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Abstract 

 

Inorganic crystal materials have shown extensive application potential in many fields due 

to their excellent physical and chemical properties. Elastic properties, such as shear 

modulus and bulk modulus, play an important role in predicting the electrical conductivity, 

thermal conductivity and mechanical properties of materials. However, the traditional 

experimental measurement method has some problems such as high cost and low 

efficiency. With the development of computational methods, theoretical simulation has 

gradually become an effective alternative to experiments. In recent years, graph neural 

network-based machine learning methods have achieved remarkable results in predicting 

the elastic properties of inorganic crystal materials, especially, crystal graph convolutional 

neural networks (CGCNNs), which perform well in the prediction and expansion of 

material data.In this study, two CGCNN models are trained by using the shear modulus 

and bulk modulus data of 10987 materials collected in the Matbench v0.1 dataset. These 

                                                             
* The paper is an English translated version of the original Chinese paper published in Acta 

Physica Sinica. Please cite the paper as: LIU Yujie, WANG Zhenyu, LEI Hang, ZHANG 

Guoyu, XIAN Jiawei, GAO Zhibin, SUN Jun, SONG Haifeng, DING Xiangdong，Machine 

learning-driven elasticity prediction in advanced inorganic materials via 

convolutional neural networks . Acta Phys. Sin., 2025, 74(12): 

120702. doi: 10.7498/aps.74.20250127 

 

https://wulixb.iphy.ac.cn/custom/2025/8
https://doi.org/10.7498/aps.74.20241751


models show high accuracy and good generalization ability in predicting shear modulus 

and bulk modulus. The mean absolute error (MAE) is less than 13 and the coefficient of 

determination (  ) is close to 1. Then, two datasets are screened for materials with a band 

gap between 0.1 and 3.0 eV and the compounds containing radioactive elements are 

excluded. The dataset consists of two parts: the first part is composed of 54359 crystal 

structures selected from the Materials Project database, which constitute the MPED 

dataset; the second part is the 26305 crystal structures discovered by Merchant et al. 

(2023 Nature 624 80) through deep learning and graph neural network methods, which 

constitute the NED dataset. Finally, the shear modulus and bulk modulus of 80664 

inorganic crystals are predicted in this study This work enriches the existing material 

elastic data resources and provides more data support for material design. All the data 

presented in this paper are openly available 

at https://doi.org/10.57760/sciencedb.j00213.00104. 
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1. Introduction 

Due to their unique physical and chemical properties, inorganic crystal materials have 

shown great potential applications in many fields, such as electronic
[1,2]

, optical
[3,4]

, 

thermal
[5]

 and mechanical
[6,7]

. Their elastic properties (such as bulk modulus (B) and shear 

modulus (G)) play a key role in predicting physical properties such as electrical 

conductivity
[8]

, thermal conductivity
[9,10]

 and mechanical properties
[11]

. For example, since 

the study of Pugh
[12]

 in the 1950s, the ratio of bulk modulus to shear modulus has become 

an important indicator for understanding and predicting the ductility of materials
[13-17]

. 

Therefore, the elastic data of inorganic crystal materials are very important to predict the 

properties of materials, and provide important basic data for the performance optimization 

of functional materials (such as pyroelectric, piezoelectric, ferroelectric materials). 

However, the traditional experimental measurement methods have some limitations in 

obtaining the elastic modulus of inorganic crystal materials, such as high cost and long 

cycle. With the improvement of computing power and calculation methods, the cost of 

experimental measurement can be alleviated by theoretical simulation. For example, the 



stress-strain analysis method based on density functional theory (DFT)
[18]

 is
[19]

, which 

accurately predicts the mechanical properties of materials by solving their electronic 

structure. Another common simulation method is molecular dynamics (MD) simulation
[20]

, 

which simulates the energy, atomic displacement and atomic force of materials through 

classical model/machine learning potential function, so as to estimate the mechanical 

properties such as elastic modulus. In addition, meso-scale Monte Carlo simulation 

(MC)
[21]

 and macro-scale finite element analysis (FEA)
[22]

 can also be used as effective 

simulation tools. The former is suitable for studying the statistical properties of systems, 

while the latter can simulate large-scale complex structures and components. The data 

obtained by these simulation methods are close to the experimental measurements, but 

they usually face high computational cost and cycle time when dealing with large-scale 

data. Therefore, how to improve the computational efficiency while ensuring the prediction 

accuracy has become a core issue to be solved urgently. The rapid development of 

artificial intelligence (AI) and machine learning technologies has made it possible to obtain 

more data on the elastic properties of inorganic crystalline materials
[23,24]

, and has 

provided a more efficient alternative to traditional simulation methods. 

