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Abstract

The quantum Cheshire cat effect is an important phenomenon in quantum mechanics that reveals
the separability of physical properties from their carriers. This effect transcends the classical
framework whose attributes must be inherently attached to objects, providing new perspectives for
guantum information and precision measurement. According to the quantum Cheshire cat effect,
we prepare a pre-selected state of a spin-1/2 atomic system composed of two particles through a
pre-selection process. We conduct quantum weak measurements on the spins and positions of
these two atoms and extract weak values by using the method of imaginary time evolution (ITE).
Subsequently, we perform post-selection on these two atoms and design two distinct post-selected
states. Initially, we calculate analytical solutions when both atoms encounter these two different
post-selected states separately. Then, during the stage of obtaining weak values via ITE, we first
discuss the scenario with only one post-selected state. In this case, our experimental goal is to
achieve spin exchange between the two atoms. We use ITE to obtain normalized coincidence rate
for the system. By linearly fitting these normalized coincidence rate, we derive numerical
solutions for the weak values of the system. The comparison between the analytical solutions and
numerical results indicates that they are in close agreement, demonstrating that our method
promotes spin exchange between the two atoms. Next, we examine scenarios involving both
post-selected states in the post-selection process. After completing weak measurements on
particles, delayed-choice allows them to evolve along different paths ultimately leading to distinct
post-selected states. One particular post-selected state that results in final measurement outcomes
indicates that the spin exchange occurs between both particles with amplification. Conversely, the
other post-selected state ensures that even after undergoing weak measurement and delayed-choice,
the states of the two particles remain consistent with their pre-measurement conditions. We also
compare the analytical and numerical solutions of the experiment involving delayed choice and
find that they are very consistent with each other. This consistency indicates that delayed-choice
indeed has a significant influence on whether the final exchange occurs. Our research theoretically

confirms the feasibility of fermionic systems within bipartite quantum Cheshire cat effects and
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illustrates how delayed-choice influences quantum Cheshire cat effects in spin-1/2 atomic

systems.
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1. Introduction

The quantum Cheshire cat has attracted wide attention because it reveals the flexible
relationship between matter and its physical properties in the quantum world. As early as
2013, researchers discovered the phenomenon that the polarization of photons can be
separated from the body™ on the basis of weak measurement theory, and named the
phenomenon that a certain property of an object is separated from the body as a quantum
Cheshire cat. Based on this phenomenon, researchers have realized a variety of quantum
Cheshire Cat experiments, which includes microscopic particles such as photons, electrons
and neutrons?*?. The weak measurement techniques that can realize the quantum Cheshire
cat phenomenon can be divided into two categoriest*®: one is to obtain the relevant
information of the system indirectly through the direct measurement of the pointer by using
the weak coupling™** between the system and the pointer; The other is that through the weak
coupling between the system and the environment, the imaginary time evolution

(ITE)"**1 s carried out by means of the optical lattice! and the particle interferometer™,
the relationship between the environment and the system is established according to the
imaginary time, and the relevant information of the system is obtained through the
disturbance of the environment in the imaginary time. For the first weak measurement method
mentioned earlier, because the time-evolving mechanical quantity to be constructed is related
to both the pointer and the system, the direct measurement of the wave function of the pointer
will not cause the collapse of the wave function of the system, and the coupling between the
two can be simply constructed, so it is mostly used to measure a single particle. In a system of
two or more particles, because there are too many targets to be measured, the introduction of
pointers will lead to extremely complex measurement and calculation, while ITE does not
introduce additional pointers, and can maintain the quantum coherence of the system to the
greatest extent, so ITE has greater advantages in dealing with many-body wave functions or

multi-qubit wave functions.

