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* 
Abstract 

The manipulation of particles by acoustic radiation force (ARF) has the advantages of 

non-invasiveness, high biocompatibility, and wide applicability. The study of acoustic 

radiation force is an important foundation for improving the accuracy and effectiveness of 

particle manipulation technology. Based on the acoustic wave theory, a theoretical model 

for the ARF of a free spherical particle in a bounded viscous fluid is established. The ARF 

for the case of a normal incident plane wave is derived by applying the translation addition 

theorem to spherical function. The dynamic equation of a free sphere is required as a 

correction term for calculating the ARF. The effects of the fluid viscosity, particle material, 

particle distance from boundary, and the boundary on the ARF are analyzed by numerical 

simulation. The results show that the resonance peak of the ARF curve is broadened with 

the increase of the viscosity of the fluid. Compared with the values of the ARFs of a PE 

sphere in a viscous and an ideal fluid, the fluid viscosity has a small influence and the 

viscosity effect can be ignored when kR is much less than 1. However, for the cases 

where kR is greater than or equal to 1, the amplitude of the ARF experienced by a particle 

in a viscous fluid is much greater than that in an ideal fluid. The influence of fluid viscosity 

on the ARF is significant and cannot be ignored. Moreover, compared with a liquid 

material sphere, the oscillation of ARF in an elastic material sphere is more pronounced. 

This is because the momentum transfer between sound waves and elastic materials is 

greater than that between sound waves and liquid materials. In addition, the amplitude of 
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the ARF increases with the increase of the reflection coefficient of the impedance 

boundary, but its resonance frequency is not affected. Finally, the position of the sphere 

mainly affects the oscillation phenomenon of its ARF. The peaks and dips of the ARF 

become more densely packed with the growth of distance-to-radius. It is worth noting that 

the reflection coefficient mainly affects the amplitude of the ARF, while the position of the 

sphere affects the period of the ARF function. The results indicate that more efficient 

manipulation of particles can be achieved through appropriate parameter selection. This 

study provides a theoretical basis for acoustically manipulating a free particle in a 

bounded viscous fluid and contributes to the better utilization of ARF for particle 

manipulation in biomedical and other fields.   

Keywords: viscous fluid, free spherical particle, acoustic radiation force, impedance boundary  

PACS: 

43.25.+y (Nonlinear acoustics) 

43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound) 

doi: 10.7498/aps.74.20241354 

cstr: 32037.14.aps.74.20241354 

1. Introduction 

Acoustic radiation force (ARF) is a nonlinear effect of sound field, which is the result of 

momentum transfer between the sound field and the object. ARF manipulation has the 

advantages of non-invasive, wide applicability, and controllable particle scale span, so it 

has a wide range of applications in biomedicine, material science and other fields
 [ 1 , 2 ]

.
 

This also requires higher accuracy and effectiveness of particle manipulation technology, 

making study on ARF particularly important. In 1934,
 
King

 [ 3 ]
 proposed the concept of 

ARF and investigated the ARF on a rigid sphere in an ideal fluid. Based on this, 

Hasegawa and Yosioka
 [ 4 ] 

considered the elasticity of a particle, and calculated the ARF 

on an elastic sphere in an ideal fluid. In addition to plane waves, the ARFs on a particle in 

new types of sound fields such as Bessel waves, Gaussian waves, Mathieu waves and 

standing waves have also been studied
 [ 5 – 12 ]

. Recently, Gong et al.
 [ 13 ]

 achieved the 

generation of negative ARF through the acoustic field generated by a resonant adhesive 

structure, and the variation of the ARF with the incident acoustic frequency and various 

parameters of the resonant adhesive structure is discussed and explained in detail. Then 

a scheme of realizing negative ARF based on a multi-layer spherical structure is proposed, 

and the negative ARF is realized by suppressing the backscattering
 [ 14 ]

. Gaunaurd and 

Huang
 [ 15 ]

 introduced the effect of a boundary and analyzed
 
the scattering of a plane wave 
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by a spherical particle near the boundary by combining with the method of images. In 

order to combine with the application of contrast agents near a blood vessel wall in 

medical ultrasound, Miri and Mitri
 [ 16 ]

 established a theoretical model for the ARF of an 

elastic spherical shell in an ideal fluid near a non-rigid boundary, and analyzed and 

discussed the ARF of a spherical particle made of elastic polyethylene material in 

detail.
 
