TPC 以及外围的液闪和水箱. 内部的 TPC 部分是直径为 35.6 cm, 高为 36.5 cm 的圆柱体, 内壁涂有聚四氟乙烯作为反射层,顶部和底部涂 有 TPB 作为液氩闪烁光的移波剂. 中间是直径为 4 m 的不锈钢球体, 内部充满 30 吨液体闪烁体. 液 闪含有10B,主要用于吸收本底信号中的中子成分. 外围是直径为11m,高为10m的圆柱形水箱,水 箱里充满高纯水,并配有 PMT,用于对µ子产生的 切伦科夫光进行收集[35].

之后 DarkSide 实验组进一步优化他们的探测

器系统,开始采用地下氩 (underground argon, UAr) 来逐渐代替大气氩 (atmosphere argon, AAr),从 而大幅减少³⁹Ar本底.经过多年的研究, DarkSide 实验组已经有一套较为完整的地下氩生产流程,经 过纯化和同位素分离,氩纯度和氩同位素本底的控 制都达到了预期水平^[36].

DarkSide-50 给出了目前用氩作为靶核探测 暗物质的最好结果^[20].此外,DarkSide-50 还在 2018 年针对低质量区间的 WIMPs 搜索给出了最 新的结果^[8].DarkSide 实验组第三阶段的目标是建 造 20 t 的氩 TPC 进行暗物质探测,即 DarkSide-20k.目前该项目正在进行优化设计和性能测试工 作.与之前的项目相比,DarkSide-20k 有两个重要 的优化.一个方面是反符合系统方面采用掺钆的丙 烯酸作为抑制中子本底的装置^[37],另一方面是光 电读出器件将由原本的 PMT 改为使用 SiPM 读 出^[38,39].目前相关的测试和优化工作还在持续 进行.

3.1.4 小 结

暗物质直接探测实验, 尤其是以 WIMPs 粒子 为目标的实验,目前主要有两个趋势:一个是探索 低质量区间暗物质;另一个是探索大质量区间以及 宇宙线加速的暗物质.对于前者的探索,通常使用 高纯锗探测器为代表的半导体探测器,高纯锗探测 器具有极低的阈值和良好的能量分辨率,是探索极 低能量暗物质信号的较好选择.而对于后者,大曝 光量和高探测效率是更重要的,因此液态惰性气体 探测器在大质量区间暗物质探测中优势明显. 液氯 探测器在暗物质直接探测实验中发挥了重要的作 用. 对于轻质量 WIMPs 探测, DarkSide-50 实验单 独使用电离信号 S2 的分析阈值达到了可与半导体 探测器比拟的 59 eV, 给出了国际领先的测量结果^[8]. 对于大质量区间的暗物质探测,液氩探测器相对 于液氙成本更低,随着 DarkSide-20k 实验的开展, 液氩探测器也将展现出强大的竞争力.

3.2 无中微子双贝塔衰变实验

20世纪30年代,意大利物理学家马约拉纳提 出了中微子可能是自身的反粒子,即马约拉纳费米 子^[40].如果中微子是马约拉纳费米子,那么中微子 的质量来源可以由马约拉纳机制来解释.而目前验 证中微子是否是马约拉纳费米子的主流方法之一 是探测无中微子双贝塔衰变现象 [2] 是否存在. 探测 无中微子双贝塔现象需要较大的探测器体积,要求 探测器的能量分辨率较高,同时对实验本底的要求 极为严格.为了降低本底,进行无中微子双贝塔衰 变实验的实验组大多引入了主动的反符合探测系统, 其中 GERDA 实验组和 LEGEND(large enriched germanium experiment for neutrinoless $\beta\beta$ decay, 大型富集锗的无中微子双贝塔衰变实验)实验组使 用了液氩反符合探测系统. 来自中国的中国暗物质 实验 (China Dark Matter Experiment, CDEX) 实验组和粒子与天体物理氙时间投影室 (particle and astrophysical xenon TPC, PandaX) 实验组 也针对无中微子双贝塔衰变开展了一系列工作,其 中 CDEX 实验组未来计划采用液氩反符合系统, PandaX 实验组则采用与两相氩投影室类似的两 相氙投影室进行实验.

3.2.1 GERDA 实验

GERDA 实验组是在 LNGS 进行无中微子双 贝塔衰变测量的实验项目. 21 世纪初, GERDA 实 验组就开始探索利用低温下工作的高纯锗探测 器来探测⁷⁶Ge的无中微子双贝塔衰变事例. 当时 主流的高纯锗探测器冷却介质采用的是液氮,而 GERDA 实验组提出了使用液氩代替液氮作为冷 却介质的想法[41,42],这样具有闪烁功能的液氩同时 可以作为主动反符合装置的介质.从 2007 年开始, GERDA 实验组就一直在研究液氩闪烁体探测器 作为反符合装置的可行性. 从蒙特卡罗方法模拟到 原型机实验测试,对液氩的循环装置、液氩闪烁特 性、放射源刻度等细节问题进行了详细的研究[24,43,44]. 该实验组利用1m³的液氩反符合原型机进行测 试.到 2015年, GERDA 实验组对液氩反符合系统 的测试工作基本结束,测试过程中使用²²⁸Th,²²⁶Ra 和⁶⁰Co源进行反符合性能测试,图4为使用⁶⁰Co 源测试的结果^[45],测试结果表明液氩反符合系统 的应用可以达到 GERDA Ⅱ 期本底至少降低 1 个 数量级的实验需求.

