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Abstract

Inorganic crystal materials have shown extensive application potential in many fields due
to their excellent physical and chemical properties. Elastic properties, such as shear
modulus and bulk modulus, play an important role in predicting the electrical conductivity,
thermal conductivity and mechanical properties of materials. However, the traditional
experimental measurement method has some problems such as high cost and low
efficiency. With the development of computational methods, theoretical simulation has
gradually become an effective alternative to experiments. In recent years, graph neural
network-based machine learning methods have achieved remarkable results in predicting
the elastic properties of inorganic crystal materials, especially, crystal graph convolutional
neural networks (CGCNNSs), which perform well in the prediction and expansion of
material data.In this study, two CGCNN models are trained by using the shear modulus

and bulk modulus data of 10987 materials collected in the Matbench v0.1 dataset. These
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models show high accuracy and good generalization ability in predicting shear modulus
and bulk modulus. The mean absolute error (MAE) is less than 13 and the coefficient of
determination (R?) is close to 1. Then, two datasets are screened for materials with a band
gap between 0.1 and 3.0 eV and the compounds containing radioactive elements are
excluded. The dataset consists of two parts: the first part is composed of 54359 crystal
structures selected from the Materials Project database, which constitute the MPED
dataset; the second part is the 26305 crystal structures discovered by Merchant et al.
(2023 Nature 624 80) through deep learning and graph neural network methods, which
constitute the NED dataset. Finally, the shear modulus and bulk modulus of 80664
inorganic crystals are predicted in this study This work enriches the existing material
elastic data resources and provides more data support for material design. All the data
presented in this paper are openly available
at https://doi.org/10.57760/sciencedb.j00213.00104.
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1. Introduction

Due to their unique physical and chemical properties, inorganic crystal materials have

shown great potential applications in many fields, such as electronic™? |34

| [8]

, optica
thermal®™ and mechanical®®”. Their elastic properties (such as bulk modulus (B) and shear
modulus (G)) play a key role in predicting physical properties such as electrical
conductivity®®, thermal conductivity®*” and mechanical properties™™. For example, since
the study of Pugh™*? in the 1950s, the ratio of bulk modulus to shear modulus has become
an important indicator for understanding and predicting the ductility of materials®**".
Therefore, the elastic data of inorganic crystal materials are very important to predict the
properties of materials, and provide important basic data for the performance optimization

of functional materials (such as pyroelectric, piezoelectric, ferroelectric materials).

However, the traditional experimental measurement methods have some limitations in
obtaining the elastic modulus of inorganic crystal materials, such as high cost and long
cycle. With the improvement of computing power and calculation methods, the cost of

experimental measurement can be alleviated by theoretical simulation. For example, the



stress-strain analysis method based on density functional theory (DFT)™is®*% which
accurately predicts the mechanical properties of materials by solving their electronic
structure. Another common simulation method is molecular dynamics (MD) simulation®®”,
which simulates the energy, atomic displacement and atomic force of materials through
classical model/machine learning potential function, so as to estimate the mechanical
properties such as elastic modulus. In addition, meso-scale Monte Carlo simulation
(MC)® and macro-scale finite element analysis (FEA)? can also be used as effective
simulation tools. The former is suitable for studying the statistical properties of systems,
while the latter can simulate large-scale complex structures and components. The data
obtained by these simulation methods are close to the experimental measurements, but
they usually face high computational cost and cycle time when dealing with large-scale
data. Therefore, how to improve the computational efficiency while ensuring the prediction
accuracy has become a core issue to be solved urgently. The rapid development of
artificial intelligence (Al) and machine learning technologies has made it possible to obtain
more data on the elastic properties of inorganic crystalline materials®?¥ and has

provided a more efficient alternative to traditional simulation methods.

Data-driven approach has become an effective way to expand the material space®, but
obtaining high-quality and large amounts of data remains a challenge. In recent years, it
has been found that many machine learning models have shown good results in
predicting the elastic properties of crystal structures, among which the crystal graph
convolutional neural networks (CGCNN) proposed by Xie and Grossman crystal graph
convolutional neural networks has attracted much attention. This model can effectively
convert crystal information into graph information, further process graph structure data,
capture complex mapping relationships between nodes, improve feature learning ability,
and predict material properties. Inspired by CGCNN, several graph neural network models
have emerged, such as orbital graph convolutional neural network (orbital graph
convolutional neural network, OGCNN) atomic line graph neural network, atomic graph
neural network (atomic line graph neural network, ALIGNN) graph attention network graph
neural network, graph attention map neural network (graph attention network graph neural
network, GATGNN) connection optimized crystal graph network, connection-optimized
crystal graph network (connection optimized crystal graph network, coGN) and its
extended version (connection op Ti®®. How to choose a model that still maintains good
generalization outside the training set among many graph convolution model frameworks?
A recent study provides us with inspiration. Omee et al.®" evaluated the performance of
eight graph neural network (GNN) models on five out-of-distribution (OOD) test sets. The
results specifically for elastic datasets show that the CGCNN model in LOCO
(leave-one-cluster-out) and SparseXsingle (single-point targets with the lowest structure)

