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Abstract 

 

Quantum communication and quantum sensing, which leverage the unique characteristics of 

quantum systems, enable information-theoretically secure communication and high-precision 

measurement of physical quantities. They have attracted significant attention in recent research. 

However, they both face numerous challenges on the path to practical application. For instance, 

device imperfections may lead to security vulnerability, and environmental noise may significantly 

reduce measurement accuracy. Traditional solutions often involve high computational complexity, 

long processing time, and substantial hardware resource requirements, posing major obstacles to 

the large-scale deployment of quantum communication and quantum sensing networks. Artificial 

intelligence (AI), as a major technological advancement in current scientific landscape, offers 

powerful data processing and analytical capabilities, providing new ideas and methods for 

optimizing and enhancing quantum communication and sensing systems. Significant progresses 

have been made in applying AI to quantum communication and sensing, thus injecting new 

vitality into these cutting-edge technologies. In quantum communication, AI techniques have 

greatly improved the performance and security of quantum key distribution, quantum memory, 

and quantum networks through parameter optimization, real-time feedback control, and attack 
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detection. In quantum sensing, quantum sensing technology enables ultra-high sensitivity 

detection of physical quantities such as time and magnetic fields. The introduction of AI has 

opened up new avenues for achieving high-precision and high-sensitivity quantum measurements. 

With AI, sensor performance is optimized, and measurement accuracy is further enhanced through 

data analysis. This paper also analyzes the current challenges in using AI to empower quantum 

communication and sensing systems, such as implementing efficient algorithm deployment and 

system feedback control under limited computational resources, and addressing complex task 

environments, dynamically changing scenarios, and multi-task coordination requirements. Finally, 

this paper discusses and envisions future development prospects in this field. 
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1. Introduction 

With the rapid development of information technology, quantum communication, as a new 

communication technology, has gradually become a research hotspot in the field of 

communication because of its advantages in security, efficiency and so on. Quantum 

communication uses the basic principles of quantum mechanics, such as quantum entanglement 

and no-cloning theorem, to achieve secure transmission of information. However, the practical 

application of quantum communication systems faces many challenges, such as the defects of 

system equipment, the resource allocation of large-scale networks and so on. At the same time, as 

an important branch of quantum information science, quantum sensor technology also shows great 

potential in the field of high-precision measurement, but in practical applications, it is also 

restricted by the complexity of system calibration, noise interference and limited measurement 

accuracy. Traditional solutions are usually computationally complex, time-consuming, and require 

a large amount of hardware resources, which poses a great challenge to the deployment of 

large-scale quantum communication and quantum sensor networks. 

As an important direction in the field of science and technology, artificial intelligence offers 

powerful data processing and analysis capabilities, providing new ideas and methods for 

optimizing and improving quantum communication and quantum sensing systems. For example, 

in the field of quantum communication, artificial intelligence can quickly and accurately predict 

the optimal parameters in the quantum communication system, efficiently calibrate the system in 

real time, and detect possible equipment defects and attacks in the system in real time. In terms of 

quantum sensing, artificial intelligence can provide an efficient, adaptive and resource-efficient 



solution for the calibration of large-scale quantum sensors, significantly improving the 

measurement accuracy. Therefore, the AI-enabled quantum communication and quantum sensing 

system not only provides the possibility for the breakthrough of quantum communication and 

quantum sensing technology, but also opens up a new direction for the development of future 

communication and sensing technology. 

2. Foundations of Artificial Intelligence 

As an important branch of computer science, artificial intelligence (AI) is dedicated to developing 

theories, methods, technologies and application systems that can simulate, extend and expand 

human intelligence. Its core is to enable computer systems to learn, reason and make decisions 

autonomously from massive data without explicit program instructions through a data-driven 

approach. As one of the core technologies of artificial intelligence, machine learning mainly 

studies how to enable computer systems to automatically learn rules from data through algorithms, 

and use these rules to predict or make decisions. It is worth noting that machine learning 

algorithms are adaptive and can continuously optimize their performance with the input of new 

data, thus achieving continuous improvement in prediction accuracy. 

At the application level, artificial intelligence and machine learning technology have shown great 

application value in natural science, engineering science, life science, financial economy and other 

fields. For example, in the physical sciences,[1,2] artificial intelligence and machine learning 

provide new methodological support for the analysis of complex experimental data and the 

discovery of physical laws.[3] Artificial intelligence algorithms have been widely used in quantum 

system optimization, quantum state recognition, quantum error correction and other key tasks in 

the field of quantum science and technology, significantly improving the reliability and security of 

quantum information processing (see Fig. 1). 



 

Figure 1.  An overview of artificial intelligence. 

From a methodological point of view, machine learning algorithms can be divided into three 

categories according to their learning paradigms: supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning is suitable for classification and regression tasks by 

training the model with labeled data sets and establishing the mapping relationship between input 

and output. Unsupervised learning is dedicated to discovering the internal structure and 

distribution characteristics of unlabeled data, and has unique advantages in clustering analysis and 

dimensionality reduction. In addition, reinforcement learning (RL)[4], as an emerging machine 

learning method, is inspired by behavioral psychology and neuroscience. Through continuous 

interaction with the environment, the agent optimizes the decision-making strategy or learns the 

value function, and maximizes the cumulative reward with the help of trial and error and feedback 

mechanisms, so as to gradually master the ability to make optimal decisions in complex 

environments (see Fig. 2). 

Figure 2.  Schematic diagram of reinforcement learning. 

As an important branch of machine learning, deep learning (DL) realizes high-level abstract 

representation of data by constructing neural network models with multi-layer nonlinear 

transformations. This multi-level feature learning mechanism makes deep learning show 

significant advantages in dealing with high-dimensional and nonlinear data, and has achieved 



remarkable results in image recognition, speech processing, natural language processing and other 

fields[5,6]. The neural network (NN)[7] is a complex nonlinear model that simulates the working 

mode of human brain neurons, which is the basis of deep learning. A neural network consists of a 

hierarchy of neurons (also called nodes or units), each of which is connected to neurons in the 

preceding and following layers, processes inputs through weights and activation functions, and 

produces outputs. As a special recurrent neural network architecture, long short-term memory 

(LSTM)[8] introduces cell state and three gating mechanisms (forget gate, input gate and output 

gate) to better control the flow of information, effectively solves the long-term dependency 

problem in sequential data modeling, and shows excellent performance in time series prediction 

and natural language generation. 