So far, the quantum Cheshire cat effect has been widely studied in single-particle systems. For
example, in a single-particle system, the separationt! of the position and spin of a photon is
realized by non-invasive weak measurement; the separation’ of the position and spin of a
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photon is realized under the condition of decoherence; the system is separated in a chaotic
environment, and the amplification of an optical signal is realized; after the body and
polarization of a photon are separated, the polarization is changed by weak measurement in a
space without a photon for™: Realize the separation of the wave and particle properties of
photons, i.e., measuring the wave and particle characteristics of photons on separate paths

[ Send neutrons into a silicon crystal interferometer and perform weak measurements on
their position and magnetic moment to achieve the separation of the position and spin of
neutrons 1 Use a crystal interferometer to achieve the separation of the position, spin, and
energy attributes of neutrons ¥l In many-particle systems, [11] and [12] constructed
spin-dependent and position-dependent pre-selected States based on the exchange symmetry
of the wave function of the photon pair, and realized the permanent exchange of the spin of
two photons through the quantum Cheshire cat effect. At present, the study of the quantum
Cheshire cat effect in a many-fermion system is not perfect, so in this paper, we take spin-1/2
as an example, construct the pre-selected States of the two with respect to position and spin,
and perform weak measurement on the two pre-selected States and extract the weak value,
thus completing the numerical experiment of the quantum Cheshire cat effect in a
many-fermion system.

The structure of this paper is as follows: Section 2 introduces the basic concept of weak value
and the theoretical framework of spin-1/2 atomic pairs in the quantum Cheshire cat effect; In
section 3, the weak measurement is performed on the pre-selected state of two spin-1/2 atom
pairs, and then the weak measurement is performed on the atom pair after the delayed
selection is introduced; Conclusions are given in Section 4.

2. Theoretical framework

Aharonov et al.™¥ introduced a physical quantity called weak value, and found in experiments
through the two-state vector fomalism™® that the observable of the particle spin component
can be amplified from 1/2 to 100 by the weak value, that is, the weak value can increase the
observable. It can be seen that the weak value is different from the expectation value obtained
by the traditional direct measurement. It is a value determined by two different initial and
final state vectors and the weak measurement. Assuming that A is any observable in the
system, the weak value (A),, with respect to A can be written as:

(rl4]i)
(Fliy

Where |i) is the pre-selected state of the system, and |f) is the post-selected state of the

(Aw = €y

system. The |i) and |f) can be set artificially according to the measured mechanical quantities.
For a spin-1/2 atomic system, we discuss the weak measurement of the position and spin of
the atom. The measurement operators with respect to the position are 1, = |u){u|and I14 =
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|d){d| (the subscript u represents the up path and d represents the down path). The
measurement operator of the spinis S, = 1/2(] T™T | — | {){{ |) (R =1), where |T)and|!
), |[u) and |d) are orthogonal to each other, and u and d are the two possible paths for the atom.
In addition, the quantum Cheshire cat effect and the delayed choice experiment™™ proposed
by Wheeler both embody the principle of time symmetry in guantum mechanics, that is, the
properties of a system are affected not only by past events, but also by future events.
Reference [5] and Reference [8] combine the quantum Cheshire cat effect and delayed
selection, and realize the delayed selection of single photon and single neutron under the
quantum Cheshire cat effect, as well as the bulk and spin separation of photon and neutron,
respectively. Therefore, in this paper, we introduce the delayed selection into the Cheshire cat
experiment while studying the spin exchange of the Fermion multibody system, and then
discuss the results of the interaction between the delayed selection and the quantum Cheshire

cat effect in the Fermion multibody system.

