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Abstract 

Compared with the lattice Boltzmann equation (LBE) model based on incompressible 

phase field theory, the LBE based on quasi-incompressible phase field theory has the 

advantage of local mass conservation. However, previous quasi-incompressible 

phase-field-based LBE model does not satisfy the well-balanced property, resulting in 

spurious velocities in the vicinity of interface and density profiles inconsistent with 

those from thermodynamics. To address this problem, a novel LBE model is 

developed based on the quasi-incompressible phase-field theory. First, numerical 

artifacts in the original LBE for the Cahn-Hilliard are analyzed. Based on this analysis, 

the equilibrium distribution function and source term are reformulated to eliminate the 

numerical artifacts, enabling the new LBE to realize the well-balanced characteristics 

at a discrete level. The performance of the proposed LBE model is tested by 

simulating a number of typical two-phase systems. The numerical results of the planar 

interface and static droplet problems demonstrate that the present model can eliminate 

spurious velocities and achieve well-balanced state. Numerical results of the layered 

Poiseuille flow demonstrate the accuracy of the present model in simulating dynamic 

two-phase flow problems. The well-balanced properties of the LBE model with two 

different formulations of surface tension (        and       ) are also 

investigated. It is found that the formulation of        cannot eliminate the 

spurious velocities, while the formulation of        can achieve the well-balanced 

state. The influences of viscosity formulations of the fluid mixture are also compared. 

Particularly, four mixing rules are considered. It is shown that the use of step mixing 

rule gives more accurate results for the layered Poiseuille flow. Finally, we compare 

the performance of the present quasi-incompressible LBE model with that of the 

original fully incompressible LBE model by simulating the phase separation problem, 

and the results show that the present model can ensure the local mass conservation, 

while the fully incompressible LBE can yield quite different predictions. 
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1. Introduction 

Lattice Boltzmann equation (LBE) method based on mesoscopic kinetic theory is an effective 

research method for multiphase flow simulation, and many effective LBE models have been 

developed
[1-4]

. However, the conventional multiphase LBE models still have some 

fundamental problems, such as inaccurate interface capture and spurious velocity. In theory, 

when the system reaches equilibrium, the chemical potential should be constant, and the fluid 

loses its driving force and its velocity should be zero. However, in the existing multi-phase 

LBE model, the spurious velocity near the interface cannot be completely eliminated
[5-13]

. In 

general, the spurious velocity is much smaller than the characteristic velocity of the problem, 

which has little effect on the simulation. However, in some cases, the spurious velocity can 

lead to numerical instability and unphysical phenomena. For example, the two-phase density 

distribution of the pseudo-potential model
[7,8]

 can deviate significantly from the Maxwell’s 

coexistence curve. Similar unphysical phenomena have been observed in the phase-field 

model
[9]

. 

Various attempts have been made to identify the source of the spurious velocity and mitigate 

its effects. For example, Cristea and Sofonea
[10]

 identified that the reason for the spurious 

velocity in the finite-difference LBE models is the first-order upwind scheme for calculating 

the space derivatives in the evolution equation, and they introduced a correction force term to 

solve this problem. Wagner
[11]

 attributed the spurious velocity to the discretizations of the 

driving forces, and demonstrated that using the potential form of the surface-tension force 

could eliminate spurious velocity. However, this approach introduced numerical instability, 

requiring additional stabilization terms dependent on numerical viscosity and velocity. 

Shan
[12]

 identified the lack of isotropy in gradient-operator discretization within force terms as 

a key contributor to spurious velocity in pseudo-potential models. Building on this insight, 

Sbragaglia et al.
[13]

 developed a high-order isotropic discretization scheme to reduce the 

spurious velocity of the pseudo-potential models. 

Previous studies have shown that the spurious velocity of LBE comes from the spurious force 



caused by the discretization errors. Guo et al.
[14]

 conducted a rigorous mathematical analysis 

of the free energy LBE model and derived the total force imbalance equation. The results 

shown that the imbalance between the ideal gas pressure gradient and surface tension on the 

discrete level leads to spurious velocity. Subsequently, Guo
[15]

 analyzed the structure of the 

unbalanced net force, and proposed a well-balanced (WB) LBE model that eliminates the 

spurious velocity entirely. Zhang et al.
[16]

 proposed an improved model based on this to 

improve the numerical stability. Inspired by the WB-LBE model, Zheng et al.
[17]

 proposed the 

treatment of the equilibrium forces in the phase field model, and established the phase field 

WB-LBE model by reconstructing the LBE corresponding to the Navier-Stokes equation. 

