# SbS 电子基态及激发态的势能曲线和振动能级的理论研究<sup>\*</sup>

王新宇 王艺霖 石虔韩 汪庆龙 于洪洋 金园园 李松<sup>†</sup> (长江大学,物理与光电工程学院, 荆州 434023)

#### 摘要

运用 MRCI+Q 方法对 SbS 能量最低的 3 个 Λ-S 离解极限的所有电子态及 考虑自旋-轨道耦合效应后分裂所得的 Ω 态进行了计算.首次获得了 27 个 Λ-S 束缚态及能量最低的 12 个 Ω 态的电子结构、光谱常数、振动能级等 信息.本文所得 Sb 与 S 原子能级与实验值相符很好.分析表明自旋-轨道耦 合效应对光谱常数与振动能级的影响总体上并不显著.对 X(3/2)→X(1/2)、 2(1/2)→X(1/2)、4(1/2)→X(1/2)、5(1/2)→X(1/2)及 6(1/2)→X(1/2)跃迁的振 动光谱进行了模拟与分析,其中 X(3/2)→X(1/2)谱带位于中红外波段,其 它谱带均位于可见光波段.模拟的光谱有助于对 SbS 开展光谱探测及相关 研究.此外,本文还对氮族元素硫化物的电子态进行了验证计算,计算结 果不仅体现了同族元素代换后相关物性的渐变规律性,而且与已有实验 结果吻合较好也证明了本文 SbS 计算的可信度.

关键词: SbS; 电子结构; 自旋-轨道耦合效应; 光谱常数 PACS: 31.15.vn, 31.50.Df, 31.15.aj

基金: 国家自然科学基金(批准号: 11804031)资助的课题.

† 通讯作者.E-mail: lsong@yangtzeu.edu.cn 电话: 18986707903

第一作者. E-mail: 603281300@qq.com

1 引言

含硫双原子体系在天体物理学、大气化学、燃烧化学、分子反应动力学等众 多领域承担着重要的角色,因此一直是相关领域的关注对象.硫化锑具备优异的稳 定性和丰富的元素储存,因有较大的吸收系数和 1.7eV 的带隙宽度,作为良好的 半导体材料和光敏材料得到了广泛应用<sup>[1-5]</sup>,而且锑基硫族化合物也满足叠层太阳 能电池的要求,有助于提高光电转换效率<sup>[6]</sup>.对硫化锑自由基的电子结构与光谱只 有 Shimauchi 和 Nishiyama 于 1968 年对其发射电子光谱的报道<sup>[7]</sup>。文中确定了 7 <u>个电子激发态至基态的电子跃迁谱带的带头波长,但对激发态没有进行标识.Ω</u> 基态的谐振频率分别为 480 cm<sup>-1</sup> 和 470 cm<sup>-1</sup>,而 7 个激发态的谐振频率介于 296-442cm<sup>-1</sup>之间.除此以外的其它光谱常数目前仍然未知.

对<u>氮族元素硫化物自由基</u>的研究始于 1932 年对 NS 的 $B^2\Sigma^+ \rightarrow X^2\Pi$ 和  $A^2\Pi \rightarrow X^2\Pi$  谱带的实验探测<sup>[8]</sup>.1951 年和 1954 年, Zeeman 等人分别对这两个谱 带进行了实验光谱转动分析<sup>[9,10]</sup>.此后开展的微波谱<sup>[11]</sup>、紫外与可见光<sup>[12-14]</sup>实验获 得了丰富的电子激发态光谱常数与基态的精细结构常数.对 PS 自由基的光谱研究 源于对紫外与可见光波段  $C^2\Sigma - X^2\Pi$ 和 $B^2\Pi - X^2\Pi$  谱带的实验探测.1955 年至 1979 年间<sup>[15-20]</sup>,若干工作组探测到了这两个谱带的大量谱线,通过转动分析确定 了各电子态的光谱常数.随后,该体系的近红外<sup>[21]</sup>、毫米波<sup>[22]</sup>与亚毫米波<sup>[23]</sup>光谱 也陆续被探测获得.Shimauchi 研究组在 1969 年至 1973 年对 AsS 的光谱开展了系 列研究<sup>[24-28]</sup>,获得了 $A^2\Pi_{3/2} - X^2\Pi_{3/2}$ 跃迁的大量数据及各电子态的分子常数.1967 年 Barrow 等人首次对 BiS 的可见光谱进行了探测<sup>[29]</sup>.Pati ňo 等人于 1984 年研究了 BiS 的 $A^2\Pi_{1/2} - X^2\Pi_{1/2}$  谱带高J量子数跃迁的超精细双分裂结构<sup>[30]</sup>,确定了 $X^2\Pi_{1/2}$ 态的分子常数.借助傅里叶变换光谱仪,BiS 的近红外<sup>[31,32]</sup>、微波谱<sup>[31]</sup>和可见光光 谱<sup>[32]</sup>也被探测到,涉及 $X^2\Pi_{1/2}$ 和 $X^2\Pi_{3/2}$ 态的分子常数得以确定.

在理论研究方面,Hartree-Fock 方法(HF)<sup>[33]</sup>、组态相互作用(CI)<sup>[34]</sup>、多参考 双重激发组态相互作用(MRDCI)<sup>[35-37]</sup>、密度泛函(DFT)DFT<sup>[38]</sup>、广义价键 (GVB)<sup>[39]</sup>、二阶 Møler-Plesset 微扰理论(MP2)<sup>[39]</sup>、完全活性空间-平均耦合对泛函 (CAS-ACPF)<sup>[40]</sup>、单双迭代包括三重激发的耦合簇[CCSD(T)]<sup>[41,42]</sup>及其显关联方法 CCSD(T)-F12<sup>[43]</sup>、Gaussian-3(G3)<sup>[44]</sup>、多参考组态相互作用(MRCI)<sup>[45-52]</sup>及 Rydberg-Klein-Rees (RKR)<sup>[53]</sup>等计算方法均被用于确定 NS、PS、AsS 和 BiS 四种 含硫双原子体系各电子态的结构参数、光谱常数、振动能级、跃迁性质等,所得 计算数据分别与各自的实验数据进行了比对.在实验中没有涉及到的 Λ-S 态及 Ω 激发电子态的特性也得到了预测,获得了这些态的跃迁矩、弗兰克-康登因子、爱 因斯坦系数及自发辐射寿命等数据.

相比以上对氮族元素硫化物自由基的结构与光谱的众多研究获得了丰富的 数据与结论,对 SbS 自由基的相关研究则明显不足。除了前文提到的一篇实验研 究报道<sup>[7]</sup>外,到目前为止还没有理论研究.因此,本文将对 SbS 的结构与电子态开 展系统研究,以填补相关数据空白.

2 计算方法

基于完全活性空间自治场方法<sup>[54]</sup>构建了CI波函数,借助包含Davidson修正的 多参考组态相互作用(MRCI+Q)方法<sup>[55]</sup>,计算了SbS前三个离解极限27个Λ-S电子 态的能量.对S和Sb原子分别选用aug-cc-pwCV5Z全电子基组<sup>[56]</sup>与 aug-cc-pwCV5Z-PP标量相对论基组<sup>[57]</sup>,其中Sb的1s至3d电子用相对论有效原子实 势ECP28MDF取代.计算中将Sb的4s4p与S的1s电子作为芯电子,Sb的4d和S的2s2p 原子轨道作为闭壳层分子轨道,Sb的5s5p与S的3s3p原子轨道作为活性分子轨道. 以*C*<sub>2</sub>v群替代SbS的简并对称性*C*<sub>60</sub>群,用其不可约表示*a*<sub>1</sub>、*b*<sub>1</sub>、*b*<sub>2</sub>和*a*<sub>2</sub>表示的双占 据闭壳层轨道和活性轨道分别为(4,2,2,1)与(4,2,2,0).能量点的计算范围是1.7Å至 10Å,最小扫描步长为0.05Å,每条势能曲线计算了51个数据点.