From the perspective of algorithm system, artificial intelligence and machine learning techniques 

cover a wealth of algorithm models, including but not limited to regression algorithm[9], decision 

tree algorithm[10], Bayesian algorithm[11], clustering algorithm[12], dimensionality reduction 

algorithm[13] and ensemble algorithm[14]. Through organic combination and collaborative 

optimization, these algorithm models provide strong technical support for intelligent 

decision-making of complex systems. 

The rapid development of artificial intelligence and machine learning technology is profoundly 

changing the paradigm of scientific research and the mode of social production. They not only 

innovate the traditional data processing and analysis methods, but also provide new ideas and 

tools for solving complex system problems. In the future, with the innovation of algorithms, the 

improvement of computing power and the continuous accumulation of data resources, artificial 

intelligence and machine learning are expected to achieve breakthrough applications in more 

fields and inject new impetus into the sustainable development of human society. 

3. Application of Artificial Intelligence in Quantum 

Communication System 

3.1 Quantum key distribution 

As one of the core technologies of quantum communication, quantum key distribution (QKD), 

based on the basic principles of quantum mechanics, can achieve unconditionally secure 

communication in theory. This technology uses photons as the information carrier, establishes a 

shared random key string between the two communication parties through the quantum channel, 

and combines with the one-time pad encryption scheme to construct a communication system with 

information-theoretic security. 



Since Bennett and Brassard[15] proposed the first QKD protocol, namely BB84 protocol in 1984, 

researchers have proposed E91 protocol device independent QKD, BBM92 protocol[17], B92 

protocol[18], device independent quantum key distribution (DI-QKD) protocol[19], etc. These 

protocols vary in security level, device requirements, protocol process, and actual performance, 

providing many options for QKD implementation in different application scenarios. From the 

perspective of technical implementation, QKD is mainly divided into discrete-variable QKD 

(DV-QKD) and continuous-variable QKD (CV-QKD). DV-QKD uses discrete states of qubits 

(such as the polarization state of a single photon) to encode information. For example, the 

horizontal polarization state and the vertical polarization state of a single photon can be assigned 

to binary 0 and 1, respectively. Typical protocols include BB84-QKD protocol, measurement 

device independent QKD (MDI-QKD) protocol[20], twin-field QKD (TF-QKD) protocol [21] , 

mode-pairing quantum key distribution protocol[22/23]. CV-QKD uses continuous variables of a 

quantum system to encode information, for example, to transmit key information by modulating 

continuous values of the amplitude and phase of a light field. Common protocols include gaussian 

modulation protocols and discrete modulation protocols. 

In practical limited data conditions, the performance of QKD system is highly dependent on the 

optimization of key parameters, such as the selection probability of X basis or Z basis, the strength 

of signal state and decoy state, etc. Traditionally, the optimization of these parameters usually 

relies on search algorithms, which are accurate but computationally complex, time-consuming, 

and hardware-intensive, posing a significant challenge to real-time QKD systems and large-scale 

QKD networks. To solve this problem, researchers have proposed a variety of optimization 

methods based on machine learning, which significantly improve the efficiency and practicability 

of parameter optimization. Ding et al.[24] used the random forest (RF) algorithm instead of the 

traditional search algorithm to construct a general model for both MDI-QKD and BB84-QKD 

protocols, which directly predicts the optimal parameters based on any given system conditions 

with limited data. Numerical simulations show that the proposed method can achieve an optimal 

secure key rate of more than 99% compared with the traditional search method, and has a good 

application prospect in future QKD applications. At the same time, Wang and Lo[25] proposed a 

method to directly predict the optimal parameters of QKD system using neural networks. Lu et 

al.[26] proposed a novel back propagation neural network (BPNN), which can not only predict the 

optimal parameters with less computing resources and faster speed, but also solve the system 

calibration problem in large-scale MDI-QKD networks. BPNN significantly improves the utility 

of the system by utilizing partially discarded data generated during communication to enable 

real-time system calibration without the need for additional equipment or a full system scan. In 

addition, Dong et al.[27] used the extreme gradient boosting (XGBoost) algorithm to predict the 

optimized parameters of TF-QKD, and compared the performance with RF and BPNN. The 

results show that XGBoost is slightly better than RF and BPNN in the efficiency and accuracy of 

parameter prediction, which provides strong support for the real-time optimization of future 



quantum key distribution networks. Ren et al. First applied machine learning method to QKD 

system to realize optimal protocol selection and system parameter optimization[28]. Through 

comparative analysis, the random forest method shows significant advantages in accuracy, 

robustness and efficiency, making it a strong candidate for real-time configuration of optimal 

protocols and system parameters in future large-scale multi-user QKD networks. 

In practical applications, QKD systems require efficient real-time feedback control mechanisms to 

cope with external environmental disturbances and instability of internal components of the 

system. Although the traditional "scanning-and-transmitting" calibration scheme can provide 

accurate parameter compensation, the calibration process takes a lot of time, which will greatly 

reduce the efficiency of key transmission. To this end, Liu et al.[29] proposed a QKD phase 

modulation scheme based on LSTM. In this scheme, the physical parameters of the device are 

predicted in advance by the LSTM network, and the phase calibration is performed in real time. In 

the BB84-QKD system, the scheme has been verified for 48h at 50 km and 150 km transmission 

distances (see Fig. 3). The experimental results show that the LSTM-based QKD system can 

maintain the same quantum bit error rate (QBER) level as the traditional scan-transmit scheme 

while improving the transmission efficiency by at least 33% after 48h of continuous operation, 

which fully demonstrates the long-term reliability and stability of the machine learning model. 

 

Figure 3.  Comparisons of QBER between applying traditional scanning-and-transmitting 

program and using LSTM model for the same QKD system[29]. 