GERDA I 期实验液氩仅作为冷却介质, Ⅱ期 实验相较于 I 期最大的改进就是加入了液氩反符 合系统,实验装置如图 5 所示^[46].实验主探测器采 用高纯锗探测器阵列,高纯锗探测器放置在直径 为 4 m,体积为 64 m³的低温恒温器中,低温恒温 器中充满液氩.液氩可以作为冷却介质和提供被动 屏蔽, 而装配的 PMT 和 SiPM 可以用于接收液氩 产生的闪烁光信号, 用于和高纯锗探测器产生的信 号进行反符合. 包围着低温恒温器的是直径为 10 m, 体积为 590 m³ 的水箱, 水箱外配备 PMT, 用来收 集宇宙线μ子产生的切伦科夫光.

Fig. 4. The energy spectrum of ⁶⁰Co source^[45].

Ⅱ期实验的数据采集于 2019 年 11 月结束, 加 入了液氩反符合系统之后, 对本底信号的抑制效果 十分明显, 本底水平较 Ⅰ期实验降低了 2 个数量级^[9], 并首次在 ROI 区域实现"零本底"^[47]. Ⅱ期数据 结果如图 6 所示, 可以看到应用液氩反符合系统 后, 低能区能谱出现明显的⁷⁶Ge 的双中微子双贝 塔衰变事件轮廓^[9]. Ⅱ期结果将⁷⁶Ge 的无中微子 双贝塔衰变半衰期的下限提高了 1 个数量级, 这 也是目前世界上⁷⁶Ge 无中微子双贝塔衰变的最好 结果^[9].

3.2.2 LEGEND 实验

LEGEND 实验组由 GERDA 实验组和 MAJO-RANA 实验组合并而成.这两个实验组都是用高 纯锗探测器探测⁷⁶Ge 的无中微子双贝塔衰变,各 自有他们较为优势的技术.GERDA 实验组的主要 技术在于将液氩反符合系统和 PSD 技术应用于本 底信号的抑制,而 MAJORANA 实验组则采用具 有超低本底的地下电铸铜来作为探测器以及被动 屏蔽装置的原材料^[48].LEGEND 实验组将两个实 验组的装置和技术吸收,提出了 LEGEND-200 和 LEGEND-1000 实验计划.

LEGEND-200 是 GERDA 实验组和 MAJOR-ANA 实验组合并后开展的第一项实验计划,预计 将两个实验组的高纯锗探测器加上新制造的锗探 测器共 200 kg 左右投入使用,继续探测 ⁷⁶Ge 的无 中微子双贝塔衰变事例.实验将以 GERDA 实验 组的探测器系统为主要框架,继续在 LNGS 进行. LEGEND-200 将在 GERDA 的基础上进一步升级 液氩反符合系统.首先是在新系统中加入液氩监测 仪,用来监控液氩的纯度、杂质成分等信息.然后 是在光读出方面,将全部采用 SiPM 加光纤读出的 方式,同时优化为双端读出,以减少闪烁光在光纤 中传输的损失^[49].在新的光学活性材料方面, LEGEND 实验组也在对聚萘二甲酸乙二醇酯

图 5 GERDA II 期实验装置图 (a) 锗探测器阵列和液氩反符合系统装置图^[46]; (b) 实验整体装置图^[46]

Fig. 5. GERDA phase II experimental setup: (a) Diagram of germanium detector array and liquid argon veto system^[46]; (b) the overall setup^[46].

图 6 GERDA II 期实验结果[®] Fig. 6. Results of GERDA phase II experiment[®].

(polyethylene naphthalate, PEN) 材料进行深入的研究.根据研究结果, PEN 可以作为液氩的移波剂,也可以作为闪烁体材料用来抑制本底^[50].未来 LEGEND 实验组考虑使用 PEN 代替现有的非光 学活性材料作为探测器外部的支撑和屏蔽材料,对 于 PEN 的进一步研究依然在进行当中.LEGEND-200 实验仪器已经组装完毕,预计将于近期开始采 集物理数据.

LEGEND-1000 是 LEGEND 实验组长期规划 的实验项目, 计划用 4 组 250 kg 重的锗探测器进 行⁷⁶Ge 的无中微子双贝塔衰变事例探索. LEGEND 实验组借鉴 DarkSide 实验组, 准备在 LEGEND-1000 项目中使用地下氩作为液氩反符合探测器的 原材料, 届时探测器的本底又将获得大幅下降.

3.2.3 中国无中微子双贝塔衰变实验

近年来,随着中国锦屏地下实验室的建成和投入使用,中国的无中微子双贝塔衰变实验也陆续开展.主要是清华大学主导的 CDEX 实验组和上海 交通大学主导的 PandaX 实验组.

