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Abstract

Compared with the lattice Boltzmann equation (LBE) model based on incompressible
phase field theory, the LBE based on quasi-incompressible phase field theory has the
advantage of local mass conservation. However, previous quasi-incompressible
phase-field-based LBE model does not satisfy the well-balanced property, resulting in
spurious velocities in the vicinity of interface and density profiles inconsistent with
those from thermodynamics. To address this problem, a novel LBE model is
developed based on the quasi-incompressible phase-field theory. First, numerical
artifacts in the original LBE for the Cahn-Hilliard are analyzed. Based on this analysis,
the equilibrium distribution function and source term are reformulated to eliminate the
numerical artifacts, enabling the new LBE to realize the well-balanced characteristics
at a discrete level. The performance of the proposed LBE model is tested by
simulating a number of typical two-phase systems. The numerical results of the planar
interface and static droplet problems demonstrate that the present model can eliminate
spurious velocities and achieve well-balanced state. Numerical results of the layered
Poiseuille flow demonstrate the accuracy of the present model in simulating dynamic
two-phase flow problems. The well-balanced properties of the LBE model with two
different formulations of surface tension (F; = —¢Vu and Fg = uV¢) are also
investigated. It is found that the formulation of F, = uV¢ cannot eliminate the
spurious velocities, while the formulation of F, = uV¢ can achieve the well-balanced
state. The influences of viscosity formulations of the fluid mixture are also compared.
Particularly, four mixing rules are considered. It is shown that the use of step mixing
rule gives more accurate results for the layered Poiseuille flow. Finally, we compare
the performance of the present quasi-incompressible LBE model with that of the
original fully incompressible LBE model by simulating the phase separation problem,
and the results show that the present model can ensure the local mass conservation,
while the fully incompressible LBE can yield quite different predictions.
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1. Introduction

Lattice Boltzmann equation (LBE) method based on mesoscopic kinetic theory is an effective
research method for multiphase flow simulation, and many effective LBE models have been
developed™™. However, the conventional multiphase LBE models still have some
fundamental problems, such as inaccurate interface capture and spurious velocity. In theory,
when the system reaches equilibrium, the chemical potential should be constant, and the fluid
loses its driving force and its velocity should be zero. However, in the existing multi-phase
LBE model, the spurious velocity near the interface cannot be completely eliminated®*?. In
general, the spurious velocity is much smaller than the characteristic velocity of the problem,
which has little effect on the simulation. However, in some cases, the spurious velocity can
lead to numerical instability and unphysical phenomena. For example, the two-phase density
distribution of the pseudo-potential model"® can deviate significantly from the Maxwell’s
coexistence curve. Similar unphysical phenomena have been observed in the phase-field
model®,

Various attempts have been made to identify the source of the spurious velocity and mitigate

its effects. For example, Cristea and Sofoneal™”!

identified that the reason for the spurious
velocity in the finite-difference LBE models is the first-order upwind scheme for calculating
the space derivatives in the evolution equation, and they introduced a correction force term to
solve this problem. Wagner™ attributed the spurious velocity to the discretizations of the
driving forces, and demonstrated that using the potential form of the surface-tension force
could eliminate spurious velocity. However, this approach introduced numerical instability,
requiring additional stabilization terms dependent on numerical viscosity and velocity.
Shan* identified the lack of isotropy in gradient-operator discretization within force terms as
a key contributor to spurious velocity in pseudo-potential models. Building on this insight,
Sbragaglia et al.* developed a high-order isotropic discretization scheme to reduce the

spurious velocity of the pseudo-potential models.

Previous studies have shown that the spurious velocity of LBE comes from the spurious force



caused by the discretization errors. Guo et al.™! conducted a rigorous mathematical analysis
of the free energy LBE model and derived the total force imbalance equation. The results
shown that the imbalance between the ideal gas pressure gradient and surface tension on the
discrete level leads to spurious velocity. Subsequently, Guo™™ analyzed the structure of the
unbalanced net force, and proposed a well-balanced (WB) LBE model that eliminates the
spurious velocity entirely. Zhang et al.™ proposed an improved model based on this to

improve the numerical stability. Inspired by the WB-LBE model, Zheng et al.*"

proposed the
treatment of the equilibrium forces in the phase field model, and established the phase field
WB-LBE model by reconstructing the LBE corresponding to the Navier-Stokes equation.
More recently, Ju et al.!*® demonstrated that the spurious velocity of the phase-field LBE
model comes from the LBE solving the phase-field Cahn-Hilliard (CH) equation. They
accordingly redesigned the corresponding LBE to establish another phase-field WB-LBE

model.

