二维过渡金属硫属化合物相变方法的研究进展*

张浩哲 徐春燕 南海燕[†]肖少庆 顾晓峰

(江南大学电子工程系,物联网技术应用教育部工程研究中心,无锡 214122)

摘要

近些年来,二维过渡金属硫属化合物因为其独特的原子结构和能带特征而备受关注。过渡金属硫属化合物不仅存在稳定相,也存在一些亚稳相,这些亚稳相因其独特的电学和光学特性逐渐成为研究的热点。为了获得这些亚稳相,一种能够使过渡金属硫属化合物在两种晶相之间可控相变的方法必不可少。本文首先对过渡金属硫属化合物的电学、力学和光学特性进行了总结,然后介绍了其不同的晶相结构特征,接着列举了目前报道的过渡金属硫属化合物的八种相变方法:化学气相沉积法、掺杂法、分子插层法、应力法、高温热处理法、激光引导法、等离子体处理法以及电场引导法,并且介绍了各自的研究进展,最后对本文涉及的相变方法进行了总结并列举了这些方法迄今为止所存在的一些问题。该文详细阐述了过渡金属硫属化合物的相变方法,为未来过渡金属硫属化合物的相变研究提供了一个很好的参考方向。

关键词:二维硫属化合物,晶相结构,相变方法

PACS: 61. 46. -w, 74. 78. -w, 81. 07. Bc

基金: 国家自然科学基金(批准号: 11704157)资助的课题、江苏省自然科学基金(批准号: KB20170167)资助的课题、国家博士后基金(批准号: 2018M64215)资助的课题、江苏省博士后基金(批准号: 2018K057B)资助的课题资助的课题.

† 通讯作者.E-mail: jnanhaiyan@jiangnan.edu.cn

1 引言

自从 2004 年 Geim 和 Novoselov 等使用机械剥离的方法成功制备出单层石墨烯^[1]后,"二维材料"就逐渐地走入科学家的视野。石墨烯在室温量子霍尔效应以及超高载流子迁移率上有着很大的优势^[1,2],但零带隙的结构极大地制约了它在更多方面如逻辑电路、光电子等领域的发展。而被称为"材料之王"的黑磷虽然具有带隙且可控^[3],但由于在空气下极易被氧化,无法使其在工作环境中保持稳定^[4]。与以上材料相比,过渡金属硫属化合物(transition metal dichalcogenide, TMD)由于其优异的特性而逐渐成为二维材料研究的热点。TMD 材料由于具有带隙,

TMD 材料由于超薄的厚度、均匀且无悬挂键的表面、极高的载流子迁移率和 开关比以及可调控的带隙等优异特性成为了下一代纳米微电子器件(后硅时代) 的首选材料之一。近年来,TMD 材料的发现推动了短沟道晶体管研究的进展, 例如 2017 年中科院物理所张广宇团队利用氢气等离子体技术制备了以石墨烯为 电极的 8 nm 和 3.8 nm 的短沟道 MoS2场效应晶体管,均表现出较好的电学特性[6], 普渡大学叶培德教授团队及 Joerg Appenzeller 教授团队,分别于 2012 年、2014 年报道了以金属作为接触电极的 MoS2 场效应晶体管在沟道长度从长沟道范围缩 短至几十纳米的过程中器件电学性能的变化趋势,他们的实验结果一致表明 MoS2 这种材料对短沟道效应具有很强的免疫力,揭示了 MoS2 应用于超短沟道器件的 巨大潜力[7,8]。然而随着器件尺寸的缩小,接触电阻的影响将增大,特别是当半导 体制备工艺进入 10 nm 甚至 7 nm 的节点,器件接触电阻在总电阻中将成为最主 要的部分,器件的开关特性将受到严重的影响。因此,对于 10 nm 节点工艺,其 挑战不仅在于制备超短沟道,而且在于如何大幅度降低器件接触电阻。TMD 材 料大部分表现为稳定的半导体特性,制作器件时由于和金属电极材料之间的功函 数相差较大,势垒较高,导致接触电阻很大,极大地降低了器件的迁移率等电学

特性。但由于其本身存在金属相结构,因此如果能将电极处的 TMD 材料由半导体性转化为金属性,那么不同晶相的同种 TMD 即可组成一个同质结,便能够极大地降低接触电阻^[9],这里我们将 TMD 晶相转变的过程称为相变。本文我们首先介绍了不同 TMD 材料的晶相结构,然后对这些材料的相变方法做一个详细的总结和分析。

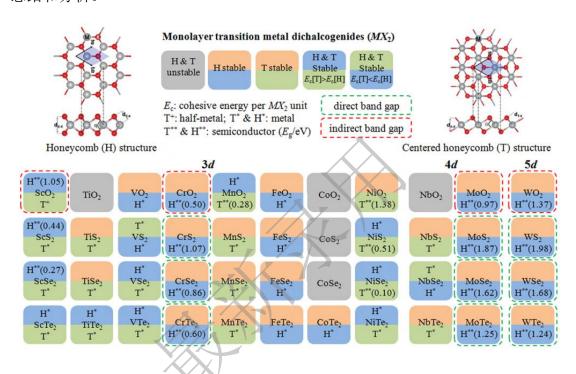


图 1 TMD 稳定性及半导体特性的总结^[5] Fig.1. Summarize of the stability and semiconductor properties of TMD^[5].

2 TMD 的基本结构和特征

2.1 晶相结构

通常状态下 TMD 单层的厚度在 6-7 Å之间,层间由弱的范德华力相结合,层内金属原子 M 和硫属原子 X 以强的共价键相结合,由此可以较容易地获得单层或多层的层状结构。单层 TMD 可视为三明治结构:上下为硫属原子 X 层,在这两个 X 层之间夹着一个金属 M 层。

TMD 一般拥有多种结构,常见的三种结构为 1T、2H 和 3R 相。其中 T、H、R 分别代表三角形(trigonal)、六边形(hexagonal)和斜方六面体(rhombohedral)。而

数字则代表一个晶胞内所包含材料的层数 $^{[10]}$ 。部分 TMD 还存在一种特殊的扭曲 八面体结构,被称为 1T'相。TMD 各个相的结构如图 2 所示。除此之外还存在一 些过渡相,如 $2H_d$ 、 T_d 等 $^{[11]}$ 。

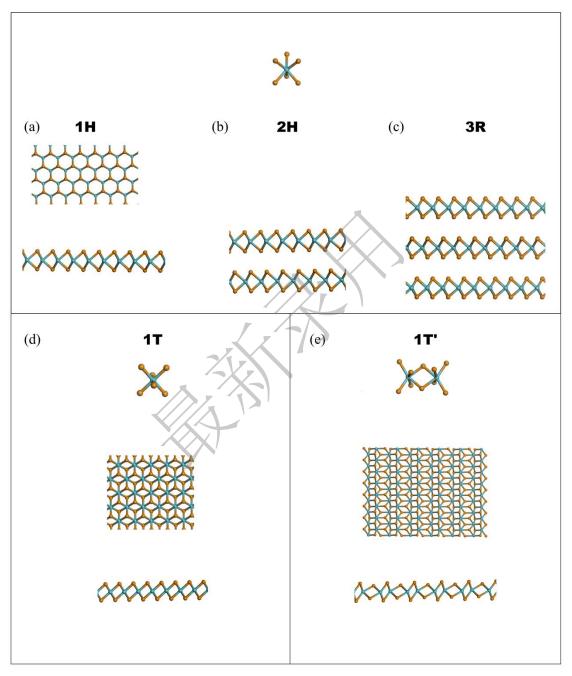


图2 TMD不同相的基本结构图

Fig.2. Basic structure diagram of TMDs different phases.