CDEX 实验组利用高纯锗探测器同时进行暗物质探测实验和⁷⁶Ge的无中微子双贝塔衰变实验. 该实验组采用点电极高纯锗探测器方案,研制了 CDEX-1探测器,这是一种 p 型点电极高纯锗探测器,质量约 994 g,直径和高度均为 62 mm^[51],探测器外安装 NaI 闪烁体探测器作为反符合装置. CDEX 实验组利用 CDEX-1 探测器给出了中国第 一个基于⁷⁶Ge 的无中微子双贝塔衰变的结果^[51],除 此以外,也得到了一系列暗物质探测结果^[52–54].之 后 CDEX 设计建造了 CDEX-10 探测器, CDEX-10 是在 CDEX-1 基础上,将 CDEX-1 所用高纯锗晶 体串成阵列,一共包含 3 个阵列,每个阵列包含三 个锗晶体. CDEX-10 探测器用 20 cm 厚的高纯无 氧铜包围,然后整体浸在液氮中采集数据^[55].目前 还在利用 CDEX-10 探测器采集的实验数据进行 分析工作,已经给出了暗物质探测相关的数据分析 结果^[55,56]. 接下来 CDEX 实验组计划开展 CDEX-50 和 CDEX-300v 项目分别继续开展暗物质探测 和无中微子双贝塔衰变搜索. 其中 CDEX-300v 计 划使用 225 kg的宽能锗探测器进行无中微子双贝 塔衰变搜索,预计将⁷⁶Ge 的无中微子双贝塔衰变 的半衰期下限提升到 10²⁷ a 量级^[57]. CDEX-300v 相较之前的实验将做出大量升级,除了采用宽能锗 探测器、完善脉冲形状甄别技术等改进之外,最重 要的是将加入液氩反符合系统,从而进一步降低实 验的本底水平^[57].

PandaX 实验组使用两相氙投影室来探测暗 物质以及寻找136Xe的无中微子双贝塔衰变. 该实 验组首先建造了 PandaX-I 探测器, 这是基于两 相氙的时间投影室, 探测器内包含 120 kg 的液氙 [58]. 该实验组基于 PandaX- I 获得了初步的暗物质探 测结果^[58]. 之后 PandaX 实验组将探测器升级为 PandaX-Ⅱ,在PandaX-Ⅰ的基础上将液氙的质量 增加到 580 kg^[59]. 获得了中国第一个¹³⁶Xe 的无中 微子双贝塔衰变的结果 59, 同时获得了暗物质探 测的一些结果^[60]. 最近, PandaX 实验组再一次将 探测器升级为 PandaX-4T, 探测器相比之前的整 体尺寸扩大, 而液氙的质量也增加到 3.7 t^[61]. 目前 已经对 PandaX-4 T 探测器进行了试运行,并获得 了初步的暗物质探测结果[61]. 未来他们将利用 PandaX-4 T 探测器给出更好的暗物质探测的结 果. 除此以外, 他们还设计了 PandaX-Ⅲ探测器, 希望用高压氙气投影室进行¹³⁶Xe的无中微子双贝 塔衰变搜索^[62]. 第一阶段计划使用 200 kg 的氙气, 后续考虑升级为吨级实验.目前已经完成了 20 kg 样机的建造,并获得了初步的测试结果,预计很快 就会进入物理数据采集阶段[62].

3.2.4 小 结

由于氩的同位素中没有能发生双贝塔衰变的

核素,目前液氩探测器没有在无中微子双贝塔衰变 实验中得到直接应用. 高纯锗探测器、两相氙探测 器、极低温量热器在无中微子双贝塔衰变中应用较 多. 相对于后两种探测器, 高纯锗探测器的目标能 量较低、不具备粒子甄别能力,因而本底抑制工作 难度较大. 目前各实验组都采用被动屏蔽的方式降 低本底,如使用深地实验室、选用放射性极低的原 材料, MAJORANA 实验组地下电铸铜技术已经 使得本底大幅降低. 但是对于未来的吨量级实验, 仅仅依靠被动屏蔽是远远不够的. GERDA Ⅱ期实 验使用液氩反符合系统使本底水平降低 2 个数量 级,充分显示了主动反符合系统在高纯锗探测器无 中微子双贝塔衰变实验应用的效果. 未来的高纯锗 探测器吨级实验旨在将⁷⁶Ge的无中微子双贝塔衰 变半衰期下限提高到 1028 a 量级, 也就是将中微子 有效质量的上限限制到约 10 meV. 从 GERDA 实验组的结果来看,想要达到这样的灵敏度必须继 续沿用主动反符合装置进一步降低本底. 而液氩由 于自身的物理性质,本身可以作为高纯锗探测器的 低温冷却装置和被动屏蔽装置.同时由于液氩的闪 烁性能,尤其是粒子甄别能力,液氩探测器也是作 为高纯锗探测器无中微子双贝塔衰变实验的反符 合装置的极佳选择.

3.3 中微子-核子相干弹性散射实验

1974年,理论物理学家 Daniel Freedman^[3]提 出了中微子-核子相干弹性散射的理论.理论认为, 中微子和其他基本粒子,如光子、电子一样具有波 粒二象性.当中微子的能量较低时,它可以与原子 核内的核子发生相干作用,即发生所谓的 CEvNS 过程.研究表明,在中微子与物质的反应道中,CEvNS 的反应截面要显著高于其他反应^[63],因此对 CEvNS 现象的探测对于研究中微子物理有关课题有重要 的意义.为了研究不同靶核与中微子的相互作用, 各个实验组采用不同的探测器对 CEvNS 现象进 行研究,其中 COHERENT 实验组使用液氩探测 器,研究了氩核与中微子的作用.另外中国科学院高 能物理研究所也计划采用液氩探测器开展 CEvNS 相关研究工作.