Westervelt

[ 17 ]
 first considered the influence of fluid viscosity on ARF in practical 

application and calculated the ARF on a fixed spherical particle. Doinikov 
[ 18 ] 

provided a 

theoretical analysis of the ARF of a free sphere in a viscous fluid and studied the ARF of a 

viscous compressible liquid sphere in the strong and weak dissipation limits. Qiao et 

al.
 [ 19 ] 

calculated the ARF of a free spherical particle in a viscous fluid and the expression 

of the ARF is applicable to fluids with arbitrary viscosity. Taking polystyrene spherical 

particles as an example, the ARF was quantitatively measured through experiments. In 

practical application scenarios in biomedicine and other fields, in order to improve the 

accuracy and effectiveness of ARF manipulation, multiple factors such as fluid viscosity, 

particle free state, boundary and particle position need to be considered simultaneously. 

In this paper, the expression of the ARF experienced by a free spherical particle in a 

bounded viscous fluid is derived under the condition of plane wave perpendicular 

boundary incidence, and the influence of various factors on the ARF is analyzed. 

2. Theoretical derivation 

2.1 Model building 

Consider a free spherical particle with a radius of R  located near an impedance 

boundary in a viscous fluid. The impedance boundary is treated as a local reaction 

boundary (the motion at a given point on the surface is only related to the sound pressure 

incident on that part, and is independent of the motion of any other part of the surface), 

and its physical properties are represented by using the boundary reflection coefficient 

sR [ 16 ]
.
 
The distance from the center of the particle to the boundary is d . A Cartesian 

coordinate system  ,  ,  x y z  and a spherical coordinate system  ,  ,  r    centered on 

a spherical particle O  are established respectively, as shown in Fig. 1.  The axis Ox  is 

perpendicular to the boundary and the plane wave is along the Ox . According to the 

method of images, an image particle (with the same size, material, and distance from the 

boundary as the original particle) and an image acoustic source (an image plane wave 

with the same amplitude but opposite direction as the original incident plane wave) are 

introduced in the image space on the other side of the boundary, as shown in Fig. 1. For 

theoretical analysis, a Cartesian coordinate system  1 1 1,  ,  x y z  and a spherical 
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coordinate system  1 1 1,  ,  r    centered on a spherical particle 1O  are established 

respectively. 
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Figure 1. Schematic diagram of a free spherical particle in a bounded viscous fluid with a 

plane wave incidence. 

 

In the spherical coordinate system  ,  ,  r   , the velocity potential of the incident plane 

wave is expressed as 

i

i

0

= (2 1)i j ( )P (cos )e ,n t

n n

n

A n r   






                   (1) 

where 
2

0 0 02 /A I c k  is the incident wave amplitude, 0I  is the incident wave 

acoustic energy, 0  is the viscous fluid density, 0c  is the speed of sound in the fluid, 

Re( )k  ,  
1/2

2

0 0 01 i ( 2 ) /c ' ' c     


     is the longitudinal wave number in 

the viscous fluid,   is the acoustic wave incident angular frequency, j ( )n   is the 

nth-order spherical Bessel function, P ( )n   is the nth-order Legendre function, 

2 3      , '  is the dynamic viscosity coefficient,   is the second viscosity 

coefficient or the volume expansion viscosity coefficient. For most fluids, the volume 

expansion is not very large and is generally taken as 0  , then 2 3    , which is 

applicable in many applications
 [ 20 ] 

. 

Scattering of sound waves from a spherical particle into a viscous fluid with scattered 

longitudinal waves s  and scattered transverse wave s .  The scattering wave equation 

for a particle in spherical coordinate system  ,  ,  r    is 

javascript:;


2

s( ) 0,                                   (2) 

2

s( ) 0,                                   (3) 

where (1 i) /    is the scattered shear wave number, 02 /'     is the 

viscous boundary layer and represents the penetration depth of the viscous wave. 