The existing phase-field WB-LBE models have been proved to be able to eliminate the
spurious velocity well. However, those models were developed based on the incompressible
phase-field theory, and consequently failed to guarantee local mass conservation when the
two fluids have different densities™™®. Subsequently, Yang and Guo® proposed a LBE model
based on the quasi-incompressible phase field model™, which achieves the local mass
conservation, but still exhibits significant spurious velocity. Therefore, the purpose of this
paper is to develop a WB-LBE model based on the quasi-incompressible phase field theory.

This paper is organized as follows. Section 2 briefly introduces the quasi-incompressible
phase-field LBE model. In section3 we analyze the source of spurious velocity, propose a
well-balanced LBE model, and verify its well-balanced property by Chapman-Enskog (CE)
expansion. Section4 presents validation cases to demonstrate the model's performance. Finally,
section5 concludes the paper.

2. LBE model based on quasi-incompressible phase field theory
2.1 Quasi-incompressible phase field theory

The phase-field theory describes the thermodynamic behavior of a two-phase system in terms
of a free energy function, which can be represented by an order parameter ¢ labeling the
fluids of different phases:

Fo)=| [w@+35ve|de. @)
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where w(¢) is the bulk free energy density, x is the surface tension coefficient, and Q is the
control volume. For a two-phase system, the bulk free energy density can take the double-well



form?Y:
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where ¢, and ¢,are the order parameters of phase 1 and phase 2, respectively, and in

general, ¢, = 1 and ¢, = 0. B is a constant related to x, and they satisfy the following
relations:
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where ¢ is the surface tension and W represents the interface thickness. The chemical
potential x can be obtained in terms of the free energy function, i.e.
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The evolution of the order parameter satisfies the Cahn-Hilliard (CH) equation:

0o+ V - (¢u) =V - (AVp), (6)
where u is the fluid velocity and 4 is the mobility coefficient.

In incompressible phase-field theory, the governing equations describing the fluid also
include the incompressible Navier-Stokes (NS) equation:

V-u=0, (7)

8; (pu) +V - (puu)
_ T (8)
= —-Vp+V-{pv|Vu+ (Vu)']|} + F,
where p is the Kinetic pressure; F = Fs + G is the total force, including surface tension F and
external body force G. Zhang et al. ™ pointed out that when the surface tension is in the form
of potential energy, the smaller spurious velocity could be obtained. Therefore, unless



otherwise specified, the surface tension in the form of Fg = —¢Vyu is used in our simulations,
and the gradient operator is discretized using an isotropic central difference scheme

(41). p and v are the density and kinematic viscosity of the mixed fluid, respectively, which
can be expressed by the linear mixing rule as

b—dy -0
= ——p + —p,, 9
P " e —h ©2)

_ P9 + MPM, (9b)
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where p; and p, represent the densities of phase 1 and phase 2, respectively,

and v, and v, represent the kinematic viscosities of phase 1 and phase 2, respectively. Since
the actual physical meaning of ¢ is the volume fraction of phase 1, according to the definition
of density, the mixing density is generally calculated by the linear mixing rule, while the
viscosity can be calculated by different mixing rules, such as the reciprocal rule, the
exponential rule and the step rule, which will be compared later. The above model has been
widely used in the field of multiphase flow. However, substituting (7) and (9a) into (6) gives:

P1L — P2

Oip+V - (pu) = b,

V- (AVp). (10)

Obviously, when p; # p,, the incompressible phase field model cannot guarantee local mass
conservation.

The quasi-incompressible phase-field model®® no longer assumes that the velocity divergence
is 0, but takes

V-u=-—V-(AVpu) (11)

where y is a coefficient related to the density of the two phases, which can be expressed as
_ P1 = P2
P1P2 — G2y

Y (12)

Substituting (9), (11) and (12) into (6), we can get:

Op+ V- (pu) = 0. (13)



This shows that the quasi-incompressible phase-field model strictly satisfies the local mass
conservation.