3.3.1 COHERENT 实验

国际合作组 COHERENT 在美国橡树岭国家 实验室利用散裂中子源探测 CEνNS 事例. 2017 年, COHERENT 实验组首次用 CsI(Na) 探测器探测到 了 CEvNS 的事例^[63].为了探究不同靶核的 CEvNS 过程,2016 年末,该实验组研制了 CENNS-10探测 器,探究使用液氩探测器继续进行 CEvNS 事例的 探测的可行性.探测器整体设计为圆柱形,丙烯酸 容器内壁涂 TPB 作为移波剂,充满水作为被动屏 蔽装置.装载液氩的低温恒温器浸在水中,直径 248 mm,高 425 mm,顶部和底部各安装一个 PMT 用于读出液氩闪烁光^[10].

2017年2月到5月,该实验组使用29kg的 CENNS-10探测器进行了首次正式数据采集,对数 据分析后,观测到了候选CEvNS事件^[10].这一方 面证实了之前用CsI (Na)探测器的测量结果的可 靠性,另一方面也说明了使用液氩闪烁体探测器观 测CEvNS事例的可行性.未来COHERENT实验 组将继续对CENNS-10探测器深入研究,并开展 后续探测工作.

3.3.2 Taishan 实验

中国科学院高能物理研究所 2020 年开始规划 在台山核电站附近部署探测器,进行反应堆中微 子 CEvNS 测量和其他中微子相关课题研究.他们 借鉴 DarkSide 实验组,计划使用两相氩 TPC 探 测 CEvNS 事例,外部则使用液氩闪烁体探测器作 为主动反符合装置^[64].TPC 中氩的质量约为 200 kg, TPC 外除了有液氩反符合探测器和塑料闪烁体作 为主动反符合装置外,还使用了铅、铜、聚丙烯等 被动屏蔽材料来减少本底信号的影响.

目前,该项目主要在进行前期的设计和测试工 作.他们对实验过程中可能产生的本底信号进行了 模拟,来对比加入液氩反符合系统前后本底信号强 度的变化.实验中主要的本底信号包括两部分,一 部分来自²³⁸U,²³²Th和⁴⁰K等天然放射链,另一部 分来自氩中固有的³⁹Ar和⁸⁵Kr本底.根据相关研 究表明,AAr的³⁹Ar本底要远远高于UAr,因此该 项目预备采用UAr作为氩TPC的主要原料.而 U,Th和K等天然放射链产生的γ或中子本底就 主要通过液氩反符合系统来排除.项目组对反符合 效果进行了模拟,模拟结果表明除了³⁹Ar和⁸⁵Kr 产生的本底外,液氩反符合系统使其他本底计数降 低到原来的1/3 左右,抑制效果十分明显^[64].

除了对液氩反符合系统的反符合效率模拟外,项目组还对氩闪烁光信号的读出系统进行了测试^[65,66].

该项目计划使用 SiPM 来读出氩闪烁光信号,因此 对 SiPM 在液氩温度 (87 K)下的击穿电压、暗计 数率、相对量子效率等性能进行了测试.测试结果 表明选用的 SiPM 可以满足低温条件下进行低本 底探测的需求.

该项目的测试工作依然在持续,一旦该项目测 试完毕开始采集数据,这将是极少的在 CEvNS 探 测工作中使用液氩反符合系统的实验项目.

3.3.3 小 结

CEvNS 是 MeV 量级中微子与物质的主要相 互作用过程,它为研究中微子基本性质、超标准模 型相互作用等提供了重要途径. COHERENT 实验 组第一次发现 CEvNS 现象是在 CsI(Na) 探测器 上, 在证实 CEvNS 现象存在后, 为了研究反应截 面与核内中子数的关系,轻核与中微子的相干弹性 散射的研究逐步展开.液氩探测器由于成本较低、 探测效率较高,且氩核与中微子的相互作用正是轻 核与中微子相互作用的良好研究对象,因此 COHER-ENT 实验组在 2017 年成功发现 CEvNS 后立刻研 制液氩探测器研究氩核与中微子的相干弹性散射 现象. 相较于散裂中子源中微子, 反应堆中微子的 能量更低,因此同暗物质直接探测类似,反应堆 CEvNS 测量对探测器阈值、本底、体量的要求更高. 从 DarkSide 实验可以看出液氩探测器在这方面的 优势,这也是 Taishan 实验采用液氩探测器原因.

4 讨 论

液氩探测器已经在多个稀有事例探测实验中 得到应用并取得了良好的实验结果,同时稀有事例 探测也在不断地推动着液氩探测的发展优化.表4 列出了各个实验组针对液氩探测器优化完成的工作和未来的规划.下面从曝光量、本底水平、反符合探测等角度讨论稀有事例探测实验中液氩探测器的独特优势和其未来主要的优化方向.

4.1 曝光量

稀有事例探测中,曝光量是影响事例率的主要 因素.从探测器的改进方向考虑,增大曝光量的有 效方法就是提高探测器的有效质量.目前高纯锗探 测器、极低温量热器等固体探测器可以达到百公斤 量级.如LEGEND实验组正在运行的LEGEND-200项目中高纯锗总质量达到了200 kg.采用TeO₂ 极低温量热器来搜索无中微子双贝塔衰变事例的 稀有事例低温地下实验室 (cryogenic underground laboratory for rare events, CUORE) 经过多次升 级,目前探测器总质量达到了700 kg^[67].相比之下, 液态惰性气体探测器的探测介质为液态,更易于提 高探测器的质量.以液氩探测器为介质的实验组已 实现吨级探测器的应用.如DEAP 实验组目前使 用的探测器质量已超过 3000 kg, DarkSide 实验组 正在规划建设质量达 20 t 的液氩探测器.