2.2 基本特征

TMD 有着优秀的光学性能。单层 TMD 膜具有直接的光学带隙,所以具有最强的发光强度[12]。TMD 材料种类繁多,且带隙可控,很多材料在近红外区域表

现出较强的吸收,如 MoTe₂(带隙 1.1 eV), PtSe₂(带隙 1.2 eV)等, 这使得 TMD 在光电领域特别是在近红外光探测上有着巨大的优势^[13], 极大地弥补了目前最常用的硅基光电探测器的波长限制。

TMD 的电学和力学性能同样也非常优秀,这使得其在电子器件以及复合薄膜组装上有着广泛的应用,如场效应晶体管^[14,15]、光电晶体管^[16,17]。研究表明二维 TMD 材料有着优异的杨氏模量,而且 TMD 纳米膜的硬度比起石墨烯和氮化硼(BN)要小得多^[18,19],且 TMD 纳米层弹性形变可达到几十纳米,不会轻易发生断裂,因此在柔性器件上也有广泛的应用^[20]。

3 TMD 的相变方法

TMD 的相变方法种类较多,图 3 列举了迄今为止所有已知的相变方法,共有八种,分别是: 化学气相沉积法、掺杂法、分子插层法、应力法、高温热处理法、激光引导法、等离子体处理法以及电场引导法。不同的相变方法有着不同的特点,也对应着不同的应用,表 1 对八种方法的特点进行了总结。下面我们将详细地说明所有的相变方法以及它们各自的研究进展。

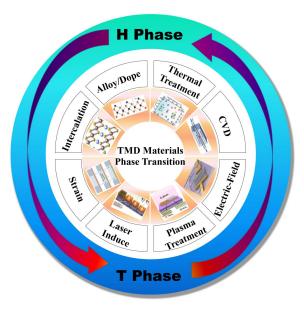


图 3 TMD 的相变方法

Fig.3. Phase transition methods of TMDs.

表 1 TMD 的相变方法及其特点

Table 1. Phase transition methods of TMDs and their properties.

相变方法	—————————————————————————————————————	
		不足
化学气相沉积	可以通过改变温度、气流量以及源	该方法受环境因素影响较大,产物不稳
	粉成分来实现不同相的选择性生长	定。
	或相变,操作简单	
掺杂/合金化	通过对 TMD 引入其它原子使其完	原有材料本身的化学性质容易发生改
	成半导体到半金属的转变,生成产	变,一些原有的良好性能受到破坏。
	物性质稳定,不易变质。	
分子插层	将离解出的原子或离子嵌入对象	相变产物中可能包含插层原子或离子。
	TMD 材料双层之间的空隙从而达	
	到相变的目的。该方法因其操作简	
	单,现已成为 TMD 的常用相变方	
	法。	A STATE OF THE STA
应力	通过机械拉伸可以实现薄层 TMD	过度引入应力可能使材料开裂或变形。
	的相变。这种相变通常不可逆,所以不知识。	$\langle \times \rangle$
	以可以保持产物的稳定性。	
高温热处理	提高温度来实现TMD的相变,是	相变产物在长时间室温条件下可以恢
	最为直接的相变方法,操作容易。	复为原来的晶相。
激光引导	使用激光照射 TMD 样品来实现其	相变往往具有不可逆性,且激光功率过
	相变。相变产物稳定,不易恢复为	大容易损坏样品。
	原来的晶相,有着广阔的应用前景。	相变产物不稳定,高温下晶相容易恢
等离子体处理	通过低温等离子体处理 TMD 材料	相 文广 初 个 信 足 , 尚 価 下 丽 相 谷 勿 恢 复 。
	实现其相变。可实现大范围简易相位理控。现实故思广阔	 反 .
ᆂᄓᄀᄗᄆ	位调控,研究前景广阔。 通过电场直接在 TMD 器件上实现	局限于电学器件制造,很难在其他方面
电场引导	相变,避免了相变后的 TMD 在制	有所应用。另外实验所需环境较为苛
	作器件时恢复为原来的晶相,这种	有
	作益件的恢复为原来的晶相,这种相变通常可逆,在电子器件制造上	≪ 10∘
	有着广泛的应用。	
	71年1月2日 1月20日 1月2日 1月2日 1月2日 1月2日 1月2日 1月2日 1月2日 1月2	

3.1 化学气相沉积

化学气相沉积是一种常见的化学气相生长的方法,其基本过程是通过载气将含有要合成的一种或几种化合物的气体提供给基片,然后借助气相作用或基片表面的化学反应生成目标产物。CVD 法制成的二维纳米材料具有厚度均匀、纯度高、缺陷少、结晶好等优点,近年来被广泛地用来合成各种高品质的原子级厚度的二维晶体薄膜。CVD 法不仅能够实现不同种类不同尺寸 TMD 材料的生长,还可以调控 TMD 材料的晶相结构。

2015年 Jin Cheol Park 等人在通过 CVD 法合成单层 MoTe₂时,发现 MoTe₂ 在生长初期呈现 1T'相,然而随着时间的增长,MoTe2逐渐由 1T'相转变为 2H 相, 图 4(a)是 CVD 生长 MoTe₂ 相位随时间的变化情况。研究者认为该相变过程主要 是 Te 原子含量的变化引起的机械应变和弛豫驱动的[21]。同年美国麻省理工大学 的德雷斯尔豪斯教授等开发了一种 CVD 方法能够实现大面积、均匀且高度结晶 的少层 2H 和 1T' MoTe2 薄膜的生长。他们发现以 MoO3 作为前驱体可以生长出 2H 相的 MoTe₂,而以 Mo 作为前驱体可以得到 1T'相^[22]。一般来说,通过 CVD 法生成的 MoTe₂ 等材料在常温下呈现为 2H 相, 然而 2016 年 Carl H. Naylor 等通 过液滴法和热蒸发法直接生长出了单层单晶的1T'MoTe2,其磁输运在低温下表 现出弱反局部化,并且发现有强自旋-轨道耦合的现象[23]。同年华中科技大学的 常海欣教授等人在研究 CVD 法合成大面积多层 MoTe2 的过程中发现金属-半导体 -金属相演化过程与前驱体的碲化速度相关,并且提出了如图 4(b)所示的 CVD 法 实现 MoTe₂ 的 2H-1T'相变装置。与此同时研究者们还发现碲化钼样品的碲化速 度受载气流速和碲化温度控制,图 4(c)表示了 $MoTe_2$ 相变与 N_2 载气流速的关系。 实验还发现通过改变碲化速度,可以使 MoTe2 出现四种不同的相位结构,包括 100%2H相、100%1T'相、1T'相主导和2H相主导的两相共存状态。这项成果对 其他二维材料的相位工程有着很大的引导作用[24]。2019年中南大学的欧阳方平教 授团队使用简便的 CVD 法获得了多层 1T'-2H MoTe2 横向同质结,在此 CVD 生 长过程中,可以通过调节 MoTe₂ 薄膜与 Te 蒸气之间的接触来动态控制 MoTe₂ 薄 膜的相变[25],结论如图 4(d)(e)所示。

除 $MoTe_2$ 以外,CVD 法对其他的 TMD 材料的相变也有很大的作用。2018年,华中科技大学的翟天佑教授课题组在 CVD 制备 InSe 薄膜时,发现通过调整 Se 和 H_2 浓度可以得到两种不同的结构,即 InSe 相和 In_2Se_3 相。其中 In_2Se_3 总能

在 Se 过量且 H_2 含量较低的情况下产生,在 Se 浓度和 H_2 浓度要求较为宽泛的情 况下也会出现 InSe 和 In₂Se₃ 共存的情况,而 InSe 则只能在生长参数极为敏感的 情况下才会产生[26]。由于生成 1T'相所需能量远比 2H 相高, CVD 法直接生长 1T' 相要比生长 2H 相困难得多。2018 年, 清华大学的焦丽颖等采用理论计算的方法 设计了一种钾(K)辅助 CVD 法,通过调节生长产物中 K 的浓度来改变 1T'和 2H 相的稳定性从而实现 1T'-MoS2单分子层和 1T'/2H 异相双分子层的相选择生长。 焦丽颖组通过合成高相位纯度的1T'-MoS2单分子层,表征了其固有的光学和电 学性质,从而揭示其平面内各向异性的特征[27]。三元 TMD 材料的 CVD 相变也 是目前研究的热点。2017年,陈明伟课题组通过CVD法实现了单层Mol-xWxS2 合金 1H 相到 1T 的相变, 发现由 TMD 单层和基底之间的热膨胀系数差异引起的 面内热应变可以在 CVD 生长后的冷却过程中驱动其由 1H 到 1T 转变[28]。2019 年西安电子科技大学的马晓华等在 CVD 生长过程中通过调节氢气浓度合成了具 有广泛 Te 组成的单层 WS_{2(1-x)}Te_{2x} 合金, 硫属元素位点上的取代性 Te 掺杂导致了 该材料在高 Te 比率(≥50%)下从半导体 2H 相转变为半金属 1T'相,过程如图 4(f) 所示。这项发现为发现潜在的电子和光电应用的 Te 合金系统产生的奇异特性方 面迈出了关键一步[29]。