Data-driven approach has become an effective way to expand the material space
[25]

, but 

obtaining high-quality and large amounts of data remains a challenge. In recent years, it 

has been found that many machine learning models have shown good results in 

predicting the elastic properties of crystal structures, among which the crystal graph 

convolutional neural networks (CGCNN) proposed by Xie and Grossman crystal graph 

convolutional neural networks has attracted much attention. This model can effectively 

convert crystal information into graph information, further process graph structure data, 

capture complex mapping relationships between nodes, improve feature learning ability, 

and predict material properties. Inspired by CGCNN, several graph neural network models 

have emerged, such as orbital graph convolutional neural network (orbital graph 

convolutional neural network, OGCNN) atomic line graph neural network, atomic graph 

neural network (atomic line graph neural network, ALIGNN) graph attention network graph 

neural network, graph attention map neural network (graph attention network graph neural 

network, GATGNN) connection optimized crystal graph network, connection-optimized 

crystal graph network (connection optimized crystal graph network, coGN) and its 

extended version (connection op Ti
[30]

. How to choose a model that still maintains good 

generalization outside the training set among many graph convolution model frameworks? 

A recent study provides us with inspiration. Omee et al.
[31]

 evaluated the performance of 

eight graph neural network (GNN) models on five out-of-distribution (OOD) test sets. The 

results specifically for elastic datasets show that the CGCNN model in LOCO 

(leave-one-cluster-out) and SparseXsingle (single-point targets with the lowest structure) 

In the density test, the minimum mean absolute error (MAE) was achieved, and the 



performance on different datasets was stable and accurate. This indicates that the 

CGCNN model has excellent generalization ability and the ability to discover and explore 

outliers outside the dataset. 

Although some progress has been made in the elastic modulus database, since 2015, de 

Jong
[32]

 and others have designed a high-throughput first-principles calculation method 

based on experimental data and first-principles calculation, systematically studied the 

elastic constants of thousands of inorganic crystal materials, and constructed a detailed 

elastic property database. In addition, foreign mainstream databases such as Materials 

Project 10000 contain elastic constant data of more than 10000 materials; The 

AFLOW
[34]

 provides elastic data for about 6000 inorganic materials; The OQMD (open 

quanum materials database)
[35]

 covers information on about 4,000 materials. However, 

there are relatively few databases in China. Although the Atomly
[36]

 database contains a 

large number of material data, the elastic data of inorganic crystals still account for a small 

part of them. Therefore, it is necessary to establish a data set of elastic properties of 

inorganic crystal-rich materials. 

In this paper, 10987 crystal structures with bulk modulus and shear modulus and their 

corresponding properties were collected, and two CGCNN models for elastic modulus 

were trained. Based on the pre-trained CGCNN models, the elastic moduli of the collected 

inorganic crystal structures were predicted, and the elastic modulus data set of the whole 

material space was expanded. The flow is roughly as follows: Using the bulk modulus and 

shear modulus data set
[37]

 containing 10987 material entries collected from the Materials 

Project in Matbench v0.1, two CGCNN models mapped from crystallographic information 

files (CIF) to bulk modulus and shear modulus are trained. Because too large band gap 

will lead to poor conductivity, and radioactive elements are harmful to human body, we 

further screened the collected data without modulus information. The screening standard 

is that the band gap is between 0.1 and 3.0 eV, and the simple substances and 

compounds containing radioactive elements are excluded. The data of predicted crystal 

structures mainly come from the following two parts: 1) the crystal structures obtained 

from the Materials Project Materials Project elastic dataset database, a total of 54359 

materials are selected, and the dataset composed of these crystal structures is recorded 

as the Materials Project elastic dataset (MPED) dataset; 2) Merchant et al. 26305 found 

26305 crystal structures through deep learning and graph neural network (GNN), and the 

data set composed of these crystal structures is denoted as nature elastic dataset (NED). 

Finally, the bulk modulus and shear modulus of 80664 inorganic crystal structures are 

predicted, which enriches the existing elastic data resources to a certain extent, and 

provides more data support for the design and optimization of functional materials。 



2. Method 

2.1 Data acquisition 

Matbench _ v1.0 test set
[37]

 contains 13 different material properties, and the data can be 

downloaded through python's matminer package. This paper uses two data sets from this 

dataset, collected from the Materials Project database, which deal specifically with elastic 

properties: "matbench _ log _ gvrh" (for predicting DFT log10 vrh average shear modulus 

from structure) and "matbench _ log _ kvrh" (for predicting DFT log10 vrh average bulk 

modulus from structure), both of which contain the same material entries, 10987, The aim 

is to predict the shear modulus (G) and bulk modulus (B) through the Voigt-Russ-Hill 

(VRH) averaging method.Because of the standardization and comprehensiveness of 

these data sets, they are ideal for training machine learning models to predict key 

resilience characteristics. 

