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Abstract

The manipulation of particles by acoustic radiation force (ARF) has the advantages of
non-invasiveness, high biocompatibility, and wide applicability. The study of acoustic
radiation force is an important foundation for improving the accuracy and effectiveness of
particle manipulation technology. Based on the acoustic wave theory, a theoretical model
for the ARF of a free spherical particle in a bounded viscous fluid is established. The ARF
for the case of a normal incident plane wave is derived by applying the translation addition
theorem to spherical function. The dynamic equation of a free sphere is required as a
correction term for calculating the ARF. The effects of the fluid viscosity, particle material,
particle distance from boundary, and the boundary on the ARF are analyzed by numerical
simulation. The results show that the resonance peak of the ARF curve is broadened with
the increase of the viscosity of the fluid. Compared with the values of the ARFs of a PE
sphere in a viscous and an ideal fluid, the fluid viscosity has a small influence and the
viscosity effect can be ignored when kR is much less than 1. However, for the cases
where kR is greater than or equal to 1, the amplitude of the ARF experienced by a particle
in a viscous fluid is much greater than that in an ideal fluid. The influence of fluid viscosity
on the ARF is significant and cannot be ignored. Moreover, compared with a liquid
material sphere, the oscillation of ARF in an elastic material sphere is more pronounced.
This is because the momentum transfer between sound waves and elastic materials is

greater than that between sound waves and liquid materials. In addition, the amplitude of
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the ARF increases with the increase of the reflection coefficient of the impedance
boundary, but its resonance frequency is not affected. Finally, the position of the sphere
mainly affects the oscillation phenomenon of its ARF. The peaks and dips of the ARF
become more densely packed with the growth of distance-to-radius. It is worth noting that
the reflection coefficient mainly affects the amplitude of the ARF, while the position of the
sphere affects the period of the ARF function. The results indicate that more efficient
manipulation of particles can be achieved through appropriate parameter selection. This
study provides a theoretical basis for acoustically manipulating a free particle in a
bounded viscous fluid and contributes to the better utilization of ARF for particle

manipulation in biomedical and other fields.
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1. Introduction

Acoustic radiation force (ARF) is a nonlinear effect of sound field, which is the result of
momentum transfer between the sound field and the object. ARF manipulation has the
advantages of non-invasive, wide applicability, and controllable particle scale span, so it
has a wide range of applications in biomedicine, material science and other fields!* 2!,
This also requires higher accuracy and effectiveness of particle manipulation technology,

making study on ARF particularly important. In 1934, King !

proposed the concept of
ARF and investigated the ARF on a rigid sphere in an ideal fluid. Based on this,
Hasegawa and Yosioka'*!considered the elasticity of a particle, and calculated the ARF
on an elastic sphere in an ideal fluid. In addition to plane waves, the ARFs on a particle in
new types of sound fields such as Bessel waves, Gaussian waves, Mathieu waves and

5-12] .11 achieved the

standing waves have also been studied! . Recently, Gong et a
generation of negative ARF through the acoustic field generated by a resonant adhesive
structure, and the variation of the ARF with the incident acoustic frequency and various
parameters of the resonant adhesive structure is discussed and explained in detail. Then
a scheme of realizing negative ARF based on a multi-layer spherical structure is proposed,

[14

and the negative ARF is realized by suppressing the backscattering**!. Gaunaurd and

Huang [**!introduced the effect of a boundary and analyzed the scattering of a plane wave
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by a spherical particle near the boundary by combining with the method of images. In
order to combine with the application of contrast agents near a blood vessel wall in
medical ultrasound, Miri and Mitri{*®! established a theoretical model for the ARF of an
elastic spherical shell in an ideal fluid near a non-rigid boundary, and analyzed and
discussed the ARF of a spherical particle made of elastic polyethylene material in
detail. Westervelt!*"! first considered the influence of fluid viscosity on ARF in practical

application and calculated the ARF on a fixed spherical particle. Doinikov [*!

provided a
theoretical analysis of the ARF of a free sphere in a viscous fluid and studied the ARF of a
viscous compressible liquid sphere in the strong and weak dissipation limits. Qiao et
al.!*®!calculated the ARF of a free spherical particle in a viscous fluid and the expression
of the ARF is applicable to fluids with arbitrary viscosity. Taking polystyrene spherical
particles as an example, the ARF was quantitatively measured through experiments. In
practical application scenarios in biomedicine and other fields, in order to improve the
accuracy and effectiveness of ARF manipulation, multiple factors such as fluid viscosity,
particle free state, boundary and particle position need to be considered simultaneously.
In this paper, the expression of the ARF experienced by a free spherical particle in a
bounded viscous fluid is derived under the condition of plane wave perpendicular

boundary incidence, and the influence of various factors on the ARF is analyzed.