In the density test, the minimum mean absolute error (MAE) was achieved, and the



performance on different datasets was stable and accurate. This indicates that the
CGCNN model has excellent generalization ability and the ability to discover and explore
outliers outside the dataset.

Although some progress has been made in the elastic modulus database, since 2015, de
Jong® and others have designed a high-throughput first-principles calculation method
based on experimental data and first-principles calculation, systematically studied the
elastic constants of thousands of inorganic crystal materials, and constructed a detailed
elastic property database. In addition, foreign mainstream databases such as Materials
Project 10000 contain elastic constant data of more than 10000 materials; The
AFLOW®4 provides elastic data for about 6000 inorganic materials; The OQMD (open
quanum materials database)® covers information on about 4,000 materials. However,
there are relatively few databases in China. Although the Atomly®® database contains a
large number of material data, the elastic data of inorganic crystals still account for a small
part of them. Therefore, it is necessary to establish a data set of elastic properties of

inorganic crystal-rich materials.

In this paper, 10987 crystal structures with bulk modulus and shear modulus and their
corresponding properties were collected, and two CGCNN models for elastic modulus
were trained. Based on the pre-trained CGCNN models, the elastic moduli of the collected
inorganic crystal structures were predicted, and the elastic modulus data set of the whole
material space was expanded. The flow is roughly as follows: Using the bulk modulus and
shear modulus data set®” containing 10987 material entries collected from the Materials
Project in Matbench v0.1, two CGCNN models mapped from crystallographic information
files (CIF) to bulk modulus and shear modulus are trained. Because too large band gap
will lead to poor conductivity, and radioactive elements are harmful to human body, we
further screened the collected data without modulus information. The screening standard
is that the band gap is between 0.1 and 3.0 eV, and the simple substances and
compounds containing radioactive elements are excluded. The data of predicted crystal
structures mainly come from the following two parts: 1) the crystal structures obtained
from the Materials Project Materials Project elastic dataset database, a total of 54359
materials are selected, and the dataset composed of these crystal structures is recorded
as the Materials Project elastic dataset (MPED) dataset; 2) Merchant et al. 26305 found
26305 crystal structures through deep learning and graph neural network (GNN), and the
data set composed of these crystal structures is denoted as nature elastic dataset (NED).
Finally, the bulk modulus and shear modulus of 80664 inorganic crystal structures are
predicted, which enriches the existing elastic data resources to a certain extent, and
provides more data support for the design and optimization of functional materials.



2. Method

2.1 Data acquisition

Matbench _ v1.0 test set®” contains 13 different material properties, and the data can be
downloaded through python's matminer package. This paper uses two data sets from this
dataset, collected from the Materials Project database, which deal specifically with elastic
properties: "matbench _ log _ gvrh" (for predicting DFT log10 vrh average shear modulus
from structure) and "matbench _ log _ kvrh" (for predicting DFT log10 vrh average bulk
modulus from structure), both of which contain the same material entries, 10987, The aim
is to predict the shear modulus (G) and bulk modulus (B) through the Voigt-Russ-Hill
(VRH) averaging method.Because of the standardization and comprehensiveness of
these data sets, they are ideal for training machine learning models to predict key

resilience characteristics.