In spherical coordinate system  ,  ,  r   , solving the equation ( 2 ) and equation ( 3 ) 

the scattering wave velocity potentials of the particle can be obtained: 

(1) i

s

0

(2 1)i h ( )P (cos )e ,n t

n n n

n

A n r   






                     (4) 

(1) i

s

0

d
(2 1)i h ( ) P (cos )e ,

d

n t

n n n

n

B n r   







                  (5) 

where nA  and nB  are the scattering coefficients determined by the boundary 

conditions, 
(1)h ( )n   is the nth-order spherical Hankel function of the first kind. 

According to the method of images, the reflection of the sound waves by the boundary is 

transformed into the scattering waves of the mirror sound source and the mirror particle, 

and their velocity potentials are expressed in the corresponding coordinate system as 

ref s

0

exp(i2 )( 1) (2 1)i j ( )P (cos ),n n

n n

n

A R d n r   




           (6) 

(1)

s,ref s 1 1

0

( 1) (2 1)i h ( )P (cos ),n n

n n n

n

R n A r  




                (7) 

(1)

s,ref s 1 1

0

d
( 1) (2 1)i h ( ) P (cos ),

d

n n

n n n

n

R n B r  






             (8) 

where sR  is the sound pressure reflection coefficient of the boundary, and the limit 

values of the reflection coefficient s 1R   and s 1R   correspond to the rigid and 

compliant boundaries respectively. 

When dealing with the mirror particle, the additive theorem of spherical function
 [ 21 , 22 ]

  is 

used to rewrite the scattered waves ( 7 ) and ( 8 ) as 

'

s,ref s

0 0

( 1) (2 1)i j ( )P (cos ),m m

m mn n n

n m

R m A Q r  
 

 

                (9) 

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


'

s,ref

0 0

d
( 1) (2 1)i j ( ) P (cos ),

d

m m

s m mn n n

n m

R m B Q r  


 

 

           (10) 

The specific formula for mnQ  can be found in the appendix. 

According to ( 4 ) - ( 6 ) and ( 9 ) - ( 10 ), the total velocity potential outside the sphere is 

obtained as 

0

s

0

(1)

0

s

0 0

(2 1)i j ( )P (cos )

exp(i2 )( 1) (2 1)i j ( )P (cos )

(2 1)i h ( )P (cos )

( 1) (2 1)i j ( )P (cos ),

n

n n

n

n n

n n

n

n

n n n

n

m m

m mn n n

n m

A n r

AR d n r

A n r

R m A Q r

  

  

 

 













 

 

 

  

 
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




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             (11) 

(1)

0

s

0 0

d
(2 1)i h ( ) P (cos )

d

d
( 1) (2 1)i j ( ) P (cos ).

d

n

n n n

n

m m

m mn n n

n m

B n r

R m B Q r
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

 






 

 

 
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



          (12) 

For ease of calculation, introduce the definition: 

s
s

0

exp(i2 )( 1) ( 1) (2 1)i ,
(2 1)i

n m m

n m mnn
m

R
a A AR d m A Q

n






     


     (13) 

s

0

( 1) (2 1)i .
(2 1)i

m m

n m mnn
m

R
b m B Q

n





  


                (14) 

Substituting ( 13 ) and ( 14 ) into ( 11 ) and ( 12 ), the total velocity potential is obtained as 

(1)

0 0

(2 1)i j ( )P (cos ) (2 1)i h ( )P (cos ),n n

n n n n n n

n n

a n r A n r    
 

 

               (15) 

(1)

0 0

d d
(2 1)i j ( ) P (cos ) (2 1)i h ( ) P (cos ).

d d

n n

n n n n n n

n n

b n r B n r    
 

 

 

        (16) 

2.2 Scattering coefficients 

The scattering coefficients nA and nB  are determined by the boundary conditions on the 

surface of the spherical particle. In practical applications, such as ultrasonic drug delivery, 
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many drug particles are liquid and elastic materials. Therefore, spherical particles of liquid 

and elastic materials are analyzed in this paper. 