2. Theoretical derivation

2.1 Model building

Consider a free spherical particle with a radius of R located near an impedance
boundary in a viscous fluid. The impedance boundary is treated as a local reaction
boundary (the motion at a given point on the surface is only related to the sound pressure
incident on that part, and is independent of the motion of any other part of the surface),

and its physical properties are represented by using the boundary reflection coefficient

Rs”G]. The distance from the center of the particle to the boundary is d . A Cartesian

coordinate system (X, y, z) and a spherical coordinate system (r, 6, ¢) centered on

a spherical particle O are established respectively, as shown in Fig. 1. The axis OX is
perpendicular to the boundary and the plane wave is along the OX. According to the
method of images, an image particle (with the same size, material, and distance from the
boundary as the original particle) and an image acoustic source (an image plane wave
with the same amplitude but opposite direction as the original incident plane wave) are

introduced in the image space on the other side of the boundary, as shown in Fig. 1. For

theoretical analysis, a Cartesian coordinate system (Xi, Vi Zl) and a spherical
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coordinate system (rl, g, (pl) centered on a spherical particle O, are established

respectively.

Viscous fluid Mirror space
— Goes
— = ¢zzz
m—) 1 =e3

Plane wave

Figure 1. Schematic diagram of a free spherical particle in a bounded viscous fluid with a
plane wave incidence.

In the spherical coordinate system (r, 0, (p), the velocity potential of the incident plane

wave is expressed as

4=3 A@n+1)i"], (ar)P, (cos B)e ™, )

n=0
where A=/2l,/ p,c,k? is the incident wave amplitude, |, is the incident wave

acoustic energy, p, is the viscous fluid density, C, is the speed of sound in the fluid,
. -1/2

k =Re(a), a=(a)/co)[1—|a)(ﬂ'+2y’)/p0C§] is the longitudinal wave number in

the viscous fluid, @ is the acoustic wave incident angular frequency, j,(-) is the

nth-order spherical Bessel function, P, () is the nth-order Legendre function,

!

A'=n'-24'/3, 4 is the dynamic viscosity coefficient, ' is the second viscosity

coefficient or the volume expansion viscosity coefficient. For most fluids, the volume

expansion is not very large and is generally taken as 7' ~0,then A'=—24/3, whichis
applicable in many applications [*°!.
Scattering of sound waves from a spherical particle into a viscous fluid with scattered

longitudinal waves ¢, and scattered transverse wave . The scattering wave equation

for a particle in spherical coordinate system (r, 0, (p) is


javascript:;

(A+a®)¢, =0, 2

(4+ ")y, =0, (3)
where B =(1+i)/5 is the scattered shear wave number, & =./24/p,w is the

viscous boundary layer and represents the penetration depth of the viscous wave.

In spherical coordinate system (r, 0, (p), solving the equation (2) and equation ( 3)

the scattering wave velocity potentials of the particle can be obtained:

4= > AV (@n)P, (cosO)e™, @
n=0

w, = i B, (2n+21)i"h® (Br) _ddé? P (cos@)e™*, (5)
n=0

where A, and B, are the scattering coefficients determined by the boundary

conditions, h'”(-) is the nth-order spherical Hankel function of the first kind.

According to the method of images, the reflection of the sound waves by the boundary is
transformed into the scattering waves of the mirror sound source and the mirror particle,

and their velocity potentials are expressed in the corresponding coordinate system as

s = AZOO: R, exp(i2ad)(-1)"(2n+1)i"j, (ar)P, (cos 6), (6)
n=0

bos = 3 R(-1)" (20 +1)i" AN® ()P, (c0S 6), @
n=0

Vi = R @0 +DIB0 ()P, (c050), ®
n=0

where R, is the sound pressure reflection coefficient of the boundary, and the limit

values of the reflection coefficient R, =+land R, =-1correspond to the rigid and

compliant boundaries respectively.