Acquiring high-throughput data sets can be challenging. However, recent advances in
machine learning have given a big boost to the discovery of stable materials. Merchant et
al.® use deep learning and graph neural networks (GNN) to expand the scope of
materials discovery, especially the study of inorganic crystals. Their work expands the
range of known material by adding 381000 new entries to the convex hull, a tenfold
increase over the previous dataset. We accessed their dataset via
GitHub:https://github.com/google-deepmind/materials_discovery. The library's "by

composition" folder contains 377221 valid CIF files that are compatible with CGCNN. In
addition, a summary CSV file containing band gap, crystal symmetry, and decomposition
energy data is provided. These materials include two to six elements with atomic numbers
ranging from 2 to 106. Among them, we screened out 30199 stable structures with band
gaps between 0.1 and 3.0 eV, which is reduced to 26305 after excluding radioactive
elements harmful to human body. On the other hand, other data from the Materials Project
further supplement these data sets and support targeted retrieval of material properties
through open source APIs, Specifically, by screening structures with energy gaps ranging
from 0.1 to 3.0 eV and free of radioactive elements, 54,359 different structures were
obtained. Overall, 80664 stable structures were obtained, and these resources provide a

solid foundation for high-throughput computation and analysis.

2.2 Crystal graph convolutional neural networks

As shown in Fig. 1, CGCNN maps the crystal structure into a graph representation, where
nodes represent atoms (atomic properties are encoded using 92-dimensional one-hot

vectors) and edges represent chemical bonds between atoms (atomic distances are



treated by Gaussian expansion). For multi-body structure information, the model directly
encodes the bond length information, while the bond angle and dihedral angle are not
explicitly represented, but are implicitly learned through the message passing mechanism
of multi-layer graph convolution. Each convolution layer uses a nonlinear function to fuse
the features of the current node, the features of adjacent nodes and the features of
connecting edges, and updates the node representation, so as to gradually capture more
complex local structure information; The long-range interaction is obtained by setting the
appropriate truncation radius and the iterative pass of multi-layer convolution. For the
symmetry breaking caused by local distortion (such as Jahn-Teller effect), CGCNN can
effectively capture these structural distortions by accurately recording the local
coordination environment of each atom and combining with the nonlinear transformation
ability of the graph convolution layer. Finally, the model integrates all atomic features into
a crystal representation through a global pooling operation, which not only maintains the
integrity of local structural information, but also effectively expresses the global structural
features. This hierarchical feature extraction mechanism enables CGCNN to accurately
describe the essential characteristics of crystal materials while maintaining the simplicity

of the model.
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Figure 1. lllustration of the crystal graph convolutional neural networks: (a) Construction
of the crystal graph. Crystals are converted to graphs with nodes representing atoms in
the unit cell and edges representing atom connections. Nodes and edges are
characterized by vectors corresponding to the atoms and bonds in the crystal, respectively.
(b) Structure of the convolutional neural network on top of the crystal
graph. R convolutional layers and L; hidden layers are built on top of each node,
resulting in a new graph with each node representing the local environment of each atom.
After pooling, a vector representing the entire crystal is connected to L, hidden layers,
followed by the output layer to provide the prediction®®®.

Three convolutional layers are designed in this paper. Each convolutional layer first
collects information about neighboring atoms, central atoms, and bonds, and stitches

these features together. The features are then passed through a fully connected layer and



regulated using a Sigmoid gating mechanism, and finally transformed nonlinearly using a
softplus activation function. Next, the atomic-level information is aggregated to the crystal
level through a pooling layer, and a conversion layer is connected to convert the
convolutional features into fully-connected layer features. Finally, the model is connected
to two fully connected hidden layers to further extract features. Because the elastic
properties are closely related to the crystal structure, the CGCNN model can effectively
capture the key features of the crystal structure, so it can be directly used to predict the
elastic properties from the crystal structure. It is worth mentioning that there are also some

works that predict the modulus in a more accurate way™’

. In order to improve the
convergence of the model, the (adaptive moment estimation Adam) optimization method
is used, and the initial learning rate is set to 0.001. Adam combines the advantages of
momentum and (root mean square propagation RMSProp), and dynamically adjusts the
learning rate by calculating the first moment (mean) and the second moment (uncentered
variance) of the gradient, which is insensitive to the initial learning rate. Finally, the mean
absolute error (MAE) of the model on the test set is 0.0981 log,, (GPa) for shear modulus
and 0.0790 log,, (GPa) for bulk modulus, which verifies its prediction accuracy. In order to
further optimize the model, the number of training iterations, the number of convolutional
layers and the number of hidden layers were manually adjusted based on the Adam
optimizer, and the model with the best performance on the validation set was selected.
The final model was determined by calculating the MAE and R’ scores on the training,
validation and test sets. Finally, more information about this section can be found in the

Supplementary Material (https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.74.20250127).