此外,成本也是提高探测器质量必须考虑的因素.相较于高纯锗等其他类型探测器,液态惰性气体的获取难度和成本较低.因此,未来液氩探测器等液态惰性气体探测器仍将在提高实验曝光量方面发挥其优势.

4.2 本底水平

降低本底水平是稀有事例探测研究的重中之 重.稀有事例探测实验的本底包括探测器外部本 底和探测器内部本底.外部本底主要来自宇宙射 线、宇生核素以及周围环境中的天然放射性核素

	Table 4.	Optimization and upgrade of liquid argon detector.			
实验组名称	³⁹ Ar本底抑制	其它本底抑制	氩纯度监测和稳定	光读出方案升级	
DEAP	利用液氩的粒子甄别能力扣除	水切伦科夫探测器抑制µ子	氡捕集阱去除放射性杂质		
DarkSide	地下氩生产技术应用	水切伦科夫探测器抑制µ子, 载硼或载钆液闪抑制中子	同时进行去除电负性 杂质和氩同位素分离	SiPM低温稳定读出和紫外 波段直接读出技术研究	
GERDA	_	水切伦科夫探测器抑制μ子, 液氩探测器抑制其他本底		SiPM+光纤读出	
LEGEND	地下氩生成技术研究	水切伦科夫探测器抑制μ子, 液氩探测器抑制其他本底	液氩纯度监测仪	SiPM+光纤双端读出	
Taishan	地下氩生产技术研究	塑料闪烁体抑制μ子,液氩探 测器抑制其他本底		SiPM低温稳定读出技术研究	

等,它们会产生μ子、中子、γ射线等常见本底信号. 内部本底主要来自探测器灵敏介质及其支撑结构 材料产生的放射性,会产生中子和γ射线等本底信 号.对于外部本底,可以通过被动屏蔽装置来降低, 如在探测器装置外部加入铅、聚乙烯等可以吸收外 部中子或伽马的屏蔽材料,也可以通过引入主动反 符合系统来抑制本底信号.而对于内部本底,就只 能通过优化探测器制造工艺,提高灵敏介质纯度, 以及选择低本底结构材料来尽可能降低本底.

对于液氩探测器来说,外部本底除了用各种屏 蔽材料阻挡外,液氩具有自屏蔽效应,外围液氩本 身可作为屏蔽体,阻挡外部的本底.内部本底主要 来自³⁹Ar 的放射性. 由于 Q 值较低, ³⁹Ar 的β 衰变 的连续谱对于暗物质探测影响较大. 39Ar 是宇生核 素,故在大气中提取的氩中³⁹Ar含量较高,大气氩中 ³⁹Ar 的比活度约1 Bq/kg^[31]. 而采用地下氩可以尽 量避免40Ar与宇宙线发生反应,从而大幅减少 ³⁹Ar本底. 目前 DarkSide 实验组已经建立了从提 取,到纯化,再到氩同位素分离的完整的地下氩生 产流程. 使用的 UAr 不仅本身的氩纯度较高, 而且对 ³⁹Ar 等氩同位素本底的控制也达到了较高水平^[36], 该实验组提取的原始地下氩中³⁹Ar 的含量约是大 气氩的 10-3, 再经过低温精馏装置, 持续对氩中的 ³⁹Ar 进行分离, 最终进入探测器中的³⁹Ar 的比活 度仅为 10⁻¹ mBq/kg 量级. 目前 DarkSide 实验组 对 UAr 的应用已经开展了系统的研究, 按计划, DarkSide-20 k项目中将完全使用 UAr 开展实验. 其他使用液氯探测器的实验组也在考虑在未来的 实验规划中使用 UAr, 比如 LEGEND 实验组就计 划在 LEGEND-1000 项目中使用 UAr. 未来对 UAr 的生产和应用将是液氩探测器相关实验组的一项 重要课题.

4.3 光读出方案

对于液氩探测器自身性能而言, 闪烁光产额的 提升和闪烁光的有效收集是重要的研究方向. 光产 额提升主要在于提高液氩纯度, 如 DEAP, DarkSide 等实验组都开发了完善的液氩纯化和循环系统, 来 维持液氩的高纯度. DEAP 实验组 DEAP-3600 探 测器的液氩纯化系统主要部分包括热金属吸收剂 和木炭捕集器. 前者主要是为了吸收 CO₂, H₂O, O₂, N₂等电负性杂质, 后者是为了去除氡和其他放射 性杂质^[5]. DarkSide 实验组的液氩纯化系统主要由 三个部分组成,其中前两个部分都是为了去除 CO₂,因为氩的原始提取是在 CO₂ 氛围中进行的.第三 个部分去除 CH₄, N₂, Kr 等其他杂质.经过纯化 后氩中的电负性杂质浓度可以控制到 10⁻⁹ 量级^[36]. 而 LEGEND 实验组计划加入的液氩监测仪也是为 了实时了解液氩纯度,以便在纯度降低时做出调整.

