单层 Nb₂SiTe₄ 基化合物的带隙异常变化^{*}

王晓菲1) 孟威威1)† 赵培丽1) 贾双凤1) 郑赫1)2)3)‡ 王建波1)4)††

1) (武汉大学物理科学与技术学院,电子显微镜中心,人工微结构教育部重点实验室,高等研究院,武汉 430072)

2) (武汉大学苏州研究院, 苏州 215123)

3) (武汉大学深圳研究院, 深圳 518057)

4) (武汉大学科研公共服务条件平台, 武汉 430072)

(2022年10月27日收到; 2022年12月6日收到修改稿)

传统硫族化合物中阳离子相同时,随着阴离子原子序数的增加,价带顶逐渐升高,带隙呈减小趋势.在 A₂BX₄基(A = V,Nb,Ta; B = Si,Ge,Sn;X = S,Se,Te)化合物中,观察到随着阴离子原子序数增加,其带隙呈现反常增大的现象.为了探究其带隙异常变化的原因,基于第一性原理计算,对A₂BX₄基化合物的电子结构展开系统地研究,包括能带结构、带边相对位置、轨道间耦合作用以及能带宽度等影响.研究发现,Nb₂SiX₄基化合物中 Nb 原子 4d 轨道能量明显高于阴离子 p 轨道,其价带顶和导带底主要由 Nb 原子 4d 轨道 相互作用组成,其带宽主要影响带隙大小.Nb₂SiX₄基化合物的带隙大小通过 Nb—Nb 和 Nb—X键共同作用 于 Nb 原子 4d 轨道的宽度来控制.当阴离子序数增加时,Nb—Nb 键长增加,其相互作用减弱,由 Nb 原子 4d 轨道主导的能带变宽,带隙减小;另一方面,Nb—X键长增加又使 Nb 原子 4d 带宽变窄,带隙增加,并且 Nb—X键长增长占主导,所以带隙最终呈现异常增加的趋势.

关键词: Nb₂SiTe₄,带隙异常,电子结构,第一性原理计算 PACS: 71.20.-b, 85.60.Gz, 31.15.A-

DOI: 10.7498/aps.72.20222058

1 引 言

具有窄带隙 (~0.3 eV) 的二维材料有利于实现 双极晶体管和中红外 (MIR) 探测, 例如带隙约为 0.3 eV 的少层黑磷在 MIR 范围内具有高光响应性 和检测率^[1-3]. 此外, 黑磷等窄带隙二维半导体还 可用作场效应晶体管 (FET) 的沟道材料, 实现双 极性传输, 其中沟道的多数载流子可以通过栅极电 压的静电掺杂实现电子和空穴之间的转换^[4,5]. 这 一特性有可能实现具有现场可编程 p-n 结功能的 器件^[6].虽然上述黑磷具有优异的光学性质,但它 在自然环境条件下不稳定,往往会与空气中的氧气 和水分快速反应,并在几分钟或几小时内完全降解^[7]. 结构的不稳定性使得这类材料的剥离通常需要在 水和氧含量极低的手套箱中进行,在设备制造和各 种封装过程中需要特别小心来保护这类材料^[8,9], 这为其低价、广泛的应用带来天然的困难.所以寻 找新型稳定的窄带隙二维材料仍是目前研究的重 要课题.

© 2023 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 52071237, 12074290, 51871169, 52101021, 12104345)、江苏省自然科学基金 (批准号: BK20191187)、 湖北省青年拔尖人才计划、深圳市科创委基础研究面上项目 (批准号: JCYJ20190808150407522) 和中国博士后科学基金 (批准 号: 2019M652685) 资助的课题.