2.3 Elastic property

Jia et al.*” proposed a method to accurately estimate other elastic properties (such as
Poisson's ratio, sound velocity, etc.) Of materials from the bulk modulus (B) and shear
modulus (G), which is more efficient and has a shorter period than experimental
measurements. Therefore, when the bulk modulus (B) and shear modulus (G) of the
material are obtained, the other elastic properties can be estimated. However, the
CGCNN model can accurately predict the bulk modulus (B) and shear modulus (G) of
materials. Therefore, based on the basic physical quantities (such as density) in the
MPED data set and NED data set, combined with the above methods, a series of physical
guantities such as elastic properties and sound velocity can be estimated. The specific

calculation method is as follows! Y

v = /[B + (4/3)G]/p, (1)

vy =+/G/p, (2)
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Where v, vy, and vg are the longitudinal, transverse, and mean sound velocities,
respectively, and p is the material density.In addition, it has been shown that Poisson's
ratio (v) can be obtained as"“**¥ from:

x?-2

V=" (4)

T o2x2-2

Where X is the ratio of the longitudinal speed of sound to the transverse speed of sound,
i.e x = /v.

Previous studies have shown that the Debye temperature fp is proportional to the
average sound velocity vg , so the Debye temperature can be calculated from the elastic

modulus®**:
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Where his the reduced Planck constant, vs is the average speed of sound, kg is
Boltzmann's constant, N represents the number of atoms within a primitive cell, and V is

the primitive cell volume.

2.4 Machine Learning Performance Evaluation Metrics

In machine learning, the mean absolute error MAE and the coefficient of
determination R? are commonly used measures to evaluate the performance of a
regression model. MAE measures the average magnitude of prediction error and is

defined as follows:

1 A
MAE =301 | yi = yil, (6)

Where y; is the actual value and y; of determination is the predicted value. The smaller

the MAE value is, the higher the prediction accuracy of the model is. In addition, the
specific calculation formula of the coefficient of determination R? is

I, 0iv)?
R* =14 ——= 7
Z?:l (yi_y)z’ ( )



Where Yy represents the average of the actual values. The closer the R? isto 1, the better

the model fits.

3. Result

3.1 CGCNN model evaluation

In a previous study, Wang et al."* found that radial basis function neural networks (RBF)
had better predictive ability than back propagation neural networks (BP) by applying
machine learning design strategies to the development of high-strength aluminum-lithium
alloys. To illustrate the advantages of CCGCNN, this paper compares the performance of
CGCNN with other machine learning models, such as random forest, extreme gradient
boosting (XGBoost), support vector regression (SVR), gradient noosting, and decision
tree. In order to maintain the correlation with the crystal structure, the average atomic
number, average atomic mass, average electronegativity, space group number, density
and volume per atom of the primitive cell are selected as the characteristics to construct
the model. The Fig. 2 shows the performance of the six models in predicting the shear
modulus (G) and the bulk modulus (B). Where Fig. 2(a) and Fig. 2(b) show the mean
absolute error (MAE) and the coefficient of determination (R?) of the shear modulus model,
respectively, and Fig. 2(c)and Fig. 2(d) show the MAE and the -coefficient of
determination (R®) of the predicted bulk modulus model, respectively. Because the
performance of the model in the validation set and the test set can evaluate its
generalization ability outside the training set, because this paper uses the mean of MAE
and R? of the validation set and the test set to evaluate the performance of the model, in
the figure, MAE is arranged from small to large according to the mean, and R? is arranged
from large to small according to the mean. The results show that the CGCNN model
shows lower MAE and higher R? on both the validation set and the test set, indicating that

it has higher accuracy and reliability in predicting shear modulus and bulk modulus.
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Figure 2. Mean absolute error (MAE) and coefficient of determination (R?) for the training
set (Train), validation set (Val), and test set (Test) of shear modulus ((a), (b)) and bulk
modulus ((c), (d)) in crystal graph convolutional neural network (CGCNN), random forest
(RF), extreme gradient boosting (XGBoost), support vector regression (SVR), gradient
boosting (GB), and decision tree (DT).