在考虑核价相关修正和标量相对论修正后,通过Murrell-Sorbie(M-S)势能函数<sup>[58]</sup>拟合单点能得到电子态的势能曲线,然后通过均方根值(RMS)来评估拟合效果.M-S函数被认为是能够较好地反映双原子体系势能函数的解析表达式之一,本研究组也已经基于该势能函数研究了NS<sup>-[59]</sup>、SCI<sup>+[60,61]</sup>、SCI<sup>-[60]</sup>、SF<sup>±[62]</sup>、MgS<sup>+[63]</sup>、SH<sup>-[64]</sup>等若干含硫双原子体系.M-S势能函数由下式进行描述:

$$V(\rho) = -D_e (1 + \sum_{i=1}^{n} a_i \rho^i) \exp(-a_1 \rho).$$
(1)

其中, ρ=R-R<sub>e</sub>, R 与 R<sub>e</sub>分别是核间距以及平衡核间距, D<sub>e</sub> 是离解能, a<sub>i</sub> 是拟合参量.

通过Breit-Pauli算符<sup>[65]</sup>考虑自旋-轨道耦合(SOC)效应可以计算得到Ω电子态的能量.在核价相关修正和标量相对论修正的基础上,将能量点通过最小二乘拟合法得到势能函数,并计算出各电子态的光谱常数.以上所有能量计算均基于 MOLPRO软件<sup>[66]</sup>完成.利用Level程序<sup>[67]</sup>还计算得出每个电子态的振动能级与转动常数.

鉴于SbS还没有实验数据可做比较,本文还计算了PS、AsS、BiS三种氮族元 素硫化物的若干电子态.采用的方法与计算SbS的方法相同,均通过MRCI+Q方法 进行.对S、N和P采用aug-cc-pwCV5Z基组<sup>[56]</sup>,对As和Bi采用aug-cc-pwCV5Z-PP 基组<sup>[57]</sup>,其中分别包含ECP10MDF和ECP60MDF相对论有效原子实势.得到了每 一种体系第一离解极限的A-S电子态及其对应的Q电子态能量,进一步计算出每 个电子态的光谱常数与振动能级.

### 3 分析与讨论

3.1 Λ-S态的势能曲线与光谱常数

SbS前三个离解极限相对能量的计算值及对应的电子态如表1所列,本文计算 值与实验值相比符合很好.例如S原子第一激发态<sup>1</sup>D<sub>g</sub>相对基态<sup>3</sup>P<sub>g</sub>的能量为9346 cm<sup>-1</sup>,与实验值<sup>[68]</sup>相差约1.2%,而Sb原子第一激发态<sup>2</sup>D<sub>u</sub>与基态<sup>4</sup>S<sub>u</sub>能量间隔为 10022 cm<sup>-1</sup>,高于实验值<sup>[68]</sup>约1.7%.所有A-S电子态的势能曲线如图1所示,其中  $1^{4}\Sigma^{+}$ 、 $1^{6}\Sigma^{+}$ 、 $1^{6}\Pi$ 、 $2^{2}\Delta$ 、 $3^{4}\Sigma^{+}$ 、 $3^{4}\Delta$ 、 $1^{4}\Phi$ 、 $3^{4}\Pi$ 、 $4^{4}\Pi$ 和 $5^{4}\Pi$ 为排斥态,其 余电子态均为束缚态.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta E$ (单有           | ΔE (单位: cm <sup>-1</sup> )                                                                         |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|--|--|
| 原子态                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Λ-S 态                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 实验值 <sup>[68]</sup>      | 本文计算值                                                                                              |  |  |
| $\mathrm{Sb}({}^{4}\mathrm{S}_{u}) + \mathrm{S}({}^{3}\mathrm{P}_{g})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1^{2}\Sigma^{+}, X^{2}\Pi, 1^{4}\Sigma^{+}, 1^{4}\Pi, 1^{6}\Sigma^{+}, 1^{6}\Pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                        | 0                                                                                                  |  |  |
| $\mathrm{Sb}({}^{4}\mathrm{S}_{u}) + \mathrm{S}({}^{1}\mathrm{D}_{g})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1^4\Sigma^-, 1^4\Delta, 2^4\Pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9238.609                 | 9346                                                                                               |  |  |
| $\mathrm{Sb}(^{2}\mathrm{D}_{u}) + \mathrm{S}(^{3}\mathrm{P}_{a})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2^2\Sigma^+$ , $3^2\Sigma^+$ , $1^2\Sigma^-$ , $1^2\Delta$ , $2^2\Delta$ , $2^2\Pi$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9854.018                 | 10022                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3^2\Pi$ , $4^2\Pi$ , $1^2\Phi$ , $2^4\Sigma^+$ , $3^4\Sigma^+$ , $2^4\Sigma^-$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2^4\Delta$ , $3^4\Delta$ , $3^4\Pi$ , $4^4\Pi$ , $5^4\Pi$ , $1^4\Phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                                                                                    |  |  |
| $ \begin{array}{c} 5000 \\ 45000 \\ 1000 \\ 5000 \\ 1000 \\ 5000 \\ 1000 \\ 1000 \\ 5000 \\ 1.6 \\ 2.0 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ $ | $\begin{array}{c} 50000 \\ 50000 \\ 50000 \\ 1^{5}2' \\ 2^{2}A \\ 5bc^{2}D_{2}+S(^{2}P_{1}) \\ 40000 \\ 35000 \\ 7 \\ 5 \\ 20000 \\ 1^{5}2 \\ 5 \\ 2000 \\ 4^{4}\Pi \\ 1^{2}A \\ 1^{5}E \\ 1^{2}E \\ 5 \\ 1^{2}E \\ 5 \\ 1^{2}E \\ 5 \\ 5 \\ 1^{2}E \\ 1^{2}E \\ 5 \\ 1^{2}E \\ 1$ | (c)                      | $Sb(^{c}D_{y})+S(^{c}P_{y})$ $Sb(^{c}S_{y})+S(^{c}D_{y})$ $Sb(^{c}S_{y})+S(^{c}P_{y})$ $(b)$ $(b)$ |  |  |
| 图 1 SbS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 的 A-S 态势能曲线.(a) 二重、六重态;(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b)、(c) 四重               | 态.                                                                                                 |  |  |
| Fig. 1. Potential en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ergy curves of $\Lambda$ -S states of SbS: (a) doublet a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd sextet states;        | (b) and (c)                                                                                        |  |  |
| ×1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | quartet states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                                                                                    |  |  |
| 基态 X <sup>2</sup> II 与第                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 一激发态14∏在Re附近的能量差超过                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 了12800cm <sup>-1</sup> , | 并且没有其                                                                                              |  |  |
| 它电子态势能曲线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 与基态曲线交叉,表明与其对应的Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 态不会受到其                   | 其它Ω=1/2或                                                                                           |  |  |
| 3/2电子态的影响,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 其光谱常数也不会有大的变化.在R=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .4-3.4 Å₅ <i>E=</i> 2    | 25000-40000                                                                                        |  |  |
| cm <sup>-1</sup> 范围内,激发                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 态势能曲线产生了复杂的曲线(避免)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 交叉, 预示了                  | 在此范围内                                                                                              |  |  |
| 对其Ω态的分析将。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 具有很大的挑战性.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                    |  |  |

Table 1 Dissociation relationships of the  $\Lambda$ -S states of SbS.

束缚态的完整的光谱常数列于表 2.需要说明的是,本文所得电子激发态的谐

<u>振频率总体上与文献[7]的数据(介于 296-442 cm<sup>-1</sup>之间)是相符的,但是由于文</u> <u>献[7]没有标识电子态,我们也无法与其数据进行逐一比对.</u>拟合的 RMS 值均较小, 表明拟合质量较高.基态  $X^2\Pi$  主要由  $15\sigma^{\alpha\beta}7\pi_x^{\alpha\beta}\sigma^{\beta}8\pi_x^{\alpha}$  电子组态构成,相比激发态 其势阱最深,但  $R_e$ 最小.第一激发态1<sup>4</sup>Π通过  $7\pi_y \rightarrow 8\pi_y$  电子迁移形成,虽然其  $R_e$ 与第二、第三激发态  $2^2\Pi$ 和  $3^2\Pi$ 的  $R_e$  非常接近,但均与基态相差超过 9%,因此 可预测这几个低激发态至基态跃迁的弗兰克-康登因子偏小.  $2^2\Pi$ 和  $3^2\Pi$ 均呈现多 组态特征,贡献最大的电子组态分别由自旋取向不同的电子保持自旋方向性并从  $7\pi_y 迁移至 8\pi_y$ 轨道而形成.  $1^4\Sigma^-$ 的主要电子组态为  $15\sigma^{\alpha}7\pi_x^{\alpha\beta}\sigma^{\beta}8\pi_x^{\alpha,\alpha}$ ,所占权重为 83%.  $8\pi \rightarrow 16\sigma$ 的电子迁移形成  $1^2\Sigma^+$ 电子态.除个别电子态以外,大多数电子态均表 现出较明显的多参考特性.