When dealing with the mirror particle, the additive theorem of spherical function?** %1 is

used to rewrite the scattered waves (7 ) and (8) as

boe =S SR ()" @M +Di"A, Qo ()P, (€05 6), ©

n=0 m=0
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Vet = ZZR( D"(2m+1)i"B anJn(ﬁr) P ,(cos ), (10)

n=0 m=0
The specific formula for Q,, can be found in the appendix.

Accordingto (4)-(6)and (9) - (10), the total velocity potential outside the sphere is

obtained as

4 =AY (2n+1)i"j, (ar)P,(cos6)

n=0

+ARsiexp(i205d)(—1)n (2n+12)i"j, (ar)P, (cos O)

. (11)
+ZA1(2n +2)i"h® (ar)P (cos H)
+R5ii( D" @m+D)i"A Q.. j. (ar)P, (cos ),

ZB (2n+2)i" h(l)(ﬂr) P (cos0)

. (12)

+Rsii<—1)m(2m+1)imBQOnjn(ﬁr):¥9Pn(cos o).

n=0 m=0
For ease of calculation, introduce the definition:

_ 20 d) (D) 4 S qym jm
a = A+ AR, exp(i2ad)(-1) +(2n+1)in2( D"(2m+1)i"AQ,,,  (13)

b, = (2n+1)| Z( D™ (2m+1)i"B, Q.- (14)

Substituting (13 ) and (14 ) into ( 11 ) and ( 12 ), the total velocity potential is obtained as
¢=> a,(2n+1)i"j,(ar)P,(cos8) +>_ A (2n+1)i"h¥ (ar)P,(cosb), (15)
n=0 n=0

w=3b,(2n +1)i”jn(ﬁr);—epn(cose)+§:Bn(2n +1)i"hg1>(ﬂr);L0Pn(cose). (16)
n=0 n=0

2.2 Scattering coefficients

The scattering coefficients A and B, are determined by the boundary conditions on the

surface of the spherical particle. In practical applications, such as ultrasonic drug delivery,
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many drug particles are liquid and elastic materials. Therefore, spherical particles of liquid
and elastic materials are analyzed in this paper.
For a liquid spherical particle, the internal transmitted wave is only longitudinal wave. In

the spherical coordinate system (r, 0, gp) the transmitted longitudinal wave is expressed
as

§=3C,(2n+Di"), (K )P, cos o) ™. )
n=0

At the interface between viscous fluid and liquid sphere r =R the boundary conditions
are satisfied:
Vy |ip= V_r [y
O r=R=6|r=R’ (18)
O -a=0,

In which, _p:ia)po(E, v, and \/_r are the corresponding velocity components, o,,,

ow, O, , O are the corresponding stress tensor components, and the specific

expressions are

, -0, 1 |olysing)
" or rsiné 00 ’
4 i (19)
5 .09, 1 |oysind)
or rsin@ 00 '
O :_p1+2,ul 3Vr + A (%+1%+ﬁ+va COtej’
or a raof r r
(20)
u‘[ v, 8vrj
O-FH = r__V9+ y
r or 00

A+24 0 Lo (aﬂz 1 , A +2u 04
= A——|p+L2| 2| —=p (V@) - “LAp. (21

Considering the free sphere, 0¢/dt in (21) should be performed in the fixed coordinate

system in which the velocity potential is determined. That is
0 d
_¢ — _¢ —Uu- V¢’
ot dt

where U is calculated by mu = ”o-dS , the stress tensor o =(— pl+/”t’V-V) E+24e,

So

(22)

E is the unit vector, the deformation tensor e:[(Vv)+(Vv)T]/2 , m=4nR%p, /3 is



the mass of the spherical particle, p; is the particle density, V=V¢@+V xy is the fluid

velocity. Note that, when calculating the velocity of the sphere, it is only necessary to
retain the first-order term by substituting (22 ) into ( 21) %!,

Incorporating (15)- (17 ) and (19 )- (22 ) into ( 18), the scattering coefficient equations
of a free liquid sphere near an impedance boundary in a viscous fluid are obtained:

[x](SN)x(BN){I}(3N) :{Y}(SN)’ (23)
={A, A, - A; By, B, - B A, A, - A}, (24)

The concrete expressions of the system of equations are

{(2;,'+1')”(”_1)_“2R2+1'2”+1+i po}h(l)(aR)JrA"u AR (g R)}Aﬁ

a’R? R?