[†] 通信作者. E-mail: meng@whu.edu.cn

[‡] 通信作者. E-mail: zhenghe@whu.edu.cn

計通信作者. E-mail: wang@whu.edu.cn

近期科研人员发现了一种新型层状材料 Nb₂SiTe₄, 其单层剥离能 (0.43 J/m²)^[10] 与石墨烯 (0.37 J/m²)^[11]相当,所以单层 Nb₂SiTe₄ 可通过简 单的机械剥离制备得到^[12]. 实验测得块体 Nb₂SiTe₄ 带隙值仅 0.39 eV^[12], 有利于实现 MIR波段光的有 效探测.此外,Nb₂SiTe₄是一种高度稳定的材料. 实验研究表明^[12], Nb₂SiTe₄在相对湿度为 40% 的 空气中放置 120 h 后, 能表现出良好的运输性能, 迁移率仅下降 40%. 相比之下, 基于黑磷的器件暴 露于潮湿空气中几个小时后会完全失去其导电性¹⁹. 同时 Nb₂SiTe₄ 具有很高的载流子迁移率, 理论研 究表明沿 a和 b方向单层 Nb₂SiTe₄分别表现出高 达 1775 cm²·V⁻¹·s⁻¹ 和 1222 cm²·V⁻¹·s⁻¹ 的电子迁 移率^[13], 与 Si 的理论值 (1419 cm²·V⁻¹·s⁻¹)^[14] 相当, 预示其在纳米电子学中有着更大的应用潜力.另外, Nb₉SiTe₄具有优异的铁弹性, 单层 Nb₉SiTe₄中的 铁弹性可逆应变高达 24.4%[10], 远高于四方氮化 钇 t-YN (14.4%)^[15], GeS (17.8%)^[16]. 同时 Nb₂SiTe₄ 铁弹性转变的能垒为 0.237 eV/atom^[10], 大于四方 氮化钇 t-YN 的能垒 (33 meV/atom)^[15]. 但是小于 BP₅ (0.32 eV/atom)^[17], 与磷烯 (0.20 eV/ atom)^[16] 相当. 中等适宜的铁弹性转变能垒使其能够在一定 的外部应力下实现铁弹性转换,并能在一定程度上 抵抗环境扰动.

除了上述广泛的应用前景,Nb₂SiTe₄体系还 具有新奇的电子结构.Luo等^[18]用同族元素替换 法得到 27种 Nb₂SiTe₄基化合物组合,并通过应力 工程表明外加双轴拉伸应力可减小 Nb₂SiTe₄体 系带隙值;外加双轴压缩应力时,Nb₂SiTe₄体系 价带顶轨道可出现反转 (Nb₂SiTe₄,Nb₂GeTe₄和 Ta₂GeTe₄).根据这一有趣的电子结构变化,我们 研究了系列单层 Nb₂SiTe₄基化合物的电子结构, 发现其带隙值存在异常变化的特殊趋势.对于常规 硫族化合物,其价带顶 (VBM) 通常是阴离子 p 轨 道主导,所以随着阴离子原子序数的增加,p轨道 能量增加, VBM 通常向上移动, 减小带隙值. 但是 在 Nb₉SiTe₄ 基化合物中却发现阳离子相同时, 随 着阴离子周期增加,其对应化合物的带隙异常增 大. 如图 1 所示, 以 Nb₂Si X_4 (X = S, Se, Te) 为 例,从Nb₂SiS₄到Nb₂SiSe₄再到Nb₂SiTe₄,化合物 中的阳离子 Nb 和 Si 保持相同, 而阴离子 X 原子序 数增大,带隙值从 0.65 eV (S) 增加到 0.80 eV (Se) 再至 0.83 eV (Te), 呈现出异常的带隙增加趋势. 不 同于单层体系,发现X变化时,块材带隙从0.44 eV (Nb₂SiS₄) 变为 0.47 eV (Nb₂SiSe₄) 和 0.37 eV (Nb₂ SiTe₄). 带隙值先增大后减小. 近直接的带隙类型 变为间接带隙,暗示层间相互作用随着 X 的变化 而显著变化. 块材体系中 Γ 点处的带隙值分别为 0.44 eV (Nb₂SiS₄), 0.57 eV (Nb₂SiSe₄) 和 0.65 eV (Nb₂SiTe₄), 与单层 Nb₂SiX₄带隙异常变化保持一 致.带隙值的异常变化通常可以归类于电子结构的 异常, Carrier 和 Wei^[19]已经探索了一系列不同化 合物电子结构异常的起源,他们发现第三主族氮化 物中 InN 带隙异常小、探究了铅的硫属化合物电 子结构异常的原因^[20]、分析了 IV 族碲化物奇异的 能带结构^[21]等,这些研究工作让我们对于半导体 中的原子能级、对称性、原子轨道间耦合效应有了 更深的物理理解.

为了探究 A_2BX_4 基 (A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te) 化合物中带隙异常变化的 原因, 重点对其中的 Nb₂Si X_4 (X = S, Se, Te) 体系 的电子性质展开细致的研究, 包括能带结构、能带 排序、轨道间耦合作用以及带宽的影响. 研究证明 Nb₂SiTe₄ 基化合物带隙的异常变化来源于其带隙 边缘的特殊轨道贡献: Nb 原子 4d 轨道能量明显高 于阴离子 p 轨道, 主导体系的 VBM. 同时, Nb₂SiTe₄

图 1 A_2BX_4 基 (A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te) 化合物带隙异常变化, 阴离子从上往下对应带隙从大到小 Fig. 1. Band gap anomaly in A_2BX_4 (A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te) analogues, with anions from the top down corresponds to the band gap from large to small.