表 2 SbS 的 Λ-S 态光谱常数 Table 2 Spectroscopic constants of the Λ-S states of SbS.

|                      |                |                      | _                         |                                |                                            |                           |                      |                                                                                                            |
|----------------------|----------------|----------------------|---------------------------|--------------------------------|--------------------------------------------|---------------------------|----------------------|------------------------------------------------------------------------------------------------------------|
| Λ-S态                 | $R_{\rm e}$ /Å | $D_{\rm e}/{\rm eV}$ | $B_{\rm e}/{\rm cm}^{-1}$ | $\omega_{\rm e}/{\rm cm}^{-1}$ | $\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$ | $T_{\rm e}/{\rm cm}^{-1}$ | RMS/cm <sup>-1</sup> | 电子组态(组态系数)                                                                                                 |
| $X^2\Pi$             | 2.2199         | 3.44                 | 0.1348                    | 479.8                          | 1.51                                       | 0                         | 0.57                 | $15\sigma^{\alpha\beta}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha\beta}8\pi_{x}^{\alpha}$ (72.77)                |
| $1^4\Pi$             | 2.4481         | 1.84                 | 0.1108                    | 343.6                          | 1.17                                       | 12884                     | 0.65                 | $15\sigma^{\alpha\beta}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha}8\pi_{x}^{\alpha}{}_{y}^{\alpha}$ (84.83)      |
| $2^2\Pi$             | 2.4388         | 2.60                 | 0.1117                    | 356.3                          | 0.89                                       | 16721                     | 0.64                 | $15\sigma^{\alpha\beta}7\pi_{x}^{\alpha\beta}{}_{y}^{\beta}8\pi_{x}^{\alpha}{}_{y}^{\alpha}$ (52.26)       |
| 3 <sup>2</sup> Π     | 2.4513         | 2.16                 | 0.1106                    | 341.8                          | 0.97                                       | 20306                     | 0.88                 | $15\sigma^{\alpha\beta}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha}8\pi_{x}^{\alpha}{}_{y}^{\beta}$ (31.90)       |
| $1^4 \Sigma^-$       | 2.3354         | 1.88                 | 0.1218                    | 361.1                          | 2.54                                       | 21870                     | 1.53                 | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha\beta}8\pi_{x}^{\alpha}{}_{y}^{\alpha}$ (83.08)      |
| $4^2\Pi$             | 2.4554         | 1.49                 | 0.1109                    | 341.1                          | 1.97                                       | 25796                     | 2.85                 | $15\sigma^{\alpha\beta}7\pi_{x_{y}}^{\alpha}{}^{\alpha\beta}8\pi_{y}{}^{\alpha\beta}$ (59.44)              |
| $1^2\Sigma^+$ 第一势阱   | 2.4699         | 0.45                 | 0.1089                    | 254.4                          | 0.88                                       | 26185                     | 3.64                 | $15\sigma^{\alpha\beta}16\sigma^{\alpha}7\pi_{x}^{\ \alpha\beta\ \alpha\beta}_{y}$ (52.15)                 |
| $1^2\Sigma^-$        | 2.3735         | 1.17                 | 0.1179                    | 340.1                          | 6.30                                       | 28350                     | 7.03                 | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha\beta}8\pi_{x}^{\beta}{}_{y}^{\alpha}$ (61.23)       |
| $1^2\Delta$          | 2.3545         | 1.04                 | 0.1198                    | 343.5                          | 2.51                                       | 29271                     | 1.80                 | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}{}^{\alpha\beta}8\pi_{x}^{\alpha}{}_{y}{}^{\beta}$ (60.01)   |
| $1^2\Phi$            | 2.5497         | 1.45                 | 0.1022                    | 265.1                          | 1.96                                       | 32508                     | 6.63                 | $15\sigma^{\alpha\beta}7\pi_{x\ y}^{\alpha\ \alpha}8\pi_{x\ y}^{\alpha\beta\ \beta}(50.92)$                |
| $2^2\Sigma^+$        | 2.3678         | 0.63                 | 0.1185                    | 337.0                          | 1.73                                       | 33250                     | 2.19                 | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}{}^{\alpha\beta}8\pi_{y}{}^{\alpha\beta}(38.05)$             |
|                      | /              | ///                  |                           |                                |                                            |                           |                      | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha\beta}8\pi_{x}^{\alpha\beta}$ (38.05)                |
| $1^4\Delta$          | 2.8462         | 0.34                 | 0.0820                    | 188.3                          | 2.40                                       | 34389                     | 0.84                 | $15\sigma^{\alpha\beta}16\sigma^{\alpha}7\pi_{x}^{\ \alpha\beta}{}_{y}^{\alpha}8\pi_{y}^{\ \alpha}(35.39)$ |
|                      |                |                      |                           |                                |                                            |                           |                      | $15\sigma^{\alpha\beta}16\sigma^{\alpha}7\pi_{x\ y}^{\alpha\ \alpha\beta}8\pi_{x}^{\alpha}$ (35.39)        |
| $2^4\Pi$             | 3.3555         | 0.28                 | 0.0590                    | 134.1                          | 1.52                                       | 34791                     | 0.38                 | $15\sigma^{\alpha}16\sigma^{\alpha}7\pi_{x\ y}^{\ \alpha\beta}^{\beta}8\pi_{x\ y}^{\ \alpha\alpha}(27.31)$ |
| $3^2\Sigma^+$        | 3.0478         | 0.32                 | 0.0715                    | 189.7                          | 4.99                                       | 36554                     | 3.79                 | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}{}^{\alpha\beta}8\pi_{y}{}^{\alpha\beta}$ (16.85)            |
|                      |                |                      |                           |                                |                                            |                           |                      | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha\beta}8\pi_{x}^{\alpha\beta}$ (16.85)                |
| $2^4 \Sigma^+$       | 3.4574         | 0.09                 | 0.0556                    | 87.1                           | 1.80                                       | 37047                     | 0.84                 | $15\sigma^{\alpha}7\pi_{x\ y}^{\alpha\ \alpha\beta}8\pi_{x\ y}^{\alpha\ \alpha\beta}(14.08)$               |
|                      |                |                      |                           |                                |                                            |                           |                      | $15\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}{}^{\alpha}8\pi_{x}^{\alpha\beta}{}_{y}{}^{\alpha}$ (14.08)  |
| $2^4\Sigma^{-}$ 第一势阱 | 2.8356         | 0.06                 | 0.0826                    | 184.4                          | 6.87                                       | 37260                     | 1.01                 | $15\sigma^{\alpha\beta}16\sigma^{\alpha}7\pi_{x\ y}^{\alpha\ \alpha\beta}8\pi_{y}^{\alpha}(35.84)$         |
|                      |                |                      |                           |                                |                                            |                           |                      | $15\sigma^{\alpha\beta}16\sigma^{\alpha}7\pi_{x}^{\alpha\beta}{}_{y}^{\alpha}8\pi_{x}^{\alpha}$ (35.84)    |
| $2^4\Delta$          | 3.9570         | 0.05                 | 0.0424                    | 95.3                           | 7.03                                       | 37339                     | 0.96                 | $15\sigma^{\alpha}16\sigma^{\alpha\beta}7\pi_{x}^{\alpha}{}_{y}^{\alpha}8\pi_{x}^{\alpha}(17.70)$          |
|                      |                |                      |                           |                                |                                            |                           |                      | $15\sigma^{\alpha}16\sigma^{\alpha\beta}7\pi_{x}^{\ \ \alpha\beta} 8\pi_{y}^{\ \ \alpha}(17.70)$           |

表3汇总了<u>氮族元素硫化物自由基</u>的光谱常数.通过比较发现该系列硫化物基 态 X<sup>2</sup>Π 的光谱常数体现了同族元素代换后的渐变规律性.随着氮族元素核电荷数 的增加, *R*<sub>e</sub>逐渐变大, 这源于氮族元素np<sup>3</sup>价电子的弥散性渐强, 而氮族元素与S 原子之间的化学键减弱则导致谐振频率ω<sub>e</sub>逐渐减小.