Furthermore, the model in this paper is evaluated. 10987 data in Matbench v0.1°" are
divided into training set, validation set and test set to train the model. The 10987 is the
results of the training set, validation set and test set of the elastic modulus of the trained
CGCNN model. From the Fig. 3(a) and Fig. 3(b), it can be seen that the model performs
better in the training set, and the DFT calculation results are close to the output results of
the model, which indicates that there is a high linear correlation between the model
prediction results and the DFT calculation results. The R? of shear modulus and bulk
modulus are 0.936 and 0.880, respectively, and both have low MAE, not exceeding 11,
indicating that the model performs well on the training set. And Fig. 3(a) are similar to Fig.
3(b),Fig. 3(c) and Fig. 3(d),Fig. 3(e) and Fig. 3(f) are the results of validation set and test
set respectively, MAE and R? are slightly inferior to the results of training set and are
more reasonable. This is because the model can fit the data more accurately on the
training set, and the results of the test set show that the model has certain generalization
ability, but there are prediction errors on some samples. Through the comparative

analysis of the training set, validation set and test set, it can be seen that the model has a



good fitting effect on the training set, and still has a high prediction accuracy and reliability

on the test set.
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Figure 3. Comparison between the volume modulus and shear modulus predicted by
CGCNN model and the calculated values of DFT. (a) and (b), (c) and (d), (e) and (f) are
the results in the train set, validation set, and test set, respectively.

3.2 Information statistics of forecasting data set

Section3.1 has demonstrated the excellent performance of CGCNN in predicting shear
and bulk moduli. Based on this, the model is applied to a larger dataset, including 54359
materials from the MPED dataset and 26305 materials screened from the NED dataset™®.
The predicted data set was statistically analyzed in detail, and the main purpose was to
verify the representativeness of the data through the crystal system distribution
(containing 70 + elements and 7 major crystal systems), atomic configuration and
composition characteristics, and to find that the characteristics of low symmetry crystal
system (monoclinic/triclinic) with high proportion and oxide dominance are in line with the
laws of materials science; It reveals some structural characteristics, such as high
proportion of low symmetry crystal system (monoclinic/triclinic), oxide dominance, etc.,
which are in line with the laws of materials science and have a small amount of complex
structures. It should be noted that although the data set has significant advantages in the
characterization of material composition and structure, the lack of key mechanical
parameters (such as shear modulus G, bulk modulus B) limits its deep application.
Therefore, through the establishment of physical property prediction model, the missing

parameters were systematically supplemented, and the application dimension of the data



set was effectively expanded. In addition, this paper discloses statistical details such as
element frequency table and crystal system distribution map, through which researchers
can quickly locate target samples (such as specific elements or crystal system materials)
and significantly reduce the cost of data screening.

Specifically, the number of atoms and the number of occurrences of elements in the
primitive cell of the crystal system in the MPED and NED data sets are depicted by
statistical maps (such as Fig. 4 and Fig. 5). Among them, Fig. 4 is the crystal system from
the MPED data set, the number of atoms in the primitive cell and the statistical results of
elements, and Fig. 4(a) shows the distribution of seven crystal systems in the data set.
Monoclinic system accounts for the highest proportion, 29.6%, corresponding to
16101structures; Triclinic is the second, accounting for 26.4%, corresponding to
14461structures; Orthorhombic system accounts for 19.4%, including 10858 structures;
Tetragonal and Trigonal account for 7.5% (4100) and 7.5% (4077) respectively; Cubic and
Hexagonal account for 6.9% (3721) and 2.5% (1361), respectively. The Fig. 4(b) is the
distribution histogram of the number of atoms in the primitive cell. In general, the number
of atoms in the primitive cell is widely distributed, and the structures with fewer atoms
(less than 150) occupy the vast majority. With the increase of the number of atoms in the
primitive cell, the occurrence frequency decreases significantly. Especially when the
number of atoms in the primitive cell exceeds 250, the frequency decreases significantly,
but there are still a few complex crystal structures with the number of atoms in the
primitive cell approaching 444. The Fig. 4(c) shows the frequency distribution of 77
elements in the data set. The horizontal axis contains all the elements in the data set,
arranged from high to low frequency of occurrence, and the vertical axis is the number of
occurrences of the corresponding elements. Among them, oxygen (O) has the highest
frequency, which is significantly higher than other elements, indicating that oxides
dominate the data set. Other common elements include lithium (Li), sulfur (S), magnesium
(Mg), sodium (Na), iron (Fe), etc., which occur many times in the material. Rare gas
elements such as xenon (Xe), krypton (Kr) and rhodium (Rh) have the lowest frequency of
occurrence, indicating that these elements are only present in a very small number of
materials. The distribution shows an obvious long tail effect, with the frequencies of most
elements concentrated in the lower range, and only a few elements with very high
frequencies. On the other hand, Fig. 5 is derived from the NED dataset. Fig. 5(a) data
show that triclinic and monoclinic systems are dominant, while hexagonal systems are
extremely rare. According to the Fig. 5(b), the number of atoms in the primitive cell of most
materials is low, and the structure with the number of atoms between 3 and 40 is the main
proportion. In Fig. 5(c), oxides dominate the material composition of the data set, with a
few elements (such as oxygen and selenium) accounting for a significant proportion, while