More recently, Ju et al.
[18]

 demonstrated that the spurious velocity of the phase-field LBE 

model comes from the LBE solving the phase-field Cahn-Hilliard (CH) equation. They 

accordingly redesigned the corresponding LBE to establish another phase-field WB-LBE 

model. 

The existing phase-field WB-LBE models have been proved to be able to eliminate the 

spurious velocity well. However, those models were developed based on the incompressible 

phase-field theory, and consequently failed to guarantee local mass conservation when the 

two fluids have different densities
[19]

. Subsequently, Yang and Guo
[3]

 proposed a LBE model 

based on the quasi-incompressible phase field model
[20]

, which achieves the local mass 

conservation, but still exhibits significant spurious velocity. Therefore, the purpose of this 

paper is to develop a WB-LBE model based on the quasi-incompressible phase field theory. 

This paper is organized as follows. Section 2 briefly introduces the quasi-incompressible 

phase-field LBE model. In section3 we analyze the source of spurious velocity, propose a 

well-balanced LBE model, and verify its well-balanced property by Chapman-Enskog (CE) 

expansion. Section4 presents validation cases to demonstrate the model's performance. Finally, 

section5 concludes the paper. 

2. LBE model based on quasi-incompressible phase field theory 

2.1 Quasi-incompressible phase field theory 

The phase-field theory describes the thermodynamic behavior of a two-phase system in terms 

of a free energy function, which can be represented by an order parameter ϕ labeling the 

fluids of different phases: 

 

where ψ(ϕ) is the bulk free energy density,   is the surface tension coefficient, and Ω is the 

control volume. For a two-phase system, the bulk free energy density can take the double-well 



form
[21]

: 

 

where    and   are the order parameters of phase 1 and phase 2, respectively, and in 

general,      and     .   is a constant related to  , and they satisfy the following 

relations: 

 

where σ is the surface tension and W represents the interface thickness. The chemical 

potential μ can be obtained in terms of the free energy function, i.e. 

 

The evolution of the order parameter satisfies the Cahn-Hilliard (CH) equation: 

 

where u is the fluid velocity and λ is the mobility coefficient. 

In incompressible phase-field theory, the governing equations describing the fluid also 

include the incompressible Navier-Stokes (NS) equation: 

 

where p is the kinetic pressure;        is the total force, including surface tension    and 

external body force G. Zhang et al.
 [4]

 pointed out that when the surface tension is in the form 

of potential energy, the smaller spurious velocity could be obtained. Therefore, unless 



otherwise specified, the surface tension in the form of         is used in our simulations, 

and the gradient operator is discretized using an isotropic central difference scheme 

(41). ρ and ν are the density and kinematic viscosity of the mixed fluid, respectively, which 

can be expressed by the linear mixing rule as 

 

where ρ1 and    represent the densities of phase 1 and phase 2, respectively, 

and    and    represent the kinematic viscosities of phase 1 and phase 2, respectively. Since 

the actual physical meaning of ϕ is the volume fraction of phase 1, according to the definition 

of density, the mixing density is generally calculated by the linear mixing rule, while the 

viscosity can be calculated by different mixing rules, such as the reciprocal rule, the 

exponential rule and the step rule, which will be compared later. The above model has been 

widely used in the field of multiphase flow. However, substituting (7) and (9a) into (6) gives: 

 

Obviously, when      , the incompressible phase field model cannot guarantee local mass 

conservation. 

The quasi-incompressible phase-field model
[20]

 no longer assumes that the velocity divergence 

is 0, but takes 

 

where γ is a coefficient related to the density of the two phases, which can be expressed as 

 

Substituting (9), (11) and (12) into (6), we can get: 

 



This shows that the quasi-incompressible phase-field model strictly satisfies the local mass 

conservation. 