The experimental principle is shown in Fig. 1. In this paper, two spin-1/2 atoms are
considered, and the spins of the two atoms are exchanged by preparing appropriate
pre-selected States and post-selected States. In the pre-selected part, the pre-selected States of
the two particles are assumed to be linear cluster States®*?°22,

1
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Figure 1. Schematic diagram of spin-1/2 atomic spin exchange and spin amplification
principle. In the pre-selection section, prepare a pre-selected state |i) that meets theoretical
expectations. In the weak measurement (WM) section, the beam splitter (BS) splits two atoms
into beams, which then enter the position density processor (LD) and spin-sensitive density
processor (SD). In the post-selection section, two atoms will select synchronlusly through a
random switch controlled by 1 and 0, ensuring two atoms simultaneously randomly obtain
one of the post-selected states. After two atoms pass through BS, the atom passing through the
downward path is called atom 1, represented in yellow; the atom passing through the upper
path is called atom 2, represented in blue. After completing the weak measurement, use light

green to represent atom 1 and dark green to represent atom 2.
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The two particles in this state are subjected to a weak measurement. First, the two particles
are divided into two beams by a beam splitter. In this paper, the atom passing through the
lower path of Fig. 1 after beam splitting is called atom 1, and the atom passing through the
upper path is called atom 2. The two particles after beam splitting enter the position density
processor and the spin sensitive density processor respectively, and the two processors are
used to simulate the imaginary time perturbation of the position and spin of the particles
respectively. After the perturbation, the two particles will enter the post-selection stage. In the
post-selection stage, the two particles face a two ways switch simultaneously and
synchronously, which is controlled by a random number generator that generates 1 or 0
randomly in real time. When the two particles come to the switch, if the number generated by
the generator at this moment is 1, the two particles will obtain the post-selected state |f) in
the post-selection,

1 1
|f) = §(| Tid2) + 1 4T D ugdy) + E(|T1J’2) = 41T dus). 3

When two particles arrive at the switch and the number generated by the generator is 0, the
post-selected state obtained is

If) = 1Td)dyuy). 4

When the pre-selected state |i) (2) and the post-selected state |f) (3) and the positions and
spins of the two particles are substituted into the expression of the weak value (1), the
analytical solution of the two atoms with respect to the positions and spins when the two
atoms exchange spins is obtained:

(), =0, (I12), =1, (II3), = 1, (II3), = 0. (5)

1
<H1}®Sl>w = Eta‘n «, <HE®S2>W - 0:

(Mi®S,), =0, (II2®S,), = %tana.

The non-zero weak value of the observed value indicates that the system is indeed in the
pre-selected state and the post-selected state. On the contrary, when the weak value is zero, it
indicates that the system is not in the state. According to the results of the analytical solution,
it can be found that atom 1 can indeed appear in the lower path and atom 2 can appear in the
upper path by selecting the pre-selected state and the post-selected state, and the spin of atom
2 can be observed in the lower path and the spin of atom 1 can be observed in the upper

path. (1T} ® S;)w and (112 ® S,),, are tan functions with respect to the «. This shows that
when the regulatory parameter « approaches 0, that is, |(f]i)|? approaches 1, the
measurement success probability is very large; When the a approaches the n/2, the weak
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value amplification can be realized. The value of « can be set according to different situations
to obtain the expected experimental results. Only the value of a in one period needs to be
considered, that is, the value range is(0,m/2). Because when tan o is not 0, the spin of atom 1
can be found on the u path and the spin of atom 2 can be found on the d path. It means that
the spins of the two atoms have been exchanged. If tan « is O, it means that the pre-selected
state of the two particles becomes|iiang=o) = 1/V2(] T112) — | {1T2))|d u,), and the state
vector after the spin operator acts on the pre-selected state will be completely orthogonal to
the post-selected state, resulting in the weak value always being 0, so it is not necessary to
consider the case where o is 0. Similarly, when « is /2, the measurement probability, that

is, |(f|itana=n/2)|2, is 0, so no valid measurement result will be obtained, and this situation
does not need to be considered. When the pre-selected state |i) (2) and the post-selected

state | f,) (4) and the mechanical quantities of the position and spin of the two particles are
substituted into the expression of the weak value (1), the analytical solution of the position
and spin of the two atoms is obtained when the two atoms do not exchange spins. It should
also be noted that the reason why the spin weak value is not measured separately in this study
is that the spins of the two atoms must exist and there is no need to measure separately.