rare earth elements are less frequent. These two groups of charts intuitively show the



distribution characteristics of materials in crystal structure, atomic number and chemical

composition, which provide important statistical basis for further study of material
properties.
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Figure 4. Statistical analysis of predictive datasets from MPED: (a) The distribution of 7
crystal systems, with monoclinic being the most common (16101 structures), followed by
triclinic (14461 structures), while hexagonal is the least one (1361 structures); (b)
distribution of range of number of atoms in the primitive cell (1-444 atoms) across the
dataset; (c) elemental distribution that illustrates the frequency of 77 distinct elements.
The dataset encompasses transition metals, main group elements, and rare earth
elements, with oxygen showing the highest frequency.
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Figure 5. Statistical analysis of predictive datasets from NED: (a) The distribution of 7
crystal systems, with monoclinic being the most common (8063 structures), followed by
triclinic (7491 structures), while hexagonal is the least one (779 structures); (b) distribution
of the range of the number of atoms in the primitive cell (3—84 atoms) across the dataset;
(c) elemental distribution illustrating the frequency of 76 distinct elements. The dataset
encompasses transition metals, main group elements, and rare earth elements, with
oxygen showing the highest frequency.

3.3 Prediction of elastic properties.

Furthermore, the CGCNN model was used to predict the shear modulus and bulk modulus
of materials from MPED data set and NED data set respectively, and a large number of
data related to elastic properties (such as Table Al and Table A2) were obtained. The
statistical distribution of shear modulus and bulk modulus of MPED data set and NED
data set and the relationship between them are shown in Fig. 6 and Fig. 7, respectively,
and the data characteristics are intuitively presented by scatter plot combined with
marginal histogram. Through intuitive visualization, the distribution characteristics and
correlation of shear modulus and bulk modulus in two different data sets are clearly
presented, which provides an important reference for further analysis of the relationship
between material properties. The horizontal axis of the scatter plot is the shear modulus,
the vertical axis is the bulk modulus, and different crystal structures are distinguished by
different colors. Specifically, Fig. 6(a) and Fig. 7(a) are the shear modulus and bulk
modulus distributions of all materials, and Fig. 6(b) —(h) and Fig. 7(b) —(h) are ftriclinic,

monoclinic, orthorhombic, trigonal, tetragonal, hexagonal, cubic, respectively, with



symmetry from low to high. It can be seen from the scatter diagram that the shear strength
and bulk modulus of the material are closely related, and when the shear strength of the
material increases, its ability to resist compression will also increase synchronously. In
addition, Fig. 6 and Fig. 7 also plot two lines of the B/G ratio, the Pugh ratio (B/G), which
was considered in previous work to be related to the ductility of crystalline compounds,
and further to the Poisson's ratio™™?. The bar chart shows the statistical distribution of the
shear modulus and bulk modulus of the materials in each crystal system. The distributions
show that the shear modulus and bulk modulus of most materials are concentrated in the
region of 10 — 100 GPa. At the same time, it can be seen from the data distribution of
each crystal system that the data points of high symmetry crystal systems (such as cubic
system and hexagonal system) are more concentrated in the upper right area of the figure,
showing higher shear modulus and bulk modulus. This result provides an important
reference for further study of the correlation of material properties. Finally, for more data,
please visit Datasethttps://doi.org/10.57760/sciencedb.j00213.00104.
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Figure 6. Shear modulus and bulk modulus distributions of different materials in the
MPED dataset: (a) Shear modulus vs. bulk modulus distributions for all materials, with
different colors representing different crystal systems; (b) triclinic; (c) monoclinic; (d)
orthorhombic; (e) trigonal; (f) tetragonal; (g) hexagonal; (h) cubic. The bar graphs show
the statistical distribution of shear and bulk moduli for each crystal system material.
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Figure 7. Distribution of moduli for various crystal structure materials in the NED dataset:
(a) Overall shear modulus-bulk modulus distribution (color-coded by crystal system); (b)
triclinic system; (c) monoclinic system; (d) orthorhombic system; (e) trigonal system; (f)
tetragonal system; (g) hexagonal system; (h) cubic system. Bar charts illustrate the
distribution of shear modulus and bulk modulus for materials in each crystal system.