2.2 Quasi-incompressible phase-field LBE model.

Yang and Guo™ proposed the corresponding LBE model based on the quasi-incompressible
phase-field theory. Two LBEs are used to describe the flow and phase field respectively. The
LBEs for solving the NS equation and the CH equation are
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where f;(x,t) and g;(x, t) represent the distribution function in the direction of i located

at x at the time of t, which are the pressure distribution function and the order parameter
distribution function, respectively; tr and 7, are the dimensionless relaxation times associated
with viscosity and mobility coefficient, respectively; £.°% and g7 are equilibrium distribution
functions defined as

f7 = wi [p + cpsi (u)], (16)

eq_Wi¢Si(u)+{¢+(wil)aH’ i=0 (17)
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Here « is an adjustable parameter, which is generally taken as 1; cs = c/+/3 is the lattice
sound speed; The w; is the weighting coefficient; e; is the ith discrete velocity. Taking the
D2Q9 model as an example, the weighting coefficients are wg =4/9, wi_, =1/



9 and ws_g = 1/36, and the discrete velocities are eq = (0,0), e,_4 = c{cos[(i —
1m/2],sin[(i — 1)m/2]} and es_g = V2c{cos[(2i — 1)m/4], sin [(2i — 1)7/4]}, where ¢ =
8,/6., while &, and &, are the space step and time step, respectively. F; and G; are source
terms defined as

Fi=(ei—u) [wF[1+ 5 (u)] + w;s; (u) V|

19
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G; = "2, (e; —u) (Vp — F)[1+ s (u)]. (20)

The macroscopic quantities include pressure p, velocity u and order parameter ¢, which can
be statistically obtained by

p=> .f;i+ %cg(u Vp—7pV - (AVR)), (21)
1 ot
u = P [Zieifi + 3(:317'} , (22)

6= .9 (23)

Through Chapman-Enskog (CE) expansion, the model can recover the macroscopic equation,
and the calculation formulas of kinematic viscosity and mobility coefficient are obtained:

v =c?(r; — 0.5)4, (24)
A=cla(r, - 0.5)4,. (25)

For convenience, we call the above LBE model the YG-LBE model.
3. Awell-balanced LBE model based on quasi-incompressible phase-field theory
3.1 The source of the spurious velocity

Similar to most two-phase LBE models, the YG-LBE model also has the spurious velocity. Ju
et al.'® analysis found that the root cause is that the equilibrium function and source term in
the LBE solving the CH equation are not in balance at the discrete level. The macroscopic
equation recovered by the YG-LBE model through the CE expansion is 2.



0,0+ V- (pu) = AV - (Vp+ I —Iy), (26)

with

I't = 0y (¢u) + V - (puu) = —(F — Vp), (27)
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Obviously, the expressions for I and I, are the same, and in general, they can be considered
to cancel each other. However, the I arises from the collision and stream of the LBE and
originates from the equilibrium distribution function; The I, is an additional term in the
source term in order to eliminate I3. However, they are essentially from different sources,
and their discrete templates are different on the numerical grid, so they would produce
non-zero chemical potential gradients, which would lead to the emergence of spurious
velocity.

3.2 The well-balanced LBE model.

The above analysis shows that the origin of the I; and I, lies in the fact that the equilibrium
distribution function (17) introduces a s; (u) to recover the convective term V - (¢u) in the
CH equation. The s;(u) leads to the appearance of I3, so the artificial term I, needs to be
introduced to offset it. The solution is to™*® remove the s; () from the equilibrium distribution
function and restore the exact convective term by redesigning the source term. In this

way, I7 no longer appears, and the artificial term I, is no longer needed. Based on the above
idea, we redesign the LBE for solving the CH equation and develop an well-balanced model
based on the quasi-incompressible phase-field theory.