基化合物的导带底 (CBM) 同样由 Nb 原子 4d 轨 道主导,因此 Nb 原子 4d 轨道间的相互作用决定 了 Nb₂SiTe₄基化合物体系的带隙宽度.另外,从 带宽的角度出发,由于 CBM 和 VBM 附近均是 Nb 原子 4d 轨道主导,当 Nb 原子 4d 带宽越窄,其 原子轨道能量延伸的范围越小,带隙就越大,所以 拥有更窄的 Nb 原子 4d 带宽的化合物具有相对更 宽的带隙.此外,发现 Nb 原子 4d 带宽由 Nb—Nb 直接相互作用以及 Nb—Te 耦合的间接影响共同 控制.当阴离子原子周期增加时,一方面,Nb—Nb 键长的增加会使 Nb d 带变宽,导致带隙变窄;另 一方面 Nb—X键长增加会使 Nb 原子 4d 带宽变 窄,导致带隙变宽.Nb—X键长的变化幅度远大 于 Nb—Nb 键,主导了 Nb 原子 4d 带宽变化趋势,使 Nb₂SiTe₄基化合物呈现带隙值异常变化的趋势.

2 理论计算方法

所有计算均使用基于平面波的 VASP(Vienna ab initio simulation package) 软件包. 采用广义梯 度近似 (GGA) 的 Perdew-Burke-Ernzerhof^[22,23]来 处理电子间的交换关联作用. 布里渊区的 K 点网 格划分采用 Monkhorst-Pack^[24] 方法. HSE06 杂化 泛函^[25]用来计算更准确的带隙值以及能带结构. K网格选为 6×5×1, 截断能为 500 eV, 原子间的 相互作用力收敛标准为 0.01 eV/Å (1 Å = 10⁻¹⁰ m), 能量的收敛标准为1×10⁻⁶ eV. 对于晶体轨道哈 密顿布局 (crystal orbital Hamilton populations, COHP)^[26]分析借助 LOBSTER^[27]软件包实现. 同 时 VASPKIT^[28] 在电子性质方面预-后数据处理上 非常有帮助. 我们计算得到单层 Nb₂SiTe₄ 带隙值 为 0.87 eV, 与 Fang 等^[13] (0.80 eV), Zhang 等^[10] (0.84 eV) 和 Wang 等^[29] (0.89 eV) 的研究结果接 近; 单层 Nb2GeTe4 带隙值为 0.67 eV, 与他们的工 作也符合 (0.63 eV^[13], 0.64 eV^[10,29]).

3 计算结果与讨论

3.1 Nb_2SiTe_4 化合物的结构演变

以单层 Nb₂SiTe₄ 为例,首先介绍二维 Nb₂SiTe₄ 基化合物的晶体结构. 单层 Nb₂SiTe₄ 是单斜结构, 空间群为 $P2_1/c$,晶格参数为 a = 6.30 Å, b = 7.91 Å, c = 14.72 Å, $\alpha = 90^\circ$, $\beta = 107^\circ \pi \gamma = 90^\circ$. 单层 Nb₂SiTe₄ 是 Te-(Nb, Si)-Te 的夹层, Nb 原子会与 上下相邻的 6 个 Te 原子成键, 形成三棱柱的结构 单元 [NbTe₆], Si 原子插入这些棱柱之间的间隙 位点, 如图 2(a) 所示. 值得一提的是, 除了常规的 Si—Te 键, Nb₂SiTe₄ 中还存在显著的 Si—Nb 键, 其键长为 2.77—2.92 Å, 如图 2(d) 所示.

Nb₂SiTe₄基化合物的研究可追溯到 1990 年 的 MA_{r} Te₂相^[30](M = Nb, Ta; A = Si, Ge; $1/3 \leq$ $x \leq 1/2$). 当 M = Nb, A = Si, x = 1/3 时, 形成 拓扑半金属 Nb₃SiTe₆ 化合物^[31,32]. 逐渐增加 Si 的 含量至 x = 1/2 时, 会形成窄带隙半导体 Nb₂SiTe₄ 化合物.图 2(d) 和图 2(e) 分别展示了 Nb₃SiTe₆ 和 Nb₂SiTe₄晶体结构的俯视图,能更加清楚地观察 到其中存在的两种间隙类型,一种是三角棱柱形 状(图2(e)中Channel 1),另一种是由两个Channel-1 组成的更大的四棱柱间隙 (图 2(d) 中 channel 2). 尽管 NbaSiTe6 晶体结构中既存在 Channel 1 又存 在 Channel 2, Si 原子却仅占据空间更大的 Channel 2 位置. 当逐渐提高 Si 原子的含量时, 层内的原始间 隙不足以容纳 Si 原子, 结构单元 [NbTe6] 的连接 方式会从边共享部分转变为面共享,从而形成更多 的 Channel 2. 以便能容纳更多的 Si 原子. 当形成 Nb₂SiTe₄结构时, Channel 1已经全部转换为 Channel 2, 此时容纳 Si 原子的能力最强.