2.2 Quasi-incompressible phase-field LBE model. 

Yang and Guo
[3]

 proposed the corresponding LBE model based on the quasi-incompressible 

phase-field theory. Two LBEs are used to describe the flow and phase field respectively. The 

LBEs for solving the NS equation and the CH equation are 

 

where         and         represent the distribution function in the direction of i located 

at x at the time of t, which are the pressure distribution function and the order parameter 

distribution function, respectively;    and    are the dimensionless relaxation times associated 

with viscosity and mobility coefficient, respectively;   
  

 and   
  

 are equilibrium distribution 

functions defined as 

 

with

 

Here α is an adjustable parameter, which is generally taken as 1;         is the lattice 

sound speed; The    is the weighting coefficient;    is the ith discrete velocity. Taking the 

D2Q9 model as an example, the weighting coefficients are       ,        



  and          , and the discrete velocities are         ,               

                      and                                         , where   

     , while    and    are the space step and time step, respectively.    and    are source 

terms defined as 

 

The macroscopic quantities include pressure p, velocity u and order parameter ϕ, which can 

be statistically obtained by 

 

Through Chapman-Enskog (CE) expansion, the model can recover the macroscopic equation, 

and the calculation formulas of kinematic viscosity and mobility coefficient are obtained: 

 

For convenience, we call the above LBE model the YG-LBE model. 

3. A well-balanced LBE model based on quasi-incompressible phase-field theory 

3.1 The source of the spurious velocity 

Similar to most two-phase LBE models, the YG-LBE model also has the spurious velocity. Ju 

et al.
[18]

 analysis found that the root cause is that the equilibrium function and source term in 

the LBE solving the CH equation are not in balance at the discrete level. The macroscopic 

equation recovered by the YG-LBE model through the CE expansion is 
[18]

. 



with 

 

 

Obviously, the expressions for    and    are the same, and in general, they can be considered 

to cancel each other. However, the    arises from the collision and stream of the LBE and 

originates from the equilibrium distribution function; The    is an additional term in the 

source term in order to eliminate   . However, they are essentially from different sources, 

and their discrete templates are different on the numerical grid, so they would produce 

non-zero chemical potential gradients, which would lead to the emergence of spurious 

velocity. 

3.2 The well-balanced LBE model. 

The above analysis shows that the origin of the    and    lies in the fact that the equilibrium 

distribution function (17) introduces a       to recover the convective term        in the 

CH equation. The       leads to the appearance of   , so the artificial term    needs to be 

introduced to offset it. The solution is to
[18]

 remove the       from the equilibrium distribution 

function and restore the exact convective term by redesigning the source term. In this 

way,    no longer appears, and the artificial term    is no longer needed. Based on the above 

idea, we redesign the LBE for solving the CH equation and develop an well-balanced model 

based on the quasi-incompressible phase-field theory. 

The new LBE for solving the CH equation is
[22]

 

 

where the equilibrium distribution function no longer contains       and is defined as 



 

In order to accurately recover the CH equation, the new source term is defined as 

 

The order parameter is calculated as

 

In order to analyze the macroscopic equation corresponding to the LBE (29), the CE analysis 

is carried out. First, the following multi-scale expansions is introduced: 

 

Applying Taylor expansion to (29), one obtains: 

 

where           . Substituting (33) and (34) into (35), the equations on different scales 

can be obtained: 

 

According to (36b), the equation (36c) can be written as 



 

 

According to the definition of the equilibrium distribution function   
  

 and the source 

term   , some velocity moments can be obtained as follows: 

 

 

Taking the zeroth-order moment of (36b) and (37) and using (38), we can get: 

 

Combining (39a) and (39b), the following CH equation is obtained: 

 

From the above derivation, it can be seen that the current model avoids the generation of the 

unbalanced term in the process of recovering the macroscopic equation, and can achieve 

accurate balance on the discrete level. 

In order to facilitate the calculation and ensure the second-order spatial accuracy, the isotropic 

central difference scheme is used to discretize the gradient operator and Laplace operator: 

 



where ϕ can be any physical quantity. 

For convenience, the model is called well-balanced (WB) -LBE model in this paper. 

4. Numerical verification 

In this section, several typical examples will be simulated to verify the performance of 

WB-LBE and compare with YG-LBE model. 