Similarly, according to the weak value formula, the analytical solution of the system without
commutation is obtained as

<ﬂ1}>w — U: <H1?> — 1: <Hdl>w — 17 (Hc%>w = 0. (7)

(II}®8)) oy = 0, (II2®S,) 5 = 0.5, -

(IT§®8)) yy = —0.5, (II§®S)),3 = 0.
The weak value results show that the spins of the two particles are not exchanged, but the
results are slightly different from the eigenvalues due to the influence of the initial and final
state vectors, and the spin of atom 2 is negative. The two different post-selected States lead to
different measurement results, which fully reflects the time symmetry in the quantum world.
Even if the weak measurement has been completed, the delayed selection that occurs later
also affects the previous measurement.

3. Extraction of weak values by ITE

Section 2 presents the results of the analytical solutions for the presets and weak values of the
pre-selected and post-selected States. Next, we will describe in detail how to obtain the
numerical solution of the experiment by means of ITE. ITE originated from the®! of Wick
rotation in special relativity, and now it is mostly used in different fields such as quantum
field theory,™ and quantum simulation?!. ITE is a weak value extraction method based on
the disturbance of the system without introducing any auxiliary pointer state. Non-unitary
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matrix generated by the observable quantities 77 or IT @ S of the two particles:
U(H,t) = e Ht# €))

The role of U(H, t) is to evolve the system in imaginary time!?®, where H is the Hamiltonian
of the system, the role of H is to generate the operator of the evolution of the system, the
expression of H is H =0, and O represents the observable. The parameter t is a time parameter
in imaginary form and is generally not restricted. However, in ITE, the t must be small
enough to minimize the disturbance to the system during the interaction time. The advantage
of ITE to extract the weak value is that there is no need to introduce an additional parameter
state, which greatly simplifies the problem, and the weak value can still be extracted by ITE
without involving the imaginary number, in which case the real part of the weak value of the
Hamiltonian is proportional to the slope of the function obtained by ITE. In ITE, the
probabilities of successful post-selection before and after applying the perturbation

are Ny = [(f]i)|?> and N(U) = |(f|U]i)|?. The normalized coincidence rate N(t) is related to
the former two by

N(U)

0

N(t) =

# (10)

In this experiment, the weak value as a function of N(t) is

10N
—ZE o = R€<0)W (11)

First, the pre-selected state and post-selected state of the system to be measured are
determined to obtain the Ny, and then the normalized coincidence rate of the position and spin
of the two atoms can be obtained by substituting the mechanical quantities of the position and
spin of the two atoms into the N(U) . In order to simulate the perturbation of the environment,
the weak value of the system is obtained after the imaginary time evolution N(t). Because
the position density processor and the spin sensitive density processor are important
experimental devices for weak measurement to obtain the position weak value of the system.
Therefore, in the weak measurement part of this paper, it is assumed that a series of position
density processors with different transmissivities (the relationship between the transmissivity
T and the tis T = e2%) are used to simulate the perturbation of position and spin. According
to the evolution of imaginary time, the transmittance also changes with it, and the normalized
coincidence rate of the system under different imaginary time is calculated. The curve is
obtained by linear fitting of these imaginary time-dependent data points, and the numerical
solution of the weak value is obtained by analyzing the curve according to (11). First, we
discuss the case where delayed selection is not considered, that is, the post-selected state of
the system must be (3).