In order to solve the challenges of measurement equipment or detection, Zhang et al.[30] applied 

the LSTM model to the MDI-QKD system, successfully predicted the phase drift between two 

users, and realized real-time active compensation, which significantly improved the reference 

frame calibration accuracy of the system. TF-QKD protocol has attracted much attention because 

of its superior secure key rate and transmission distance, but its implementation depends on 



accurate global phase information. Due to the rapid phase fluctuation in long-distance optical fiber 

transmission, traditional phase calibration methods (such as time division multiplexing) are 

inefficient. To address this issue, Liu et al. proposed a neural network-based phase drift prediction 

technique implemented on a programmable gate array. By loading the double-layer LSTM 

network into the field-programmable gate array (FPGA), the accurate prediction and active 

feedback control of the phase drift of the TF-QKD system over a transmission distance of 500 km 

were realized, and the prediction efficiency was as high as 85%, which greatly improved the 

transmission efficiency of the TF-QKD system and promoted the implementation of the 

high-efficiency TF-QKD system. 

The realistic security of QKD system is a hot topic in the field of quantum communication. Due to 

device imperfections, eavesdroppers may exploit the security risk points of various devices to 

obtain key information. However, existing security analyses often evaluate each security risk point 

separately, which brings great challenges to the overall security assessment of QKD system. Most 

of the existing QKD system evaluation schemes require all devices to be tested and calibrated one 

by one before or after key transmission, which not only consumes a lot of manpower and material 

resources, but also reduces the transmission efficiency and practicability of QKD. Xu et 

al.[32] introduced machine learning algorithm into real-time security monitoring of QKD system for 

the first time, and realized real-time identification of different equipment defects and attacks with 

an accuracy of up to 98%. This method not only saves time and cost, but also provides an efficient 

and practical solution for the security evaluation of QKD system without interrupting the key 

transmission, which lays a solid foundation for the large-scale application of quantum secure 

communication network in the future. Some typical applications of artificial intelligence in 

DV-QKD systems are listed in Tab. 1, including parameter optimization, phase calibration, 

security monitoring, etc., and the main contributions are summarized and compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.  Comparison of artificial intelligence applications in DV-QKD. 

Field of application Method Main contribution References 

Parameter optimization Random forest 
Predicting the optimal parameters of MDI-QKD and 

BB84-QKD protocols. 
[24] 

Parameter optimization Neural network Direct prediction of optimal parameters of QKD system [25] 

Parameter optimization 
Extreme gradient 

boosting 

Predict the optimized parameters of TF-QKD with better 

efficiency and accuracy than RF and BPNN 
[27] 

Parameter Optimization 

and System Calibration 

Back propagation 

neural network 

System optimal parameters are predicted, while the phase of the 

MDI-QKD system is calibrated by simulation 
[26] 

Protocol selection and 

parameter optimization 
Random forest 

For the first time, machine learning methods are applied to 

QKD system to achieve optimal protocol selection and system 

parameter optimization. 

[28] 

Phase calibration 
Long short-term 

memory network 

Predicting the physical parameters of the device and calibrating 

the phase of the BB84-QKD system in real time 
[29] 

Phase calibration 
Long short-term 

memory network 

Predicting the phase drift of two users in MDI-QKD system, 

active compensation in real time 
[30] 

Phase calibration 
Long short-term 

memory network 

Predicting Phase Drift of TF-QKD System for Active Feedback 

Control 
[31] 

Device Defect and Attack 

Detection 
Random forest 

Real-time detection of device defects and attacks with up to 

98% accuracy 
[32] 

 

The above is about the application of artificial intelligence in DV-QKD system. Artificial 

intelligence methods also have many applications in CV-QKD system, mainly in the optimization 

of system performance and the improvement of security. In the aspect of system performance 

optimization, researchers predict and compensate the phase drift by analyzing the fluctuation of 

system physical parameters, such as the change of local oscillator intensity, the disturbance of 

channel, the change of ambient temperature, the jitter of devices, etc. In this method, a standard 

sequence known to both sides is inserted before the effective transmission data, and the phase 

offset is obtained by comparing the data at the receiving end with the data at the sending end. 

Then, using machine learning techniques, a prediction model of the time and phase drift values 

can be established. When the system transmits an effective sequence, the phase drift value is 

predicted by the model and loaded on the phase modulator at the transmitting end as a phase 

compensation angle for phase compensation. This method can well analyze the system phase drift 



value and can be used as a phase compensation algorithm for optimization. In addition, the 

original data can also be reconstructed directly by the predicted value, and the phase drift value 

does not need to be calculated in real time, which reduces the system overhead to a certain extent. 

In 2017, Liu et al.[33] developed a method (see Fig. 4) through a support vector regression (SVR) 

model to optimize the performance and practical security of a QKD system. The SVR model is 

learned to accurately predict the time-varying physical parameters of a signal. Secondly, the 

predicted time-varying feedback is used to control the QKD system to achieve the best 

performance and practical security. 

 

Figure 4.  Basic idea of SVR to solve the physical parameters prediction problem[33]. 

In 2019, Su et al.[34] applied the BPNN algorithm to the four-state discrete modulation protocol in 

CV-QKD, which can adjust the modulation variance to the optimal value, thus ensuring the 

system security and achieving the best system performance. Numerical results show that the 

scheme can effectively improve the key rate. In 2020, Liao et al.[35] proposed a new scheme of 

discrete modulation CV-QKD using machine learning technology, called CV-QKD based on 

multi-label learning. Specifically, the scheme divides the whole quantum system into a state 

learning process and a state prediction process. The former is used to train and estimate the 

classifier, and the latter is used to generate the final key. At the same time, a multi-label 

classification algorithm is designed as an embedded classifier to distinguish coherent states. The 

feature extraction of coherent states and the related machine learning indicators of quantum 

classifiers have been proposed successively. The CV-QKD scheme based on multi-label learning 

is superior to other existing discrete modulation CV-QKD protocols, such as the four-state 

protocol and the eight-state protocol, and is also superior to the original Gaussian modulation 