4.1 Flat interface problem 

Firstly, a flat interface problem in  -  coordinate system is simulated. The computational 

domain is a rectangular area of size             , where    and    are the width and 

height of the domain, respectively. The computational grid is             . At the 

beginning, the phase 1 is distributed in the central area, and the rest space is filled with the 

phase 2. The initial order parameter is set according to: 

 

where         and          are the lower and upper boundaries of the region where 

the phase 1 is located, respectively; W is the interface thickness, which is set as     in 

this paper. In the simulation, all four boundaries are set as periodic boundaries. The density 

and kinematic viscosity of the phase 1 are       and       , respectively, while the 

density and kinematic viscosity of the phase 2 are        and       , respectively; the 

surface tension is        , and the mobility coefficient is      . 

For the sake of comparison, we characterize the magnitude of the spurious velocity by the 

total kinetic energy of the system, E, which is defined as 

 

where Ω denotes the computational domain. The results of WB-LBE and YG-LBE are given 

by Fig. 1. The Fig. 1(a) gives the evolution of the total kinetic energy E with time step t. It can 

be seen from the Fig. 1(a) that before about      , the total kinetic energy of the two has 

the same change trend, which first decreases to the order of about       with time, then 

increases to the order of about     , and then begins to decrease gradually with time. 

However, after some time between      —     , the total kinetic energy of the YG-LBE 



rises rapidly again until the numerical divergence while the total kinetic energy of WB-LBE 

decreases continuously and finally stabilizes at the order of about      . The velocity 

distribution of WB-LBE in steady state is given by Fig. 1(b). From Fig. 1(b), it can be found 

that the spurious velocity is in the order of      , reaching machine precision. The maximum 

spurious velocity of YG-LBE is still in the order of      even at the time when the total 

kinetic energy decreases to the minimum (Fig. 1(c)). The chemical potential distributions 

obtained by the two models when the total kinetic energy reaches its minimum are given by 

Fig. 1(d) . It can be seen that the chemical potential of the YG-LBE model has a change of the 

order of     , while the chemical potential of the present model is basically constant, and its 

change is of the order of      . 

 

Figure 1.  Numerical results of the WB-LBE and YG-LBE models for the planar interface: (a) 

Time evolution of the total kinetic energy; (b) distribution of velocity obtained by the 

WB-LBE model at steady state; (c) distribution of velocity obtained by the YG-LBE model at 

steady state; (d) distributions of chemical potential. 

4.2 Stationary droplet problem 

We further simulate a two-dimensional stationary droplet problem. The droplet radius is R, 

and the size of computational domain is              . The droplet is represented 

by the phase 1, with radius       , initially placed in the center of the computational 

domain, and filled with the phase 2 elsewhere. The order parameter is initialized as 



 

where                     is the coordinate of the initial position of the center of the 

droplet. In the simulation, periodic boundaries are used for all four boundaries, and other 

parameters are the same as those of the flat interface problem mentioned above. 

We compare the results of the WB-LBE model and the YG-LBE model in this paper, as 

shown in Fig. 2. The time evolution process of the total kinetic energy given by the Fig. 

2(a) is different from that of the flat interface problem, which is no longer a stage of first 

decreasing and then increasing rapidly, but a nearly monotonous decreasing process. Similar 

to the flat interface problem, after a certain time between      —     , the E in the results 

of the YG-LBE model increases rapidly with time until it stabilizes at the order of    , when 

the spurious velocity is extremely large. The total kinetic energy E calculated by the WB-LBE 

model decreases with time and finally stabilizes at the order of about      . From the 

velocity distribution given by Fig. 2(b), it can be seen that the spurious velocity is in the order 

of      , reaching machine accuracy. When the E is the lowest, the spurious velocity of the 

YG-LBE model shown by Fig. 2(c) is still in the order of     . From the chemical potential 

distribution given by Fig. 2(d), it can also be found that when E reaches the minimum, the 

chemical potential of YG-LBE model changes by the order of     , while the chemical 

potential of WB-LBE model remains basically constant. The above comparisons show that 

the current model can achieve an well-balanced state. 

 



 

Figure 2.  Results of the WB-LBE and YG-LBE models for the steady-state droplet problem: 

(a) Time evolution of the total kinetic energy; (b) velocity distribution obtained by the 

WB-LBE model; (c) velocity distribution obtained by the YG-LBE model; (d) distributions of 

chemical potential. 