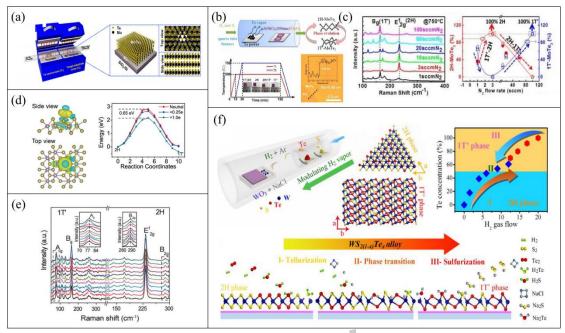


图 4 TMD 的 CVD 法相变。(a) 通过 CVD 生长出 1T' MoTe₂的示意图^[21]; (b)(c) 大面积多层 MoTe₂的 CVD 过程中金属-半导体-金属相演化与前驱体的碲化速度的关系^[24]; (d)(e) CVD 法获得多层 1T'-2H MoTe₂横向同质结^[25]; (f) 三元 TMD 的 CVD 法驱动 2H 到 1T'相变示意图^[29] Fig.4. TMD phase transition induced by CVD method. (a) Schematic diagram of 1T' MoTe₂ grown by CVD^[21]; (b)(c) Relationship between metal-semiconductor-metal phase evolution and telluride velocity of precursor during the CVD process of large-area multilayer MoTe₂^[24]; (d)(e) Multilayer 1T'-2H MoTe₂ transverse homogeneous junction was obtained by CVD^[25]; (f) Schematic diagram of ternary TMD 2H-1T' phase transition driven by the CVD method^[29].

3.2 掺杂/合金化

在半导体领域,掺杂法一般是用于调控材料的电子性能,二维半导体材料由于原子级的厚度及层间较弱的范德华力,掺杂更容易改变其结构和性能。比如对石墨烯、硅烯、TMD通过掺杂可以打开或调控带隙,得到不一样的光电性能[30-38]。近年来,掺杂也正在逐渐被用于二维材料半导体到半金属的晶相转变。通过引入其它原子可以促使目标材料的结构发生改变,从而改变其性能[39]。以上所述的TMD材料大多是无磁或稀磁的,通常情况下多呈现半导体性质,而本身为半金属性的层状材料大多不稳定且数量少,最近几年大量的理论和实验研究表明,可以通过吸附、掺杂和引入缺陷等来调控磁性能[40-42],从而使掺杂对象完成半导体一半金属转变。掺杂剂一般选用非金属原子,当掺杂剂浓度在对象材料中达到一定程度时,对象材料与掺杂剂即形成合金。可以这样说,合金化就是超重度掺杂,

二者本质上都是将对象中的原子替换为掺杂原子,使对象的性质发生改变。对于掺杂引发相变的原理,人们也进行了不断的研究。目前最主要的研究相变原理的方法是密度泛函理论(Density functional theory, DFT)。通过第一性原理计算,人们发现相变温度可以通过改变化学计量比在很大的范围内改变。DFT 计算在TMD 的相变原理及相变预测上有着很大作用,是研究 TMD 相变的一个重要工具[43-45]。

H 和 T'相之间的能量差取决于掺杂原子的化学性质、大小和浓 研究发现, 度,从而对两相的稳定性起到了重要的控制作用。这一结果表明,单层 MoTe2 中的 Te 取代是在这种二维材料系统中诱导和控制可逆结构相变的一种方法,2017 年美国海军研究实验室的 Joshua Young 和 Thomas L. Reinecke 将 N、F、P、Br、 Se、Sb和I这些非金属元素掺杂进 MoTe2中, 部分元素掺杂后 MoTe2表现出明 显的相位改变(图 5(a)(b)) [46]。2018 年吉林大学郑伟涛教授领导团队及密西西 比大学共同对 Cu 掺杂 MoS₂ 的情况进行了研究,结果如图 5(c)(d)所示,结合第 一性原理计算发现表面上的金属 Cu 原子的吸附可以诱导 MoS2 从半导体 2H 到金 属 1T'相的相变,同时也对 Cu 掺杂性能和碱金属掺杂性能进行了比较,发现其 它掺杂剂在诱导跃迁方面都不如 Cu 有效[47]。2019 年北京航空航天大学孙志梅教 授团队使用 IVB、VB 和 VIB 族的过渡金属作为掺杂剂,将其分别掺入 MoSe₂, MoTe₂和 WTe₂这三种 TMD 中形成合金,并对其 H 相和 T'相的稳定性进行了分 析。除部分样品外,大部分都随着掺杂剂的浓度的上升而逐渐从 H 稳定态转变为 T'稳定态。实验者对常温下不同掺杂程度得到的 TMD 合金在不同相下的稳定性 进行了总结,总结结果如图 5(e)所示。最后还发现通过掺杂可以显著降低二元 MoSe₂、MoTe₂和 WTe₂的 H 和 T'相之间相对较高的相变势垒,尤其是 VIB 族掺 杂剂降低势垒效果更明显。这些发现加深了对三元 TMD 单层的理解,并为它们

的广泛应用提供了宝贵的指导[48]。

掺杂虽然能够实现稳定的相变,即通过这种方法得到的半金属相材料性质稳定,一般不会变回原来的晶相。但由于掺杂本身改变了原有材料的化学性质,导致其具有的一些良好特性被破坏,最终导致性能下降。所以掺杂法相变技术还有很大的拓展空间,需要进行更多的研究以提升其优势。

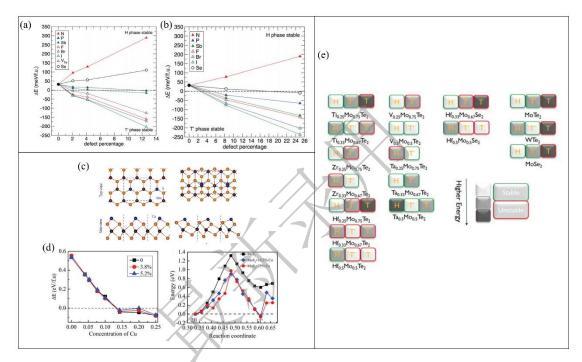


图 5 通过掺杂/合金化诱导 TMD 相变。(a)(b) MoTe₂ 掺杂部分非金属元素后发生的相位改变 ^[46]; (c)(d) MoS₂ 掺杂 Cu 引发 2H-1T'相的改变^[47]; (e) 过渡金属掺入 MoSe₂、MoTe₂和 WTe₂ 形成合金的相位稳定性^[48]

Fig.5. TMD phase transition induced by doping/alloying. (a)(b) The phase transition of MoTe₂ after doping part of nonmetallic elements^[46]; (c)(d) The 2H-1T' phase transition of MoS₂ induced by doping Cu^[47]; (e) The phase stability of the alloy was obtained by mixing the transition metal with MoSe₂, MoTe₂ and WTe₂^[48].

3.3 分子插层

插层是向层状物质层与层之间插入其它外来物质的过程,其中外来物质可以是无机小分子、离子、有机小分子和有机大分子等。插层法在调控电池电极、电致变色剂、洗涤剂和固体润滑剂等特性方面至关重要,在电荷密度波和超导等基本二维物理中也很重要。分子插层技术一般通过溶剂离解出原子或离子,然后将其嵌入目标样品双层之间的空隙,从而达到性能调控的目的[49,50],如对样品进行

掺杂^[57]、增大储能效果^[51,52]、改变材料晶相结构^[53]等。对于分子插层技术改变 TMD 的晶相,早在 1983 年 R. R. Hearing 等人就发现了通过 Li 插层可以引发 MoS₂ 的相变。分子插层诱导 TMD 相变的插入材料一般为碱金属。经过几年的发展,分子插层技术已经成为 TMD 相变的几种常见方法之一。