表 3 <u>XS(X=N,P,As,Sb,Bi)自由基</u>电子基态 X<sup>2</sup>∏ 的光谱常数

|                                   | _             |                 |                                    |                                |
|-----------------------------------|---------------|-----------------|------------------------------------|--------------------------------|
|                                   | $R_{ m e}$ /Å | $D_{\rm e}$ /eV | $\omega_{\rm e}$ /cm <sup>-1</sup> | $B_{\rm e}$ / cm <sup>-1</sup> |
|                                   |               | NS              |                                    |                                |
| 理论值[35] <sup>a</sup>              | 1.515         | -               | 1220.5                             | 0.7542                         |
| 理论值[40] <sup>b</sup>              | 1.5058        | -               | 1202.4                             | 0.742                          |
| 理论值[46]°                          | 1.4962        | 4.8504          | 1216.17                            | 0.77323                        |
| 理论值[47] <sup>d</sup>              | 1.498         | -               | 1220.9                             | 0.7715                         |
| 实验值[9]                            | 1.495(7)      | -               | -                                  | 0.7736(4)                      |
| 实验值[11]                           | 1.4938(2)     | -               | - >                                | (- <b>)</b> '                  |
|                                   |               | PS              |                                    | Y                              |
| 理论值[36] <sup>°</sup>              | 1.944         | -               | 735.6                              | 0.2836                         |
| 理论值[40] <sup>b</sup>              | 1.9148        | -               | 728.0                              | 0.292                          |
| 理论值[43] <sup>f</sup>              | 1.879         | - />            | 732.0                              | 0.2936                         |
| 理论值[48] <sup>g</sup>              | 1.8972        | 4.5272          | 741.0                              | 0.2979                         |
| 理论值[52] <sup>h</sup>              | 1.918         |                 | 708                                | -                              |
| 实验值[15]                           | 1.92          |                 | 739.5                              | 0.29                           |
| 实验值[18]                           | 1.900(7)      |                 | -                                  | -                              |
| 实验值[21]                           | 1.8977405(45) | <u>-</u>        | 739.13(42)                         | 0.2975216(14)                  |
| 本文工作                              | 1.9014        | 4.41            | 739.5                              | 0.2960                         |
|                                   |               | AsS             |                                    |                                |
| <mark>理论值[53] <sup>i</sup></mark> |               | <b>4.15(13)</b> | -                                  | -                              |
| 理论值[40] <sup>b</sup>              | 2.0395        | -               | 559.2                              | 0.181                          |
| 理论值[44] <sup>j</sup>              | 2.045         | 3.94            | -                                  | -                              |
| 理论值[49] <sup>k</sup>              | 2.0180        | 4.0554          | 565.19                             | 0.18472                        |
| 实验值[28] 🔨 🗙                       | 2.0174        | -               | <mark>567.94</mark>                | <mark>0.18476</mark>           |
| 本文工作                              | 2.0208        | 3.83            | 564.4                              | 0.1839                         |
|                                   |               | SbS             |                                    |                                |
| 本文工作                              | 2.2199        | 3.44            | 479.8                              | 0.1348                         |
|                                   |               | BiS             |                                    |                                |
| 本文工作                              | 2.3118        | 3.12            | 424.9                              | 0.1135                         |
|                                   |               |                 |                                    |                                |

Table 3 Spectroscopic constants of the ground  $\Lambda$ -S state of <u>XS(X=N,P,As,Sb,Bi) radicals</u>.

<sup>a</sup> MRSDCI/modified basis sets.

<sup>b</sup> CAS-ACPF/cc-pVQZ.

<sup>c</sup> MRCI+Q/AV5Z+CV+DK.

<sup>d</sup> MRCI+Q/aug-cc-pV5Z.

<sup>e</sup> MRSDCI/modified basis sets.

<sup>f</sup> MRCI/aug-cc-pV5Z.

<sup>g</sup> MRCI+Q/56+CV+DK.

<sup>h</sup> MRCI/modified basis sets.

<sup>i</sup> Obtained from the RKR method.

<sup>j</sup> MP2(full)/6-31G(d).

<sup>k</sup> MRCI+Q/Q5+CV+DK.

3.2 Ω态的势能曲线与光谱常数

由于SbS电子态数量多且曲线(避免)交叉复杂,本文仅对基态及部分低激发Ω 态开展计算与讨论,其势能曲线如图2所示.计算涉及的Ω态离解极限,即S原子 <sup>3</sup>P<sub>2,1,0</sub>原子态的能级间隔与实验数据<sup>[68]</sup>吻合很好,<u>第二、第三离解极限的计算值与</u> <u>实验值相差为~3.6%和~5.6%,如表4所列.</u>各电子态的光谱常数列于表5.<u>其中,仅</u> <u>有Ω基态的谐振频率有实验值<sup>[7]</sup>可做比较,本文计算值与实验值相符很好.</u>各势能 曲线拟合的RMS值也比较令人满意.







| Table 4 |    | υ | 188 | ocrai | IOII . | relati | Olish | ips o. | i ine | 77.2 | states | S 01 1 | 505. |  |
|---------|----|---|-----|-------|--------|--------|-------|--------|-------|------|--------|--------|------|--|
|         | Ζ. |   | 7 1 |       |        |        |       |        |       |      |        |        |      |  |
|         |    |   |     |       |        |        |       |        |       |      |        |        |      |  |
|         | _  | _ |     |       |        |        |       |        |       |      |        |        |      |  |

|                                      | 0*                       | $\Delta E$ (単位 | $\Delta E$ (单位: cm <sup>-1</sup> ) |  |  |  |
|--------------------------------------|--------------------------|----------------|------------------------------------|--|--|--|
| 原丁念                                  |                          | 实验值[68]        | 本文计算值                              |  |  |  |
| $Sb({}^{4}S_{3/2}) + S({}^{3}P_{2})$ | 7/2,5/2(2),3/2(3),1/2(4) | 0.0            | 0.0                                |  |  |  |
| $Sb({}^{4}S_{3/2}) + S({}^{3}P_{1})$ | 5/2,3/2(2),1/2(3)        | 396.055        | 410.46                             |  |  |  |
| $Sb({}^{4}S_{3/2}) + S({}^{3}P_{0})$ | 3/2,1/2                  | 573.640        | 605.81                             |  |  |  |

| 主゠ | C1-C | Ύ | 山甘品 | $\mathbf{O}$ | 大业溢誉粉 |
|----|------|---|-----|--------------|-------|
| 衣り | 202  | 曰 | 田蚕旳 | Ω            | 心兀喑吊奴 |

| Ω态                  | $R_{\rm e}$ /Å | $D_{\rm e}$ /eV | $B_{\rm e}/{\rm cm}^{-1}$ | $\omega_{\rm e}/{\rm cm}^{-1}$ | $\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$ | $T_{\rm e}/{\rm cm}^{-1}$ | RMS/cm <sup>-1</sup> |
|---------------------|----------------|-----------------|---------------------------|--------------------------------|--------------------------------------------|---------------------------|----------------------|
| X(1/2)              | 2.2195         | 3.62            | 0.1348                    | 476.3                          | 1.36                                       | 0                         | 2.36                 |
| 实验值[7]              | -              |                 |                           | <mark>480</mark>               | <b>1.2</b>                                 | - <b>-</b>                |                      |
| X(3/2)              | 2.2201         | 3.36            | 0.1348                    | 477.3                          | 1.97                                       | 2025                      | 2.25                 |
| <mark>实验值[7]</mark> | -              | -               | -                         | <mark>470</mark>               | <mark>1.6</mark>                           | -                         |                      |
| 2(1/2)              | 2.4527         | 1.93            | 0.1104                    | 341.4                          | 0.43                                       | 13646                     | 2.70                 |
| 3(1/2)              | 2.4538         | 1.90            | 0.1103                    | 342.2                          | 0.62                                       | 13888                     | 2.28                 |
| 2(3/2)              | 2.4503         | 1.86            | 0.1106                    | 346.5                          | 1.17                                       | 14123                     | 0.30                 |
| 1(5/2)              | 2.4537         | 1.83            | 0.1103                    | 344.6                          | 1.16                                       | 14346                     | 0.38                 |
| 3(3/2)              | 2.4428         | 2.56            | 0.1113                    | 364.7                          | 1.46                                       | 17632                     | 2.94                 |
| 4(1/2)              | 2.4467         | 2.48            | 0.1110                    | 367.3                          | 2.46                                       | 18340                     | 9.74                 |
| 4(3/2)              | 2.4524         | 2.18            | 0.1105                    | 339.7                          | 0.41                                       | 21413                     | 3.17                 |
| 5(1/2)              | 2.4560         | 2.13            | 0.1101                    | 342.8                          | 1.03                                       | 21610                     | 2.17                 |
| 6(1/2)              | 2.3462         | 1.95            | 0.1207                    | 352.3                          | 1.41                                       | 22947                     | 6.01                 |
| 5(3/2)              | 2.3476         | 1.91            | 0.1205                    | 356.6                          | 2.74                                       | 23268                     | 8.04                 |
|                     |                |                 |                           |                                |                                            |                           |                      |

Table 5 Spectroscopic constants of the  $\Omega$  states of SbS.