对于闪烁光的有效收集,主要是对闪烁光信号 读出方案的优化.可以看到多数实验组读取液氩闪 烁光信号采用的还是波长移位剂加光电倍增管的 方式,随着近年 SiPM 的迅速发展,部分实验组开 始用 SiPM 代替传统的 PMT,如 GERDA II 期实 验的部分闪烁光信号已经采用 SiPM 读出的方案. DarkSide 实验组也对 SiPM 读出方案进行了设计 和测试,研究了 SiPM 在低温环境下的读出性能, 以及用 SiPM 直接读出近紫外光信号的可行性.测 试结果表明光探测效率可达到 40%,暗计数率小 于 0.1 Hz/mm²^[39].未来使用 SiPM 在低温下直接 读出液氩闪烁光的方案可能成为各个液氩探测器 实验组的研究方向.

4.4 反符合探测

主动反符合是稀有事例探测实验中抑制本底 的重要手段.主动反符合系统本身引入的本底不能 太高,否则会影响整个系统的本底扣除效果.例如 GERDA, DEAP 等实验组在探测器系统中都配备 了水切伦科夫探测器,用于进行µ子反符合,而探 测器采用的介质是超纯水,目的就是为了尽可能不 引入更多的其它本底.反符合系统性能可通过模 拟、实验的方法来预估.GERDA 实验组从 21 世纪 初就开始探索液氩闪烁体探测器作为高纯锗探测 器的反符合探测器的可行性,他们进行了大量的模 拟以及实验工作,对探测器周围可能存在的本底以 及加入液氩反符合系统后对本底的抑制效果进行 了研究.

此外,尚在规划和建设中的中国科学科院高能物理研究所 Taishan 反应堆中微子研究也计划在 CEvNS 事例探索项目中加入液氩反符合系统,模 拟结果显示加入液氩反符合系统后,除³⁹Ar 和⁸⁵Kr 产生的本底外,其他的本底都可以被很好地抑制^[64]. 而³⁹Ar 本底可以通过使用地下氩来降低,⁸⁵Kr 本 底可以通过低温蒸馏方法降低.主动反符合系统是 未来的稀有事例探测实验中重要的一环.

5 结 论

稀有事例探测是当今粒子物理与原子核物理 的前沿课题,由于稀有事例探测对探测器性能、环 境本底等有极高的要求,所以对探测器和其他材料 的选择尤为重要.由于液氩探测器相对于传统技术 的成本、本底水平较低、对体积限制较小等独特优 势,无论是单相液氩闪烁体探测器还是两相氩 TPC,都在近些年越来越多的受到国内外稀有事 例探测相关实验组的关注.DEAP,DarkSide等实 验组已对液氩相关探测器进行了多年的研究和测 试,并应用在暗物质探测实验中,GERDA实验组 将液氩探测器作为主动反符合系统的设计在高纯 锗探测器的无中微子双贝塔衰变实验中取得良好 效果,而 COHERENT 实验组也利用液氩探测器 测量到了氩核的 CEvNS 过程.

为了适应未来更大质量探测器设计和更灵敏 的探测需求,液氩探测器也在不断的优化中.未来 将有更多的实验组采取地下氩技术来减少氩同位 素本底的影响,同时对于液氩中其他杂质的浓度控 制也将向 ppb (parts per billion, 10-9) 数量级迈 进. 而 SiPM 的大量测试和应用也为液氩光读出方 案的改进提供了明确方向,在液氩闪烁光波段直接 用 SiPM 读出技术的研发预期是下一代液氩探测 器优化的一个重要方向.而对于反符合探测方面, GERDA 实验组的 II 期实验和后续的研究为下一 代稀有事例探测实验提供重要技术支撑,目前我 国 CDEX 的 0νββ 探测计划和中国科学院高能物 理研究所在台山的 CEvNS 项目正基于上述国际 领先实验组的技术进行液氩反符合系统的可行性 研究. 液氯探测器在实现进一步优化和升级后将继 续在未来吨量级的稀有事例探测实验中发挥重要 作用.

参考文献

- [1] Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379
- [2] Furry W H 1939 Phys. Rev. 56 1184
- [3] Freedman D Z 1974 *Phys. Rev. D* **9** 1389
- [4] Akerib D S, Akerlof C W, Akimov D Y, et al. 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 953 163047
- [5] Amaudruz P A, Baldwin M, Batygov M, et al. 2019 Astropart. Phys. 108 1
- [6] Aalseth C E, Barbeau P S, Bowden N S, et al. 2011 Phys. Rev. Lett. 106 131301
- [7] Agnese R, Anderson A J, Aralis T, et al. 2018 Phys. Rev. D