CV-QKD protocol, and its performance will be further improved with the increase of modulation 

variance. In 2022, Zhou et al.[36] constructed a neural network to predict the key rate of the discrete 



modulation CV-QKD protocol, which can quickly predict the secure key rate according to the 

experimental parameters and results. Compared with the traditional numerical method, the speed 

of the neural network is improved by several orders of magnitude. Importantly, the predicted key 

rate is not only highly accurate, but also secure, which allows the secure key rate of discretely 

modulated CV-QKD to be extracted in real time on a low-power platform, and the scheme can 

also be extended to quickly calculate the complex secure key rate of various other unstructured 

quantum key distribution protocols. In the same year, Liu et al.[37] proposed a neural network 

model combined with Bayesian optimization to predict the secure key rate of discrete modulation 

CV-QKD protocol in real time. The model is about 107 times faster than the traditional numerical 

method, and the prediction results have high security and accuracy, which can meet the needs of 

low power consumption scenarios such as mobile platforms. 

In terms of security, CV-QKD systems are threatened by a variety of attack strategies. Existing 

defense methods usually rely on real-time monitoring modules, but their effectiveness is limited 

by the accuracy of additional noise estimation and lack of generality. Therefore, in 2020, Mao et 

al.[38] proposed a quantum attack detection model based on artificial neural network (ANN) (see 

Fig. 5). By analyzing the feature vector of the attacked pulse, the model realizes the automatic 

identification and classification of the attack type, and the accuracy and recall are both more than 

99%, which significantly improves the security of the system. 

 

 

 

Figure 5.  ANN-based quantum attack detection model[38]: (a) A linear ANN model without the 

hidden layer which can only solve linear separable problems; (b) a nonlinear ANN model with a 

hidden layer to classify different types of quantum attacks. 

Subsequently, in 2023, Ding et al.[39] proposed an attack detection scheme based on machine 

learning, and its implementation process is shown in Fig. 6. Combining the advantages of 

density-based spatial clustering of applications with noise (DBSCAN) and multiclass support 

vector machines (MCSVMs), the efficient detection of quantum hacking attacks is realized. The 

scheme first extracts the feature vectors related to the attack, uses DBSCAN to remove noise and 

outliers, and then uses the trained MCSVMs to classify and predict whether to generate the final 

key in real time. Simulation results show that the scheme can effectively detect most attacks, and 



correct the key rate overestimation problem of CV-QKD system without defense strategy, thus 

providing a tighter security boundary. 

 

Figure 6.  Implementation process of a machine-learning-based attack detection scheme[39]. 

In long-distance CV-QKD experiments, traditional schemes usually rely on the transmission local 

oscillator, which not only increases the system complexity, but also may introduce security 

vulnerabilities. Hajomer et al.[40] designed a new long-distance CV-QKD experimental scheme, 

which successfully realized key distribution over 100 km fibre channel with a total loss of 15.4 dB 

by locally generating a local oscillator. This breakthrough enables secure key generation against 

collective attacks in finite-size scenarios by controlling the additional noise caused by phase noise 

and optimizing the modulation variance through a machine learning framework. This 

breakthrough not only marks an important milestone for CV-QKD technology under a high-loss 

budget, but also paves the way for the deployment of large-scale secure QKD networks. In the 

future, with the continuous development of quantum technology, CV-QKD is expected to be 

widely used in more high-security and long-distance communication scenarios. Various typical 

application reports of artificial intelligence in CV-QKD are listed in Tab. 2, and the main 

contributions are summarized and compared. 

 

 

 

 

 

 



 

Table 2.  Comparison of artificial intelligence applications in CV-QKD. 

Field of 

application 
Method Main contribution References 

Parameter 

optimization 
Support vector regression 

Predicting system physical parameters to optimize QKD system 

performance and security 
[33] 

Parameter 

optimization 

Back propagation neural 

network 

The modulation variance is adjusted to ensure the security of the 

system and effectively improve the key rate. 
[34] 

Parameter 

optimization 

Machine Learning 

Framework 

Controlling Phase Noise and Optimizing Modulation Variance 

for Key Distribution over 100 km fibre channel 
[40] 

Key Rate 

Prediction 

Multi-label classification 

algorithm 

Discrimination of coherent States by a multi-label classification 

algorithm, outperforming existing discrete-modulation CV-QKD 

protocols 

[35] 

Key Rate 

Prediction 
Neural network 

Fast prediction of the key rate of discretely modulated CV-QKD 

protocols with speed and accuracy superior to conventional 

numerical methods 

[36,37] 

Attack detection Artificial neural network 
Automatic recognition and classification of attack types with 

over 99% precision and recall 
[38] 

Attack detection 

Density clustering and 

multi-class support vector 

machine. 

Efficient detection of quantum hacking attacks, correction of 

key rate overestimation, and provision of tighter security bounds 
[39] 

3.2 Quantum memory 

Quantum memory is the core component of quantum repeater, which is widely used in quantum 

communication, quantum computation and quantum network, and its performance exceeds the 

range allowed by passive transmission only. The core of quantum memory is to store a quantum 

state in a physical system and read it on demand. An ideal quantum memory should have high 

efficiency, long coherence time and low noise. Common quantum memory mechanisms include 

electromagnetically induced transparency[41], Raman scheme[42], gradient echo memory[43], and 

optical cavity reflection[44]. Among them, quantum memory based on solid systems (such as color 

centers and rare earth ions) has attracted much attention because of its stability, decoherence 

resistance and scalability[45]. 



In order to further improve the performance of quantum memory, researchers have introduced 

machine learning technology into this field, which has significantly improved the optical depth 

and storage efficiency of the system. Leung et al.[46] optimized the performance of gradient echo 

memory by combining machine learning with single photon technology through experimental 

research, and explored its application potential in quantum computing. Due to the complexity of 

cold atomic ensemble systems, the realization of high optical depth and cryogenic environments 

often faces great challenges. In this scheme, the atom trapping process is optimized by 

reinforcement learning, and a high extinction ratio filtering technique is developed to successfully 

separate single photons from intense pump light. These optimizations significantly improve the 

optical depth and temperature control accuracy of the cold atom assembly, thereby improving the 

efficiency and coherence time of the gradient echo memory. 