为了更好地理解 Nb₂SiTe₄ 中 Si 原子对晶体 结构稳定性的影响,以 Nb₂CaO₄结构母相,分别 用 Si 和 Te 替换 Ca 和 O,探究 Si 原子占据二维材 料层间位置的结构相对稳定性.如图 2(c) 和图 2(f) 所示,在 Nb₂CaO₄构型中,Nb 原子与 6 个相邻的 Te 原子成键,形成了边共享的 [NbTe₆] 三角棱柱, 此时体系仅存在 Channel 1 类型. Si 原子处于层间, 仅与周围相邻的 6 个 Te 原子成键,形成 [SiTe₆] 三 棱柱结构.进行结构优化时发现,夹层 [SiTe₆] 三 棱柱结构.进行结构优化时发现,夹层 [SiTe₆] 三棱 柱会坍缩, Si 原子向 [NbTe₆] 三角棱柱的顶部移 动,形成 [SiTe₃] 三角形锥体.与此同时,Si-Te 间 距仅为 2.85 Å,与 Nb₂SiTe₄ 中 Si—Nb键长接近, 表明 Si—Nb 成键有利于整体结构的稳定.

3.2 Nb_2SiTe_4 化合物的电子结构

为了探究 Nb₂SiTe₄ 基化合物中带隙异常变化 的原因,以 Nb₂Si X_4 (X = S, Se, Te)体系为代表, 针对其电子性质展开系统的研究.该体系的三种化 合物对应的带隙边缘的原子轨道贡献情况基本一 致, 以单层 Nb₂SiTe₄ 为例, 详细介绍其电子性质. 使用 HSE06 泛函计算 Nb₂SiTe₄ 的投影能带结构 图, 如图 3(a) 所示. 发现单层 Nb₂SiTe₄ 具有间接 带隙, VBM 在 Γ -X之间, 非常靠近 Γ 点, 而 CBM 在 Y- Γ 点处, 带隙宽度 $E_g = 0.83$ eV, 其带隙边缘 均由 Nb 原子 4d 轨道主导. 其中, VBM 主要是由 Nb 原子 d²轨道贡献, 另外包含少量 Te 原子 p₂轨 道的贡献; 而 CBM 同样由 Nb 原子 d²₂轨道占主导, 还有少量的 Si 原子 p_x轨道以及 Te 原子 p_x轨道 的贡献. 为了清楚地描述 Nb₂SiTe₄ 能带边缘的状 态,图 3(b)和图 3(c)分别绘制了 VBM和 CBM 处的电荷密度图,可以更直观地从实空间观察到轨 道间相互作用,VBM 处具有很强的 Nb 原子 d 轨 道间的成键态,而 CBM 处很明显存在 Nb 原子 d 轨道间的反键作用,以及 Nb 原子与 Si 原子之间的成键作用.Te 原子在能带边缘贡献的电荷密度 相对较小.

为进一步分析原子轨道之间的相互作用, 计算 了 Nb₂SiTe₄ 中的 COHP 图 (见图 4). 结果发现 VBM 附近主要是 Nb—Nb 的成键态, 而 CBM 附

图 2 晶体结构及其单层晶体结构俯视图 (a), (d) Nb₂SiTe₄; (b), (e) Nb₃SiTe₆; (c), (f) Nb₂CaO₄ Fig. 2. Crystal structures and top view of single-layer: (a), (d) Nb₂SiTe₄; (b), (e) Nb₃SiTe₆; (c), (f) Nb₂CaO₄.

图 3 (a) Nb₂SiTe₄的轨道投影能带图; (b) Nb₂SiTe₄ VBM 处的电荷密度图; (c) Nb₂SiTe₄ CBM 处的电荷密度图 Fig. 3. (a) Orbit-resolved band structures of Nb₂SiTe₄; (b) partial charge density at VBM of Nb₂SiTe₄; (c) partial charge density at CBM of Nb₂SiTe₄.

图 4 Nb₂SiTe₄中不同原子间哈密顿轨道布局 (a) Nb-Nb; (b) Nb-Si; (c) Nb-Te; (d) Si-Te; (e) 图 (b) 中红色圆圈的放大部分 (横坐标的正 (负) 表示原子轨道间为成 (反) 键态, 用图中红 (绿) 色区域表示)

Fig. 4. Crystal orbital Hamilton populations for different interatomic in Nb_2SiTe_4 : (a) Nb-Nb; (b) Nb-Si; (c) Nb-Te; (d) Si-Te; (e) enlarged portion of the red circle in Fig. (b) (The positive (negative) of COHP represents bonding (antibonding) interaction between ions, as colored in red (green)).

近是 Nb—Nb 的反键态. 此外, CBM 附近也发现 了 Nb—Si 成键态, 见放大图 4(e), 与上文分电荷 密度图的结果—致.