Acquiring high-throughput data sets can be challenging. However, recent advances in 

machine learning have given a big boost to the discovery of stable materials. Merchant et 

al.
[38]

 use deep learning and graph neural networks (GNN) to expand the scope of 

materials discovery, especially the study of inorganic crystals. Their work expands the 

range of known material by adding 381000 new entries to the convex hull, a tenfold 

increase over the previous dataset. We accessed their dataset via 

GitHub:https://github.com/google-deepmind/materials_discovery. The library's "by _ 

composition" folder contains 377221 valid CIF files that are compatible with CGCNN. In 

addition, a summary CSV file containing band gap, crystal symmetry, and decomposition 

energy data is provided. These materials include two to six elements with atomic numbers 

ranging from 2 to 106. Among them, we screened out 30199 stable structures with band 

gaps between 0.1 and 3.0 eV, which is reduced to 26305 after excluding radioactive 

elements harmful to human body. On the other hand, other data from the Materials Project 

further supplement these data sets and support targeted retrieval of material properties 

through open source APIs, Specifically, by screening structures with energy gaps ranging 

from 0.1 to 3.0 eV and free of radioactive elements, 54,359 different structures were 

obtained. Overall, 80664 stable structures were obtained, and these resources provide a 

solid foundation for high-throughput computation and analysis. 

2.2 Crystal graph convolutional neural networks 

As shown in Fig. 1, CGCNN maps the crystal structure into a graph representation, where 

nodes represent atoms (atomic properties are encoded using 92-dimensional one-hot 

vectors) and edges represent chemical bonds between atoms (atomic distances are 



treated by Gaussian expansion). For multi-body structure information, the model directly 

encodes the bond length information, while the bond angle and dihedral angle are not 

explicitly represented, but are implicitly learned through the message passing mechanism 

of multi-layer graph convolution. Each convolution layer uses a nonlinear function to fuse 

the features of the current node, the features of adjacent nodes and the features of 

connecting edges, and updates the node representation, so as to gradually capture more 

complex local structure information; The long-range interaction is obtained by setting the 

appropriate truncation radius and the iterative pass of multi-layer convolution. For the 

symmetry breaking caused by local distortion (such as Jahn-Teller effect), CGCNN can 

effectively capture these structural distortions by accurately recording the local 

coordination environment of each atom and combining with the nonlinear transformation 

ability of the graph convolution layer. Finally, the model integrates all atomic features into 

a crystal representation through a global pooling operation, which not only maintains the 

integrity of local structural information, but also effectively expresses the global structural 

features. This hierarchical feature extraction mechanism enables CGCNN to accurately 

describe the essential characteristics of crystal materials while maintaining the simplicity 

of the model. 

 

 

Figure 1.  Illustration of the crystal graph convolutional neural networks: (a) Construction 

of the crystal graph. Crystals are converted to graphs with nodes representing atoms in 

the unit cell and edges representing atom connections. Nodes and edges are 

characterized by vectors corresponding to the atoms and bonds in the crystal, respectively. 

(b) Structure of the convolutional neural network on top of the crystal 

graph. R convolutional layers and     hidden layers are built on top of each node, 

resulting in a new graph with each node representing the local environment of each atom. 

After pooling, a vector representing the entire crystal is connected to    hidden layers, 

followed by the output layer to provide the prediction
[26]

. 

Three convolutional layers are designed in this paper. Each convolutional layer first 

collects information about neighboring atoms, central atoms, and bonds, and stitches 

these features together. The features are then passed through a fully connected layer and 



regulated using a Sigmoid gating mechanism, and finally transformed nonlinearly using a 

softplus activation function. Next, the atomic-level information is aggregated to the crystal 

level through a pooling layer, and a conversion layer is connected to convert the 

convolutional features into fully-connected layer features. Finally, the model is connected 

to two fully connected hidden layers to further extract features. Because the elastic 

properties are closely related to the crystal structure, the CGCNN model can effectively 

capture the key features of the crystal structure, so it can be directly used to predict the 

elastic properties from the crystal structure. It is worth mentioning that there are also some 

works that predict the modulus in a more accurate way
[39]

. In order to improve the 

convergence of the model, the  (adaptive moment estimation Adam) optimization method 

is used, and the initial learning rate is set to 0.001. Adam combines the advantages of 

momentum and (root mean square propagation RMSProp), and dynamically adjusts the 

learning rate by calculating the first moment (mean) and the second moment (uncentered 

variance) of the gradient, which is insensitive to the initial learning rate. Finally, the mean 

absolute error (MAE) of the model on the test set is 0.0981 log10 (GPa) for shear modulus 

and 0.0790 log10 (GPa) for bulk modulus, which verifies its prediction accuracy. In order to 

further optimize the model, the number of training iterations, the number of convolutional 

layers and the number of hidden layers were manually adjusted based on the Adam 

optimizer, and the model with the best performance on the validation set was selected. 