97 022002

- [8] Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. Lett. 121 081307
- [9] Agostini M, Araujo G R, Bakalyarov A M, et al. 2020 Phys. Rev. Lett. 125 252502
- [10] Akimov D, Albert J B, An P, et al. 2019 Phys. Rev. D 100 115020
- [11] Davidson N, Larsh J A E 1948 Phys. Rev. 74 220
- [12] Marshall J H 1954 Rev. Sci. Instrum. 25 232
- [13] Dolgoshein B A, Lebedenko V N, Rodionov B U 1970 JETP Lett. 11 351
- [14] Rubbia C 1977 https://cds.cern.ch/record/117852/files/CERN-EP-INT-77-8/[2022-10-27]
- [15] Bvnetti P, Bettini A, Calligarich E, et al. 1993 Nucl. Instrum. Methods. Phys. Res., Sect. A 332 395
- [16] Cennini P, Cittolin S, Revol J P, et al. 1994 Nucl. Instrum. Methods. Phys. Res., Sect. A 345 230
- [17] Kubota S, Hishida M, Nohara A 1978 Nucl. Instrum. Methods 150 561
- [18] Cennini P, Revol J P, Rubbia C, et al. 1999 Nucl. Instrum. Methods. Phys. Res., Sect. A 432 240
- [19] Ajaj R, Amaudruz P A, Araujo G R, et al. 2019 Phys. Rev. D 100 022004
- [20] Agnes P, Albuquerque I F M, Alexander T, et al. 2018 *Phys. Rev. D* 98 102006
- [21] Suzuki M, Gen J R, Kubota S 1982 Nucl. Instrum. Methods Phys. Res. 192 565
- [22] Doke T, Hitachi A, Kikuchi J, Masuda K, Okada H, Shibamura E 2002 Jpn. J. Appl. Phys. 41 1538
- [23] Hitachi A, Takahashi T, Funayama N, Masuda K, Kikuchi J, Doke T 1983 Phys. Rev. B 27 5279
- [24] Peiffer J P 2007 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)
- [25] Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P06003
- [26] Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P05003
- [27] Calvo J, Cantini C, Crivelli P, et al. 2018 Astropart. Phys. 97 186
- [28] Canci N 2020 J. Instrum. 15 C03026
- [29] Zani A 2014 Adv. High. Energy Phys. 2014 1
- [30] Amaudruz P A, Batygov M, Beltran B, et al. 2016 Astropart. Phys. 85 1
- [31] Adhikari P, Ajaj R, Alpízar-Venegas M, et al. 2021 Eur. Phys. J. C 81 1
- [32] Adhikari P, Ajaj R, Alpizar-Venegas M, et al. 2022 Phys. Rev. Lett. 128 011801
- [33] Benetti P, Acciarri R, Belluco M, et al. 2011 Nucl. Phys. B Proc. Suppl. 221 53
- [34] Alexander T, Alton D, Arisaka K, et al. 2013 Astropart. Phys. 49 44
- [35] Agnes P, Alexander T, Alton A, et al. 2015 Phys. Lett. B 743 456
- [36] Aalseth C E, Acerbi F, Agnes P, et al. 2018 Eur. Phys. J. Plus 133 1
- [37] Rossi M 2021 Nuovo Cimento 44 1
- [38] Carnesecchi F 2020 J. Instrum. 15 C03038
- [39] Consiglio L 2020 J. Instrum. 15 C05063
- [40] Majorana E 1937 Nuovo Cimento 14 171
- [41] Abt I, Altmann M, Bakalyarov A, et al. 2004 arXiv: 0404.039 v1 [hep-ex]
- [42] Simgen H 2005 Nucl. Phys. B Proc. Suppl. 143 567
- [43] Orrell J L, Aalseth C E, Amsbaugh J F, Doe P J, Hossbach T

W 2007 Nucl. Instrum. Methods. Phys. Res., Sect. A 579 91

- [44] Heider M B 2009 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)
- [45] Agostini M, Barnabé-Heider M, Budjáš D, et al. 2015 Eur. Phys. J. C 75 1
- [46] Agostini M, Bakalyarov A M, Balata M, et al. 2018 Eur. Phys. J. C 78 1
- [47] Agostini M, Allardt M, Bakalyarov A M, et al. 2017 Nature 544 47
- [48] Hoppe E W, Aalseth C E, Farmer O T, Hossbach T W, Liezers M, Miley H S, Overman N R, Reeves J H 2014 Nucl. Instrum. Methods. Phys. Res., Sect. A 764 116
- [49] Schwarz M, Krause P, Leonhardt A, et al. 2021 EPJ Web Conf. 253 11014
- [50] Efremenko Y, Fajt L, Febbraro M, et al. 2019 J. Instrum. 14 P07006
- [51] Wang L, Yue Q, Kang K J, et al. 2017 Sci. Chin. Phys. Mech. 60 1
- [52] Wang Z, Yue Q, Kang K J, et al. 2013 Phys. Rev. D 88 052004
- [53] Yue Q, Wang Z, Kang K J, et al. 2014 Phys. Rev. D 90 091701
- [54] Yang L T, Li H B, Yue Q, et al. 2019 Phys. Rev. Lett. 123 221301
- [55] Jiang H, Jia L P, Yue Q, et al. 2018 Phys. Rev. Lett. 120

241301

- [56] She Z, Jia L P, Yue Q, et al. 2020 Phys. Rev. Lett. 124 111301
- [57] Dai W H, Ma H, Yue Q, et al. 2022 *Phys. Rev. D* 106 032012
- [58] Xiao M J, Xiao X, Zhao L, et al. 2014 Sci. Chin. Phys. Mech. 57 2024
- [59] Ni K X, Lai Y H, Abdukerim A, et al. 2019 Chin. Phys. C 43 113001
- [60] Cui X, Abdukerim A, Chen W, et al. 2017 *Phys. Rev. Lett.* 119 181302
- [61] Meng Y, Wang Z, Tao Y, et al. 2021 Phys. Rev. Lett. 127 261802
- [62] Wang S B 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 958 162439
- [63] Akimov D, Albert J B, An P, et al. 2017 Science 357 1123
- [64] Wei Y T, Guan M Y, Liu J C, Yu Z Y, Yang C G, Guo C, Xiong W X, Gan Y Y, Zhao Q, Li J J 2021 Radiat. Detect. Technol. 5 297
- [65] Guo C, Guan M Y, Sun X L, Xiong W X, Zhang P, Yang C G, Wei Y T, Gan Y Y, Zhao Q 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 980 164488
- [66] Wang L, Guan M Y, Qin H J, et al. 2021 J. Instrum. 16 P07021
- [67]~ Adams D Q, Alduino C, Alfonso K, et al. 2022 $\it Nature~604~53$