为了深入探究带隙异常变化的成因, 将真空能级对齐, 图 5 绘制出 Nb₂SiTe₄ 基化合物的能带能量排列图.可以发现: i) VBM 能量位置随着阴离子原子序数增加而逐渐增加, 遵循先前的化学趋势, 即具有较大阴离子原子序数的半导体具有较高的 VBM 状态; ii) 同样, CBM 能量随着阴离子原子序数的增加也逐渐增加. 值得注意的是, CBM 的增加幅度要明显高于 VBM, 所以当原子序数增加, 带隙呈现逐渐增大的趋势. 为进一步探究出上述异常能带趋势的物理机制, 考虑了 Nb, S, Se, Te 原子轨道间的相互作用.

i) VBM 微弱上升. 当阴离子原子序数增加时, d-p 轨道耦合逐渐增强. d-p 耦合幅度与 p-d 轨道 间的能量差成反比,由于阴离子从 S 到 Se 再到 Te 的过程中,阴离子的 p 轨道能量增加,越来越靠 近 Nb 原子 4d 轨道,阴离子 p 轨道与 Nb 原子的 d 轨道能量逐渐减小,导致 d-p 反键耦合增强,从 而 VBM 上升. 在此强调,对于常规硫族化合物,阴 离子 p 能级高于阳离子 d 轨道,因此其 VBM 态由 阴离子 p 轨道控制,在这种情况下,阴离子 p 轨道 能量的变化将对 VBM 能量产生直接影响.而对 于 Nb₂SiTe₄ 基化合物, Nb 原子 4d 能级高于 X 原 子 p 能级,因此阴离子 p 轨道能量的变化将对 VBM 能量产生间接影响.因此,与传统的硫族化 合物相比,其 VBM 相对位置变化更小.

ii) CBM 较大幅度上移.由上文可知, CBM 由 相邻 Nb 原子 4d 轨道间的反键作用主导, Nb 原子 与 Si 原子间的 d-p 成键作用做次要贡献.随着阴 离子原子序数增加, 阴离子电负性逐渐减弱, 阳离 子 Nb 保留更多的 4d 电子, 导致 Nb 原子间的 d-d 反键作用呈现增强趋势, 从而导致 CBM 向上移 动, 并且相对于 VBM 的上升趋势更大.

图 5 Nb₂Si X_4 (X = S, Se, Te) 化合物的能带排列图 Fig. 5. Band alignment of Nb₂Si X_4 (X = S, Se, Te) compounds.

3.3 Nb—Nb 和 Nb—Te 键共同控制带隙 变化

使用 HSE06 泛函计算得到了 Nb₂SiX₄ 化合物 的轨道投影能带图,如图 6 所示.鉴于 Nb₂SiTe₄ 带隙的大小受 VBM 和 CBM 处能带的影响最大, 测量出占据态中最靠近 VBM 的两条 Nb 原子 4d 能带的近似带宽, 探究带宽对于带隙的影响. 从 图 6(a)—(c) 可知, 阴离子 X 的原子序数增加, 对 应化合物的带隙依次为 0.65, 0.80, 0.83 eV, 呈现 显著增加的趋势. VBM 和 CBM 附近 Nb 原子 d带 占主导地位. VBM 往下, 有一个能量范围大概 5 eV 的阴离子 p 轨道主导的绿色区域. Nb 原子 d带和 X 原子 p 带存在一定交叉, 且随着阴离子原 子序数的增加, X原子 p 带逐渐上升, 靠近 VBM. 这是因为阴离子 X 具有不同的电负性, 从 S 到 Se 到 Te, 电负性减弱, 导致 Nb₂SiX₄ 化合物中阴离 子 X 带向费米面移动. 虽然阴离子 X 带在上升, 但 它并没有取代 Nb 原子 4d 带成为 VBM, 所以并不 能直接影响带隙的变化.

随着阴离子 X原子序数增加, VBM 附近的 Nb 原子 d 带宽明显变窄.值得一提的是,虽然只 测出了占据态中 VBM 附近两条 Nb 原子 d 带宽 的长度,但由于 CBM 和 VBM 附近能带形状相似, 我们认为 CBM 附近 Nb 原子 d 带宽变化与 VBM 附近 Nb 原子 d 带宽变化保持一致.在 Nb₂SiX₄ 中,带隙边缘具有更窄 Nb 原子 d 带宽的化合物, 拥有更大的带隙.在 Nb₂SiX₄ 化合物系列化合物 中, Nb—Nb 键长不同.随着阴离子 X 原子序数的 增加, Nb—Nb 距离逐渐增大, 中心 Nb 原子到阴 离子 X 平面的距离逐渐增大, 即 Nb—X 键长增大. 为了研究带宽对这些结构参数的依赖关系, 构造 了不同键长的 Nb₂SiTe₄ 体系, 探究了其能带结构 的变化.