For a liquid spherical particle, the internal transmitted wave is only longitudinal wave. In 

the spherical coordinate system  , ,r    the transmitted longitudinal wave is expressed 

as  

i

L

0

(2 1)i j ( )P (cos )e .n t

n n n

n

C n k r  






              (17) 

At the interface between viscous fluid and liquid sphere r R  the boundary conditions 

are satisfied: 

| | ,

| | ,

| 0,

r r R r r R

rr r R r R

r r R

v

p









 

 









                          (18) 

In which, 0ip   , rv  and rv  are the corresponding velocity components, rr , 

rr , r , r  are the corresponding stress tensor components, and the specific 

expressions are 

1 ( sin )
,

sin

1 ( sin )
,

sin

r

r

v
r r

v
r r

  

 

  

 

  
     

  
   
  

                    (19) 

1

cot21
2 ,

,

r r r
rr

r
r

v vv v v
p ' '

r r r r r

v v'
r v

r r

 


 


  








  
       

   

  
   

  

          (20) 

2

20
1 0 02 2

0 0 0

2 1 2
( ) .

2 2

' ' ' '
p

t c t c t

     
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

      
         

    
   (21) 

Considering the free sphere, t   in (21) should be performed in the fixed coordinate 

system in which the velocity potential is determined. That is 

d
,

dt t

 



  


u                       (22) 

where u  is calculated by 

0

d
s

m u σ S= , the stress tensor  1 2p       σ v E e , 

E is the unit vector, the deformation tensor    
T

= / 2   
 

e v v  , 
3

s4π 3m R   is 



the mass of the spherical particle, 
s  is the particle density,   v  is the fluid 

velocity. Note that, when calculating the velocity of the sphere, it is only necessary to 

retain the first-order term by substituting ( 22 ) into ( 21)
 [ 23 ] 

. 

Incorporating ( 15 )- ( 17 ) and ( 19 )- ( 22 ) into ( 18 ), the scattering coefficient equations 

of a free liquid sphere near an impedance boundary in a viscous fluid are obtained: 

     
(3 ) (3 )(3 ) (3 )

,
N NN N

X I Y


                  (23) 

  T

0 1 0 1 0 1{ ,  ,  ,  ;  ,  ,  ,  ;  , ,  ,  } ,n n nI A A A B B B A A A            (24) 

The concrete expressions of the system of equations are 

2 2
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For an elastic sphere, the sound wave is scattered by the sphere and refracted into 

transmitted longitudinal wave and transmitted transverse wave in the ball. The velocity 

potentials in the elastic sphere can be expressed in coordinate system  ,  ,  r    as 

i

L

0

(2 1)i j ( )P (cos )e ,n t

n n n

n

A n k r  






                    (25) 

i

t

0

d
(2 1)i j ( ) P (cos )e ,

d
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n n n

n

B n k r  







                 (26) 

 

where L L/k c  and t t/k c  are the wave numbers of transmitted longitudinal and 

transverse waves in the sphere respectively. 
L s( 2 ) /c      and 

t s/c    are 
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the transmitted compressional and shear wave velocities.   and   are the Lamé 

constant, 
s  is the density of the elastic sphere. 

In the viscous fluid, the boundary conditions are applied at the surface of the sphere 

( r R ) 

| | ,

| | ,

| | ,

| | ,

r r R r r R

r R r R
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 

 

 
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





                           (27) 

where rv , rv , rr , r  are shown in (19) and (20). The specific expressions of v , v , 

rr , r  are 
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            (29) 

Incorporating ( 15 ) - ( 16 ), ( 25 ) - ( 26 ), ( 19 ) - ( 20 ), and ( 28 ) - ( 29 ) into the boundary 

conditions (27), the scattering coefficient equations of a free elastic sphere near an 

impedance boundary in a viscous fluid can be obtained by calculation: 
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4 4(4 ) (4 ) N NN N