The final model was determined by calculating the MAE and R
2
 scores on the training, 

validation and test sets. Finally, more information about this section can be found in the 

Supplementary Material (https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.74.20250127). 

2.3 Elastic property 

Jia et al.
[40]

 proposed a method to accurately estimate other elastic properties (such as 

Poisson's ratio, sound velocity, etc.) Of materials from the bulk modulus (B) and shear 

modulus (G), which is more efficient and has a shorter period than experimental 

measurements. Therefore, when the bulk modulus (B) and shear modulus (G) of the 

material are obtained, the other elastic properties can be estimated. However, the 

CGCNN model can accurately predict the bulk modulus (B) and shear modulus (G) of 

materials. Therefore, based on the basic physical quantities (such as density) in the 

MPED data set and NED data set, combined with the above methods, a series of physical 

quantities such as elastic properties and sound velocity can be estimated. The specific 

calculation method is as follows
[40,41]

: 

                    (1) 

           (2) 
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Where   ,    , and    are the longitudinal, transverse, and mean sound velocities, 

respectively, and ρ is the material density.In addition, it has been shown that Poisson's 

ratio (ν) can be obtained as
[42,43]

 from: 

  
    

     
    (4) 

Where x is the ratio of the longitudinal speed of sound to the transverse speed of sound, 

i.e        . 

Previous studies have shown that the Debye temperature     is proportional to the 

average sound velocity    , so the Debye temperature can be calculated from the elastic 

modulus
[44]
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        (5) 

Where    is the reduced Planck constant,     is the average speed of sound,     is 

Boltzmann's constant, N represents the number of atoms within a primitive cell, and V is 

the primitive cell volume. 

2.4 Machine Learning Performance Evaluation Metrics 

In machine learning, the mean absolute error      and the coefficient of 

determination     are commonly used measures to evaluate the performance of a 

regression model.     measures the average magnitude of prediction error and is 

defined as follows: 

    
 

 
   

       
 

      (6) 

Where    is the actual value and  
 

  of determination is the predicted value. The smaller 

the MAE value is, the higher the prediction accuracy of the model is. In addition, the 

specific calculation formula of the coefficient of determination    is 

     
  

        
 
  

 

  
          

    (7) 



Where   represents the average of the actual values. The closer the    is to 1, the better 

the model fits. 

3. Result 

3.1 CGCNN model evaluation 

In a previous study, Wang et al.
[45]

 found that radial basis function neural networks (RBF) 

had better predictive ability than back propagation neural networks (BP) by applying 

machine learning design strategies to the development of high-strength aluminum-lithium 

alloys. To illustrate the advantages of CCGCNN, this paper compares the performance of 

CGCNN with other machine learning models, such as random forest, extreme gradient 

boosting (XGBoost), support vector regression (SVR), gradient noosting, and decision 

tree. In order to maintain the correlation with the crystal structure, the average atomic 

number, average atomic mass, average electronegativity, space group number, density 

and volume per atom of the primitive cell are selected as the characteristics to construct 

the model. The Fig. 2 shows the performance of the six models in predicting the shear 

modulus (G) and the bulk modulus (B). Where Fig. 2(a) and Fig. 2(b) show the mean 

absolute error (MAE) and the coefficient of determination (R
2
) of the shear modulus model, 

respectively, and Fig. 2(c) and Fig. 2(d) show the MAE and the coefficient of 

determination (R
2
) of the predicted bulk modulus model, respectively. Because the 

performance of the model in the validation set and the test set can evaluate its 

generalization ability outside the training set, because this paper uses the mean of MAE 

and R
2
 of the validation set and the test set to evaluate the performance of the model, in 

the figure, MAE is arranged from small to large according to the mean, and R
2
 is arranged 

from large to small according to the mean. The results show that the CGCNN model 

shows lower MAE and higher R
2
 on both the validation set and the test set, indicating that 

it has higher accuracy and reliability in predicting shear modulus and bulk modulus. 



 

Figure 2.  Mean absolute error (MAE) and coefficient of determination (R
2
) for the training 

set (Train), validation set (Val), and test set (Test) of shear modulus ((a), (b)) and bulk 

modulus ((c), (d)) in crystal graph convolutional neural network (CGCNN), random forest 

(RF), extreme gradient boosting (XGBoost), support vector regression (SVR), gradient 

boosting (GB), and decision tree (DT). 