i)保持 Nb—Nb 键长不变,逐渐减小 Nb—Te 键长:保持 Nb₂SiTe₄的晶格矢量不变,固定 Nb 原 子与 Si 原子的位置;同时减小 Te 原子到中心 Nb 原子平面的距离,得到新的晶体结构 Nb₂SiTe₄-1 以及 Nb₂SiTe₄-2.

ii) 同时减小 Nb—Nb 和 Nb—Te 键长:将优 化后的 Nb₂SiSe₄和 Nb₂SiS₄晶格中的 S 元素以及 Se 元素分别用 Te 替换,得到两种新的晶体结构 Nb₂SiTe₄-3和 Nb₂SiTe₄-4.从 Nb₂SiTe₄ 到 Nb₂Si Te₄-3再到 Nb₂SiTe₄-4过程中,Nb—Nb 键长和 Nb—Te 键长均逐渐减小,Nb₂SiTe₄-4 具有最小的 Nb—Nb 键长以及 Nb—Te 键长,具体结构参数见 表 1,其电子结构变化趋势如下.

iii)保持 Nb—Nb 键长不变:随着 Nb—Te 键 长的减小,带隙边缘的 Nb 原子 d 带宽会系统地增 加,同时带隙变小,见图 7(a)—(c).此时 Nb—Nb 直接相互作用不变,而 Nb 与 Te 的耦合效应随着 Nb—Te 距离的增加而减小, Nb 原子 4d 带的宽度 对应减小,从而带隙增加.

iv) 当 Nb—Nb 和 Nb—Te 键长同时减小:带隙边缘的 Nb 原子 4d 带宽会在一定程度上变宽,同时带隙变窄,见图 7(c)—(e),与 iii) 中的趋势保持一致. Nb—Nb 的 VBM 和 CBM 分别主要由 Nb—Nb 4d 轨道之间的成键和反键作用构成,其

图 6 HSE06 计算的轨道投影能带结构 (a) Nb₂SiS₄; (b) Nb₂SiSe₄; (c) Nb₂SiTe₄ (蓝色箭头表示占据态中最靠近 VBM 的两条 Nb 原子 4d 能带的近似带宽)

Fig. 6. Orbit resolved band structures calculated by HSE06: (a) Nb_2SiS_4 ; (b) Nb_2SiSe_4 ; (c) Nb_2SiTe_4 (Bandwidths of the two Nb 4d bands below the VBM are represented by blue arrows).

	Nb—Nb键长/Å	Nb—Te键长/Å	Nb 4d带宽/Å	带隙 $E_{\rm g}$ /eV
Nb_2SiTe_4-1	2.91	2.72	1.23	-0.01
$\mathrm{Nb}_2\mathrm{SiTe}_4\text{-}2$	2.91	2.76	1.14	0.21
Nb_2SiTe_4	2.91	2.88	0.69	0.52
Nb_2SiTe_4-3	2.81	2.71	1.03	0.53
Nb_2SiTe_4-4	2.75	2.59	1.23	0.25

表 1 系列 Nb_2SiTe_4 构型的参数对比 Table 1. Comparisons of representative Nb_2SiTe_4 -based compounds.

图 7 PBE 计算的轨道投影能带结构 (a) Nb₂SiTe₄-1; (b) Nb₂SiTe₄-2; (c) Nb₂SiTe₄; (d) Nb₂SiTe₄-3; (e) Nb₂SiTe₄-4 Fig. 7. PBE calculated orbit resolved band structures: (a) Nb₂SiTe₄-1; (b) Nb₂SiTe₄-2; (c) Nb₂SiTe₄; (d) Nb₂SiTe₄-3; (e) Nb₂SiTe₄-4

相互作用的强弱决定了成键态和反键态间的能量 距离,即带隙值. Nb—Nb 键长减小时, Nb—Nb 相 互作用增强,增大体系带隙值,与 Nb—Te 键长减 小时带隙值减小相反. 该结果表明, Nb—Nb 相互 作用与 Nb—Te 相互作用对 Nb₂SiTe₄带隙值的调 控趋势相反,总体而言, Nb—Te 对带隙值的调控 能力大于 Nb—Nb 相互作用.

4 结 论

基于第一性原理计算,发现 Nb₂SiTe₄ 基化合物存在随同主族阴离子原子序数增大,其带隙值呈现反常增大的趋势.以 Nb₂SiX₄ (X = S, Se, Te)体系为例,其 VBM 和 CBM 均由 Nb 原子 4d 轨道 主导,分别对应 Nb—Nb 4d 间的成键态和反键态, Nb 原子 4d 轨道间的相互作用直接决定体系的带隙宽度.当 Nb 4d 带宽越窄,其原子轨道能量延伸的范围越小,带隙值越大.进一步还发现 Nb 原子 4d 带宽是由 Nb—Nb 直接相互作用以及 Nb—X 耦合的间接作用共同控制.Nb—Nb 的键长增加 时,Nb—Nb 相互作用减弱,Nb 原子 4d 带宽变宽, 降低带隙值.与此相反,Nb—X键长增加时,Nb 原 子 4d 带宽变窄, 导致 Nb₂SiX₄ 带隙变宽, 且 Nb—X 键长对于带隙的影响占主导, 所以带隙最终呈现异 常增加的趋势.研究结果揭示了 Nb₂SiTe₄ 系列化 合物带隙值异常变化的现象及内在机理, 加深了 大家对于 Nb₂SiTe₄ 基化合物电子结构的理解, 为 其可能的合金化应用提供了带隙调控方面的指导.