4. Conclusion

Based on the CGCNN model, the elastic properties of materials are systematically trained,
predicted and analyzed. Two elastic modulus models were trained based on CGCNN, and
the shear modulus and bulk modulus of new materials discovered by such as MPED
and Merchant were explored in depth, and finally a data set containing 80664 crystal
elastic properties was formed. The results show that CGCNN can accurately capture the
characteristics of the local chemical environment in the crystal structure, and predict the
shear modulus and bulk modulus with high accuracy, in which the MAE value is less than
13 and the R? value is close to 1, which fully verifies the reliability and generalization

ability of the model.



Through the statistical analysis of the two prediction data sets, it is found that the
proportion of low-symmetry crystal materials is higher, oxides dominate the chemical
composition, the number of primitive cell atoms is mainly concentrated in the lower range,
and the frequency of rare earth elements is significantly lower than that of common
elements. These statistical results not only conform to the distribution characteristics of
materials in nature, but also provide an important basis for further research. The
visualization results of elastic modulus show that there is a significant positive correlation
between shear modulus and bulk modulus, which reflects their coupling characteristics in
physical properties.

In order to enrich the elastic properties of materials, the physical parameters such as
sound velocity, Poisson's ratio and Debye temperature are calculated based on the shear
modulus and bulk modulus, which provides a basic support for the multi-dimensional
study of material properties. The prediction results of elastic properties of more than
80,000 stable material structures show that CGCNN is applicable and efficient on
large-scale data sets, and provides a powerful tool for accelerating the discovery and
optimization of new materials. Therefore, in this study, two CGCNN models of elastic
modulus were trained, and the powerful ability of CGCNN in predicting the elastic
properties of materials was proved. Combined with large-scale data analysis, the
distribution law and physical correlation of material properties were revealed, which

provided new research ideas and methods for the field of materials science.
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Appendix. Summary Table of Structural Parameters and
Physical Properties of Inorganic Crystal Materials in MPED
and NED Data Sets

Table Al and Table A2 are the basic physical properties and predicted values of inorganic

crystal materials from MPED and NED data sets, respectively (part). WhereN,p,V,



andM are the number of atoms in the primitive cell, the density, the volume of the primitive
cell, and the total mass of atoms, respectively;B andG are the predicted values of bulk
modulus and shear modulus obtained by CGCNN network, respectively; v;, v,
Vg, ,v and 6D are the longitudinal sound velocity, the transverse sound velocity, the mean
sound velocity, Poisson's ratio and Debye temperature, respectively, and can be obtained
(1)- (5). The be

inhttps://doi.org/10.57760/sciencedb.j00213.00104.

Table A1l. Fundamental physical properties (partial) and predicted values of inorganic
crystalline materials from MPED datasets. The CIF files of these materials were obtained
from the Materials Project. Here, ID-number and Formula represent the material ID and

from complete data can downloaded

chemical formula, respectively.