REVIEW

Application and development of liquid argon detector in rare event detection^{*}

Zheng Hao-Zhe¹⁾ Liu Yuan-Yuan^{1)†} Wang Li^{2)‡} Cheng Jian-Ping¹⁾

1) (Key Laboratory of Beam Technology of Ministry of Education, Joint Laboratory of Jinping Ultra-low Radiation Background

Measurement of Ministry of Ecology and Environment and Beijing Normal University, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China)

2) (Department of Physics, Beijing Normal University, Beijing 100875, China)

(Received 27 October 2022; revised manuscript received 10 December 2022)

Abstract

Rare event detection is a frontier subject in particle physics and nuclear physics. In particular, dark matter detection, neutrino-free double beta decay and neutrino-nucleon coherent elastic scattering are being planned and implemented gradually. Rare event detection requires not only the detectors to possess excellent performances but also extremely low environmental background, so the selection of detectors and related materials is an important issue in rare event detection. Liquid argon has become an important scintillator material for scintillator detectors because of its low cost, good scintillation performance and large volume. Liquid argon was first studied in the 1940s as a sensitive material for ionizing radiation detectors. The first measurements of high-energy beta particles were obtained by using a liquid argon ionization chamber in 1953. The ICARUS group put forward the idea of constructing liquid argon temporal projection chamber, and made attempt to construct liquid argon temporal projection chamber in 1977. The scintillation light signals were collected for the first time in a liquid argon temporal projection chamber in 1999. Thus, the drift time of the particle can be obtained to determine the particle track. After development, single-phase liquid argon scintillator detector and two-phase argon time projection chamber have become two common types of liquid argon detectors, and have been extensively used in rare event detection experiments in recent years. For dark matter detection, the DEAP group and DarkSide group have achieved good results with single-phase liquid argon scintillation detector and two-phase argon time projection chamber, respectively. For neutrino-free double beta decay experiments, the GERDA group has done a lot of researches of liquid argon anti-coincidence system and applied the said system to experiments. The LEGEND group, which is the combination of GERDA and MAJORANA experimental group, upgraded the liquid argon anti-coincidence system which was applied to the following LEGEND-200 project. For neutrino-nucleon elastic scattering experiments, COHERENT obtained the latest results by using the liquid argon detectors. The Taishan neutrino-nucleon coherent elastic scattering project of the High Energy Institute of Chinese Academy of Sciences has also begun to study the feasibility of liquid argon anti-coincidence system. Finally, this paper discusses the direction of optimizing the liquid argon detector, such as exposure, background level and optical readout scheme, and gives a good prospect of liquid argon detector applied to rare event detection in the future.

Keywords: rare event detection, scintillation detector, time projection chamber, veto measure

PACS: 29.40.-n, 29.40.Mc, 95.35.+d, 23.40.-s

DOI: 10.7498/aps.72.20222055

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1604701) and the National Natural Science Foundation of China (Grant No. 1222200227).

[†] Corresponding author. E-mail: yyliu@bnu.edu.cn

[‡] Corresponding author. E-mail: wangl@bnu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

液氩探测器在稀有事例探测中的应用和发展

郑吴哲 刘圆圆 王力 程建平

Application and development of liquid argon detector in rare event detection

Zheng Hao-Zhe Liu Yuan-Yuan Wang Li Cheng Jian-Ping

引用信息 Citation: Acta Physica Sinica, 72, 052901 (2023) DOI: 10.7498/aps.72.20222055

在线阅读 View online: https://doi.org/10.7498/aps.72.20222055

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制

Development of high-pressure multi-wire proportional chamber neutron detector for the China Spallation Neutron Source multipurpose reflectometer

物理学报. 2018, 67(7): 072901 https://doi.org/10.7498/aps.67.20172618

高时间稳定性的雪崩光电二极管单光子探测器 Avalanche photodiode single-photon detector with high time stability 物理学报. 2020, 69(7): 074204 https://doi.org/10.7498/aps.69.20191875

利用气泡探测器测量激光快中子

Laser fast neutron measured by bubble detector 物理学报. 2018, 67(22): 222101 https://doi.org/10.7498/aps.67.20181035

具有变革性特征的红外光电探测器

Recent progress on advanced infrared photodetectors 物理学报. 2019, 68(12): 120701 https://doi.org/10.7498/aps.68.20190281

高速太赫兹探测器

Ultrafast terahertz detectors 物理学报. 2018, 67(9): 090702 https://doi.org/10.7498/aps.67.20180226

具有光电倍增的宽光谱三相体异质结有机彩色探测器

Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication 物理学报. 2018, 67(19): 198503 https://doi.org/10.7498/aps.67.20180502