As the basic unit of quantum information processing, the generation and storage technology of 

single photon is very important for the construction of quantum network. However, there are still 

many challenges to realize single photon generation and storage with arbitrary wave packet shape. 

Cai et al.[47] theoretically proposed a general machine learning algorithm with adaptive process 

(see Fig. 7) to optimize the atom-cavity system and realize high efficiency and high fidelity single 

photon generation and storage. The algorithm can dynamically adjust the parameters of the 

quantum system according to the wave function of a single photon, which provides a new 

technical path for building a flexible and reliable quantum network. 

 

Figure 7.  Detailed schematic of the ML algorithm[47], the input dataset (discrete control laser 

pulse) iteratively adjusts itself until the error (feedback in training) between the estimated output 

and the target value becomes small enough. 

Despite the remarkable progress in the research of quantum networks, the coherence time of 

quantum memories is still a key factor limiting their development. Khatri[48] proposed a design 

method of optimal entanglement distribution protocol based on the theory of decision process. 



Through dynamic programming or reinforcement learning algorithm, the entanglement time on the 

quantum channel is optimized under the consideration of the current hardware constraints 

(including the finite coherence time), and the entanglement state between the terminal nodes is 

ensured to be established before the channel decays. This study provides important theoretical 

guidance for the physical realization of quantum networks. 

In the aspect of quantum memory time optimization, Reiß et al.[49] theoretically used 

reinforcement learning technology to realize the dynamic optimization of quantum memory time 

limit (memory cutoff), which provided a flexible strategy for the adjustment of quantum repeater 

state. A recent study by Robertson et al.[50] has shown that genetic algorithms can be used to 

optimize the write control of optical memories to handle Gaussian signal pulses. The experimental 

results show that the pulse energy can be reduced by 30% without sacrificing the efficiency, which 

significantly improves the storage performance. The high storage efficiency and broadband 

characteristics of quantum memory are the core elements of future quantum networks. Although 

solid-state quantum memories have advantages in broadband storage, their storage efficiency is 

generally low. In response to this challenge, Lei et al.[51] have experimentally demonstrated that 

the quantum storage efficiency has been improved by nearly six times through the combination of 

passive optimization and algorithmic optimization, and coherent and single-photon level storage 

with high signal-to-noise ratio has been achieved. This optimization scheme has wide applicability 

and can be applied to most solid-state quantum memories to significantly improve storage 

efficiency while maintaining bandwidth. 

3.3 Quantum network 

Quantum network plays a vital role in quantum information science, and its applications cover 

quantum communication, quantum computing, quantum metrology and other fields. One of the 

central challenges in implementing a quantum network lies in distributing entangled flying qubits 

(usually implemented in the form of photons) to spatially separated nodes and mapping the 

entanglement onto stationary qubits (such as matter-based quantum memories) via a quantum 

interface or transducer. This architecture of separated nodes forms the basis of a quantum network, 

in which stationary qubits serve as memory units and flying qubits serve as channels for quantum 

information transmission. 

At present, quantum network has been applied to QKD with trusted nodes[52]. Due to the 

non-reusability of key resources in QKD networks, the allocation of key resources in QKD 

networks is significantly different from that in traditional networks. Considering the high cost and 

complexity of QKD network deployment, the multi-tenant model has become an important 

solution to improve the cost-effectiveness of future QKD networks, especially for organizations 

with high security requirements. In order to optimize the resource allocation in multi-tenant 

environment, Cao et al[53] proposed a multi-tenant key distribution algorithm based on 



reinforcement learning, which can efficiently distribute a variety of network resources including 

keys. Experimental results show that, compared with the traditional heuristic methods such as 

random allocation, fitting and best fitting, the proposed algorithm performs well in reducing the 

blocking probability of tenant requests and improving the utilization of key resources, and reduces 

the blocking probability by more than half. In addition, Cao et al.[54] further studied the online 

multi-tenant configuration problem in quantum key distribution networks, proposed three heuristic 

algorithms (random, adaptive and best-fit online multi-tenant configuration algorithms), and 

developed a reinforcement learning framework to realize the automatic optimization of the 

algorithm. The comparison results show that after enough training iterations, the online 

multi-tenant provisioning algorithm based on reinforcement learning is significantly better than 

the heuristic method in terms of tenant request blocking probability and key resource utilization. 

Sharma et al.[55] theoretically proposed a routing and resource allocation scheme based on 

reinforcement learning to optimize the performance of quantum signal channels in quantum key 

distribution secure optical networks (see Fig. 8). The core of the scheme is to obtain network state 

information through a software-defined network controller, and a deep neural network selects a 

routing and resource allocation strategy according to the state. By maximizing the number of 

QKD optical path requests, reducing the blocking rate and efficiently utilizing network resources, 

the proposed scheme significantly improves the network performance in dynamic traffic scenarios 

compared with traditional methods, and provides a new and effective method for the optimization 

of QKD optical networks. 

 

Figure 8.  An illustration of the proposed deep reinforcement learning framework for the routing 

and resource assignment in quantum key distribution-secured optical networks[55]. 



The expansion from point-to-point quantum key distribution to multi-point communication is an 

inevitable trend for the large-scale development of quantum key distribution networks. Currently, 

integrating quantum access networks (QANs) into existing ethernet passive optical access 

networks (EPONs) is a relatively simple and cost-effective implementation. Kang et 

al.[56] proposed a quantum-secure 10 Gbit/s ethernet passive optical network, and experimentally 

developed and validated a plug-and-play two-field quantum key distribution architecture that 

supports up to 64 users with only an untrusted laser and a pair of shared detectors (see Fig. 9). In 

addition, they proposed a user demand-oriented prediction model based on machine learning to 

evaluate the key indicators of QAN (such as security key rate, maximum feeder fiber length, etc.). 

This plug-and-play two-field quantum access network and its machine learning-assisted 

implementation provide guidance for further experiments and practical deployment of large-scale 

quantum access networks. 