2013 年中日美三国的研究者们对单层 MoS2 中插入 Li, 并探究发现随着 Li 插入量的变化, MoS2的晶相也随之在 H 相、O 相、ZT 相和 DT 相之间变化[54]。 2014年 Rajesh Kappera 等人将 PMMA 覆盖在 MoS2 的特定位置,并将其浸入 5 mL 的 $1.6 \,\mathrm{M}$ 正丁基锂中处理 $2 \,\mathrm{小}$ 时,使得 MoS_2 裸露部位相变为 $1 \,\mathrm{T}$ 相。通过实验, 研究者发现源/漏电极与沟道之间的接触电阻显著降低,从而极大地提升了 FET 的性能。这项研究证明了金属 1T 相是一种有效的接触电极,且电极的相工程是 进一步改善 MoS₂ 器件性能的有效方法[55]。2016年,新加坡国立大学的 Sherman J. R. Tan 等人发现,通过对 TMD 层与层之间嵌入氢化锂(LiH),可以实现 1T'相在 空气中前所未有的长期(>3个月)稳定性,而且这种方法也广泛适用于其他碱金属 和 TMD 材料[56]。2017年,新加坡南洋理工大学的夏娟等人将 Li 离子嵌入 2H MoS₂ 中,改变了 MoS₂ 的局部对称性,使其转变为 dT 相。研究者通过这种方法来研究 2H MoS₂ 的结构转变动力学,通过实验数据和微动弹性带(nudged elastic band, NEB)计算,首次提出了Li 离子逐步插层的 MoS₂的 2H-1T-dT 相变机制。这一相 变工程可以可控地改变 MoS2 的电学和光学性质,对其他性能如热导率、机械性 能和化学性能也能够可控调节[57]。2018年清华大学等高校的研究者们对不同层数 的 MoS₂ 进行了相变实验, 发现随着层数的增多, 相变的难度逐渐降低, 如图 6(a) 所示。研究者推测可能是因为随着层数的增加,使得 2H-1T 相之间的能量差增大, 从而降低了相变的难度[58]。2019 年,Heejun Yang 等人将 Li 离子通过插层方式插 入 2H-MoTe₂中,实现了 MoTe₂由 2H 相到 1T'相的转变,从而制备出垂直异相的

MoTe₂ 晶体。MoTe₂ 中的垂直异相将金属电极的肖特基势垒降低到 66 meV,提高了电化学制氢的整体离子电导。这为混合催化剂和基于二维材料的新一代电子器件制作提供了一个新的平台^[59]。

在 TMD 插层相变的应用方面,也有一定的研究成果。2016 年,新加坡国立大学的研究者通过实验提出,2H-MoS₂ 的 Li 插层在三个主要方向上扭曲了其晶畴,从而产生了镶嵌状的 1T'纳米晶畴。该工作表明通过化学锂化对大体积 MS₂(其中 M = 过渡金属)化合物进行纳米结构化是实现高容量和稳定电极材料的有效策略^[60]。

三元 TMD 也可以通过插层法改变其晶相结构。2016 年,新加坡南洋理工大学张华教授、Christian Kloc 教授团队通过电化学法,成功地对 $MoS_{2x}Se_{2(1-x)}$ 和 $Mo_xW_{1-x}S_2$ 进行了 Li 离子插层,从而实现了其 2H-1T 相变,如图 6(b)-(d)所示。这种方法生产出来的具有高浓度金属 1T 相的单层 $MoS_{2x}Se_{2(1-x)}$ 纳米片有望成为制造高性能无铂染料敏化太阳能电池(dye-sensitized solar cell, DSSC)的电催化剂。此外,该纳米片还可以有望用于其他应用,包括电催化制氢、超级电容器和电化学传感器[61]。

不仅 Li 离子可以实现 TMD 材料的插层相变,其他碱金属离子也可以。2014年中国科学院物理研究所北京凝聚态物理国家实验室通过实验发现对 MoS₂ 插层 Na 可以诱导 MoS₂ 的 2H-1T 相变。除此之外,研究者还发现根据 Na 离子嵌入的含量,在 MoS₂ 中还可以识别出一系列其他复杂的相变以及晶格畸变,结构调制,甚至是不可逆的结构分解。结果表明,Na_xMoS₂ 中的 x=1.5 是结构演化可逆性的关键点。这项发现丰富了对 MoS₂ 的相变和插层化学的理解,并为将来的材料设计和应用提供了启示^[62]。除此之外的研究还发现其它一些金属原子也可以诱导相变,如 Fe 等^[63,64]。

3.4 应力

物体由于外因(受力、湿度、温度变化等)而发生变形时,在物体内各部分之 间产生相互作用的内力以抵抗这种外因的作用,并试图使物体从变形后的位置恢 复到原来位置,在所考察的截面某一点单位面积上的内力称为应力。一直以来应 力对物体会产生较大的影响如开裂、翘曲及变形、产品尺寸变化等,一般可以通 过自然时效、热时效等方法消除应力。近些年来人们开始利用材料内部产生的应 力来改变材料 (尤其是二维材料)的性质,例如调整带隙[65]、测量杨氏模量[66]等。 而最近,应力法诱导 TMD 相变也逐渐成为了研究的一大热点。该方法主要是通 过物体内部相互作用力来改变物质内部原子间作用力从而改变物质结构,达到相 变的目的。而对 TMD 单分子层中相位和相位边界的透彻理解是建立对丰富的二 维材料物理理解的关键一步[67],研究者认为可以通过使用柔性衬底、原子力显微 镜(atomic force microscopy, AFM)技术和其他标准的实验方法来实现机械诱导的 相变。2015年,韩国基础科学研究所的 Seunghyun Song 等人在室温下通过调控 应力实现了薄层 MoTe₂ 的相变。通过引入 0.2%的拉伸应变,实现了 MoTe₂ 2H-1T 相变温度的降低,趋于室温。少量的应变可以降低相变温度,因此环境发生极小 变化即可引发相变,这一概念可用于开发光学、生物和电子应用的传感器[68]。2016 年美国斯坦福大学的 Karel-Alexander N. Duerloo 等人通过实验发现通过对 MoTe2 进行机械拉伸,可以使其由半导体 2H 相转变为金属 1T 相,如图 6(e)所示[67]。

应力相变不仅仅可以应用于 MoTe₂上,还可以用于其它 TMD 材料,如 MoS₂、 MoSe₂和 WTe₂ [^{69,70]}。2018年,重庆大学的唐青研究了在空位与拉伸条件下 MoX₂ 的相位稳定性。研究者们发现空位和拉伸应变均能降低 2H 和 1T'相之间的能量差,二者之间的协同效应有效地提高了实现 2H 到 1T 相变的可能性,结论如图 6(f)所示[^{71]}。2012年美国的 Priya Johari 和 Vivek B. Shenoy 发现 TMD 对拉伸应变

和剪切应变都很敏感。除此以外,研究者还发现机械应变能够减小半导体 TMD 的带隙,引发其从直接到间接以及 TMD 材料从半导体到金属的过渡。这项研究通过说明应变对从 MS₂到 MSe₂到 MTe₂的显著影响,强调了拉伸和纯剪切应变在调节 TMDs 的电子性质中的重要性^[72]。

同样地,对于三元 TMD 材料,应力作用也可以实现其相变,Amey Apte, Vidya Kochat 等人在 2018 年对 $MoWS_2$ 合金进行拉伸,实现 2H 相到 1T 相的不可逆转变,并通过拉曼光谱和电镜图像证实了这一点,结论如图 6(g)所示[73]。

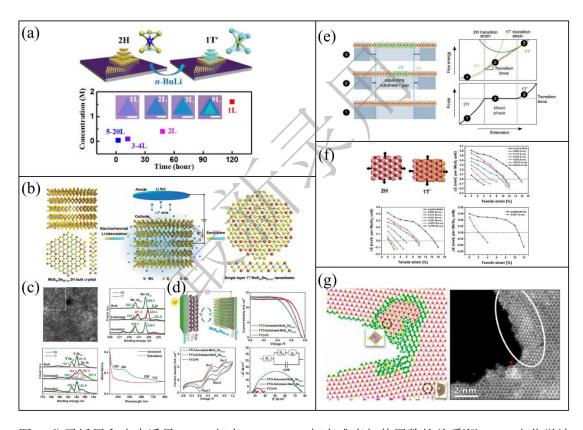


图 6 分子插层和应力诱导 TMD 相变。(a) MoS₂ 相变难度与其层数的关系^[58]; (b) 电化学法诱导三元 TMD 相变示意图; (c) 相变前后三元 TMD 的 STEM 图像和 XPS 光谱; (d) 1T 三元层状 TMD 的电学特性^[61]; (e) 机械拉伸诱导 MoTe₂由 2H-1T'的转变^[67]; (f) 在空位与拉伸条件下 MoX₂ TMD 的相位稳定性^[71]; (g) 三元 TMD 通过拉伸引发不可逆相变^[73] Fig.6. TMD phase transition induced by intercalation and strain. (a) The relationship between the phase transition difficulty of MoS₂ and the number of layers^[58]; (b) Schematic diagram of ternary TMD phase transition induced by electrochemical method; (c) STEM image and XPS spectrum of ternary TMD before and after phase transition; (d) Electrical properties of 1T ternary layered TMD^[61]; (e) Mechanical tensile induced 2H-1T' transformation of MoTe₂^[67]; (f) Phase stability of MoX₂ TMD under vacancy and stretch conditions^[71]; (g) Irreversible phase transition of ternary TMD induced by stretching^[73]