The new LBE for solving the CH equation is®?

g (¢ +e;d,t+0,) — g; (1)

1 eq
__ 1. _ g 8,G,
o (@) " (@) 56 (1) 29)
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where the equilibrium distribution function no longer contains s;(u) and is defined as
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In order to accurately recover the CH equation, the new source term is defined as

Nees — 2
G; = w; [V - (¢u)] l—1+ I (6‘6’2 ) : (31)

2c

The order parameter is calculated as

6= .9 (32)

In order to analyze the macroscopic equation corresponding to the LBE (29), the CE analysis
is carried out. First, the following multi-scale expansions is introduced:

1 2
g =g +eg” + 2% + .-, (33)
8, = €y + 28y, V = eV, G; = G, (34)

Applying Taylor expansion to (29), one obtains:

5t 1 e 5t
Dig; + —Dig = (9 —¢")+ Gi+ G (35)
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where D; = d; + e; - V. Substituting (33) and (34) into (35), the equations on different scales
can be obtained:

0 (50) : gi(o) = gieq, (36a)
1
0 (&) : Dyg!" = ——g" + G, (36b)
6tTg

0 y , 0 0
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According to (36b), the equation (36¢) can be written as
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According to the definition of the equilibrium distribution function gfq and the source
term G;, some velocity moments can be obtained as follows:
0 0 0
S0V =063 e =0, Y eeig” = apul, (38a)
Zigi(l) = Zz‘gi(2) =0, Zieigi(l) = —4,T,c3av, (38b)
) _ ) 0 _
Z;-Gi = -V, - (¢u), ZielGi =0, (38c)
Taking the zeroth-order moment of (36b) and (37) and using (38), we can get:
O + Vo - (¢u) =0, (39a)
Ou¢ = Vo - [cdad, (1, — 0.5) Vop). (39b)
Combining (39a) and (39b), the following CH equation is obtained:
O+ V- (¢u) = V- (AVp). (40)

From the above derivation, it can be seen that the current model avoids the generation of the
unbalanced term in the process of recovering the macroscopic equation, and can achieve
accurate balance on the discrete level.

In order to facilitate the calculation and ensure the second-order spatial accuracy, the isotropic
central difference scheme is used to discretize the gradient operator and Laplace operator:

Vo =

1
=5 D wieig(@ + e;dy), (41a)
sVt

2
Vi = 2, D wild(x+ ed,) — ¢ (), (41b)



where ¢ can be any physical quantity.
For convenience, the model is called well-balanced (WB) -LBE model in this paper.
4. Numerical verification

In this section, several typical examples will be simulated to verify the performance of
WB-LBE and compare with YG-LBE model.

4.1 Flat interface problem

Firstly, a flat interface problem in x-y coordinate system is simulated. The computational
domain is a rectangular area of size L, X L,, = 30 x 128, where L, and L,, are the width and

height of the domain, respectively. The computational grid is N, x N, = 30 x 128. At the
beginning, the phase 1 is distributed in the central area, and the rest space is filled with the
phase 2. The initial order parameter is set according to:

G0 = by + 0.5 (d, — ) [tanh (2 y Wyl)
+ tanh (2y ;/yz)] ,

where y; = N,,/4 and y, = 3N,,/4 are the lower and upper boundaries of the region where

(42)

the phase 1 is located, respectively; W is the interface thickness, which issetas W =4 in
this paper. In the simulation, all four boundaries are set as periodic boundaries. The density
and kinematic viscosity of the phase 1 are p; = 10 and v; = 0.1, respectively, while the
density and kinematic viscosity of the phase 2 are p, = 1.0 and v, = 0.1, respectively; the
surface tension is o = 0.005, and the mobility coefficientis 4 = 0.1.

For the sake of comparison, we characterize the magnitude of the spurious velocity by the
total kinetic energy of the system, E, which is defined as

1
E = —fp{u{2daz, (43)
2J0

where Q denotes the computational domain. The results of WB-LBE and YG-LBE are given
by Fig. 1. The Fig. 1(a) gives the evolution of the total kinetic energy E with time step t. It can
be seen from the Fig. 1(a) that before about t = 10°, the total kinetic energy of the two has
the same change trend, which first decreases to the order of about 10~1° with time, then
increases to the order of about 10~°, and then begins to decrease gradually with time.