+{[(2ﬂ'+/1')”(”_1)_“2R2+/1'2”+1+|a; } (@R)+ Y (o R)}

aZRZ RZ

+{2(n+1)/1';{r22(n—1)/"hﬁl)(/gR)—(y'wl') 25 h(”l(,BR)} n(n+1)B,
{Z(f\ +1)/1';22(n —Du’ i (ﬂR)—(y'Jr/I')%JM(ﬂR)]n(n +D)b, —iwp,j, (K R)A, =0,

2 2u'l n=1. )
f[ = h“)( R) - ahSA(aR)%+7“.[?Jn(aR)—aJM(aR)}an

A2 g o -2, + | 2R 1,50~ 25,50, -0

For an elastic sphere, the sound wave is scattered by the sphere and refracted into

transmitted longitudinal wave and transmitted transverse wave in the ball. The velocity

potentials in the elastic sphere can be expressed in coordinate system (r, o, (p) as

‘&I
Ms
>|

(2n+1)i"j, (k_r)P, (cos @) (25)

S(2n+D)i"j (k, r) P (cos Qe ", (26)

<|
Il

Ms
2|

where k. =w/c_and k, =w/c, arethe wave numbers of transmitted longitudinal and

transverse waves in the sphere respectively. ¢, = Wf(/1+2,u)/pS and ¢, =.[ulp, are
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the transmitted compressional and shear wave velocities. 4 and x are the Lamé

constant, p, is the density of the elastic sphere.

In the viscous fluid, the boundary conditions are applied at the surface of the sphere
(r=R)
Vr |r:R:Vr |r:R’
\' |_ :\_/9 I —R?
0 Ir=R . r=R (27)
O [ .r=O0rr |r:R’

O |r:R: Oro |r:R’

where V., V., o,, 0,, areshownin (19) and (20). The specific expressions of Vv,, V,,

Ow,Or9 ale

104 10(ry)
==2f_=
rag r or (28)
5 _10¢ 1o(ry)
“Tro0 r or
on =—AKg+2u Ll 35+3(n/7) +k2(ry)
- or? or ‘ '
(29)

— oftel- o, — oy
w=pul2—4=—|p+— ki —t.
o “{ ar{r ae{war(r‘”)}} ‘ ae}

Incorporating (15)-(16),(25)-(26),(19)-(20),and (28) - (29) into the boundary
conditions (27), the scattering coefficient equations of a free elastic sphere near an
impedance boundary in a viscous fluid can be obtained by calculation:

[x](AN)x(4N) {I }4N = {Y}4N : (30)

(1}=0A. A, - AiBy By - B ALA, - A By B, - BY. @D

The specific formula of this set of equations is

[ nh® (@R) - R, (aR) | A, +[nj, (@R) - aRj, ; (aR)]a, —n(n+DhP (BR)B, - j,(BR)b,
—[nj, (k R) —K_Ri,., (k_R)] A, +n(n+1)j, (k,R)B, =0,

h® (@R)A, +j,(@R)a, =[ (n+Dh$ (BR) + BRhY, (BR) |B, ~[(n+1)],(BR) + BRi,.(BR) b,
—jo(k R)A, +[(n+D)j, (kR) +k Rj,.,(kR)]B, =0,
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2u'[ (n-Dh? (aR) —aRh¥, (aR) | A, +24'[(N-1)j, (@R) + aRj,,, (@R) ]a, + u'[ (2-2n* - B°R*)h P (BR) -2 RN, (BR) | B,
+u'[ (2-2n" = BR?)], (BR) ~ 23Ri,., (BR) |b, —2u[(n-1)j, (k R) =k Ri,,(k R)] A
—u[ 2—20" -kR*)j, (kR)— 2k Ri,..(R) | B, =0,

y'{[n(n -1 —%asz} h® (aR) + 2aRh<n131(aR)} A + ,u'{[n(n -1 —%asz} i, (@R)+ 2aRjM(aR)}an
—'[ n(n+1)(n-Hh? (BR)—n(n+1)(BR)AY, (BR) |B, — ' [n(n+1)(n-1)j,(BR) —n(n+1)(AR)], . (BR)]b,

—ﬂ{[n(n -1)-k’R? —zikfRz} Jn (K R)+ kLRJ'M(kLR)}K+ u[n(n+1)(n-1)j,(k,R)—n(n +1)(|<1R)J'n+1(k1R)]B_n =0.
7
2.3 Acoustic radiation force

The acoustic radiation force on a particle in an acoustic field can be expressed as.
= 2
F < jjsmads>, (32)

where o =(—p,+A'V-V)E+24/e. Combine (21), (32) is written as.