3.5 高温热处理

一般来说,能量的获取是材料结构改变的必要条件,因此通过高温处理来改变物质结构可谓是最为直接的一种方法。常态下 TMD 大多数情况都处于稳定的 2H 相,而其它相在常温下大多不能稳定存在,通过升高温度可以使其获得改变结构所需的能量,从而完成相变,结合热退火可以实现可逆相变。

2015 年韩国的 Dong Hoon Keum 等人通过改变温度从而完成了 MoTe₂ 2H 相与 1T'相之间可逆的结构转变,处理过程如图 7(a)所示。MoTe₂ 的 2H 相单晶在 500 °C以上时开始转变为 1T'相,当温度缓慢冷却后恢复到 2H 相「74」,Te 缺陷的 增多是 MoTe₂ 2H-1T'相变的根源。2018 年新加坡国立大学、中国科学院、中国科技大学的研究者们通过热退火在块状 1T-TaS₂ 的最项层单层上诱导 1T 到 2H 的 相变,从而得到一种超导材料,如图 7(b)所示,并且通过进一步的研究发现,施加电压脉冲将单层 2H-TaS₂ 切换回 1T 相。这项发现对在块状 1T-TaS₂ 晶体上制备稳健的 2D 超导提供了一种便捷的方法,从而避免了剥离制备单层样品的需要「75」。 2019 年新加坡国立大学的 Andrivo Rusydi 和 Andrew T. S. Wee 以及深圳大学的张文静教授等人通过对 Cu 上的单层 MoS₂ 和 Au 上的单层 WSe₂ 进行退火处理,成功诱导了 1H-1T'相变,并且进行了全面的实验和第一性原理研究,阐明了其潜在机理并将金属基底上的二维 TMD 的高产率相变过程推向了一个新的台阶。该项研究拓宽了 2D-TMD/类金属系统的应用范围,从而为基于 2D-TMDs 的设备应用 创造了新的可能性[76]。

另一方面,在 CVD 生长 MoTe₂时,可以通过改变温度来控制其 1T'相在 2H 相的外延生长,从而获得同一原子平面内多层 MoTe₂ 金属-半导体多晶型材料^[77]。 2016 年,日本的 Yuki Nakata 等人,通过控制基底的温度使用分子束外延 (molecular-beam epitaxy, MBE)技术在覆盖有双层石墨烯的 SiC 衬底上实现了 NbSe₂的 1T 和 2H 相的选择性合成,如图 7(c)所示。与此同时,他们还发现了 1T-NbSe₂ 的独特 Mott 绝缘状态。这项研究的结果为基于 TMD 的晶相工程开辟了道路^[78]。

热处理通过改变温度来调整其晶相,最大优点是容易操作。但这种方法缺点 也非常明显:通过高温生成的相变产物不稳定,长时间室温条件下放置就有晶相 恢复的可能性发生^[79]。如何使热处理后的 TMD 保持稳定的晶相状态,是今后研 究者们需要面对的一个难题。

3.6 激光引导

与零带隙的石墨烯相比,TMD 具有良好的电学和光学性能,从而能够更好地应用于光电子器件上。理论研究表明,TMD 薄膜的光学带隙与其原子膜厚度有关,如 MoS₂ 原子膜带隙在 1.2~1.9 eV 之间; MoSe₂ 原子膜带隙在 1.1~1.5 eV 之间; WS₂ 原子膜带隙在 1.2~1.9 eV 之间; WSe₂ 原子膜带隙在 1.2~1.7 eV 之间^[13]。当所选取原子膜的厚度合适时,其带隙就能够很好地与入射光范围相匹配,这使得它们在光电子器件领域有着非常好的应用前景。近些年来,激光诱导开始被用于 TMD 材料的相变。

2005 年,Suyeon Cho 等通过使用激光灼烧 MoTe₂ 样品将 2H MoTe₂ 转变为 1T'相,并且通过测试其光学和电学特性以证明样品转化为 1T'相,处理过程如图 7(d)所示。研究者还对激光处理后形成的器件进行了研究,发现接触电阻显著降低,证明了 1T'的形成。通过原位扫描透射电镜结果结合理论计算表明,Te 空位 触发了 MoTe₂ 中的局部相变,形成了一个具有欧姆接触的二维器件^[80]。新加坡南洋理工大学的张华等在 2018 年通过激光引导和热退火,成功完成了 MoS₂ 的 1T'-2H 相变,该工作通过电化学测量发现,在酸性介质中 1T'-MoS₂ 的基面比 2H-MoS₂ 的基面更能催化析氢反应。这些发现为亚稳金属相 TMD 的制备,探索晶体相依性及其在电化学装置和催化中的应用开辟了新的途径^[81]。激光诱导相变

有着广泛应用,如可控相变成像和表面拉曼增强[82]。

对于相变的原理,目前主流观点认为是由于上层的 Te 原子集体滑移所造成的。但在 2019 年,北京航空航天大学的孙志梅教授等通过 DFT 计算认为: MoTe₂中单独 Te 空位聚集从而生长出 1T'相,如图 7(e)所示。这项研究表明空位以及受激载流子的控制是 TMD 稳健相变工程的关键,在电子和能源应用种有较大前景 [83]。

激光诱导后得到的相变产物性质稳定,不会容易因为外界条件改变从而恢复 其原来的晶相。虽然现如今关于激光诱导法相变的研究较少,但由于其优点明显, 这种方法在未来将会在 TMD 相变上有着更大的应用。

3.7 等离子体处理

等离子体又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,是一种尺度大于德拜长度的宏观电中性电离气体。其运动主要受电磁力支配,并表现出显著的集体行为。它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。当被加热到足够高的温度或其他原因,外层电子摆脱原子核的束缚成为自由电子,电子离开原子核,这个过程就叫做"电离"。实验室等离子体按其中带电粒子温度的相对高低,可分为高温等离子体和低温等离子体。高温等离子体只有在温度足够高时才能产生,一般由恒星放出;而低温等离子体。高温等离子体只有在温度足够高时才能产生,一般由恒星放出;而低温等离子体在常温下即可产生,实验室中使用的等离子体一般为低温等离子体。其中,低温等离子体在材料学中有着广泛的应用,如掺杂[84]、催化活性[85]、辅助生长[86]等。近些年低温等离子体在诱导相变上逐渐发挥起作用,比如诱导 VO₂[87]和 TMD 相变。

2017年,中国科学院、中国科学院大学、北京大学的研究者们对 MoS_2 样品

使用远程等离子体装置通过 Ar 等离子体处理后成功完成了 2H-1T'相的转变,如图 7(f)所示。在等离子体诱导相变的过程中,该工作主要认为是等离子体引发了顶端 S 层的滑移从而引发 2H-1T'的相变。通过等离子体处理后的 1T' MoS₂ 在电学、光学、催化和能量收集设备中具有潜在的应用价值^[88]。2020 年,Mashiyat Sumaiya Shawkat 等人使用 Ar 等离子体对 CVD 生长的 2D PtSe₂ 进行辐照,发现PtSe₂ 层完成了半导体-金属相变。这项实验及其理论研究验证了大面积 CVD 生长的 2D PtSe₂ 层中这种外部控制的半导体向金属过渡的基本机制,大大拓宽了其在未来电子学领域的多功能性^[89]。

使用等离子体来处理 TMD 会对 TMD 样品造成一定的损伤。2018 年,江南大学肖少庆课题组使用自主设计的非平行板式电容耦合等离子体系统,通过 H₂温和等离子体处理 MoTe₂样品,实现了样品由 2H-1T'的相变,处理过程及结论如图 7(g)(h)所示。通过 AFM 测量发现,经过温和等离子体处理,样品表面没有受到损坏,且通过 AFM 对厚度的表征发现 MoTe₂层与层之间发生了展宽。这项实验证实了等离子体诱导相变的可行性,在电学器件上有着很大的应用前景^[90]。