在SOC作用下, Λ-S基态 X<sup>2</sup>Π 分裂为X(1/2)与X(3/2), 其中前者能量更低, 并 且根据二者间能量差可预计其自旋-轨道耦合滞数约为2025 cm<sup>-1</sup>.1<sup>4</sup>Π 分裂为 2(1/2)、3(1/2)、2(3/2)和1(5/2),裂距较小,两相邻Ω态间的裂距只有基态裂距的 11%.2<sup>2</sup>Π 分裂为裂距约700 cm<sup>-1</sup>的3(3/2)和4(1/2)电子态.与1<sup>4</sup>Σ<sup>-</sup>和3<sup>2</sup>Π 对应的Ω 态势能曲线在约2.25 Å处产生了避免交叉.对比表2的Λ-S态及表5中对应Ω态的数 据,发现光谱常数的变化不大,证实了我们之前的预测.以*R*<sub>e</sub>为例,Ω基态X(1/2) 与X(3/2)相比Λ-S基态 X Π 的变化分别为0.02%和0.01%,在表中所列电子态中是 最小的,因此可预测这两个态之间的跃迁会有较大的弗兰克-康登因子.*R*<sub>e</sub>变化率 最大的态是6(1/2)和5(3/2),不过二者也只分别比1<sup>4</sup>Σ<sup>-</sup>减小了0.46%和0.52%.从总 体上看,SOC效应对这些电子态光谱常数的影响较小.此外,由于Ω基态与激发态 *R*<sub>e</sub>相差达到了0.2Å,表明这些Ω态间跃迁的弗兰克-康登因子均较小.

表6列出了<u>氮族元素硫化物自由基</u>Ω基态的光谱常数,本文的验证计算结果也 列于表中.可见本文计算值与实验值非常相符.以BiS为例,本文计算的X(1/2)与 X(3/2)态的R<sub>e</sub>均只与实验值<sup>[31,32]</sup>相差小于0.2%,ω<sub>e</sub>则高估了5%和2%左右.计算值

| 表 6 | XS(X=N,P,As,Sb,Bi | <u>)自由基</u> Ω | 基态的光谱常数 |
|-----|-------------------|---------------|---------|
|-----|-------------------|---------------|---------|

| Ω态     |                      | $R_{\rm e}$ /Å | $D_{\rm e}/{\rm eV}$ | $\omega_{\rm e}$ /cm <sup>-1</sup> | $B_{\rm e}/{\rm cm}^{-1}$ | $T_{\rm e}$ /cm <sup>-1</sup> |
|--------|----------------------|----------------|----------------------|------------------------------------|---------------------------|-------------------------------|
|        |                      |                | NS                   |                                    |                           |                               |
| X(1/2) | 理论值[46] <sup>a</sup> | 1.4962         | 4.8562               | 1216.43                            | 0.77320                   | 0                             |
|        | 理论值[51] <sup>b</sup> | 1.4976         | 4.7586               | 1213.30                            | -                         | 0                             |
|        | 实验值[12]              | 1.4955         | -                    | 1219.14                            | 0.7730                    | 0                             |
|        | 实验值[13]              | 1.4955         | -                    | 1218.97                            | 0.7730                    | 0                             |
|        | 实验值[14]              | 1.4931         | -                    | 1218.1                             | 0.7758(11)                | 0                             |
| X(3/2) | 理论值[46] <sup>a</sup> | 1.4962         | 4.8446               | 1215.93                            | 0.77326                   | 223.64                        |
|        | 理论值[51] <sup>b</sup> | 1.4975         | 4.7412               | 1213.02                            | - 7                       | 221.67                        |
|        | 实验值[12]              | 1.4901         | -                    | 1218.90                            | 0.7777                    | 223,15                        |
|        | 实验值[13]              | 1.4901         | -                    | 1218.90                            | 0.7777                    | 222.98                        |
|        | 实验值[14]              | 1.4884         | -                    | 1218.0                             | 0.7807(2)                 | 220.4                         |
|        |                      |                | PS                   |                                    |                           |                               |
| X(1/2) | 实验值[19]              | 1.899          | -                    | 739.54(2)                          | 0.29724(5)                | 0                             |
|        | 本文工作                 | 1.9015         | 4.40                 | 738.8                              | 0.2960                    | 0                             |
| X(3/2) | 实验值[19]              | 1.897          | 4.566                | 739.45(2)                          | 0.29765(5)                | 321.93                        |
|        | 本文工作                 | 1.9014         | 4.37                 | 738.6                              | 0.2960                    | 324.8                         |
|        |                      |                | AsS                  |                                    |                           |                               |
| X(1/2) | 实验值[24]              | -              | -                    | 567.9(4)                           | 0.18476                   | 0                             |
|        | 本文工作                 | 2.0206         | 3.89                 | 565.6                              | 0.1839                    | 0                             |
| X(3/2) | 实验值[24]              | 2.0174         | -                    | 566.1(3)                           | 0.18492                   | -                             |
|        | 实验值[25]              | 2.0216(3)      | - 🔨                  | 562.40(16)                         | 0.18408(4)                | -                             |
|        | 本文工作                 | 2.0210         | 3.78                 | 563.3                              | 0.1838                    | 893.3                         |
|        |                      |                | SbS                  |                                    |                           |                               |
| X(1/2) | 本文工作                 | 2.2195         | 3.62                 | 476.3                              | 0.1348                    | 0                             |
| X(3/2) | 本文工作                 | 2.2201         | 3.36                 | 477.3                              | 0.1348                    | 2025.0                        |
| -      |                      | <u> </u>       | <b>¬</b> BiS         |                                    |                           |                               |
| X(1/2) | 理论值[45]°             | 2.365          | -                    | 407                                | -                         | 0                             |
|        | 实验值[29]              | 2.3194         | -                    | 408.71                             | 0.11301                   | 0                             |
|        | 实验值[30]              | 2.3122(10)     | -                    | 404.68(8)                          | 0.11371(10)               | 0                             |
|        | 实验值[31]              | 2.3188(1)      | -                    | 408.67(7)                          | 0.113063(10)              | 0                             |
|        | 实验值[32]              |                | -                    | 408.66(3)                          | -                         | 0                             |
|        | 本文工作                 | 2.3131         | 3.58                 | 429.5                              | 0.1134                    | 0                             |
| X(3/2) | 理论值[45] <sup>c</sup> | 2.361          | -                    | 404                                | -                         | 7076                          |
|        | 实验值[31]              | 2.31525(13)    | -                    | 403.95(21)                         | 0.113411(13)              | 6905.02(18)                   |
|        | 实验值[32]              | 2.31489(11)    | -                    | 404.501(94)                        | -                         | -                             |
|        | 本文工作                 | 2.3191         | 2.87                 | 413.8                              | 0.1128                    | 5781                          |
| a      | MRCI+O/AV5Z+CV       | +DK+SO.        |                      |                                    |                           |                               |

Table 6 Spectroscopic constants of the ground  $\Omega$  state of <u>XS(X=N,P,As,Sb,Bi) radicals</u>.

<sup>b</sup> MRCI+Q/56+CV+DK+SO. <sup>c</sup> MRDCI+Q/modified basis sets.

3.3 Λ-S态与Ω态的振动能级和转动常数

通过求解核运动的径向薛定谔方程,得到了SbS的 $X^2\Pi$ 、 $1^4\Pi$ 、 $2^2\Pi$ 、 $3^2\Pi$ 、  $1^{4}\Sigma^{-}$ 电子态及其对应Ω态的全部振动态.表7列出了v=0-5的振动能级、转动常数和 离心畸变常数.受SOC效应影响, Ω态中6(1/2)和5(3/2)的振动能级相比A-S态均降 低了15%左右,是这些低激发态中变化最大的.该现象源于这两个态分别与5(1/2) 和4(3/2)在 $R_e$ 附近产生曲线避免交叉,使得6(1/2)和5(3/2)的势能曲线在 $R_e$ 处相比 1<sup>4</sup> $\Sigma^-\Lambda$ -S态的绝对能量降低了约300 cm<sup>-1</sup>.总体上看,SOC效应对SbS四重态如1<sup>4</sup> $\Pi$ 和1<sup>4</sup> $\Sigma^-$ 影响相对更为显著,而对二重态的影响则不明显.