Av2u' 0. py Op. 1 . A'+2u' 0 , , 33
F:<.”sm{_[pﬂ( poﬂ A_E)‘“z_cg(ﬁ) —EPO(V@ —C—guEA¢J+/1V~v}E+2ye}dS>,( )

where (-) denoting the time average, E is a unit vector, € is the deformation tensor, dS
is a bin, S(t) is the surface of the spherical particle, which is a function of time. A sound

wave propagates in a viscous fluid, acts on a particle, and produces momentum transfer

between the particles. According to the Leibniz-Reynolds transmission theorem %!, the

rate of change of momentum within the volume V (t) defined by surface S(t) is equal

to the rate of change of momentum in the volume under the action of the sound field plus
the net transport of momentum through the particle surface. Therefore, in order to solve

the problem that the integral surface is a function of time, Yosioka et al.!?*! transformed

the integral surface S(t) into the initial surface area of the particle S, and corrected the

ARF by adding a momentum flux term p,u-V¢. Let dg/ot =dg/dt—u-Vg¢, (33)can
be rewritten as
- (A2 o (09) 1 , A+2u'dg . ,
F_<HS°{ [p(’[ 2 AJ +2c§(atj PV ath*W V1E+2“e}ds> (34)

* <.Uv(t)p0 % Edv > ’

In which, V (t) is the volume defined by surface S(t). Combined with the following

formula®!:

ﬂvm%dv :vai—f dv - [, u-vgds, (35)


javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

(11, 2av)-o (36)

One can obtain:

F_<Ijso{|: ( [lﬂﬂ J¢+%@t—¢j2—%po(v¢) /122;1 aa(quﬁ}/l’V V1E+2ﬂ8}d8>
7<H pou-V¢EdS>

(37)
<”S /1 +2u Asu. v]¢+ Po [a(p) L wey-2 “;2” g‘t’jmjmv V]E+2ye}ds

2c2\ ot o

ﬂ [(-p,+A'VV) E+2ye]ds>

<
<ﬂ o-dS>

At this point, the expression for p, has been combined with d¢/ot =dg/dt—u-Vé

and transformed into:

 (r2u o) 1 , A+214 09,
pl—po( A+u V]¢+2CO( j 2po(V¢) 2 atA¢

Po ot 0
The second order term in the p; should be taken into account in the calculation of the

ARF.

The (37) can be written in component form as

F = <US O'iknde>, (38)

Where n, is the component of the unit vector in the outward direction of the spherical

particle bin dS in the direction of k , and o, is the stress tensor.

In a bounded viscous fluid, when a plane wave is incident along the direction
perpendicular to the boundary, the only ARF acting on a free spherical particle in the fluid
is along the OXx axis, and the projection of (38) in the direction of the X axis is

N <Hso (0, cosf~a,,sin 9)d3>
= <j0n Iozn (o, cos@—o,,sin@)Rsin Hd0d¢> (39)
= <2nR2L" (o, cos@—o,,sind)sin 0d9>_

For the convenience of calculation, the total velocity potential (15) and (16) outside the

spherical particle are rewritten as
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¢= i(Gn +iL, )P (cos@)e ',
= (40)
w=> (M, +iN ) P (cos @),

n=0

In which,

G, =Re{[a j, (ar)+ Ah® (ar)](2n+1)},
=Im{[a,j, (ar) + A (@n](2n+1},

» =Re{[b,j,(8r)+B,h (BN)1(2n +1)},

= Im{[b,j, (Br) + B,h(AN)1(2n +1)}.

Substituting (40) into (39), combined with the recursion formula of spherical Bessel
functions and the properties of Legendre functions, the axial ARF of a free spherical
particle in a bounded viscous fluid is derived as

Y- N _ 210N - _
(R)= Gpln{3[(2N1 L)G, + (G 2M1)Lo]+5[(2N1 L)G, +(G, 2M1)Lz]} 1)

2
R | & n+1 n(n+2)(n+1) )
- — — W (G,G L, ————  (n+)* M M, +N.N ,)+(G,G,,, +LL
pon[ 0]§(2n+1)(2n+3)( Grat LiLy) + ponm D Ensg LMY MM NN + (6 G+ L) |

2nR* (X +24) py@° Z n+1
0,°C2 + @ (X +244)’ &5 (2n+1)(2n +3)

(oG, Ly~ L,G,) + (£ +21)@(G G, + L L) |

Depending on the fluid viscosity, particle material, particle position, boundary reflection

coefficient, etc., the scattering coefficient A and B, change, and the ARF varies.