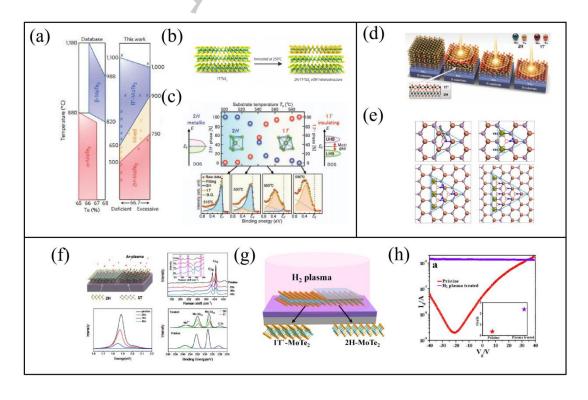


图 7 高温热处理、激光、等离子体诱导 TMD 相变。(a) MoTe₂ 相变程度与温度及 Te 浓度的 关系^[74]; (b) 块状 1T-TaS₂ 的 1T-2H 相变示意图^[75]; (c) NbSe₂上 1T 和 2H 相的选择性合成^[78]; (d) 激光灼烧诱导相变示意图^[80]; (e) 激光引导 MoTe₂ 诱导相变的原理图^[83]; (f) Ar 等离子体引发 MoS₂ 相变的光学特性^[88]; (g) 温和等离子体诱导 MoTe₂相变原理图; (h) 2H 和 1T' MoTe₂ 的转移特性曲线^[90]

Fig. 7. TMDs phase transition induced by thermal, laser and plasma treatment. (a) The relationship between MoTe₂ phase transition and temperature and Te conce ntration^[81]; (b) Schematic diagram of 1T-2H phase transition on the bulk 1T-TaS₂^[82]; (c) Selective synthesis of 1T and 2H phases on NbSe₂^[85]; (d) Schematic diagram of the phase transition by laser irradiation^[87]; (e) Schematic diagram of laser-induced MoTe₂ phase transition^[90]; (f) Optical properties of MoS₂ phase transition induced by Ar plasma^[95]; (g) Schematic diagram of MoTe₂ phase transition induced by soft plasma; (h) Transfer characteristic curves of 2H and 1T' MoTe₂^[97].

等离子体技术处理诱导 TMD 相变还是一个新技术,对于其诱导相变的原理还是没有完全得到阐明。虽然研究者认为等离子体相变是由 TMD 顶层硫属原子层滑移所造成的,但并没有理论推论和实验验证,相信在今后的研究中这个问题将会得到解决。

3.8 电场引导

二维 TMD 有着优秀的电学性能,因此被广泛应用于场效应管(field-effect transistors, FET)中。2012 年研究者发现可以通过施加外电场来调控 TMD 的光学及电学性能^[91,92],也可以提高超导转变温度^[93]。其中在 TMD 超导方面取得的成就为实现 TMD 半导体-金属的晶相转变提供了思路。经科研工作者的不懈努力和探究,终于发现了通过电场引导相变的方法,其中包括静电门控、静电掺杂等。由于这种方法大部分是直接在 TMD 器件上进行的,能够有效的控制 TMD 材料相变的可逆性,这种方法在电子器件制造上有着广泛的应用。

2015 年美国斯坦福大学和新墨西哥州立大学的研究者们通过静电门控的方法成功诱导了 MoTe₂、MoS₂和 TaSe₂的半导体到半金属相变,过程如图 8(a)(b) 所示。该工作中使用的是电容器结构改变栅极电压从而完成了相变,研究发现单层中载流子密度或电子化学势的变化是诱导 TMD 材料从半导体到半金属相变的主要因素。由于栅极电压过高可能会击穿样品层,所以可以通过形成合金来降低

栅极电压的幅度[94]。2017年加利福尼亚大学通过静电掺杂的方式成功驱动单层 MoTe₂的六方相和单斜相之间的相互转变,如图 8(c)(d)所示,通过在样品器件上 加入 DEME-TFSI 离子液体形成顶栅并改变样品栅压从而调控其相变。该工作中 还将二次谐波光谱与偏振拉曼光谱相结合, 以表明诱导的单斜晶相保留了原始六 方相的晶体取向。这项实验为开发基于原子薄膜的相变器件开辟了新的可能性 [95]。同年 Bent Weber 等将低温扫描隧道显微镜(scanning tunneling microscope, STM)用于 NbSe₂ 的结构观测和相变工程,通过施加带有 STM 尖端的电压脉冲, 可将 NbSe₂ 的晶相局部地由三棱柱相(2H)转换为八面体相(1T),如图 8(e)所示。 研究者根据根据其特征(√13×√13)R13.9°电荷密度波(charge density wave, CDW)的 顺序来识别 1T 相。关于相变的机制,研究者讨论了各种可能的影响因素,包括 温度变化以及 STM 尖端产生的电荷注入。虽然这种相变的机理目前并不明确, 但这种相变方法将在未来的原子型电子器件中显示出它们特有的应用前景[96]。 2019年,美国的研究者们通过施加电场对基于垂直 2H-MoTe₂和 Mo_{1-x}W_xTe₂的电 阻型随机存取存储(resistive random access memory, RRAM)器件实现了畸变的瞬 态结构(2Hd)和斜方晶体 Td 导电相的结构转变,如图 8(f)所示。这项发现表明了可 以在二维材料中实现受控的电状态切换,并凸显了 TMD 在存储器应用中的潜力 [11]

图 8 电场引导 TMD 相变。(a) $MoTe_2$ 相变与门控电压的关系; (b) $TaSe_2$ 电场相变示意图及其相变与门控电压的关系 $[^{94}]$; (c) 静电掺杂诱导 $MoTe_2$ 相变原理图; (d) $MoTe_2$ 相变过程拉曼光谱及其相变程度与栅极电压的关系 $[^{95}]$; (e) STM 尖端电压脉冲诱导 $NbSe_2$ 的相变 $[^{96}]$; (f) 施加电场对 $Mo_{1-x}W_xTe_2$ 的 $2H-2H_d$ 相变 $[^{11}]$

Fig. 8. TMDs phase transition induced by electric-field. (a) Relationship between MoTe₂ phase transition and gate voltage; (b) Schematic diagram of TaSe₂ electric-field phase transition and its relationship with gate voltage^[94]; (c) Schematic diagram of electrostatic doping induced MoTe₂ phase transition; (d) Raman spectrum of MoTe₂ phase transition and relationship between the phase transition and gate voltage^[95]; (e) Phase transition of NbSe₂ induced by voltage pulses with an STM tip^[96]; (f) The 2H-2H_d phase transition of Mo_{1-x}W_xTe₂ by applying electric field^[11].

4 总结和展望

综上所述,文章中我们首先对 TMD 的各种性质及其应用进行了一个简单的概括,然后又介绍了 TMD 的各种晶相结构: 2H、1T 以及 1T'、2Hd等。本文的重点在于总结并对比了目前已知的几种 TMD 相变方法: CVD 法、掺杂法、分子插层法、高温热处理法、应力法、激光引导法、等离子体处理法以及电场引导法,并且对每种方法的研究进展进行了详细介绍。本篇综述对 TMD 的相变方法进行了一个全面的总结,为今后 TMD 的相变工程研究提供了一个很好的参考。

虽然目前对 TMD 的相变研究取得了非常之多的突破性成果,但在这方面还存在很多问题和挑战。其中最大的问题就是相变后 TMD 的纯净度和稳定性问题。

比如分子插层、掺杂等方法诱导相变的 TMD 中含有较多的杂质,其纯净度得不到保证。而另一些相变方法,如高温热处理、等离子体处理,虽然纯净度可以得到保证,但相变产物极其不稳定,其晶相在高温下存在可逆性。同时通过等离子体和高温实现相变的机理仍在探究中,这些都是今后研究需要克服的难题。此外,除了以上所介绍的这几种晶相外,TMD 可能还具有其它晶相,如何发现它们以及找到这些晶相的相变方法也是今后需要研究的重点。

总而言之,二维 TMD 的相变在 TMD 中是公认的有前途的领域,其在存储器设计以及电极制造中有着重要的应用,现如今对这方面的研究总体上是逐步向前推进的。我们相信 TMD 相变工程在未来的研究中会出现突破性的进展,并在现代电子工艺中有更加广泛的应用。

参考文献

- [1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 *Proc. Natl. Acad. Sci. U. S. A.* **102** 10451
- [2] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
- [3] Fukuoka S, Taen T, Osada T 2015 J. Phys. Soc. Jpn. 84 121004
- [4] Li P, Zhang D Z, Liu J J, Chang H Y, Sun Y, Yin N L 2015 ACS Appl. Mater.