 

Furthermore, the model in this paper is evaluated. 10987 data in Matbench v0.1
[37]

 are 

divided into training set, validation set and test set to train the model. The 10987 is the 

results of the training set, validation set and test set of the elastic modulus of the trained 

CGCNN model. From the Fig. 3(a) and Fig. 3(b), it can be seen that the model performs 

better in the training set, and the DFT calculation results are close to the output results of 

the model, which indicates that there is a high linear correlation between the model 

prediction results and the DFT calculation results. The    of shear modulus and bulk 

modulus are 0.936 and 0.880, respectively, and both have low MAE, not exceeding 11, 

indicating that the model performs well on the training set. And Fig. 3(a) are similar to Fig. 

3(b),Fig. 3(c) and Fig. 3(d),Fig. 3(e) and Fig. 3(f) are the results of validation set and test 

set respectively, MAE and     are slightly inferior to the results of training set and are 

more reasonable. This is because the model can fit the data more accurately on the 

training set, and the results of the test set show that the model has certain generalization 

ability, but there are prediction errors on some samples. Through the comparative 

analysis of the training set, validation set and test set, it can be seen that the model has a 



good fitting effect on the training set, and still has a high prediction accuracy and reliability 

on the test set. 

 

 

 

Figure 3.  Comparison between the volume modulus and shear modulus predicted by 

CGCNN model and the calculated values of DFT. (a) and (b), (c) and (d), (e) and (f) are 

the results in the train set, validation set, and test set, respectively. 

3.2 Information statistics of forecasting data set 

Section3.1 has demonstrated the excellent performance of CGCNN in predicting shear 

and bulk moduli. Based on this, the model is applied to a larger dataset, including 54359 

materials from the MPED dataset and 26305 materials screened from the NED dataset
[38]

. 

The predicted data set was statistically analyzed in detail, and the main purpose was to 

verify the representativeness of the data through the crystal system distribution 

(containing 70 + elements and 7 major crystal systems), atomic configuration and 

composition characteristics, and to find that the characteristics of low symmetry crystal 

system (monoclinic/triclinic) with high proportion and oxide dominance are in line with the 

laws of materials science; It reveals some structural characteristics, such as high 

proportion of low symmetry crystal system (monoclinic/triclinic), oxide dominance, etc., 

which are in line with the laws of materials science and have a small amount of complex 

structures. It should be noted that although the data set has significant advantages in the 

characterization of material composition and structure, the lack of key mechanical 

parameters (such as shear modulus G, bulk modulus B) limits its deep application. 

Therefore, through the establishment of physical property prediction model, the missing 

parameters were systematically supplemented, and the application dimension of the data 



set was effectively expanded. In addition, this paper discloses statistical details such as 

element frequency table and crystal system distribution map, through which researchers 

can quickly locate target samples (such as specific elements or crystal system materials) 

and significantly reduce the cost of data screening. 

Specifically, the number of atoms and the number of occurrences of elements in the 

primitive cell of the crystal system in the MPED and NED data sets are depicted by 

statistical maps (such as Fig. 4 and Fig. 5). Among them, Fig. 4 is the crystal system from 

the MPED data set, the number of atoms in the primitive cell and the statistical results of 

elements, and Fig. 4(a) shows the distribution of seven crystal systems in the data set. 

Monoclinic system accounts for the highest proportion, 29.6%, corresponding to 

16101structures; Triclinic is the second, accounting for 26.4%, corresponding to 

14461structures; Orthorhombic system accounts for 19.4%, including 10858 structures; 

Tetragonal and Trigonal account for 7.5% (4100) and 7.5% (4077) respectively; Cubic and 

Hexagonal account for 6.9% (3721) and 2.5% (1361), respectively. The Fig. 4(b) is the 

distribution histogram of the number of atoms in the primitive cell. In general, the number 

of atoms in the primitive cell is widely distributed, and the structures with fewer atoms 

(less than 150) occupy the vast majority. With the increase of the number of atoms in the 

primitive cell, the occurrence frequency decreases significantly. Especially when the 

number of atoms in the primitive cell exceeds 250, the frequency decreases significantly, 

but there are still a few complex crystal structures with the number of atoms in the 

primitive cell approaching 444. The Fig. 4(c) shows the frequency distribution of 77 

elements in the data set. The horizontal axis contains all the elements in the data set, 

arranged from high to low frequency of occurrence, and the vertical axis is the number of 

occurrences of the corresponding elements. Among them, oxygen (O) has the highest 

frequency, which is significantly higher than other elements, indicating that oxides 

dominate the data set. Other common elements include lithium (Li), sulfur (S), magnesium 