参考文献

- Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano. Lett. 16 4648
- [2] Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247
- [3] Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 *Nat. Nanotechnol.* 10 707
- [4] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372
- [5] Han C, Hu Z, Gomes L C, Bao Y, Carvalho A, Tan S J R, Lei B, Xiang D, Wu J, Qi D, Wang L, Huo F, Huang W, Loh K P, Chen W 2017 Nano. Lett. 17 4122
- [6] Tian H, Deng B, Chin M L, Yan X, Jiang H, Han S J, Sun V, Xia Q, Dubey M, Xia F, Wang H 2016 ACS Nano 10 10428
- [7] Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W,

Palacios J J, vander Zant H S J 2014 2D Mater. 1 025001

- [8] Long M, Gao A, Wang P, Xia H, Ott C, Pan C, Fu Y, Liu E, Chen X, Lu W, Nilges T, Xu J, Wang X, Hu W, Miao F 2017 Sci. Adv. 3 e1700589
- [9] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano. Lett. 14 6964
- [10] Zhang T, Ma Y, Xu X, Lei C, Huang B, Dai Y 2020 J. Phys. Chem. Lett. 11 497
- [11] Wang W, Dai S, Li X, Yang J, Srolovitz D J, Zheng Q 2015 Nat. Commun. 6 7853
- [12] Zhao M, Xia W, Wang Y, Luo M, Tian Z, Guo Y, Hu W, Xue J 2019 ACS Nano 13 10705
- [13] Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2020 J. Electron. Mater. 49 959
- [14] Ponce'S, Margine E R, Giustino F 2018 Phys. Rev. B 97 121201
- [15]~ Xu B, Xiang H, Yin J, Xia Y, Liu Z 2018 $\it Nanoscale$ 10 215
- [16] Wu M, Zeng X 2016 Nano. Lett. 16 3236
- [17] Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020
- [18] Luo X, Meng W W, Chen G X J, Guan X X, Jia S F, Zheng H, Wang J B 2020 Acta Phys. Sin. 69 197102 (in Chinese) [罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波 2020 物理 学报 69 197102]

- [19] Carrier P, Wei S H 2005 J. Appl. Phys. 97 033707
- [20] Wei S H, Zunger A 1997 Phys. Rev. B 55 13605
- [21] Ye Z Y, Deng H X, Wu H Z, Li S S, Wei S H, Luo J W 2015 *Npj Comput. Mater.* 1 15001
- [22] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
- [23] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
- [24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [25] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
- [26] Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461
- [27] Maintz S, Deringer V L, Tchougréeff A L, Dronskowski R 2016 J. Comput. Chem. 37 1030
- [28] Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033
- [29] Wang F, Xu Y, Mu L, Zhang J, Xia W, Xue J, Guo Y, Yang J, Yan H 2022 ACS Nano 16 8107
- [30] Boucher F, Zhukov V, Evain M 1996 Inorg. Chem. 35 7649
- [31] Hu J, Liu X, Yue C L, Liu J Y, Zhu H W, He J B, Wei J, Mao Z Q, Antipina L Y, Popov Z I, Sorokin P B, Liu T J, Adams P W, Radmanesh S M A, Spinu L, Ji H, Natelson D 2015 Nat. Phys. 11 471
- [32] An L, Zhang H, Hu J, Zhu X, Gao W, Zhang J, Xi C, Ning W, Mao Z, Tian M 2018 *Phys. Rev. B* 97 235133

Band gap anomaly in single-layer Nb₂SiTe₄-based compounds^{*}

Wang Xiao-Fei¹⁾ Meng Wei-Wei^{1)†} Zhao Pei-Li¹⁾ Jia Shuang-Feng¹⁾ Zheng He^{1)2)3)‡} Wang Jian-Bo^{1)4)††}

1) (Institute for Advanced Studies, MOE Key Laboratory of Artificial Micro- and Nano-structures, Center for

Electron Microscopy, School of Physics and Technology, Wuhan University, Wuhan 430072, China)

2) (Suzhou Institute of Wuhan University, Suzhou 215123, China)

3) (Wuhan University Shenzhen Research Institute, Shenzhen 518057, China)

4) (Core Facility of Wuhan University, Wuhan 430072, China)

(Received 27 October 2022; revised manuscript received 6 December 2022)