 Interfaces 7 24396
- [5] Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766
- [6] Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 *Adv. Mater.* **29** 1702522
- [7] Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563
- [8] Zhang F, Appenzeller J 2015 Nano Lett. 15 301
- [9] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M

- 2014 Nat. Mater. 13 1128
- [10] Kuc A, Heine T 2015 Chem. Soc. Rev. 44 2603
- [11] Zhang F, Zhang H R, Krylyuk S, Milligan C A, Zhu Y Q, Zemlyanov D
 Y, Bendersky L A, Burton B P, Davydov A V, Appenzeller J 2019 *Nat. Mater.* 18 55
 [12] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 *Nano Lett.* 10 1271
- [13] Su X Y 2017 Electronic Properties and Control of Low-dimensional Transition Metal Chalcogenides (Beijing: Publishing House of Electronics Industry) p3 (in Chinese) [苏向英 2017 低维过渡金属硫属化合物的电子性质及调控 (北京:电子工业出版社) 第 3 页]
- [14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 *Nat. Nanotechnol.* **6** 147
- [15] Zhang Y J, Ye J T, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136[16] Agnihotri P, Dhakras P, Lee J U 2016 Nano Lett. 16 4355
- [17] Lee Y T, Kang J H, Kwak K, Ahn J, Choi H T, Ju B K, Shokouh S H, Im S, Park M C, Hwang D K 2018 ACS Photonics **5** 4745
- [18] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
- [19] Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G 2012 Adv. Mater. 24 772
- [20] Zhou Y Z 2018 Acta Phys. Sin. 67 218102 (in Chinese) [周愈之 2018 物理学报 67 218102]
- [21] Park J C, Yun S J, Kim H, Park J H, Chae S H, An S J, Kim J G, Kim S M, Kim K K, Lee Y H 2015 ACS Nano 9 6548

- [22] Zhou L, Xu K, Zubair A, Liao A D, Fang W J, Ouyang F P, Lee Y H, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus M S 2015 *J. Am. Chem. Soc.* 137 11892
 [23] Naylor C H, Parkin W M, Ping J L, Gao Z L, Zhou Y R, Kim Y, Streller F, Carpick R W, Rappe A M, Drndic M, Kikkawa J M, Johnson A T C 2016 *Nano Lett* 16 4297
- [24] Yang L, Zhang W F, Li J, Cheng S, Xie Z J, Chang H X 2017 ACS Nano 11 1964
 [25] Zhu X K, Li A L, Wu D, Zhu P, Xiang H Y, Liu S, Sun J, Ouyang F P, Zhou Y, Xiong X 2019 J. Mater. Chem. C 7 10598
- [26] Huang W J, Gan, L, Li H Q, Ma Y, Zhai T Y 2018 *Chem. Eur. J.* 24 15678
 [27] Liu L N, Wu J X, Wu L Y, Ye M, Liu X Z, Wang Q, Hou S Y, Lu P F, Sun L F, Zheng J Y, Xing L, Gu L, Jiang X W, Xie L M, Jiao L Y 2018 *Nat. Mater.* 17 1108
 [28] Wang Z Q, Shen Y H, Ito Y, Zheng Y Z, Du J, Fujita T, Hirata A, Tang Z, Chen M W 2018 *ACS Nano* 12 1571
- [29] Wang Z, Sun J, Wang H L, Lei Y M, Xie Y, Wang G F, Zhao Y, Li X B, Xu H, Yang X B, Feng L P, Ma X H 2020 Appl. Surf. Sci. 504 144371
- [30] Feng Q L, Mao N N, Wu J X, Xu H, Wang C M, Zhang J, Xie L M 2015 ACS

 Nano 9 7450
- [31] Feng Q L, Zhu Y M, Hong J H, Zhang M, Duan W J, Mao N N, Wu J X, Xu H, Dong F L, Lin F, Jin C H, Wang C M, Zhang J, Xie L M 2014 *Adv. Mater.* **26** 2648 [32] Tongay S, Narang D S, Kang J, Fan W, Ko C H, Luce A V, Wang K X, Suh J, Patel K D, Pathak V M, Li J B, Wu J Q 2014 *Appl. Phys. Lett.* **104** 012101 [33] Li H L, Duan X D, Wu X P, Zhuang X J, Zhou H, Zhang Q L, Zhu X L, Hu W, Ren P Y, Guo P F, Ma L, Fan X P, Wang X X, Xu J Y, Pan A L, Duan X F 2014 *J.*

- [34] Li H L, Zhang Q L, Duan X D, Wu X P, Fan X P, Zhu X L, Zhuang X J, Hu W, Zhou H, Pan A L, Duan X F 2015 J. Am. Chem. Soc. 137 5284
- [35] Chen Y F, Dumcenco D O, Zhu Y M, Zhang X, Mao N N, Feng Q L, Zhang M, Zhang J, Tan P H, Huang Y S, Xie L M 2014 *Nanoscale* **6** 2833
- [36] Liu H F, Antwi K K A, Chua S, Chi D Z 2014 Nanoscale 6 624
- [37] Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z G, Huang Y S, Xie L M 2013 ACS Nano 7 4610
- [38] Liu S J, Huang L, Wu K D, Wei Z M, Huang B J, Meng X Q, Tongay S, Liu J, Li J B, Chen H D 2016 *Appl. Phys. Lett.* **109** 112102
- [39] Lin Y C, Dumcenco D O, Komsa H P, Niimi Y, Krasheninnikov A V, Huang Y S, Suenaga K 2014 *Adv. Mater.* **26** 2857
- [40] Zandalazini C I, Albanesi E A 2019 J. Magn. Magn. Mater. 484 146
- [41] Fan S W, Yang L, Gao G Y 2019 Phys. Lett. A 383 3138
- [42] Laroussi A, Berber M, Mokaddem A, Doumi B, Abid H, Boudali A 2019 *Acta Phys. Pol. A* **135** 451
- [43] Duerloo K N, Reed E J 2016 ACS Nano 10 289
- [44] Kumar A, Strachan A, Onofrio N 2019 J. Appl. Phys. 125 204303
- [45] Wang J Z, Yang T, Zhang Z D, Yang L 2018 Appl. Phys. Lett. 112 213104
- [46] Young J, Reinecke T L 2017 Phys. Chem. Chem. Phys. 19 31874
- [47] Huang H H, Fan X F, Singh D J, Zheng W T 2018 Phys. Chem. Chem. Phys. 20 26986
- [48] Chen M W, Zhu L G, Chen Q F, Miao N H, Si C, Zhou J, Sun Z M 2020 J. Mater.

Chem. C 8 721

- [49] Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 *J. Am. Chem. Soc.* **134** 13773
- [50] Gong Y J, Yuan H T, Wu C L, Tang P Z, Yang S Z, Yang A K, Li G D, Liu B F, van de Groep J, Brongersma M L, Chisholm M F, Zhang S C, Zhou W, Cui Y 2018

 Nat. Nanotechnol. 13 294
- [51] Meng Y S, Elena Arroyo-de Dompablo M 2009 Energy Environ. Sci. 2 589
- [52] Zhang Z X, Yang M Y, Zhao N, Wang L, Li Y Y 2019 Phys. Chem. Chem. Phys.21 23441
- [53] Py M A, Haering R R 1983 Can. J. Phys. 61 76
- [54] Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 *J. Phys. Chem. C* 118 1515
- [55] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128
- [56] Tan S J R, Abdelwahab I, Ding Z J, Zhao X X, Yang T S, Loke G Z J, Lin H, Verzhbitskiy I, Poh S M, Xu H, Nai C T, Zhou W, Eda G, Jia B H, Loh K P 2017 *J. Am. Chem. Soc.* **139** 2504
- [57] Xia J, Wang J, Chao D L, Chen Z, Liu Z, Kuo J L, Yan J X, Shen Z X 2017