However, after some time between t = 10— 109>, the total kinetic energy of the YG-LBE



rises rapidly again until the numerical divergence while the total kinetic energy of WB-LBE
decreases continuously and finally stabilizes at the order of about 10~2>. The velocity
distribution of WB-LBE in steady state is given by Fig. 1(b). From Fig. 1(b), it can be found
that the spurious velocity is in the order of 107>, reaching machine precision. The maximum
spurious velocity of YG-LBE is still in the order of 10~° even at the time when the total
kinetic energy decreases to the minimum (Fig. 1(c)). The chemical potential distributions
obtained by the two models when the total kinetic energy reaches its minimum are given by
Fig. 1(d) . It can be seen that the chemical potential of the YG-LBE model has a change of the

order of 1078, while the chemical potential of the present model is basically constant, and its
change is of the order of 107>,
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Figure 1. Numerical results of the WB-LBE and YG-LBE models for the planar interface: (a)
Time evolution of the total kinetic energy; (b) distribution of velocity obtained by the
WB-LBE model at steady state; (c) distribution of velocity obtained by the YG-LBE model at
steady state; (d) distributions of chemical potential.

4.2 Stationary droplet problem

We further simulate a two-dimensional stationary droplet problem. The droplet radius is R,
and the size of computational domain is N, X N,, = 128 x 128. The droplet is represented
by the phase 1, with radius R = N, /4, initially placed in the center of the computational
domain, and filled with the phase 2 elsewhere. The order parameter is initialized as
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where (x¢,y.) = (Nx/2, N, /2) is the coordinate of the initial position of the center of the
droplet. In the simulation, periodic boundaries are used for all four boundaries, and other
parameters are the same as those of the flat interface problem mentioned above.

We compare the results of the WB-LBE model and the YG-LBE model in this paper, as
shown in Fig. 2. The time evolution process of the total kinetic energy given by the Fig.

2(a) is different from that of the flat interface problem, which is no longer a stage of first
decreasing and then increasing rapidly, but a nearly monotonous decreasing process. Similar
to the flat interface problem, after a certain time between t = 10— 10%>, the E in the results
of the YG-LBE model increases rapidly with time until it stabilizes at the order of 102, when
the spurious velocity is extremely large. The total kinetic energy E calculated by the WB-LBE
model decreases with time and finally stabilizes at the order of about 10~25. From the
velocity distribution given by Fig. 2(b), it can be seen that the spurious velocity is in the order
of 10715, reaching machine accuracy. When the E is the lowest, the spurious velocity of the
YG-LBE model shown by Fig. 2(c) is still in the order of 1078, From the chemical potential
distribution given by Fig. 2(d), it can also be found that when E reaches the minimum, the
chemical potential of YG-LBE model changes by the order of 10~7, while the chemical
potential of WB-LBE model remains basically constant. The above comparisons show that
the current model can achieve an well-balanced state.
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Figure 2. Results of the WB-LBE and YG-LBE models for the steady-state droplet problem:
() Time evolution of the total kinetic energy; (b) velocity distribution obtained by the
WB-LBE model; (c) velocity distribution obtained by the YG-LBE model; (d) distributions of
chemical potential.

In the following, we compare the effects of two forms of surface tension on the performance
of the model. The expressions for these two forms of surface tension are!!:

F, = —¢Vp, (452)
F, = uve. (45b)

The results are shown in Fig. 3, where casel and case2 used the (45a) and (45b) equations,
respectively, to calculate the surface tension. The time evolution of the total kinetic energy in
two cases is given by the Fig. 3(a). From the Fig. 3(a), it can be seen that the total kinetic
energy in casel decreases to the order of 10725, while the total kinetic energy in case2
increases suddenly in the middle and finally stabilizes at a higher level. This shows that the
use of surface tension in the form of (45b) cannot eliminate the spurious velocity. The surface
tension of (45a) and (45b) are usually considered to be equivalent, but in equilibrium, (45b)
can not guarantee that the chemical potential is constant, so it can not achieve well-balanced
state. The chemical potential distribution in two cases is given by Fig. 3(b). It can be seen that
the chemical potential in casel is constant, while the chemical potential in case2 changes
obviously.
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Figure 3. Numerical results of the steady-state droplet problem using different forms of

surface tension: (a) Time evolution of the total kinetic energy; (b) distributions of chemical

potential.