ID-number Formula N p v M B G vl ut us v gD
mp-1000 BaTe 2 4938 89.094 264.927 31.764 23.469 2180.121 3573.541 2407.744 0.204 160.498
mp-10009  GaTe 8 5.1549254.251 789.292 24.095 16.757 1802.955 3001.379 1994.276 0.218 93.722
mp-1001012 Sc,ZnSe, 14 3.254 289.440 567.162 53.623 32.397 3155.374 5454.806 3502.473 0.249 157.640
mp-1001015 Y,ZnS, 14 3.675 335.691 742.961 60.652 25.843 2651.771 5087.157 2967.069 0.314 127.104
mp-1001016 Sc,ZnSe, 14 4.687 333.879 942.322 54.940 22.543 2193.172 4258.659 2455.876 0.320105.395
mp-1001019 MgSc,Se, 14 4.086 349.578 860.114 52.875 22.985 2371.850 4521.352 2652.741 0.310112.113
mp-1001021 Y,ZnSe, 14 4.811 385.950 1118.121 55.070 22.939 2183.662 4219.640 2444.462 0.317 99.958
mp-1001023 BeC, 6 1.879 58.402 66.067 132.395 102.494 7386.608 11967.830 8148.016 0.192 625.248
mp-1001024 Y,MgS, 14 3.173 345.765 660.753 56.994 26.037 2864.435 5375.943 3200.229 0.302 135.747
mp-1001034 Mglin,Se, 14 5.031 376.146 1139.562 39.515 21.476 2066.136 3680.578 2299.251 0.27094.830
mp-1001069 LiggP16Ss; 1251.743 2652.952 2784.713 19.812 7.267 2041.845 4114.028 2291.557 0.337 49.283
mp-1001079 LiC,N, 10 1.505 130.116 117.952 56.823 20.405 3681.742 7471.454 4133.696 0.340 242.869
mp-10013  SnS 2 3.596 69.620 150.775 17.613 5.617 1249.772 2642.016 1406.249 0.356 101.772
mp-1001594 C,0; 84 1.656 1155.735 1152.492 19.101 12.904 2791.530 4682.464 3090.023 0.224 87.663
mp-1001604 LuTIS, 4 7.377 99.825 443.480 49.490 20.396 1662.754 3224.127 1861.754 0.319 119.486
mp-1001611 LuTISe, 4 8.001 111.508 537.270 43.737 22.793 1687.844 3043.848 1880.122 0.278 116.295
mp-1001780 LuCuS, 4 6.522 77.056 302.643 74.239 35.316 2327.021 4313.132 2597.493 0.295 181.731
mp-1001786 LiScS, 4 2700 71362 116.027 58.972 36.372 3670.409 6309.130 4072.100 0.244 292.285
mp-1001790 LiO, 4 2130 42.828 54939 46.463 28.415 3652.317 6292.720 4052.874 0.246 344.878
mp-1001831 LiB 4 2.099 28.090 35.504 111.075 134.490 8004.910 11762.661 8727.079 0.069 854.731




Table A2. Basic physical properties and predicted values of inorganic crystalline
materials (part) from NED datasets. Here, Filename represents the file name.

Filename Np v M G B vl ut us v eD

FIrS 37.798 51.805 243.280 28.413 54.027 3433.128 1908.824 2125.825 0.276 244.862
AuGeP 37381 67.619 300.580 23.064 55.970 3427.627 1767.655 1979.213 0.319 208.603
GdHO 3 7.384 39.190 174.257 62.945 113.409 5169.778 2919.774 3247.588 0.266 410.537

LiPrPtSn 4 9.285 82.565 461.643 31.112 78.216 3590.578 1830.554 2051.127 0.324 222.617
ErLiPdSn 4 8.792 75.424  399.330 36.874 81.235 3851.257 2047.962 2288.361 0.303 255.968
BaBiHgNa 4 6.817 138.827 569.887 11.187 24.989  2419.500 1281.048 1431.855 0.305 130.688
BeGeHLla 45801 63.421 221.566 49.688 90.981 5206.069 2926.621 3256.448 0.269 385.920
AIHKSb 4 3.004 104.402 188.848 14.352 23.461 3765.877 2185.915 2425.631 0.246 243.454
EuHgNaSb 4 7.135 115.739 497.304 15.654 30.762  2690.122 1481.228 1650.873 0.282 160.097
LiNiSmSn 47.617 72963 334.704 36.441 70.798 3958.873 2187.199 2437.061 0.280 275.632
DyLiPdSn 4 8557 76.573 394571 35.786 81.074 3879.627 2045.067 2286.509 0.308 254.475
N,SSe, 52175 166.436 217.998 2459 2,521 1632.981 1063.352 1165.878 0.132 107.904
LiNaSe,Zn 53.916 107.396 253.260 17.754 31.924 3767.961 2129.286 2368.236 0.265 253.647
BrGela,Rh 5 6.436 137.585 533.260 27.302 50.532 3675.249 2059.620 2292.318 0.271 226.057
CsHgNa$, 54774 146.289 420.615 9.852 18.449  2572.057 1436.510 1599.245 0.273 154.518
AlAs,CsMg 5 3.863 143.606 334.035 20.025 28.181 3769.434 2276.944 2517.185 0.213 244.713
Br,GeSmY 54.803 163.091 471.714 19.469 32.496  3488.675 2013.383 2235.315 0.250 208.287
As,Ca,Sr 53.392 155481 317.619 28.093 37.392 4697.360 2877.774 3176.871 0.200 300.774
KLiMnTe, 53.860 153.218 356.177 12.890 26.438 3361.705 1827.331 2038.601 0.290 193.953

AlL,C,Yb 56.426 64.862 251.024 88.642 125.838 6162.150 3713.927 4106.697 0.215 520.350
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