X I Y
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 ,                       (30) 
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The specific formula of this set of equations is  
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2.3 Acoustic radiation force 

The acoustic radiation force on a particle in an acoustic field can be expressed as。 

( )
d ,

S t
 F σ S                               (32) 

where  1 2p       σ v E e . Combine ( 21 ), ( 32 ) is written as。 
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(33) 

where ⟨⋅⟩ denoting the time average, E  is a unit vector, e  is the deformation tensor, dS

is a bin, ( )S t  is the surface of the spherical particle, which is a function of time. A sound 

wave propagates in a viscous fluid, acts on a particle, and produces momentum transfer 

between the particles. According to the Leibniz-Reynolds transmission theorem
 [ 20 ] 

, the 

rate of change of momentum within the volume ( )V t  defined by surface ( )S t  is equal 

to the rate of change of momentum in the volume under the action of the sound field plus 

the net transport of momentum through the particle surface. Therefore, in order to solve 

the problem that the integral surface is a function of time, Yosioka et al.
 [ 24 ]

 transformed 

the integral surface ( )S t  into the initial surface area of the particle 0S , and corrected the 

ARF by adding a momentum flux term 0 u .  Let d dt t      u , ( 33 ) can 

be rewritten as 
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   (34) 

In which, ( )V t  is the volume defined by surface ( )S t . Combined with the following 

formula
 [ 20 ] 

: 
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d
d d d ,

dV t V t St t
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  V V u S                  (35) 
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 

d
d 0,

dV t t
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 V                          (36) 

One can obtain: 
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(37) 

At this point, the expression for 1p  has been combined with d dt t      u  

and transformed into: 
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The second order term in the 1p  should be taken into account in the calculation of the 

ARF. 

The (37) can be written in component form as 

0

d ,i ik k
S

F n S                              (38) 

Where kn  is the component of the unit vector in the outward direction of the spherical 

particle bin dS  in the direction of k , and ik  is the stress tensor. 

In a bounded viscous fluid, when a plane wave is incident along the direction 

perpendicular to the boundary, the only ARF acting on a free spherical particle in the fluid 

is along the Ox  axis, and the projection of (38) in the direction of the x  axis is 
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For the convenience of calculation, the total velocity potential (15) and (16) outside the 

spherical particle are rewritten as 
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In which, 
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Substituting (40) into (39), combined with the recursion formula of spherical Bessel 

functions and the properties of Legendre functions, the axial ARF of a free spherical 

particle in a bounded viscous fluid is derived as 

   
2

0
1 1 0 1 1 0 1 1 2 1 1 2

1

2

2

0 1 1 0 1 1 1 1

0 00

2

1 2
6 π (2 ) ( 2 ) (2 ) ( 2 )

3 5

1 ( 2)( 1)
π ( ) π ( 1) ( ) ( )

(2 1)(2 3) (2 1)(2 3)

2π ( 2 )

x

n n n n n n n n n n n n

n n

F N L G G M L N L G G M L

R n n n n
G G L L n M M N N G G L L

c n n n n

R ' '






 

 

 

     

 

 
         

 

    
              




 

 
3

0
0 1 1 1 12 2 2 2

00 0

1
( ) ( 2 ) ( ) .

( 2 ) (2 1)(2 3)
n n n n n n n n

n

n
G L L G ' ' G G L L

c ' ' n n

 
   

   



   




   

   


(41) 

Depending on the fluid viscosity, particle material, particle position, boundary reflection 

coefficient, etc., the scattering coefficient nA  and nB  change, and the ARF varies. 

3. Numerical simulation 

In order to expand the basic theory of acoustic manipulation of a free spherical particle in 

a bounded viscous fluid, and analyze the effects of fluid viscosity, particle material, 

particle position, and the boundary on the ARF acting on a free spherical particle in a 

plane wave acoustic field, polyethylene (PE), a common biomaterial for drug carrier, is 

selected to carry out numerical analysis. To analyze the influence of particle material on 

the ARF, the ARFS of an oleic acid and a polymethyl methacrylate (PMMA) particle are 

numerically calculated. The volume expansion of the fluid is not considered in the 

numerical simulation, and the second viscosity coefficient η′ = 0 is taken. The acoustic 

parameters of the particle material and the fluid are given by Tab. 1 and Tab. 2. 
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Table 1. Physical parameters of free spherical particles 
[25,26]

. 