 

 

Figure 9.  Full coexistence architecture of plug-and-play twin-field QAN and 10 G-EPON[56]. 

At present, the development of quantum networks is at a critical stage of transition from 

theoretical research to practical application. As the two core technologies of quantum network, 

quantum memory and trusted relay have their own advantages and application scenarios. The 

advantage of quantum memory is that it can store quantum information for a long time and read it 

on demand, thus enhancing the flexibility and robustness of the network. However, its 

performance still needs to be further improved to meet the needs of large-scale quantum networks. 

In contrast, trusted relay schemes have made significant progress in long-distance quantum 

communication, but they rely on the deployment of physical nodes and have limited scalability 

and flexibility. In addition, due to the need to measure and re-prepare the quantum state at the 

intermediate node, the security of the trusted relay scheme also faces certain challenges. In the 

future, the development of quantum networks will rely on the further improvement of quantum 



memory performance and the optimization of trusted relay schemes to achieve more efficient and 

secure quantum communication networks. 

4. Application of Artificial Intelligence in Quantum Sensing 

System 

4.1 Introduction to Quantum Sensing 

Quantum sensing is a technology that uses quantum systems, quantum properties or quantum 

phenomena to measure physical quantities (such as magnetic field, electric field, temperature, 

pressure, etc.) With high precision. It is based on the basic principles of quantum mechanics, 

especially the superposition, entanglement and quantum phase evolution of quantum States, so as 

to achieve measurement accuracy beyond classical sensors. Quantum sensor is a device that uses 

quantum mechanical properties (such as atomic energy level, photon state or spin of elementary 

particles) for measurement. The typical representatives of quantum sensors that have entered the 

practical stage are atomic clock[57], atomic magnetometer[58], atomic interference gravimeter[59], etc. 

At the same time, the sensor technology based on diamond NV color center[60] and Rydberg 

atom[61] is gradually becoming an important development direction. 

The current mainstream quantum sensing technology can be attributed to the following three types 

of[62]: 1) the use of quantum objects to measure physical quantities, which are characterized by 

quantized energy levels (quantum states). Specific examples include electronic, magnetic, nuclear, 

or vibrational energy levels from superconducting, neutral atoms, trapped ions, or other spin 

systems. 2) measurement of physical quantities using quantum coherence (i.e., spatial and 

temporal superposition States with wave properties). 3) the use of quantum resources such as 

entanglement and squeezing to improve the sensitivity or accuracy of measurement, thus 

exceeding the statistical limit of classical measurement technology. Most of the early quantum 

sensing technologies focused on improving the ability to sense small changes in physical 

quantities. With the realization of quantum entanglement and the development of laser technology, 

people begin to fully tap the great potential of special quantum states and quantum state 

manipulation methods in reducing the measurement uncertainty. This kind of technology pays 

more attention to how to further reduce the measurement uncertainty of the physical quantity to be 

measured in the case of limited resources. At present, several quantum sensing schemes have been 

successfully demonstrated in photonic, atomic, nuclear magnetic resonance, and solid-state 

systems. Compared with the of solid systems and atomic systems[63,64], photons exhibit longer 

coherence times, lower susceptibility to disturbance, easier controllability and better scalability; 



therefore photonic systems possess natural advantages for sensing tasks and have gradually 

attracted more and more attention in recent years. 

4.2 Combination of quantum communication system and sensing technology 

In recent years, with the rapid development of communication technology, the integration of 

quantum communication and sensing technology has gradually become a research hotspot. 

Quantum communication uses quantum states as information carriers to achieve unconditionally 

secure key distribution in theory. At the same time, sensing technology is also developing. 

Distributed optical fiber sensing technology uses the light backscattering in the optical fiber or the 

change of the forward transmission light to monitor the environmental changes, which has the 

advantages of high spatial resolution and long detection range. The combination of quantum 

communication system and traditional sensing technology can not only realize the integration of 

communication and sensing, but also endow the communication network with environmental 

perception ability without changing the existing quantum communication network architecture, 

providing new technical means for early warning of earthquakes, landslides and other disasters. 

In recent years, many research teams have made important achievements in the field of quantum 

communication and sensing fusion. Chen et al.[65] realized TF-QKD over 658 km fiber and 

distributed vibration sensing using the frequency calibration link in the TF-QKD system. This 

study not only expands the distance record of quantum key distribution, but also successfully 

locates the vibration source with an accuracy of better than 1 km. Xu et al.[66] proposed an 

integrated distributed sensing and quantum communication network scheme, which demonstrated 

the potential of the fusion of quantum communication and sensing by simultaneously 

implementing continuous-variable quantum key distribution and distributed vibration sensing in 

optical fibers. Under 10 km standard optical fiber transmission, the key rate of each user is about 

0.7 Mbits/s, the vibration response bandwidth is 1 Hz — 2 kHz, and the spatial resolution is 0.2 m. 

Liu et al.[67] proposed a network architecture integrating downstream quantum access network and 

optical fiber vibration sensing. By simultaneously encoding the key information of eight users on 

the sideband of a single laser source, and separating and distributing the key information using a 

narrow-band filtering network, an average key rate of 1.94 × 104 bits/s is achieved, and vibration 

localization with spatial resolutions of 131 m, 25 m, and 4 m at vibration frequencies of 100 Hz, 1 

kHz, and 10 kHz is simultaneously achieved. 

However, traditional sensing techniques have limitations in accuracy. For example, although 

distributed optical fiber sensing based on backscattered light can achieve high spatial resolution, 

its detection accuracy is usually limited by noise due to its dependence on the reflection of weak 

optical signals, and it is difficult to reach the Heisenberg limit. In addition, traditional optical fiber 

sensing technologies require high-power light sources (such as erbium-doped fiber amplifiers) for 

long-distance detection, which not only increases the complexity and cost of the system, but also 



may cause interference to low optical signals in quantum communication systems. In contrast, 

quantum sensing technology uses the characteristics of quantum states to provide higher 

sensitivity than classical measurements, which can significantly improve the sensing accuracy[63,68]. 