Abstract

Two-dimensional (2D) niobium silicon telluride (Nb_2SiTe_4) with good stability, a narrow band gap of 0.39 eV, high carrier mobility and superior photoresponsivity, is highly desired for applications in mid-infrared (MIR) detections, ambipolar transistors. Intensive investigations on its ferroelasticity, anisotropic carrier transport, anisotropic thermoelectric property, etc., have been reported recently. Motivated by the above prominent properties and promising applications, we systematically study the electronic properties of single-layer (SL) A_2BX_4 analogues (A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te) and find a band-gap anomaly with respect to anion change, which differs from conventional 2D metal chalcogenide. In conventional binary chalcogenide, when cations are kept fixed, the bandgap tends to decrease as the atomic number of anions in the same group increases. However, in SL A_2BX_4 , as atomic number of anions increases, its bandgaps tend to increase, with cations kept fixed. In order to find the underlying mechanism of such an abnormal bandgap, using firstprinciples calculations, we thoroughly investigate the electronic structures of Nb_2SiX_4 (X = S, Se, Te) surving as an example. It is found that the valance band maximum (VBM) and conduction band minimum (CBM) are mainly derived from the bonding and antibonding coupling between Nb 4d states. The bandwidth of Nb 4d states determines the relative value of the band gap in Nb_2SiX_4 . We demonstrate that the band gap is largely influenced by the competition effect between Nb—Nb and Nb—X interactions in Nb₂Si X_4 . As the anion atomic number increases, the Nb—Nb bond length increases, yielding an increased bandwidth of Nb 4d state and a smaller bandgap of Nb₂Si X_4 . Meanwhile, as Nb-X bond length increases, the bandwidth of Nb 4d however decreases, yielding a larger bandgap. The interaction between Nb and X should be dominant and responsible for the overall bandgap increase of Nb_2SiX_4 compared with the Nb—Nb interaction.

Keywords: Nb₂SiTe₄, band-gap anomaly, electronic structures, first-principles calculations

PACS: 71.20.-b, 85.60.Gz, 31.15.A-

DOI: 10.7498/aps.72.20222058

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 52071237, 12074290, 51871169, 52101021, 12104345), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191187), the Young Top-notch Talent Cultivation Program of Hubei Province, China, the Science and Technology Program of Shenzhen, China (Grant No. JCYJ20190808150407522), and the China Postdoctoral Science Foundation (Grant No. 2019M652685).

[†] Corresponding author. E-mail: meng@whu.edu.cn

[‡] Corresponding author. E-mail: zhenghe@whu.edu.cn

^{††} Corresponding author. E-mail: wang@whu.edu.cn

Institute of Physics, CAS

单层Nb₂SiTe₄基化合物的带隙异常变化

王晓菲 孟威威 赵培丽 贾双凤 郑赫 王建波

Band gap anomaly in single-layer Nb_2SiTe_4 -based compounds

Wang Xiao-Fei Meng Wei-Wei Zhao Pei-Li Jia Shuang-Feng Zheng He Wang Jian-Bo

引用信息 Citation: Acta Physica Sinica, 72, 057102 (2023) DOI: 10.7498/aps.72.20222058 在线阅读 View online: https://doi.org/10.7498/aps.72.20222058

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

二维Nb₂SiTe₄基化合物稳定性、电子结构和光学性质的第一性原理研究

 $First-principles \ study \ of \ stability, \ electronic \ and \ optical \ properties \ of \ two-dimensional \ Nb_2SiTe_4-based \ materials$

物理学报. 2020, 69(19): 197102 https://doi.org/10.7498/aps.69.20200848

Er³⁺掺杂TiO₂的局域结构及电子性质的第一性原理研究

First-principles calculations of local structure and electronic properties of Er³⁺-doped TiO₂

物理学报. 2022, 71(24): 246102 https://doi.org/10.7498/aps.71.20221847

第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质

First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13) 物理学报. 2018, 67(6): 067101 https://doi.org/10.7498/aps.67.20172356

富锂锰基三元材料Li_{1.208}Ni_{0.333}Co_{0.042}Mn_{0.417}O₂的电子结构和缺陷性质

Electronic structures and defect properties of lithium-rich manganese-based ternary material Li_{1.208}Ni_{0.333}Co_{0.042}Mn_{0.417}O₂ 物理学报. 2021, 70(20): 208201 https://doi.org/10.7498/aps.70.20210398

Ga, Ge, As掺杂对锂离子电池正极材料Li₂CoSiO₄的电化学特性和电子结构影响的第一性原理研究

First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of $\text{Li}_2\text{CoSiO}_4$ serving as cathode material for Li–ion batteries

物理学报. 2019, 68(18): 187101 https://doi.org/10.7498/aps.68.20190503

三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究

First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides 物理学报. 2020, 69(11): 116201 https://doi.org/10.7498/aps.69.20200234