(Mg), sodium (Na), iron (Fe), etc., which occur many times in the material. Rare gas 

elements such as xenon (Xe), krypton (Kr) and rhodium (Rh) have the lowest frequency of 

occurrence, indicating that these elements are only present in a very small number of 

materials. The distribution shows an obvious long tail effect, with the frequencies of most 

elements concentrated in the lower range, and only a few elements with very high 

frequencies. On the other hand, Fig. 5 is derived from the NED dataset. Fig. 5(a) data 

show that triclinic and monoclinic systems are dominant, while hexagonal systems are 

extremely rare. According to the Fig. 5(b), the number of atoms in the primitive cell of most 

materials is low, and the structure with the number of atoms between 3 and 40 is the main 

proportion. In Fig. 5(c), oxides dominate the material composition of the data set, with a 

few elements (such as oxygen and selenium) accounting for a significant proportion, while 

rare earth elements are less frequent. These two groups of charts intuitively show the 



distribution characteristics of materials in crystal structure, atomic number and chemical 

composition, which provide important statistical basis for further study of material 

properties. 

 

Figure 4.  Statistical analysis of predictive datasets from MPED: (a) The distribution of 7 

crystal systems, with monoclinic being the most common (16101 structures), followed by 

triclinic (14461 structures), while hexagonal is the least one (1361 structures); (b) 

distribution of range of number of atoms in the primitive cell (1–444 atoms) across the 

dataset; (c) elemental distribution that illustrates the frequency of 77 distinct elements. 

The dataset encompasses transition metals, main group elements, and rare earth 

elements, with oxygen showing the highest frequency. 



 

Figure 5.  Statistical analysis of predictive datasets from NED: (a) The distribution of 7 

crystal systems, with monoclinic being the most common (8063 structures), followed by 

triclinic (7491 structures), while hexagonal is the least one (779 structures); (b) distribution 

of the range of the number of atoms in the primitive cell (3–84 atoms) across the dataset; 

(c) elemental distribution illustrating the frequency of 76 distinct elements. The dataset 

encompasses transition metals, main group elements, and rare earth elements, with 

oxygen showing the highest frequency. 

3.3 Prediction of elastic properties. 

Furthermore, the CGCNN model was used to predict the shear modulus and bulk modulus 

of materials from MPED data set and NED data set respectively, and a large number of 

data related to elastic properties (such as Table A1 and Table A2) were obtained. The 

statistical distribution of shear modulus and bulk modulus of MPED data set and NED 

data set and the relationship between them are shown in Fig. 6 and Fig. 7, respectively, 

and the data characteristics are intuitively presented by scatter plot combined with 

marginal histogram. Through intuitive visualization, the distribution characteristics and 

correlation of shear modulus and bulk modulus in two different data sets are clearly 

presented, which provides an important reference for further analysis of the relationship 

between material properties. The horizontal axis of the scatter plot is the shear modulus, 

the vertical axis is the bulk modulus, and different crystal structures are distinguished by 

different colors. Specifically, Fig. 6(a) and Fig. 7(a) are the shear modulus and bulk 

modulus distributions of all materials, and Fig. 6(b) —(h) and Fig. 7(b) —(h) are triclinic, 

monoclinic, orthorhombic, trigonal, tetragonal, hexagonal, cubic, respectively, with 



symmetry from low to high. It can be seen from the scatter diagram that the shear strength 

and bulk modulus of the material are closely related, and when the shear strength of the 

material increases, its ability to resist compression will also increase synchronously. In 

addition, Fig. 6 and Fig. 7 also plot two lines of the B/G ratio, the Pugh ratio (B/G), which 

was considered in previous work to be related to the ductility of crystalline compounds, 

and further to the Poisson's ratio
[12]

. The bar chart shows the statistical distribution of the 

shear modulus and bulk modulus of the materials in each crystal system. The distributions 

show that the shear modulus and bulk modulus of most materials are concentrated in the 

region of 10 — 100 GPa. At the same time, it can be seen from the data distribution of 

each crystal system that the data points of high symmetry crystal systems (such as cubic 

system and hexagonal system) are more concentrated in the upper right area of the figure, 

showing higher shear modulus and bulk modulus. This result provides an important 

reference for further study of the correlation of material properties. Finally, for more data, 

please visit Datasethttps://doi.org/10.57760/sciencedb.j00213.00104. 

 

Figure 6.  Shear modulus and bulk modulus distributions of different materials in the 

MPED dataset: (a) Shear modulus vs. bulk modulus distributions for all materials, with 

different colors representing different crystal systems; (b) triclinic; (c) monoclinic; (d) 

orthorhombic; (e) trigonal; (f) tetragonal; (g) hexagonal; (h) cubic. The bar graphs show 

the statistical distribution of shear and bulk moduli for each crystal system material. 