In the following, we compare the effects of two forms of surface tension on the performance 

of the model. The expressions for these two forms of surface tension are
[4]

: 

 

The results are shown in Fig. 3, where case1 and case2 used the (45a) and (45b) equations, 

respectively, to calculate the surface tension. The time evolution of the total kinetic energy in 

two cases is given by the Fig. 3(a). From the Fig. 3(a), it can be seen that the total kinetic 

energy in case1 decreases to the order of      , while the total kinetic energy in case2 

increases suddenly in the middle and finally stabilizes at a higher level. This shows that the 

use of surface tension in the form of (45b) cannot eliminate the spurious velocity. The surface 

tension of (45a) and (45b) are usually considered to be equivalent, but in equilibrium, (45b) 

can not guarantee that the chemical potential is constant, so it can not achieve well-balanced 

state. The chemical potential distribution in two cases is given by Fig. 3(b). It can be seen that 

the chemical potential in case1 is constant, while the chemical potential in case2 changes 

obviously. 



 

Figure 3.  Numerical results of the steady-state droplet problem using different forms of 

surface tension: (a) Time evolution of the total kinetic energy; (b) distributions of chemical 

potential. 

The above simulations all use the linear viscosity mixing rule. As mentioned earlier, the 

viscosity mixing rule also includes the reciprocal rule, the exponential rule, and the step rule, 

which are 

 

In order to compare their effects on the performance of the model, we increased the viscosity 

ratio, let       ,        , and kept the other parameters. The results of different mixing 

rules are compared in Fig. 4, in which case1-case4 used (9b), (46a), (46b) and (46c) to 

calculate the mixing viscosity, respectively. From the Fig. 4(a), it can be seen that the order 

parameter distributions in the four cases are completely consistent, indicating that different 

viscosity mixing rules have no significant effect on the interface capturing performance of 

this problem. The distribution of chemical potential is given by Fig. 4(b). It can be seen that 

the chemical potential of the four cases is also constant and equal to the same value. Fig. 

4(c) and (d) show the time evolution of the total kinetic energy and its partial magnification. It 

can be seen that different viscosity mixing rules show some differences in terms of spurious 

velocity. The total kinetic energy of case1 and case4 finally stabilizes at the order 

of       and      , respectively, and the total kinetic energy of case2 and case3 finally 

fluctuates between the order of       and      . 



 

Figure 4.  Numerical results of the steady-state droplet problem using different viscosity 

mixing rules: (a) Distributions of order parameter; (b) distributions of chemical potential; (c), 

(d) time evolution of total kinetic energy. 

 

4.3 Layered Poiseuille flow 

In this section, the problem of layered Poiseuille flow is simulated. The computational 

domain is set to             , the upper and lower boundaries are no-slip solid 

boundaries, the modified bounce-back scheme is used to achieve no-slip boundaries, and the 

left and right boundaries are periodic boundaries. The upper part of the computational domain 

is filled with the phase 1 and the lower part with the phase 2. The flow is driven by a constant 

external force         in the direction of the x. In the simulation, the density of the two 

phases is set as          , the kinematic viscosity is        and       , the surface 

tension is        , the mobility coefficient is      , and the interface thickness is 

     . There exists an analytical solution for the distribution of the x direction velocity 

along the y direction for this problem: 

 

where         according to the number of grids we have taken. 

In Section 4.2, we compared the effects of different viscosity mixing rules on the stationary 



droplet problem, and we will further compare the differences between them by simulating the 

dynamic problem. The Fig. 5 shows the distribution of the velocity in the direction of 

the x along the direction of the y and its local amplification. Case1-4 use (9b), (46a), (46b) 

and (46c) to calculate the mixing viscosity, respectively. On the whole, the results of case2 

and case4 are in good agreement with the analytical solution, and near the interface, the 

results of case4 are more consistent with the analytical solution. Therefore, when simulating 

dynamic problems, the step mixing rule of (46c) can be used to calculate the mixing viscosity 

to obtain more accurate results. 

 

Figure 5.  Distributions of flow velocity of the layered Poiseuille flow with different viscosity 

mixing rules. 