In addition, the use of multi-photon entangled states, single photons, squeezed states and other 

means of[69–71] can surpass the standard quantum limit, and even theoretically approach the 

Heisenberg limit. 

Distributed quantum sensing is a promising research direction in quantum networks, which can 

significantly improve the accuracy and efficiency of measurement by performing sensing tasks in 

a network of multiple measurement nodes. Compared with single-parameter quantum sensing, 

distributed quantum sensing can measure linear combinations of multiple parameters with high 

precision, which can be divided into continuous variable scheme[70] and discrete variable 

scheme[71,72]. However, distributed quantum sensing still faces some challenges. For example, how 

to measure any unknown parameter with high precision in practical application is a key problem. 

In the future, with the further development of quantum entanglement technology, quantum 

network architecture and quantum communication technology, distributed quantum sensing 

technology is expected to achieve wider applications in quantum communication networks and 

promote breakthroughs in quantum technology in many fields. 

4.3 AI-enabled quantum sensing system 

In recent years, artificial intelligence technology has been gradually introduced into the field of 

quantum sensing, providing new methods and ideas for the calibration, optimization and 

performance improvement of quantum sensors. Cimini et al.[73] proposed a calibration method of 

quantum phase sensor based on neural network. This method does not rely on complex theoretical 

models to describe all the parameters and noise sources of the sensor, but directly calibrates the 

sensor through neural networks. It is found that the neural network can effectively deal with the 

uncertainty in the training data, and achieve the measurement accuracy close to the quantum limit 

in the experiment. In addition, the method is robust to noise, and the performance can be further 

optimized by adjusting the training parameters. This method provides an efficient, adaptive and 

resource-efficient solution for the calibration of quantum sensors, especially for the calibration of 

large-scale quantum devices. In addition, Hentschel and Sanders particle swarm optimization 

theoretically proposed the application of machine learning to quantum phase estimation, and 

designed a feedback strategy for interferometer phase estimation through particle swarm 

optimization (PSO) algorithm, which significantly improved the measurement accuracy and 

approached the Heisenberg limit. Compared with the traditional BWB (Berry-Wiseman-Breslin) 

strategy, the strategy generated by PSO shows better performance in both noiseless and noisy 

conditions. 



Reinforcement learning achieves its goal by optimizing the strategy through trial and error through 

the interaction between the agent and the environment. Xu et al.[75] theoretically proposed the use 

of reinforcement learning to optimize the control strategy in quantum parameter estimation, and 

proved the high efficiency and generalization ability of reinforcement learning in this field. By 

training a neural network to generate control sequences for different parameter values, they avoid 

the high computational cost of re-optimization every time the parameters are updated. Schuff et 

al.[76] theoretically optimized the dynamic characteristics of quantum sensors by using the 

cross-entropy method in reinforcement learning. Based on the quantum chaotic sensor, the 

measurement accuracy can be further improved and the decoherence can be resisted by optimizing 

the intensity and position of the nonlinear control pulse. Compared with the traditional periodic 

control pulse, the optimized control strategy significantly improves the quantum Fisher 

information (QFI) in both superradiant damping and phase damping decoherence models, and in 

some cases, the sensitivity is improved by more than an order of magnitude. By visualizing the 

evolution of quantum States, the study reveals that reinforcement learning uses a strategy similar 

to spin squeezing, which can adapt to the dynamic characteristics of superradiant damping. Xiao et 

al.[77] proposed a quantum parameter estimation scheme based on deep reinforcement learning to 

deal with time-dependent parameter estimation problems. This study geometrically derives the 

noiseless and noisy boundaries of the QFI for parameter estimation, and designs a reward function 

associated with these boundaries to accelerate network training and quickly generate quantum 

control signals (see Fig. 10). Simulation results show that the scheme exhibits good robustness and 

sample efficiency both in the absence of noise and in the presence of noise (including decoherence 

and spontaneous emission noise), and reaches the theoretical performance limit. In addition, the 

study also evaluates the transferability of the scheme when the parameters deviate from the true 

value, and the results show that the scheme performs well in time-independent parameter 

estimation, but is more sensitive to noise in time-dependent parameter estimation. 

 

Figure 10.  Illustration of deep reinforcement learning with (I) agent-environment interaction (II) 

state-aware policy and value networks with LSTMCells for quantum sensing protocols[77]. 



Model-aware reinforcement learning (MARL) further integrates the prior knowledge of physical 

models into the training process, and deals with the non-differential steps in quantum metrology 

through automatic differentiation techniques, such as measurement and resampling of particle 

filters. This method not only improves the efficiency of strategy optimization, but also can deal 

with complex quantum systems. For example, Belliardo et al.[78] theoretically developed a 

model-based reinforcement learning framework for optimizing Bayesian experiment design in 

quantum metrology. By combining Bayesian estimation and reinforcement learning, they have 

achieved high-precision parameter estimation on a variety of quantum platforms, such as NV color 

centers and photonic circuits. This method not only has advantages in theory, but also 

demonstrates its efficiency in experimental design through practical application. 

Liu et al.[79] used the method of artificial intelligence to experimentally realize the precise 

detection of multi-frequency microwave based on Rydberg atoms. This work organically 

combines atomic sensing with deep learning, proposes and realizes the scheme of effectively 

detecting multi-frequency microwave electric field without solving the master equation, and can 

achieve high accuracy without too high hardware requirements, which provides an important 

reference for the cross combination of sensing and neural network, and has important application 

prospects in communication, radar detection and other fields. Zhou et al.[80] proposed a deep 

learning based optical quantum sensing scheme to address the challenges of implementing optical 

quantum sensing in unknown or uncontrolled environments (see Fig. 11). Traditional methods 

usually rely on the prior knowledge of the target system to achieve the Heisenberg limit of 

measurement accuracy, but in practical applications, this prior knowledge is often difficult to 

obtain. Therefore, by combining graph neural network (GNN) and trigonometric interpolation 

algorithm, the scheme enables optical quantum sensors to achieve Heisenberg limit accuracy in 

unknown environments through numerical simulation, which provides a new solution for quantum 

sensing in complex environments. Various applications of artificial intelligence in the field of 

quantum sensing are summarized and compared in Tab. 3. 