表 7 SbS 的 Λ-S 及其对应 Ω 态的振动能级、转动常数和离心畸变常数(单位: cm<sup>-1</sup>). Table 7 Vibrational energy levels, rotational constants and centrifugal distortion constants for the  $\Omega$  and its respective Λ-S states of SbS (in cm<sup>-1</sup>).

| v  | $G_{v}$ | $B_{v}$ | $10^{8}D_{v}$ | $G_v$  | $B_{v}$ | $10^{8}D_{v}$ | $G_v$        | B <sub>v</sub> | $10^{8}D_{v}$ |
|----|---------|---------|---------------|--------|---------|---------------|--------------|----------------|---------------|
|    |         | X(1/2)  |               |        | X(3/2)  |               |              | $X^2\Pi$       | $\sim$        |
| 0  | 205.3   | 0.1350  | 4.30          | 200.7  | 0.1349  | 4.37          | 212.4        | 0.1351         | 4.18          |
| 1  | 682.7   | 0.1345  | 4.32          | 673.6  | 0.1344  | 4.39          | 696.4        | 0.1344         | 4.38          |
| 2  | 1156.9  | 0.1340  | 4.32          | 1143.1 | 0.1338  | 4.40          | 1171.8       | 0.1339         | 4.40          |
| 3  | 1628.2  | 0.1334  | 4.33          | 1609.4 | 0.1332  | 4.41          | 1642.2       | 0.1334         | 4.32          |
| 4  | 2096.6  | 0.1329  | 4.35          | 2072.6 | 0.1327  | 4.44          | 2110.0       | 0.1328         | 4.28          |
| 5  | 2561.9  | 0.1323  | 4.39          | 2532.6 | 0.1321  | 4.48          | 2575.7       | 0.1323         | 4.31          |
| _  |         | 3(3/2)  |               |        | 4(1/2)  | N             | $\mathbf{X}$ | $2^2\Pi$       |               |
| 0  | 160.5   | 0.1118  | 4.32          | 165.5  | 0.1113  | 4.44          | 153.7        | 0.1119         | 4.42          |
| 1  | 519.5   | 0.1114  | 4.31          | 517.2  | 0.1109  | 4.44          | 508.8        | 0.1114         | 4.38          |
| 2  | 876.8   | 0.1109  | 4.29          | 866.9  | 0.1104  | 4.42          | 862.3        | 0.1108         | 4.37          |
| 3  | 1232.5  | 0.1105  | 4.29          | 1214.7 | 0.1100  | 4.43          | 1214.1       | 0.1104         | 4.33          |
| 4  | 1586.4  | 0.1101  | 4.32          | 1560.6 | 0.1095  | 4.46          | 1564.3       | 0.1099         | 4.34          |
| 5  | 1938.3  | 0.1097  | 4.34          | 1904.3 | 0.1090  | 4.49          | 1912.9       | 0.1095         | 4.35          |
| _  |         | 4(3/2)  |               |        | 5(1/2)  |               |              | $3^2\Pi$       |               |
| 0  | 169.7   | 0.1106  | 4.58          | 170.6  | 0.1103  | 4.59          | 163.4        | 0.1108         | 4.73          |
| 1  | 512.3   | 0.1101  | 4.59          | 511.8  | 0.1098  | 4.60          | 501.1        | 0.1102         | 4.54          |
| 2  | 852.6   | 0.1096  | 4.59          | 850.7  | 0.1093  | 4.60          | 839.6        | 0.1096         | 4.57          |
| 3  | 1190.7  | 0.1091  | 4.60          | 1187.4 | 0.1089  | 4.61          | 1176.7       | 0.1091         | 4.58          |
| 4  | 1526.5  | 0.1086  | 4.62          | 1521.9 | 0.1084  | 4.63          | 1512.0       | 0.1086         | 4.61          |
| 5_ | 1860.0  | 0.1081  | 4.62          | 1854.0 | 0.1079  | 4.64          | 1845.0       | 0.1081         | 4.64          |
| _  |         | 6(1/2)  | 7.00          |        | 5(3/2)  |               |              | $1^4 \Sigma^-$ |               |
| 0  | 131.6   | 0.1204  | /5.73         | 128.3  | 0.1203  | 5.80          | 151.1        | 0.1215         | 5.33          |
| 1  | 479.4   | 0.1197  | 5.60          | 473.6  | 0.1196  | 5.72          | 517.9        | 0.1214         | 5.42          |
| 2  | 826.2   | 0.1190  | 5.66          | 817.0  | 0.1189  | 5.75          | 881.0        | 0.1204         | 6.22          |
| 3  | 1170.2  | 0.1183  | 5.85          | 1157.7 | 0.1182  | 5.86          | 1230.6       | 0.1194         | 6.24          |
| 4  | 1510.2  | 0.1177  | 5.91          | 1494.9 | 0.1175  | 5.91          | 1571.7       | 0.1186         | 5.89          |
| 5  | 1846.6  | 0.1171  | 5.66          | 1828.6 | 0.1169  | 5.82          | 1909.2       | 0.1179         | 5.87          |
|    |         | 2(1/2)  |               |        | 3(1/2)  |               |              | $1^4\Pi$       |               |
| 0  | 170.1   | 0.1106  | 4.55          | 170.3  | 0.1106  | 4.55          | 160.2        | 0.1111         | 4.73          |
| 1  | 514.3   | 0.1102  | 4.55          | 514.0  | 0.1101  | 4.56          | 499.2        | 0.1104         | 4.56          |
| 2  | 856.3   | 0.1097  | 4.56          | 855.5  | 0.1096  | 4.57          | 838.7        | 0.1099         | 4.63          |
| 3  | 1196.0  | 0.1092  | 4.57          | 1194.7 | 0.1091  | 4.58          | 1176.2       | 0.1094         | 4.65          |
| 4  | 1533.5  | 0.1087  | 4.58          | 1531.6 | 0.1086  | 4.59          | 1511.4       | 0.1089         | 4.67          |
| 5  | 1868.7  | 0.1082  | 4.58          | 1866.2 | 0.1081  | 4.60          | 1844.2       | 0.1084         | 4.69          |
| -  |         | 2(3/2)  |               |        | 1(5/2)  |               |              |                |               |
| 0  | 168.8   | 0.1108  | 4.56          | 170.4  | 0.1105  | 4.57          |              |                |               |
| 1  | 513.4   | 0.1103  | 4.57          | 513.2  | 0.1100  | 4.58          |              |                |               |
| 2  | 855.6   | 0.1098  | 4.58          | 853.6  | 0.1095  | 4.58          |              |                |               |
| 3  | 1195.5  | 0.1093  | 4.59          | 1191.7 | 0.1090  | 4.60          |              |                |               |
| 4  | 1533.0  | 0.1088  | 4.60          | 1527.5 | 0.1085  | 4.61          |              |                |               |
| 5  | 1868.2  | 0.1083  | 4.61          | 1860.8 | 0.1080  | 4.62          |              |                |               |
|    |         |         |               |        | 11      |               |              |                |               |

为证明本文计算结果的准确性,我们对开展验证计算并已获得光谱常数的 PS、AsS和BiS进行了振动分析,本文数据及相应实验结果列于表8.可见,本文计 算的<u>PS自由基</u>X(1/2)与X(3/2)的转动常数及离心畸变常数与实验值<sup>[19]</sup>符合得非常 好,其中偏差最大的是X(3/2)态v=7的转动常数(约0.8%),其它能级转动常数与实 验值的偏差均在0.5%左右.对于AsS,X(3/2)态v=3-7能级的转动常数与实验值<sup>[25]</sup> 相差不到0.1%.BiSQX(1/2)的振动能级有实验值<sup>[29]</sup>,本文计算值高估了实验值约

0.6%.