As shown in the Fig. 2, when the post-selected state is (3), different weak value results can be
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obtained by adjusting the « of the pre-selected state. Substituting 1T, 1%, 12, 13, 113 ® Sy,
n:®s,, Ny ®S;and? ® S, into (9) respectively to obtain the related non-unitary
matrices, and th/en substituting these non-unitary matrices and a variety of different
pre-selected States obtained by adjusting the value of « into (10) to obtain the normalized
coincidence rate of each mechanical quantity under the imaginary time evolution. In one
period, i.e. « € (—m/2,m/2), the normalized coincidence rates for the observables I1}, Hﬁ,
I} ® S; and 12 ® S, are also almost unaffected by t and a. The change of the normalized
coincidence rate of I12 and I1} is only related to t. The normalized coincidence rate

of 15 ® S; and 12 ® S, has a certain functional relationship with t and &. Combining the
analytical solutions of (5) and (6), it can be concluded that the weak value results

of IT¢ and 172 are theoretically independent of o, but the normalized coincidence rate of the
experimental results decreases with the decrease of the value of «. This shows that the small
interaction of the environment on the system may have an impact on the system. With the
time evolution, the parameters in the pre-selected state are not completely eliminated due to
the orthogonality of the States, indicating that the entanglement of the pre-selected state is
changed by the environment. For 17}1 ® S, and I12 ® S5, N has the same trend with «, but has
the opposite trend with t.
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Figure 2. Trend of normalized coincidence rate N(t) as a function of t and a. The value range
of tin the figure is from 0 to 1, and the value range of « in the figure is from 0 to w/2.
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In order to simplify the extraction of the weak value by the normalized coincidence rate,
the a« = m/4 is taken as an example to extract the weak value. In this case, the pre-selected
state of the system is

1
liy) = §(| Tidz) = [ 4T (luedz) + [diug)). (12)

The analytical solution of the system is obtained by the pre-selected state (12) and the
post-selected state (3).

(), =0, (I3, =1, (), =1, (II3), = 0. (13)

(ITl®8;),, = 0.5, (IT}®8,),, =0,

(IT}®S,), =0, (IT}®S,), = —0.5. 1
Then, the numerical solutions and analytical solutions of the experiment are compared
through ITE extraction. When « is setto m/4, the method for obtaining the normalized
coincidence rate of each mechanical quantity is the same as that for the pre-selected states
when a varies.

N()

As shown in Fig. 3, where the normalized coincidence rate N(t) = - is the ordinate of the
0

sampled data points, and the time t is the abscissa, the numerical solution can be obtained
from the straight line fitted from the normalized data points. Data on the N(t) of the
positions and spins of the two atoms obtained after the ITE of the system. The normalized
coincidence rates of (1%}, (I13)w, (T2 ® S,) and (13 ® S;),, have low correlation with
the interaction time t, while the normalized coincidence rates of (I12).,, (IT3)w, (IIE ®
S1)w and {I13 ® S, )., have obvious functional relationship with the interaction time t. The
weak values are obtained by linear fitting and probability correction of 8 curves in Fig. 3. The
normalized coincidence rate of each observation is obtained by formula (10), and the
normalized coincidence rate of each observation is substituted into formula (11),

14
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Figure 3. When o takes n/4, the normalized coincidence rate N(t) of two atoms varies with t.
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The left image shows the data for atom 1, and the right image shows the data for atom 2. Due
to the functional relationship between N(t) and t, weak values are directly used here to
represent the N(t) of the relevant observables.

(19)

(ITlRS)), = 048, (II*®S,), = —0.03,

(Mi®S,), = —0.05, (II}®S;), = —0.53. 19
The numerical solution of the weak value extracted by ITE is then obtained. For the position
and spin entangled state of atom 1 and atom 2, it is almost impossible to determine the
position of the two atoms and the spin state of the two atoms by direct measurement of their
wave functions. Multiple measurements will give a probability of 1/2 for both atoms to appear
in the u and d paths and for both atoms to be spin-up or spin-down. However, when a weak
measurement (ITE) is performed on the system, the measurement result is that atom 1 will
only appear in the u path and atom 2 will exit; And the spin of atom 2 can only be observed in
the u path, and the spin of atom 1 can only be observed in the d path. The numerical solution
obtained here is basically consistent with the analytical solution in Section 2, which
theoretically verifies the feasibility of the experiment. When the spin exchange does not occur,
according to the analytical solution in Section 2, it can be concluded that the weak value is
not directly related to the «, but the measurement success probability is still affected by the a.
Therefore, after the delayed selection experiment is introduced into the quantum Cheshire cat
effect of a many-particle system, two post-selected States appear in the post-selection, and the
two atoms and spins can be positioned on different selections. By switching different
post-selected States, the weak values of the two atoms and their spins will produce different
results. Since the measurement of the atom and spin positions in the interferometer can be
performed independently of the delayed selection process, selecting a direction for
post-selection, the effect of delayed selection on the previous measurement can be studied. In
order to more directly reflect the impact of delayed selection, we continue to take the weak
value of the o=n/4 calculation system.