 

In order to further verify the accuracy of the current model, the cases of different dynamic 

viscosity ratios   
  

  
 

    

    
 are also simulated. We use the equation (46c) to calculate the 

viscosity of the mixture, set the density of the two phases to be          , fix the    

   , and change the dynamic viscosity ratio by adjusting the value of   . The Fig. 6 gives the 

velocity distribution for M = 10, 100, 1000, and the simulation results are in good agreement 

with the analytical solution. This demonstrates the accuracy of the current model in 

simulating dynamic problems and problems with large viscosity ratios. 

 

Figure 6.  Distributions of flow velocity of the layered Poiseuille flow with different dynamic 

viscosity ratios: (a) M=10; (b) M=100; (c) M=1000. 

4.4 Two-phase separation problem 



In this section, a two-phase separation problem is simulated and compared with the LBE 

model
[18]

 based on the incompressible phase-field theory. The calculation domain is a square 

area with a size of              , and the initial timing parameters include a small 

perturbation, that is: 

 

In the simulation, the viscosity ratio        , the surface tension        , the relaxation 

time          , and the interface thickness are set as    . 

In the LBE model
[18]

 based on the incompressible phase-field theory, the corresponding 

continuity equation is (7). Compared with the quasi-incompressible continuity equation (11), 

the main difference between them is the right-hand term         , which is related to the 

parameter   and only plays a role in the interface region. Therefore, when     or in the 

bulk region, the two models are the same. When the   is large or the proportion of the 

interface in the total area is large, the role of this term is greater, and the model difference will 

be obvious. In this example, we take     and the density ratio is         At the same 

time, the prediction results of the two models may be quite different because there are many 

two-phase interfaces at the initial time. 

The Fig. 7 gives the phase distributions of the two models at different times, and it can be 

seen that the two models show great differences in phase separation. On the one hand, the 

results of the quasi-incompressible model evolve faster, and the predicted phase separation is 

earlier than that of the incompressible model; On the other hand, the two models obtain 

opposite results of phase separation. In the results of the quasi-incompressible model, the 

yellow phase is the discrete phase and the blue phase is the continuous phase, while the 

results of the incompressible model are just opposite. 

 



 

Figure 7.  Phase distributions predicted by the incompressible model and the 

quasi-incompressible model. Yellow, Fluid 1; Blue, Fluid 2 

We also count the mass changes of the two phases in this process, and calculate the total mass 

of the single phase at each time by the following formula: 

 

Let               ,               , Fig. 8 gives the M1-t and M2-t curves. It can 

be seen that after stabilization, the mass of each phase obtained by the incompressible 

model
[18]

 has a large deviation from the initial value, with a relative error of 3.53%, while the 

mass deviation of the quasi-incompressible model is small, with a relative error of only 

0.67%. 

 

Figure 8.  Variation of single-phase mass over time. 

 



5. Conclusion 

Based on the quasi-incompressible phase-field theory, a two-phase LBE model is proposed in 

this paper, which can achieve well-balanced state on the discrete scale. The flat interface 

problem and the staionary droplet problem are simulated and compared with the 

quasi-incompressible phase-field YG-LBE model
[3]

 without well-balanced property. The 

results show that the proposed model eliminates the spurious velocity to machine accuracy 

and obtains an almost constant chemical potential, which proves the well-balanced 

performance of the current model. The effects of different surface tension forms and different 

viscosity mixing rules are also compared in the simulation of stationary droplet problem. The 

results show that the form of surface tension expressed by (45b) does not guarantee that the 

chemical potential is constant and the well-balanced state cannot be achieved; Different 

viscosity mixing rules have no significant effect on the model when simulating static 

problems. Layered Poiseuille flow is further simulated, and the effects of different viscosity 

mixing rules are compared. The results show that more accurate results can be obtained by 

using the step mixing rule to calculate the mixing viscosity. Layered Poiseuille flow with 

different viscosity ratios is also simulated, and the results are in good agreement with the 

analytical solution, which proves the accuracy of the current model in simulating dynamic 

problems and problems with large viscosity ratios. In addition, a two-phase separation 

problem is simulated to show the difference between the quasi-incompressible model and the 

incompressible model, and to prove that the proposed model can ensure local mass 

conservation. In a word, the well-balanced two-phase LBE model proposed in this paper 

solves the spurious velocity problem of the original model, and at the same time, it can ensure 

the local mass conservation. 
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