3. Numerical simulation

In order to expand the basic theory of acoustic manipulation of a free spherical particle in
a bounded viscous fluid, and analyze the effects of fluid viscosity, particle material,
particle position, and the boundary on the ARF acting on a free spherical particle in a
plane wave acoustic field, polyethylene (PE), a common biomaterial for drug carrier, is
selected to carry out numerical analysis. To analyze the influence of particle material on
the ARF, the ARFS of an oleic acid and a polymethyl methacrylate (PMMA) particle are
numerically calculated. The volume expansion of the fluid is not considered in the
numerical simulation, and the second viscosity coefficient ' = 0 is taken. The acoustic

parameters of the particle material and the fluid are given by Tab. 1 and Tab. 2.
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Table 1. Physical parameters of free spherical particles 2>,

Material Density longitudinal wave Transverse wave
I(kgm®  velocity /(ms™) velocity /(m s™)
Oleic acid 938 1450 —
Polyethylene (PE) 957 2430 950
Polymethyl methacrylate (PMMA) 1190 2690 1340

Table 2. Acoustic parameters of fluids ™81,

Fluid Density Sound velocity Dynamic viscosity
I(kg m™) /(ms™) w/(Pa-s)
Water 1000 1500 0.001
Glycerin 1260 1900 1.48

3.1 Effect of fluid viscosity on ARF

In order to study the effect of fluid viscosity on the ARF, a PE sphere with
radius R=0.5mm is considered, which is freely placed in the fluid at a distance d=4R from
the rigid boundary (Rs=1). The ARFs under different 6/R (boundary layer thickness-particle

radius ratio) and ideal fluid conditions are shown in Fig. 2.

0 j= ’\’\/"‘v/_l"’\
- !
!
-1F RN _’ ‘I-
z Ll ! —6/R = 0.002 1
< \ -~ ¢/R=0004"
S -3t \, —=—d/R=10.02 !
~ N, i
- s, Ideal fluid
ha _4 3 '_\Z 1 \\\~
v e N
et 2 ) s P LA ‘\x\
<_1 ~\§\
6 =% 0 0.05 0.1 el
-7 !
0 1 2 3 4 5
kR

Figure 2. ARFs for a free PE sphere versus kR at different J/R.
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It can be seen from the Fig. 2 that with the increase of the J/R, the ARF first increases and
then decreases, and when the J/R is small, there are more peaks and troughs in the ARF
curve. Because, as the J/R increases, the boundary layer becomes thicker and thicker,
the dissipation and attenuation of the sound wave become greater, and the corresponding
resonance peak is broadened. At the same time, comparing the two cases of viscous fluid
and ideal fluid, it can be found that when kR<«1, the influence of fluid viscosity is small, and
the viscous effect is almost negligible; However, when the kR is large, the amplitude of the
ARF on the particle in the viscous fluid is much larger than that in the ideal fluid, and the
influence of the fluid viscosity on the ARF is great and cannot be ignored. In order to show
the comparison results of the two cases more simply, the values of the ARFs are given in
Tab. 3 when the kR is 1.0 x 107, 1.0 x 107, 1.0 x 107, 1.0, 5.0. From Tab. 3, it can be
found that when kR = 1.0 x 107, 1.0 x 107 the effect of fluid viscosity on ARF can be
ignored; However, for kR = 1.0 x 107}, 1.0, 5.0, the effect of fluid viscosity increases the

ARF by several orders of magnitude.

Table 3. Comparisons of the ARFs on a free PE sphere in a viscous and an ideal fluid.

kR
Fluid 1.0x10™* 1.0x10% 1.0x10" 1.0 5.0
Viscous  ¢/R=0.002 4.8x10%N 5.2x10“N 1.1<10™N 2.1x107"N 5.6<10°N
fluid 6/R=0.004 4.8x10%N 5.2x10"2N 1.4x10°N 22X10'N  -3.7<10°N
8/R=0.02 4.8x10%N 5.2x10“N 5.3x10°N 27x10'N  -6.7<10°N
ideal fluid ~ A'=u'=0 4.8x10™*N 5.2x10"*N 1.2x<10™N 1.7<10"8 N 6.2x10™N