Material Density 

/(kg·m
-3

) 

longitudinal wave 

velocity /(m·s
-1

) 

Transverse wave 

velocity /(m·s
-1

) 

Oleic acid 938 1450 — 

Polyethylene (PE) 957 2430 950 

Polymethyl methacrylate (PMMA) 1190 2690 1340 

 

Table 2. Acoustic parameters of fluids 
[18]

. 

Fluid Density 

/(kg·m
-3

) 

Sound velocity 

/(m·s
-1

) 

Dynamic viscosity 

μ′/(Pa·s) 

Water 1000 1500 0.001 

Glycerin 1260 1900 1.48 

3.1 Effect of fluid viscosity on ARF 

In order to study the effect of fluid viscosity on the ARF, a PE sphere with 

radius R=0.5mm is considered, which is freely placed in the fluid at a distance d=4R from 

the rigid boundary (Rs=1). The ARFs under different δ/R (boundary layer thickness-particle 

radius ratio) and ideal fluid conditions are shown in Fig. 2. 

 

  

Figure 2.  ARFs for a free PE sphere versus kR at different δ/R. 
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It can be seen from the Fig. 2 that with the increase of the δ/R, the ARF first increases and 

then decreases, and when the δ/R is small, there are more peaks and troughs in the ARF 

curve. Because, as the δ/R increases, the boundary layer becomes thicker and thicker, 

the dissipation and attenuation of the sound wave become greater, and the corresponding 

resonance peak is broadened. At the same time, comparing the two cases of viscous fluid 

and ideal fluid, it can be found that when kR≪1, the influence of fluid viscosity is small, and 

the viscous effect is almost negligible; However, when the kR is large, the amplitude of the 

ARF on the particle in the viscous fluid is much larger than that in the ideal fluid, and the 

influence of the fluid viscosity on the ARF is great and cannot be ignored. In order to show 

the comparison results of the two cases more simply, the values of the ARFs are given in 

Tab. 3 when the kR is 1.0 × 10
–4

, 1.0 × 10
–2

, 1.0 × 10
–1

, 1.0, 5.0. From Tab. 3, it can be 

found that when kR = 1.0 × 10
–4

, 1.0 × 10
–2

, the effect of fluid viscosity on ARF can be 

ignored; However, for kR = 1.0 × 10
–1

, 1.0, 5.0, the effect of fluid viscosity increases the 

ARF by several orders of magnitude. 

 

Table 3. Comparisons of the ARFs on a free PE sphere in a viscous and an ideal fluid. 

 

Fluid 

kR 

1.0×10
-4

 1.0×10
-2

 1.0×10
-1

 1.0 5.0 

Viscous 

fluid 

δ/R=0.002 4.8×10
-12 

N 5.2×10
-12 

N 1.1×10
-10 

N -2.1×10
-7 

N 5.6×10
-8 

N 

δ/R=0.004 4.8×10
-12 

N 5.2×10
-12 

N 1.4×10
-9 

N -2.2×10
-7 

N -3.7×10
-6 

N 

δ/R=0.02 4.8×10
-12 

N 5.2×10
-12 

N 5.3×10
-8 

N -2.7×10
-7 

N -6.7×10
-6 

N 

ideal fluid  λ′=μ′=0 4.8×10
-12 

N 5.2×10
-12 

N 1.2×10
-11 

N 1.7×10
-13 

N 6.2×10
-14 

N 

3.2 ARFs of particles of different materials 

The material of the particle is also an important factor affecting the ARF. In order to 

analyze the influence of particle material, the elastic material polymethylmethacrylate 

(PMMA) and the liquid material oleic acid are also selected in this numerical simulation. 