表 8 <u>XS(X=P,As,Bi)自由基</u>Ω基态的振动能级、转动常数和离心畸变常数(单位: cm<sup>-1</sup>). Table8 Vibrational energy levels, rotational constants and centrifugal distortion constants for the ground Ω state of <u>XS(X=P,As,Bi) radicals (in cm<sup>-1</sup>)</u>.

| v | $G_v$  | $B_{v}$              | $10^{7}D_{v}$      | $G_v$            | $B_{v}$                       | $10^{7}D_{v}$     | v              | $G_{\nu}$ | $B_{v}$                  | $10^{8}D_{v}$       |
|---|--------|----------------------|--------------------|------------------|-------------------------------|-------------------|----------------|-----------|--------------------------|---------------------|
|   |        | PS X(1/2)            |                    |                  | PS X(3/2)                     |                   | 1              |           | AsS X(3/2)               |                     |
| 0 | 368.4  | 0.29550              | 1.91               | 368.2            | 0.29551                       | 1.91 📢            | 3              | 1952.3    | 0.18108                  | 7.90                |
|   | -      | 0.29649 <sup>a</sup> | 1.85 <sup>a</sup>  | -                | 0.29695 <sup>a</sup>          | 1.9 <sup>a</sup>  | $\lambda' / l$ |           | 0.18116(8) <sup>b</sup>  | $8.6(5)^{b}$        |
| 1 | 1101.3 | 0.29394              | 1.92               | 1100.8           | 0.29394                       | 1,92              | <b>4</b>       | 2501.2    | 0.18024                  | 7.93                |
|   | -      | 0.29469 <sup>a</sup> | $1.7^{a}$          | -                | $0.29543^{a}$                 | 1.8ª              |                | -         | 0.18033(4) <sup>b</sup>  | $8.7(8)^{b}$        |
| 2 | 1828.2 | 0.29237              | 1.92               | 1827.2           | 0.29237                       | 1.92              | 5              | 3046.0    | 0.17939                  | 7.93                |
|   | -      | 0.29333 <sup>a</sup> | 1.9 <sup> a</sup>  | -                | 0.29385 <sup>a</sup>          | $2.0^{a}$         |                | -         | 0.17950(4) <sup>b</sup>  | $8.8(7)^{b}$        |
| 3 | 2549.0 | 0.29078              | 1.92               | 2547.6           | 0.29078                       | 1.92              | 6              | 3587.0    | 0.17853                  | 7.89                |
|   | -      | 0.29161 <sup>a</sup> | $1.85^{a}$         | -                | 0.29223 <sup>a</sup>          | 1.95 <sup>a</sup> |                | -         | $0.17865(5)^{b}$         | 9.1(9) <sup>b</sup> |
| 4 | 3264.0 | 0.28918              | 1.92               | 3262.2           | 0.28917                       | 1.93              | 7              | 4124.1    | 0.17765                  | 7.85                |
|   | -      | 0.29015 <sup>a</sup> | 1.9 <sup> a</sup>  | -                | 0.29065 <sup>a</sup>          | $1.8^{a}$         |                | -         | 0.17782(4) <sup>b</sup>  | 9.7(8) <sup>b</sup> |
| 5 | 3973.2 | 0.28756              | 1.93               | 3971.0           | 0.28755                       | 1.93              |                |           |                          |                     |
|   | -      | $0.28855^{a}$        | $2.0^{a}$          | $\sim X_{\rm c}$ | <b>/</b> 0.28933 <sup>a</sup> | $1.8^{a}$         |                |           | BiS X(1/2)               |                     |
| 6 | 4676.7 | 0.28595              | 1.94               | 4674.0           | 0.28594                       | 1.94              | 0              | 213.9     | 0.11344                  | 3.19                |
|   | -      | $0.28710^{a}$        | 1.9 <sup>°</sup> – |                  | $0.28740^{a}$                 | $2.0^{a}$         |                | -         | 0.112764(5) <sup>c</sup> | $3.34(4)^{\circ}$   |
| 7 | 5374.2 | 0.28434              | 1.95               | 5371.0           | 0.28432                       | 1.95              | 1              | 641.0     | 0.11302                  | 3.19                |
|   | -      | -                    | - ^                | - ``             | $0.28653^{a}$                 | $1.7^{a}$         | 2              | 1065.6    | 0.11260                  | 3.19                |
| 8 | 6065.7 | 0.28273              | 1.96               | 6061.9           | 0.28271                       | 1.96              | 3              | 1488.0    | 0.11218                  | 3.20                |
|   | -      | -                    | $\Delta \lambda$   | -                | 0.28416 <sup>a</sup>          | 2.0 <sup>a</sup>  |                |           |                          |                     |
|   | a      | <b>计共同</b>           | 1人店                |                  |                               |                   |                |           |                          |                     |

" 乂献[19] 头验值.

<sup>b</sup> 文献[25]实验值. <sup>c</sup> 文献[29]实验值.

又歌[29]头短祖

3.4 Ω态的振动跃迁

借助Level程序计算了若干Ω激发态至基态振动跃迁的爱因斯坦系数A<sub>νJν"J"</sub>

及跃迁频率 $v_{v'Jv'J'}$ .通过式(2)计算了跃迁强度 $I_{v'Jv'J'}$ ,式中J'是上态转动量子数,

 $E_{v^{r}J^{r}}$ 是下态能量, Q(T)是对应温度T的配分函数, h、c、k是基本常量.

$$I_{\nu'J'\nu''J''} = \frac{(2J'+1)\exp(-\frac{hcE_{\nu''J''}}{kT})}{8\pi cv_{\nu'J'\nu''J''}^2 Q} \times A_{\nu'J'\nu''J''}$$
(2)

如图3(a)-(c)所示,在所有计算的谱带中,2(1/2)→X(1/2)的 $v' \rightarrow v''=0,1,2$  跃迁 强度相对更大,主要分布范围在540nm至750nm之间.4(1/2)→X(1/2)与 5(1/2)→X(1/2)谱带则主要位于400nm至550nm波段,其中前者除 $v' \rightarrow v''=0$ 外跃迁 强度均较小,而后者 $v'=0,1,2,3,4 \rightarrow v''$ 跃迁则分布较密集.6(1/2)→X(1/2)跃迁的最 强谱带位于430nm附近, $v' \rightarrow v''=0,1,2$ 跃迁的强度随v''的增加而渐大,以上四个激 发态至Ω基态的跃迁均位于可见光区域.

图3(d)绘制了X(3/2)→X(1/2)跃迁的 $\Delta v = -1,0,1$ 谱带(仅绘制出 $v' \le 15$ ).三个 谱带均位于中红外波段,其分布与位于近红外波段的BiS相应谱带分布(文献[31] 图2)非常相似.强度最大的 $\Delta v = 0$ 谱带位于 $\Delta v = -1$ 与 $\Delta v = 1$ 谱带之间, $\Delta v = 1$ 谱 带的强度最小,在三个谱带中位于长波长一端.以上数据与结论均能够对SbS的光 谱探测提供理论支持和数据支撑.



Fig. 3. Vibrational transition bands of SbS. (a)  $2(1/2) \rightarrow X(1/2)$ ; (b)  $4(1/2) \rightarrow X(1/2)$  and  $5(1/2) \rightarrow X(1/2)$ ; (c)  $6(1/2) \rightarrow X(1/2)$ ; (d)  $X(3/2) \rightarrow X(1/2)$ .

## 4 结 论

通过MRCI+Q方法计算了SbS电子基态及低激发态的电子结构,得到了能量 最低的三个Λ-S离解极限的所有电子态及部分Ω态的势能曲线.通过离解极限处的 能量计算所得Sb与S的原子能级与实验值相符很好.计算出了各电子态的光谱常 数、振动能级,模拟了Ω激发态至基态的振动光谱,为后续开展光谱探测提供了 参考依据.由于是首次对SbS进行系统研究,无参考文献数据可做比对,本文还对 PS、AsS、BiS的电子态开展了验证计算,所得光谱常数和振动能级均与已有实验 结果相符,间接证明了本文SbS计算结果的可信度.

#### 参考文献

- [1] Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 *Nat. Commun.* 12 3260.
- [2] Zhao R M, Yang X L, Shi H L, Du M H 2021 Phys. Rev. Materials 5 054605.
- [3] Yang Y, Shi C W, Lv K, Wang Q, Sun X, Chen W C 2021 New J. Chem. 45 10357-10361.
- [4] Y Grad L, von Rohr F O, Hengsberger M, Osterwalder J 2021 Phys. Rev. Materials 5 075401.
- [5] Hu X K, Ma Y X, Pang Z X, Li P 2019 Chem. Phys. 523 110-113.
- [6] Zhang J W, Lian W T, Yin Y W, Wang X M, Tang R F, Qian C, Hao X J, Zhu C F, Chen T 2020 Solar RRL 4 2000048.
- [7] Shimauchi M, Nishiyama Y 1968 Sci. Light 17 76.
- [8] Fowler A, Bakker C J 1932 Proc. Roy. Soc. (London) A 136 28-36.
- [9] Zeeman P B 1951 Can. J Phys. 29 174-85.
- [10]Barrow R F, Drummond G, Zeeman P B 1954 Proc. Roy. Soc. (London) A 67

365-377.