Compared with the Fig. 3, the Fig. 4 has one more post-selection process, so not only
different atoms are distinguished on the data, but also different positions are distinguished in
the figure, and the relationship between the normalized coincidence rate of the system and the
t is shown in the four figures. When the spins of the two atoms are not exchanged, the weak
values of the spin and the position follow the same trend. When the spin is exchanged, it is
consistent with the weak value in the Fig. 4, which indicates that the delayed selection does
have an impact on the system, and the different post-selected states affect the system that has
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been measured previously. Atoms with different transmittances obtain different post-selected
states and are received by the detector. After linear fitting of each point, the numerical
solution of the system in delayed selection is calculated according to the expression (11) of
the weak value obtained by ITE and the fitting of the experimental results.
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Figure 4. Add ITE images to the system after delay selection. The system will obtain two
different post selected states, and the normalized coincidence rate of each atom with spin in
the evolved system will vary.

(I1}), = 0.00, (IT2), = 0.83, .
(3), = 0.83, (II3), = 0.01.
(IIl®8,), = 0.22, (II*®S,),, = 0.18,

18
(IM3®8,), = 0.17, (II3®S;), = —0.35. 1e)

By comparing the numerical and analytical solutions of the system, it can be concluded that
when the post-selected state is |f), the spins of the two atoms are exchanged, as expected;
After adding the delayed selection at the post-selection, there is an additional post-selected
state in the post-selection process, which is |f,). When the system is in this post-selected
state, the spins of atom 1 and atom 2 are not exchanged, indicating that the measured value
corresponds to the properties of atom 1 or atom 2. The analytical solution is consistent with
the numerical solution, indicating that the fermion system also satisfies the time symmetry in
the multi-particle quantum Cheshire cat effect, that is, the spin exchange between each other
occurs randomly, and the post-selection and delayed selection affect the measured value
before the measurement.
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4. Conclusion

In this paper, the influence of the quantum Cheshire cat effect on the system of two spin-1/2
atoms is discussed. By constructing the pre-selected and post-selected states of the atoms, the
weak value is obtained by ITE, and the delayed selection in the post-selection makes the spin
exchange of the two atoms full of randomness. When the spin exchange occurs, their spin
weak values show the characteristics consistent with the tan function, that is, the spin weak
value is enlarged or reduced while the spin exchange is realized. The advantage of
amplification is that it is easier to obtain more accurate measurements in noisy environments
or in environments where the detector is saturated, while the advantage of reduction is to
improve the probability of successful measurements. The two can be combined to measure the
system multiple times to obtain more complete measurement results. When the two atoms
obtain a post-selected state without spin exchange, under the combined action of the quantum
Cheshire cat effect and the delayed selection effect, even though the system has evolved, the
information of spin and position is still consistent with the information of the system before
measurement. In addition, the delayed choice experiment further reveals the physical
connotation of the quantum Cheshire cat. Because of the special nature of weak value
information, only the appropriate post-selected state can accurately extract useful information.
Multi-party communication is realized by attribute exchange, and the anti-interference ability
of the signal is improved by weak value amplification, so as to improve the efficiency of
signal communication. Based on the above characteristics, we expect that these research
results can be applied in the fields of quantum circuits, quantum communication and quantum

precision measurement.
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