3.2 ARFs of particles of different materials

The material of the particle is also an important factor affecting the ARF. In order to
analyze the influence of particle material, the elastic material polymethylmethacrylate
(PMMA) and the liquid material oleic acid are also selected in this numerical simulation.
The parameters d=4R and Rs=1 are selected. The ARFs of a free spherical particle with
radius R=0.5mm in a low viscosity fluid (water) are given in Fig. 3. Fig. 3 shows that the
ARF is significantly affected by the material of the sphere. The ARFs of the elastic
materials PE and PMMA are generally larger than that of the liquid material oleic acid
sphere, and the oscillation phenomenon of ARF are more obvious, with more peaks and
troughs; The amplitude of ARF of PMMA is slightly larger than that of PE. This is because
the momentum transfer of sound waves between elastic materials is greater than that

between sound waves and liquids.
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Figure 3. ARFs for a free sphere with different materials versus kR in the low viscosity
liquid (water).

3.3 Effect of impedance boundary on ARF

The effect of impedance boundary on the ARF of PE sphere is shown in the Fig. 4. In the
numerical simulation, the parameters d=4R and R=0.5 mm are selected, and the particle is

considered to be freely placed in a low viscosity fluid (water).
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Figure 4. ARFs for a free PE sphere versus kR in the low viscosity liquid (water) with
different Rs.

It is worth noting that the addition of the impedance boundary makes the ARF curve
change compared with the unbounded space. In addition to the change of the oscillation
phenomenon of the ARF, the amplitude increases with the increase of the boundary

reflection coefficient in the case of boundary. More oscillations occur because of the
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interaction of the sphere with the waves reflected from the boundary. In addition, the
resonance frequency of the ARF function curve does not change with the change of the

reflection coefficient.

3.4 Effect of particle position on ARF

The position of the sphere near the boundary is also a factor that cannot be ignored, and
the ARFs on the PE sphere placed at different positions are presented in the Fig. 5. The
Fig. 5 represents the ARF at three different positions: small (d=R), medium (d=2R) and

large (d=4R), and the particle radius is R=0.5 mm and Rs=1.
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Figure 5. ARFs for a free PE sphere in the low viscosity liquid (water) versus kR at

different d.

It can be seen that the oscillation of the ARF is mainly affected by the different positions of
the sphere. With the increase of the position d/R, the peak value of the ARF changes more
dramatically, and there are more peaks and troughs. The main reason is that the
interaction between the scattered wave of the particle and the reflected wave from the
boundary leads to the oscillation. It is worth mentioning that this is different from the effect
of the reflection coefficient, which mainly affects the amplitude of the ARF, while the

change of the sphere position mainly affects the period of the ARF.

4. Conclusion

In this paper, a general formula for the ARF of a free spherical particle in a viscous fluid
near the boundary is given when a plane wave is incident normally. In the calculation, the
dynamic equation of the particle is used as the correction term of the ARF. The effects of
fluid viscosity, particle material, particle position and boundary on the ARF are considered,
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and the variation of the ARF under different conditions is intuitively displayed by numerical
simulation. The results show that with the increase of fluid viscosity, the peaks and
troughs of the ARF curve decrease, and the resonance peaks are broadened; The ARF is
significantly affected by the spherical material, and the oscillation of the ARF of the elastic
material is more obvious than that of the spherical particle of the liquid material; With the
increase of the reflection coefficient of the impedance boundary, the amplitude of the ARF
increases, but the resonance frequency of the ARF function curve is not affected; The
oscillation period of the ARF is mainly affected by the different positions of the sphere.
With the increase of the distance from the boundary, there are more peaks and troughs in
the ARF curve. The method in this paper can also be extended to ellipsoidal and other
shaped particles or the existence of multiple target particles, so as to facilitate more
accurate targeted manipulation of cells, bacteria, drugs, etc. in the future.

Appendix

The concrete expression of Q. is

m+n

Qu =2n+D2m+Di"™" > (-1)7i°bI"h? (ad),

o=m-n|
In which,
b = (mn00|c0)?,
B (D) q! L [20+1 ) B ~
(mn00|c0) = CETCE O] \/(Zq D) (29—2n)!(29-2m)!(2q - 20)".

For even g, (mn00|o0) = (o +m+n)/2; for odd g, then (Mn00|c0) =0.
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