 

Figure 7.  Distribution of moduli for various crystal structure materials in the NED dataset: 

(a) Overall shear modulus-bulk modulus distribution (color-coded by crystal system); (b) 

triclinic system; (c) monoclinic system; (d) orthorhombic system; (e) trigonal system; (f) 

tetragonal system; (g) hexagonal system; (h) cubic system. Bar charts illustrate the 

distribution of shear modulus and bulk modulus for materials in each crystal system. 

4. Conclusion 

Based on the CGCNN model, the elastic properties of materials are systematically trained, 

predicted and analyzed. Two elastic modulus models were trained based on CGCNN, and 

the shear modulus and bulk modulus of new materials discovered by
[38]

 such as MPED 

and Merchant were explored in depth, and finally a data set containing 80664 crystal 

elastic properties was formed. The results show that CGCNN can accurately capture the 

characteristics of the local chemical environment in the crystal structure, and predict the 

shear modulus and bulk modulus with high accuracy, in which the MAE value is less than 

13 and the     value is close to 1, which fully verifies the reliability and generalization 

ability of the model. 



Through the statistical analysis of the two prediction data sets, it is found that the 

proportion of low-symmetry crystal materials is higher, oxides dominate the chemical 

composition, the number of primitive cell atoms is mainly concentrated in the lower range, 

and the frequency of rare earth elements is significantly lower than that of common 

elements. These statistical results not only conform to the distribution characteristics of 

materials in nature, but also provide an important basis for further research. The 

visualization results of elastic modulus show that there is a significant positive correlation 

between shear modulus and bulk modulus, which reflects their coupling characteristics in 

physical properties. 

In order to enrich the elastic properties of materials, the physical parameters such as 

sound velocity, Poisson's ratio and Debye temperature are calculated based on the shear 

modulus and bulk modulus, which provides a basic support for the multi-dimensional 

study of material properties. The prediction results of elastic properties of more than 

80,000 stable material structures show that CGCNN is applicable and efficient on 

large-scale data sets, and provides a powerful tool for accelerating the discovery and 

optimization of new materials. Therefore, in this study, two CGCNN models of elastic 

modulus were trained, and the powerful ability of CGCNN in predicting the elastic 

properties of materials was proved. Combined with large-scale data analysis, the 

distribution law and physical correlation of material properties were revealed, which 

provided new research ideas and methods for the field of materials science. 
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Appendix. Summary Table of Structural Parameters and 

Physical Properties of Inorganic Crystal Materials in MPED 

and NED Data Sets 

Table A1 and Table A2 are the basic physical properties and predicted values of inorganic 

crystal materials from MPED and NED data sets, respectively (part). WhereN,ρ,V, 



andM are the number of atoms in the primitive cell, the density, the volume of the primitive 

cell, and the total mass of atoms, respectively;B andG are the predicted values of bulk 

modulus and shear modulus obtained by CGCNN network, respectively;    ,   , 

  , ,ν and θD  are the longitudinal sound velocity, the transverse sound velocity, the mean 

sound velocity, Poisson's ratio and Debye temperature, respectively, and can be obtained 

from (1)- (5). The complete data can be downloaded 

inhttps://doi.org/10.57760/sciencedb.j00213.00104. 

Table A1.  Fundamental physical properties (partial) and predicted values of inorganic 

crystalline materials from MPED datasets. The CIF files of these materials were obtained 

from the Materials Project. Here, ID-number and Formula represent the material ID and 

chemical formula, respectively. 

ID-number Formula N ρ V M B G υl υt υs ν θD 

mp-1000 BaTe 2 4.938 89.094 264.927 31.764 23.469 2180.121 3573.541 2407.744 0.204 160.498 

mp-10009 GaTe 8 5.1549 254.251 789.292 24.095 16.757 1802.955 3001.379 1994.276 0.218 93.722 

mp-1001012 Sc2ZnSe4 14 3.254 289.440 567.162 53.623 32.397 3155.374 5454.806 3502.473 0.249 157.640 

mp-1001015 Y2ZnS4 14 3.675 335.691 742.961 60.652 25.843 2651.771 5087.157 2967.069 0.314 127.104 

mp-1001016 Sc2ZnSe4 14 4.687 333.879 942.322 54.940 22.543 2193.172 4258.659 2455.876 0.320 105.395 

mp-1001019 MgSc2Se4 14 4.086 349.578 860.114 52.875 22.985 2371.850 4521.352 2652.741 0.310 112.113 

mp-1001021 Y2ZnSe4 14 4.811 385.950 1118.121 55.070 22.939 2183.662 4219.640 2444.462 0.317 99.958 

mp-1001023 BeC2 6 1.879 58.402 66.067 132.395 102.494 7386.608 11967.830 8148.016 0.192 625.248 