The parameters d=4R and Rs=1 are selected. The ARFs of a free spherical particle with 

radius R=0.5mm in a low viscosity fluid (water) are given in Fig. 3. Fig. 3 shows that the 

ARF is significantly affected by the material of the sphere. The ARFs of the elastic 

materials PE and PMMA are generally larger than that of the liquid material oleic acid 

sphere, and the oscillation phenomenon of ARF are more obvious, with more peaks and 

troughs; The amplitude of ARF of PMMA is slightly larger than that of PE. This is because 

the momentum transfer of sound waves between elastic materials is greater than that 

between sound waves and liquids. 
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Figure 3.  ARFs for a free sphere with different materials versus kR in the low viscosity 

liquid (water). 

3.3 Effect of impedance boundary on ARF 

The effect of impedance boundary on the ARF of PE sphere is shown in the Fig. 4. In the 

numerical simulation, the parameters d=4R and R=0.5 mm are selected, and the particle is 

considered to be freely placed in a low viscosity fluid (water).  

 

Figure 4.  ARFs for a free PE sphere versus kR in the low viscosity liquid (water) with 

different Rs. 

 

It is worth noting that the addition of the impedance boundary makes the ARF curve 

change compared with the unbounded space. In addition to the change of the oscillation 

phenomenon of the ARF, the amplitude increases with the increase of the boundary 

reflection coefficient in the case of boundary. More oscillations occur because of the 

javascript:;


interaction of the sphere with the waves reflected from the boundary. In addition, the 

resonance frequency of the ARF function curve does not change with the change of the 

reflection coefficient. 

3.4 Effect of particle position on ARF 

The position of the sphere near the boundary is also a factor that cannot be ignored, and 

the ARFs on the PE sphere placed at different positions are presented in the Fig. 5. The 

Fig. 5 represents the ARF at three different positions: small (d=R), medium (d=2R) and 

large (d=4R), and the particle radius is R=0.5 mm and Rs=1. 

 

Figure 5.  ARFs for a free PE sphere in the low viscosity liquid (water) versus kR at 

different d. 

 

It can be seen that the oscillation of the ARF is mainly affected by the different positions of 

the sphere. With the increase of the position d/R, the peak value of the ARF changes more 

dramatically, and there are more peaks and troughs. The main reason is that the 

interaction between the scattered wave of the particle and the reflected wave from the 

boundary leads to the oscillation. It is worth mentioning that this is different from the effect 

of the reflection coefficient, which mainly affects the amplitude of the ARF, while the 

change of the sphere position mainly affects the period of the ARF. 

4. Conclusion 

In this paper, a general formula for the ARF of a free spherical particle in a viscous fluid 

near the boundary is given when a plane wave is incident normally. In the calculation, the 

dynamic equation of the particle is used as the correction term of the ARF. The effects of 

fluid viscosity, particle material, particle position and boundary on the ARF are considered, 
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and the variation of the ARF under different conditions is intuitively displayed by numerical 

simulation. The results show that with the increase of fluid viscosity, the peaks and 

troughs of the ARF curve decrease, and the resonance peaks are broadened; The ARF is 

significantly affected by the spherical material, and the oscillation of the ARF of the elastic 

material is more obvious than that of the spherical particle of the liquid material; With the 

increase of the reflection coefficient of the impedance boundary, the amplitude of the ARF 

increases, but the resonance frequency of the ARF function curve is not affected; The 

oscillation period of the ARF is mainly affected by the different positions of the sphere. 

With the increase of the distance from the boundary, there are more peaks and troughs in 

the ARF curve. The method in this paper can also be extended to ellipsoidal and other 

shaped particles or the existence of multiple target particles, so as to facilitate more 

accurate targeted manipulation of cells, bacteria, drugs, etc. in the future. 

Appendix 

The concrete expression of mnQ  is 

(1)(2 1)(2 1)i ( 1) i h ( ),
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In which, 
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For even q, ( 00 0) ( ) / 2mn m n    ; for odd q, then ( 00 0) 0mn   . 
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