 

 

Figure 11.  Schematic of deep-learning-based quantum sensing[80]. 



 

Table 3.  Comparison of artificial intelligence applications in quantum sensing. 

 

Field of application Method Main contribution References 

Quantum 

sensor calibration 
Neural network 

Using Neural Networks to Handle Uncertainty in Training Data to 

Achieve Measurement Precision Near the Quantum Limit 
[73] 

Parameter 

estimation 

Particle swarm 

optimization 

Automatically design a feedback strategy for interferometer phase 

estimation with accuracy close to the Heisenberg limit and better 

than the conventional BWB strategy 

[74] 

Parameter 

estimation 

Reinforcement 

learning 

The neural network is trained to generate control sequences suitable 

for different parameter values, avoiding the high computational cost 

of re-optimization at each parameter update 

[75] 

Quantum sensor 

optimization 

Reinforcement 

learning 

Training Neural Network Generation to Optimize the Dynamics of 

Quantum Sensors Using Cross Entropy Method of Reinforcement 

Learning 

[76] 

Parameter 

estimation 

Deep reinforcement 

learning 

The noiseless and noisy boundaries of the QFI for parameter 

estimation are derived from a geometric perspective, showing good 

robustness and sample efficiency under both noiseless and noisy 

conditions. 

[77] 

Parameter 

estimation 

Model-Aware 

Reinforcement 

Learning 

Combining Bayesian estimation and reinforcement learning to 

optimize experimental design in quantum metrology for 

multiple quantum platforms 

[78] 

Unknown 

environment 
Deep learning 

Combining graph neural network and trigonometric interpolation 

algorithm, the optical quantum sensor achieves Heisenberg limit 

accuracy in unknown environment. 

[80] 

Microwave 

detection 
Deep learning 

This paper presents a scheme for effectively detecting 

multi-frequency microwave electric field without solving the master 

equation, which requires low hardware requirements and high 

accuracy. 

[79] 

At present, the application of artificial intelligence algorithm in the field of quantum sensing 

mainly focuses on single quantum sensing system. With the help of artificial intelligence 

technologies such as neural networks and reinforcement learning, these systems have achieved 



efficient sensor calibration, performance optimization, and significant improvement in 

measurement accuracy. However, for the distributed quantum sensing system, it involves the 

cooperation between multiple nodes, and more importantly, the scalability and stability of the 

quantum network constitute the core bottleneck restricting the development of distributed 

quantum sensing technology. With the increase of the number of nodes, the complexity of the 

system increases exponentially, which makes it difficult to improve the performance of the current 

distributed quantum sensing system. Although there is no mature AI-enabled distributed quantum 

sensing scheme, it has become an inevitable trend to develop AI-based aided design and 

decision-making methods in the face of the optimization needs of this complex system. 

5. Summary and outlook 

In recent years, remarkable progress has been made in the application of artificial intelligence in 

the fields of quantum communication and quantum sensing, which has injected new vitality into 

the development of these cutting-edge technologies. In terms of quantum communication, 

artificial intelligence technology has greatly improved the performance and security of quantum 

key distribution, quantum storage and quantum network by means of parameter optimization, 

real-time feedback control and attack detection. In the field of quantum sensing, the introduction 

of artificial intelligence has opened up a new path to achieve high-precision and high-sensitivity 

quantum measurement. Quantum sensing technology uses the quantum state change of 

microscopic particles to achieve ultra-high sensitivity detection of time, magnetic field and other 

physical quantities, and its accuracy can be improved to atomic scale. Artificial intelligence 

enables quantum sensing, which can not only optimize the performance of sensors, but also further 

improve the measurement accuracy through data analysis. 

Although the application of artificial intelligence in quantum communication has made a lot of 

progress, it still faces some challenges, such as the interpretability of algorithms. Some artificial 

intelligence algorithms are considered to be "black box" models, and their decision-making 

process is difficult to explain. This lack of interpretability may affect the reliability and security of 

quantum communication systems; Due to the difficulty of data acquisition and annotation, it is not 

easy to acquire a large amount of data for algorithm training in the actual system. In addition, 

most of the current quantum communication and quantum sensing systems rely on classical 

artificial intelligence algorithms, and future research can further explore the application of 

quantum artificial intelligence algorithms in quantum communication and quantum sensing. 

Quantum artificial intelligence algorithms are expected to break through the bottleneck of classical 

algorithms and achieve more efficient and secure quantum communication and quantum sensing 

systems by using the superposition and entanglement characteristics of quantum computing. 



The miniaturization of quantum communication and quantum sensing systems, the integration of 

chips and multi-scenario applications such as unmanned aerial vehicles are also hot research 

directions, but they still face many challenges. The miniaturization and chipping of the system 

need to solve the problems of high cost and low integration of quantum chips, and at the same 

time ensure the high performance and stability of the system. The computing resources and 

storage capacity of lightweight chips may be limited, while the actual quantum communication 

and quantum sensing systems usually need to process a large amount of real-time data. How to 

achieve efficient algorithm deployment and system feedback control under the condition of 

limited computing power has become an urgent problem to be solved. At the same time, complex 

task environment, dynamic scenarios and multi-task coordination requirements make artificial 

intelligence aided design and decision-making an inevitable trend. 

In addition, the integration of quantum communication and quantum sensing systems is an 

important direction for future technology development. Quantum communication provides 

absolutely secure information transmission capability, while quantum sensing shows great 

potential in high-precision measurement. The combination of the two, namely "Integrated sensing 

and communication", can realize the deep integration of quantum communication and quantum 

sensing, and provide more efficient and reliable solutions for tasks in complex environments. For 

example, quantum sensing technology can be used for high-precision environmental monitoring 

and positioning navigation, while quantum communication ensures the secure transmission of 

these data. Future research needs to further explore the deep integration of artificial intelligence 

with quantum communication and quantum sensing, develop more efficient, secure and practical 

quantum communication and quantum sensing systems, and lay a solid foundation for wide 

applications. 
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