- [11] Amano T, Saito S, Hirota E, Morino Y 1969 J. Mol. Spectrosc. 32 97-107.
- [12] Jenouvrier A, Pascat B 1973 Can. J. Phys. 51 2143-2161.
- [13] Jenouvrier A, Pascat B 1980 Can. J. Phys. 58 1275-1290.
- [14] Wang T T, Li C Y, Zheng X F, Chen Y 2007 Chin. Sci. Bull. 52 596-602.
- [15] Dressler K, Miescher E 1955 Proc. Roy. Soc. (London) A 68 542.
- [16] Dressler K 1955 Helv. Phys. Acta 28 563.
- [17] Narasimham N A, Subramanian T K B 1969 J. Mol. Spectrosc. 29 294-304.
- [18] Narasimham N A, Subramanian T K B 1971 J. Mol. Spectrosc. 37 371-372
- [19] Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088-1097.
- [20]Balasubramanian T K, Dixit M N, Narasimham N A 1979 Pramana 12 707-716.
- [21]Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81-85.
- [22]Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S, Takano S, Tsuji T, Unno W 1988 Astrophys. J 329 511-516.
- [23] Klein H, Klisch E, Winnewisser G 1999 Z. Naturforschung A 54 137-145.
- [24] Shimauchi M, 1969 Sci. Light 18 90-95.
- [25] Shimauchi M, 1971 Can. J. Phys. 49 1249-1254.
- [26] Shimauchi M, Sakaba Y, Kikuchi S 1972 Sci. Light 21 1-5.
- [27]Shimauchi M, Iwata H, Matsuno T, Sakaba Y, Lee S K, Karasawa S 1972 Sci. Light 21 145-148.
- [28] Shimauchi M, Karasawa S 1973 Sci. Light 22 127-130.
- [29] Barrow R F, Stobart O V, Vaughan H 1967 Proc. Phys. Soc. Lond. 90 555-561.
- [30] Pati ño P, Eland J H D, Barrow R F 1984 J. Phys. B: At. Mol. Phys. 17 1009-1014.
- [31]Izumi K, Cohen E A, Setzer K D, Fink E H, Kawaguchi K 2008 J. Mol. Spectrosc.252 198-204.

- [32] Setzer K D, Meinecke F, Fink E H 2009 J. Mol. Spectrosc. 258 56-70.
- [33] O'Hare P A G 1970 J. Chem. Phys. 52 2992-2996.
- [34] Bialski M, Grein F 1976 J. Mol. Spectrosc. 61 321-331.
- [35] Karna S P, Grein F 1986 J. Mol. Spectrosc. 120 284-291.
- [36] Karna S P, Bruna P J, Grein F 1988 J. Phys. B: At. Mol. Opt. Phys. 21 1303-1313.
- [37] Karna S P, Grein F 1992 Mol. Phys. 77 135-141.
- [38] Chong D P 1994 Chem. Phys. Lett. 220 102-108.
- [39]Moussaoui Y, Ouamerali O, De MaréG R 1998 J Mol. Struct. THEOCHEM 425 237-247.
- [40] Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311-3317.
- [41]Peebles L R, Marshall P 2002 Chem. Phys. Lett. 366 520-524.
- [42]Czernek J, Živn ý O 2004 Chem. Phys. 303 137-142.
- [43] Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309.
- [44] Yang, J, Kang Y, Wang X, Bai X 2013 J. Mol. Model 19 5199-5211.
- [45]Lingott R M, Liebermann H P, Alekseyev A B, Buenker R J 1999 J. Chem. Phys.110 11294-11302.
- [46] Shi D H, Xing W, Sun J F, Zhu Z L 2012 Eur. Phys. J. D 66 173.
- [47] Gao Y F, Gao T, Gong M 2013 J Quant. Spectrosc. Radiat. Transf. 129 193-198.
- [48]Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104. (in Chinese) [刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 203104]
- [49]Shi D H, Song Z Y, Niu X H, Sun J F, Zhu Z L 2016 Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 30-44.
- [50]Prajapat L, Jagoda P, Lodi L, Gorman M N, Yurchenko S N, Tennyson J 2017 MNRAS 472 3648-3658.
- [51] Zhou D, Shi D H, Sun J F 2019 J. Quant. Spectrosc. Radiat. Transf. 230 120-130.
- [52] de Almeida A A, Andreazza C M, Borin A C 2020 Theor. Chem. Acc. 139 33.

- [53]Reddy R R, Reddy A S R, Rao T V R 1985 Pramana 25 187-190.
- [54] Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053.
- [55] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803.
- [56] Peterson K A, Dunning Jr. T H 2002 J. Chem. Phys. 117 10548.
- [57] Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116.
- [58] Murrell J N, Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 2 1552.
- [59]Li S, Han L B, Chen S J, Duan C X 2013 Acta Phys. Sin. 62 113102. (in Chinese)

[李松,韩立波,陈善俊,段传喜 2013 物理学报 62 113102]

- [60] Li S, Chen S J, Zhu D S, Fan Q C 2013 Comput. Theor. Chem. 1017, 136-143.
- [61]Lu N, Wu W Q, Zhang C Z, Wan M J, Jin Y Y, Zhang W B, Chen S J, Li S 2020 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 237 118301.
- [62]Li S, Chen S J, Chen Y, Chen P 2016 Chin. Phys. B. 25 033101.
- [63]Chen P, Wang N, Li S, Chen S J 2017 J Quant. Spectrosc. Radiat. Transf. 201 104-114.
- [64]Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103. (in Chinese) [万明杰,李松,金成国,罗华锋 2019 物理学报 62 063103]
- [65]Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys.98 1823.
- [66] Werner H J, Knowles P J, Knizia G, et al. MOLPRO, version 2015.1, a package of ab initio programs, 2015, see http://www.molpro.net.
- [67] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167.
- [68] Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559-2259.

# Theoretical study of the potential energy curves and

# vibrational levels of low-lying electronic states of SbS<sup>\*</sup>

Wang Xin-Yu Wang Yi-Lin Shi Qian-Han Wang Qing-Long Yu Hong-Yang

Jin Yuan-Yuan Li Song<sup>†</sup>

(School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China)

#### Abstract

In this paper, highly correlated *ab initio* calculations have been performed for an accurate determination of electronic structures and spectroscopic features for the  $\Lambda$ -S and  $\Omega$  low-lying electronic states of SbS for the first time. Potential energy curves for 27  $\Lambda$ -Systates of the first three dissociation asymptotes are constructed. Spectroscopic constants and vibrational states for all bound states are well determined. The calculated atomic states for both atoms are consistent with experimental data quite well. Several low-lying  $\Omega$  electronic states are also been investigated, and their respective spectroscopic constants and vibrational states are obtained and compared with those of corresponding  $\Lambda$ -S states, which indicates the spin-orbit coupling effect has introduce a minor impact on the electronic states of SbS. To verify our computational accuracy, analogous calculations for the low-lying electronic states of PS, AsS and BiS are also carried out. Our derived results are in reasonable agreement with available experimental data. In addition, vibrational spectra of the excited  $\Omega$  states to the ground one of SbS have been simulated, including bands of  $X(3/2) \rightarrow X(1/2), 2(1/2) \rightarrow X(1/2), 4(1/2) \rightarrow X(1/2), 5(1/2) \rightarrow X(1/2)$  and

 $6(1/2) \rightarrow X(1/2)$ . The X(3/2) $\rightarrow X(1/2)$  band is found in the mid-infrared region, while the others are located in the visible region. The predictive results provided in this paper are anticipated to serve as guidelines for further researches such as assisting laboratorial detections and analyzing observed spectrum of SbS.

Keywords: SbS, electronic structure, spin-orbit coupling effect, spectroscopic constants

\* Project supported by the National Natural Science Foundation of China (Grant No. 11804031).

<sup>†</sup> Corresponding author. E-mail: <u>lsong@yangtzeu.edu.cn</u>