The above simulations all use the linear viscosity mixing rule. As mentioned earlier, the
viscosity mixing rule also includes the reciprocal rule, the exponential rule, and the step rule,
which are

1 1-—
— = ¢ + ¢, (46a)
pv.- P11 p2v2

In (pv) = éln (p;v1) + (1 — ¢) In(pyr), (46b)

> 0.
W={mw’¢/0& (460)

pyva, ¢ < 0.5,

In order to compare their effects on the performance of the model, we increased the viscosity
ratio, let v; = 0.1, v, = 0.01, and kept the other parameters. The results of different mixing
rules are compared in Fig. 4, in which casel-case4 used (9b), (46a), (46b) and (46¢) to
calculate the mixing viscosity, respectively. From the Fig. 4(a), it can be seen that the order
parameter distributions in the four cases are completely consistent, indicating that different
viscosity mixing rules have no significant effect on the interface capturing performance of
this problem. The distribution of chemical potential is given by Fig. 4(b). It can be seen that
the chemical potential of the four cases is also constant and equal to the same value. Fig.
4(c) and (d) show the time evolution of the total kinetic energy and its partial magnification. It
can be seen that different viscosity mixing rules show some differences in terms of spurious
velocity. The total kinetic energy of casel and case4 finally stabilizes at the order

of 1072° and 10723, respectively, and the total kinetic energy of case2 and case3 finally
fluctuates between the order of 1072 and 10723,
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Figure 4. Numerical results of the steady-state droplet problem using different viscosity
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mixing rules: (a) Distributions of order parameter; (b) distributions of chemical potential; (c),
(d) time evolution of total kinetic energy.

4.3 Layered Poiseuille flow

In this section, the problem of layered Poiseuille flow is simulated. The computational
domain is set to N, X N,, = 64 x 250, the upper and lower boundaries are no-slip solid
boundaries, the modified bounce-back scheme is used to achieve no-slip boundaries, and the
left and right boundaries are periodic boundaries. The upper part of the computational domain
is filled with the phase 1 and the lower part with the phase 2. The flow is driven by a constant
external force G, = 1077 in the direction of the x. In the simulation, the density of the two
phases is set as p; = p, = 1.0, the kinematic viscosity is v; = 1.0 and v, = 0.1, the surface
tension is ¢ = 0.005, the mobility coefficient is A = 0.1, and the interface thickness is

W = 4.0. There exists an analytical solution for the distribution of the x direction velocity
along the y direction for this problem:

G,h’ [(g)2gpm—9m L 2pw ], Ch<y<,
w = 2pyv h h pivi+ pava  prvit pave (47)
G, [ (y)Q Y PiVL— Pave 2p111 ]
o |\ - + ’ 0 < Y < h:
2p,11 h h pyvi + pava  pyvy + pare

where h = 124.5 according to the number of grids we have taken.

In Section 4.2, we compared the effects of different viscosity mixing rules on the stationary



droplet problem, and we will further compare the differences between them by simulating the
dynamic problem. The Fig. 5 shows the distribution of the velocity in the direction of

the x along the direction of the y and its local amplification. Casel-4 use (9b), (46a), (46b)
and (46c¢) to calculate the mixing viscosity, respectively. On the whole, the results of case2
and case4 are in good agreement with the analytical solution, and near the interface, the
results of case4 are more consistent with the analytical solution. Therefore, when simulating
dynamic problems, the step mixing rule of (46¢) can be used to calculate the mixing viscosity
to obtain more accurate results.
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Figure 5. Distributions of flow velocity of the layered Poiseuille flow with different viscosity
mixing rules.

In order to further verify the accuracy of the current model, the cases of different dynamic

viscosity ratios M = % = % are also simulated. We use the equation (46c) to calculate the
2 2V2

viscosity of the mixture, set the density of the two phases to be p; = p, = 1.0, fixthe v; =
1.0, and change the dynamic viscosity ratio by adjusting the value of v,. The Fig. 6 gives the
velocity distribution for M = 10, 100, 1000, and the simulation results are in good agreement
with the analytical solution. This demonstrates the accuracy of the current model in
simulating dynamic problems and problems with large viscosity ratios.
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Figure 6. Distributions of flow velocity of the layered Poiseuille flow with different dynamic
viscosity ratios: (a) M=10; (b) M=100; (c) M=1000.