mp-1001024 Y2MgS4 14 3.173 345.765 660.753 56.994 26.037 2864.435 5375.943 3200.229 0.302 135.747 

mp-1001034 MgIn2Se4 14 5.031 376.146 1139.562 39.515 21.476 2066.136 3680.578 2299.251 0.270 94.830 

mp-1001069 Li48P16S61 125 1.743 2652.952 2784.713 19.812 7.267 2041.845 4114.028 2291.557 0.337 49.283 

mp-1001079 LiC2N2 10 1.505 130.116 117.952 56.823 20.405 3681.742 7471.454 4133.696 0.340 242.869 

mp-10013 SnS 2 3.596 69.620 150.775 17.613 5.617 1249.772 2642.016 1406.249 0.356 101.772 

mp-1001594 C4O3 84 1.656 1155.735 1152.492 19.101 12.904 2791.530 4682.464 3090.023 0.224 87.663 

mp-1001604 LuTlS2 4 7.377 99.825 443.480 49.490 20.396 1662.754 3224.127 1861.754 0.319 119.486 

mp-1001611 LuTlSe2 4 8.001 111.508 537.270 43.737 22.793 1687.844 3043.848 1880.122 0.278 116.295 

mp-1001780 LuCuS2 4 6.522 77.056 302.643 74.239 35.316 2327.021 4313.132 2597.493 0.295 181.731 

mp-1001786 LiScS2 4 2.700 71.362 116.027 58.972 36.372 3670.409 6309.130 4072.100 0.244 292.285 

mp-1001790 LiO3 4 2.130 42.828 54.939 46.463 28.415 3652.317 6292.720 4052.874 0.246 344.878 

mp-1001831 LiB 4 2.099 28.090 35.504 111.075 134.490 8004.910 11762.661 8727.079 0.069 854.731 
 

 



Table A2.  Basic physical properties and predicted values of inorganic crystalline 

materials (part) from NED datasets. Here, Filename represents the file name. 

 

Filename N ρ V M G B υl υt υs ν θD 

FIrS 3 7.798 51.805 243.280 28.413 54.027 3433.128 1908.824 2125.825 0.276 244.862 

AuGeP 3 7.381 67.619 300.580 23.064 55.970 3427.627 1767.655 1979.213 0.319 208.603 

GdHO 3 7.384 39.190 174.257 62.945 113.409 5169.778 2919.774 3247.588 0.266 410.537 

LiPrPtSn 4 9.285 82.565 461.643 31.112 78.216 3590.578 1830.554 2051.127 0.324 222.617 

ErLiPdSn 4 8.792 75.424 399.330 36.874 81.235 3851.257 2047.962 2288.361 0.303 255.968 

BaBiHgNa 4 6.817 138.827 569.887 11.187 24.989 2419.500 1281.048 1431.855 0.305 130.688 

BeGeHLa 4 5.801 63.421 221.566 49.688 90.981 5206.069 2926.621 3256.448 0.269 385.920 

AlHKSb 4 3.004 104.402 188.848 14.352 23.461 3765.877 2185.915 2425.631 0.246 243.454 

EuHgNaSb 4 7.135 115.739 497.304 15.654 30.762 2690.122 1481.228 1650.873 0.282 160.097 

LiNiSmSn 4 7.617 72.963 334.704 36.441 70.798 3958.873 2187.199 2437.061 0.280 275.632 

DyLiPdSn 4 8.557 76.573 394.571 35.786 81.074 3879.627 2045.067 2286.509 0.308 254.475 

N2SSe2 5 2.175 166.436 217.998 2.459 2.521 1632.981 1063.352 1165.878 0.132 107.904 

LiNaSe2Zn 5 3.916 107.396 253.260 17.754 31.924 3767.961 2129.286 2368.236 0.265 253.647 

BrGeLa2Rh 5 6.436 137.585 533.260 27.302 50.532 3675.249 2059.620 2292.318 0.271 226.057 

CsHgNaS2 5 4.774 146.289 420.615 9.852 18.449 2572.057 1436.510 1599.245 0.273 154.518 

AlAs2CsMg 5 3.863 143.606 334.035 20.025 28.181 3769.434 2276.944 2517.185 0.213 244.713 

Br2GeSmY 5 4.803 163.091 471.714 19.469 32.496 3488.675 2013.383 2235.315 0.250 208.287 

As2Ca2Sr 5 3.392 155.481 317.619 28.093 37.392 4697.360 2877.774 3176.871 0.200 300.774 

KLiMnTe2 5 3.860 153.218 356.177 12.890 26.438 3361.705 1827.331 2038.601 0.290 193.953 

Al2C2Yb 5 6.426 64.862 251.024 88.642 125.838 6162.150 3713.927 4106.697 0.215 520.350 
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