 Nanoscale 9 7533
- [58] Sun L F, Yan X X, Zheng J Y, Yu H D, Lu Z X, Gao S P, Liu L N, Pan X Q, Wang D, Wang Z G, Wang P, Jiao L Y 2018 Nano Lett. 18 3435
- [59] Eshete Y A, Ling N, Kim S, Kim D, Hwang G, Cho S, Yang H 2019 *Adv. Funct. Mater.* 29 1904504

- [60] Leng K, Chen Z X, Zhao X X, Tang W, Tian B B, Nai C T, Zhou W, Loh K P 2016 ACS Nano 10 9208
- [61] Tan C L, Zhao W, Chaturvedi A, Fei Z, Zeng Z Y, Chen J Z, Huang Y, Ercius P, Luo Z M, Qi X Y, Chen B, Lai Z C, Li B, Zhang X, Yang J, Zong Y, Jin C H, Zheng H M, Kloc C, Zhang H 2016 *Small* 12 1866
- [62] Wang X F, Shen X, Wang Z X, Yu R C, Chen L Q 2014 ACS Nano 8 11394
- [63] Koley S, Basu S 2020 J. Magn. Magn. Mater. 499 166294
- [64] Li P, Jeong J Y, Jin B J, Zhang K, Park J H 2020 Energy Storage Mater. 25 687
- [65] Island J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S J, Heine T, Castellanos-Gomez A 2016 *Nanoscale* **8** 2589
- [66] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
- [67] Duerloo K N, Li Y, Reed E J 2014 Nat. Commun. 5 4214
- [68] Song S, Keum D H, Cho S, Perello D, Kim Y, Lee Y H 2016 Nano Letters 16 188
- [69] Huang H H, Fan X F, Singh D J, Chen H, Jiang Q, Zheng W T 2016 Phys. Chem. Chem. Phys. 18 4086
- [70] Fan X F, Singh D J, Jiang Q, Zheng W T 2016 Phys. Chem. Chem. Phys. 18
 12080
- [71] Tang Q 2018 J. Mater. Chem. C 6 9561
- [72] Johari P, Shenoy V B 2012 ACS Nano 6 5449
- [73] Apte A, Kochat V, Rajak P, Krishnamoorthy A, Manimunda P, Hachtel J A, Idrobo J C, Amanulla S A S, Vashishta P, Nakano A, Kalia R K, Tiwary C S, Ajayan P M 2018 ACS Nano 12 3468
- [74] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J

- Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482
- [75] Wang Z Y, Sun Y Y, Abdelwahab I, Cao L, Yu W, Ju H X, Zhu J F, Fu W, Chu L Q, Xu H, Loh K P 2018 ACS Nano 12 12619
- [76] Yin X M, Tang C S, Wu D, Kong W L, Li C J, Wang Q X, Cao L, Yang M, Chang Y H, Qi D Y, Ouyang F, Pennycook S J, Feng Y P, Breese M B H, Wang S J, Zhang W J, Rusydi A, Wee A T S 2019 *Adv. Sci.* **6** 1802093
- [77] Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S, Jo M H 2017 *Nat. Nanotechnol.* 12 1064
- [78] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. **8** e231
- [79] Chen J C, Feng Z H, Fan S Q, Shi S, Yue Y C, Shen W F, Xie Y, Wu E X, Sun C L, Liu J, Zhang H, Pang W, Sun D, Feng W, Feng Y Y, Wu S, Zhang D H 2017 ACS Appl. Mater. Interfaces 9 30107
- [80] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 *Science* **349** 625
- [81] Yu Y F, Nam G H, He Q Y, Wu X J, Zhang K, Yang Z Z, Chen J Z, Ma Q L, Zhao M T, Liu Z Q, Ran F R, Wang X Z, Li H, Huang X, Li B, Xiong Q H, Zhang Q, Liu Z, Gu L, Du Y H, Huang W, Zhang H 2018 Nat. Chem. 10 638
- [82] Chen Z R, Nan H Y, Liu Z, Wang X Y, Gu X F, Xiao S Q 2019 J. Raman Spectrosc. 50 755
- [83] Si C, Choe D, Xie W Y, Wang H, Sun Z M, Bang J, Zhang S B 2019 Nano Lett.19 3612

- [84] Azcatl A, Qin X Y, Prakash A, Zhang C X, Cheng L X, Wang Q X, Lu N, Kim M J, Kim J, Cho K, Addou R, Hinkle C L, Appenzeller J, Wallace R M 2016 *Nano Lett.* **16** 5437
- [85] Cheng C C, Lu A Y, Tseng C C, Yang X L, Hedhili M N, Chen M C, Wei K H, Li L J 2016 Nano Energy 30 846
- [86] O'Brien M, Lee K, Morrish R, Berner N C, McEvoy N, Wolden C A, Duesberg G S 2014 *Chem. Phys. Lett.* **615** 6
- [87] Jin J C, Zhang D P, Qin X N, Yang Y, Huang Y, Guan H, He Q C, Fan P, Lv W Z 2019 Nanomaterials 9 102
- [88] Zhu J, Wang Z, Yu H 2017 J. Am. Chem. Soc. 139 10216
- [89] Shawkat M S, Gil J, Han S S, Ko T, Wang M, Dev D, Kwon J, Lee G, Oh K H, Chung H, Roy T, Jung Y, Jung Y 2020 ACS Appl. Mater. Interfaces 12 14341
- [90] Nan H Y, Jiang J, Xiao S Q, Chen Z R, Luo Z Z, Zhang L F, Zhang X M, Qi H, Gu X F, Wang X R, Ni Z H 2018 Nanotechnology **30** 034004
- [91] Taniguchi K, Matsumoto A, Shimotani H, Takagi H 2012 Appl., Phys. Lett. 101 042603
- [92] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 *Science* 338
- [93] He X X, Liu F C, Zeng Q S, Liu Z 2015 *Acta Chim. Sin.* **73** 924 (in Chinese) [何学侠, 刘富才, 曾庆圣, 刘政 2015 化学学报 **73** 924]
- [94] Li Y, Duerloo K A N, Wauson K, Reed E J 2016 Nat. Commun. 7 10671
- [95] Wang Y, Xiao J, Zhu H 2017 Nature **550** 487
- [96] Bischoff F, Auwarter W, Barth J V, Schiffrin A, Fuhrer M, Weber B 2017 Chem.

Research progress of two-dimensional transition metal dichalcogenide phase transition methods*

Zhang Hao-Zhe Xu Chun-Yan Nan Hai-Yan Xiao Shao-Qing Gu Xiao-Feng (Engineering Research Center of IOT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China)

Abstract

After traditional semiconductors such as silicon and GaAs, in recent years, the two-dimensional materials have attracted attention in the field of optoelectronic devices, thermoelectric devices and energy storage and conversion based on many peculiar properties. However, the normal two-dimensional materials such as graphene, cannot be well applied in the field of optoelectronics due to the lack of a band gap, and the black phosphorus are also greatly limited in practical applications due to two-dimensional instability in the air. The transition dichalcogenides have attracted more attention due to the different atomic structures, adjustable energy band and excellent photoelectric properties. There are different crystal phases in transition metal dichalcogenides, some of which are stable in the ground state, and some others are not stable. Different phases exhibit different characteristics, some of which have semiconductor properties and some of others have like metal properties. These stable and metastable phases of transition metal dichalcogenides can be transformed into each other under some certain

conditions. In order to obtain these metastable phases, thereby modulating their photoelectric performance and improving the mobility of the devices, it's essential to get a phase transition method that enables the crystal phase transition of the transition metal dichalcogenides. In this article, first of all we simply summarize the different crystal structures of transition metal dichalcogenides and their electrical, mechanical, and optical properties. methods of transition eight phase transition Next, the dichalcogenides are listed: chemical vapor deposition, doping, ion intercalation, strain, high temperature thermal treatment, laser inducing, plasma treatment, and electric field inducing. After that, the research progress, advantages and disadvantages of these phase transition methods are also introduced. Finally, we sum up all the phase transition methods involved in this article and then list some of the problems that have existed so far. This review elaborate all of the different phase transition methods until now of transition metal dichalcogenides in detail, which provides a good reference direction for the phase transition of transition metal dichalcogenides in the future, the electrical performance regulated by different phases and the application of memory devices and electrode manufacturing.

Keywords: 2D transition metal dichalcogenides, crystal structure, phase transition method

^{*} Project supported by the National Nature Science Foundation of China (Grant No.11704159), the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20170167), the National postdoctoral Foundation (Grant No.2018M642154), the Postdoctoral Foundation of Jiangsu Province,