4.4 Two-phase separation problem



In this section, a two-phase separation problem is simulated and compared with the LBE
model™ based on the incompressible phase-field theory. The calculation domain is a square
area with a size of N, X N,, = 100 x 100, and the initial timing parameters include a small

perturbation, that is:

1 . (4 4
¢ =—=|1+0.1sin ) cos | =

2 N, N, (48)

In the simulation, the viscosity ratio v, /v, = 1, the surface tension ¢ = 0.001, the relaxation
time 7, = 7, = 1.0, and the interface thickness are setas W = 4.

In the LBE model™® based on the incompressible phase-field theory, the corresponding
continuity equation is (7). Compared with the quasi-incompressible continuity equation (11),
the main difference between them is the right-hand term yV - (AVy), which is related to the
parameter y and only plays a role in the interface region. Therefore, when y = 0 or in the
bulk region, the two models are the same. When the y is large or the proportion of the
interface in the total area is large, the role of this term is greater, and the model difference will
be obvious. In this example, we take y = 4 and the density ratio is p;/p, =5 At the same
time, the prediction results of the two models may be quite different because there are many
two-phase interfaces at the initial time.

The Fig. 7 gives the phase distributions of the two models at different times, and it can be
seen that the two models show great differences in phase separation. On the one hand, the
results of the quasi-incompressible model evolve faster, and the predicted phase separation is
earlier than that of the incompressible model; On the other hand, the two models obtain
opposite results of phase separation. In the results of the quasi-incompressible model, the
yellow phase is the discrete phase and the blue phase is the continuous phase, while the
results of the incompressible model are just opposite.
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Figure 7. Phase distributions predicted by the incompressible model and the
guasi-incompressible model. Yellow, Fluid 1; Blue, Fluid 2

We also count the mass changes of the two phases in this process, and calculate the total mass
of the single phase at each time by the following formula:

m®=[  pav. (49a)
2,6(£)>0.5

m®=[  pav, (490)
2,6(£)<0.5

Let M; = my(t)/m,(0), M, = m,(t)/m,(0), Fig. 8 gives the M;-t and M,-t curves. It can
be seen that after stabilization, the mass of each phase obtained by the incompressible
model™® has a large deviation from the initial value, with a relative error of 3.53%, while the
mass deviation of the quasi-incompressible model is small, with a relative error of only
0.67%.
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Figure 8. Variation of single-phase mass over time.



5. Conclusion

Based on the quasi-incompressible phase-field theory, a two-phase LBE model is proposed in
this paper, which can achieve well-balanced state on the discrete scale. The flat interface
problem and the staionary droplet problem are simulated and compared with the
quasi-incompressible phase-field YG-LBE model™ without well-balanced property. The
results show that the proposed model eliminates the spurious velocity to machine accuracy
and obtains an almost constant chemical potential, which proves the well-balanced
performance of the current model. The effects of different surface tension forms and different
viscosity mixing rules are also compared in the simulation of stationary droplet problem. The
results show that the form of surface tension expressed by (45b) does not guarantee that the
chemical potential is constant and the well-balanced state cannot be achieved; Different
viscosity mixing rules have no significant effect on the model when simulating static
problems. Layered Poiseuille flow is further simulated, and the effects of different viscosity
mixing rules are compared. The results show that more accurate results can be obtained by
using the step mixing rule to calculate the mixing viscosity. Layered Poiseuille flow with
different viscosity ratios is also simulated, and the results are in good agreement with the
analytical solution, which proves the accuracy of the current model in simulating dynamic
problems and problems with large viscosity ratios. In addition, a two-phase separation
problem is simulated to show the difference between the quasi-incompressible model and the
incompressible model, and to prove that the proposed model can ensure local mass
conservation. In a word, the well-balanced two-phase LBE model proposed in this paper
solves the spurious velocity problem of the original model, and at the same time, it can ensure
the local mass conservation.
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