Cd_{0.96}Zn_{0.04}Te 光致载流子动力学特性的太赫兹光谱研 究^{*}

李高芳¹⁾ 廖宇奥¹⁾ 崔昊杨¹⁾ 黄晨光¹⁾ 王晨²⁾ 马国宏^{2)†} 周炜³⁾ 黄志明^{3)†} 褚君浩³⁾

1) (上海电力大学 电子与信息工程学院, 上海 200090)

2) (上海大学 物理系, 上海 200444)/

3) (中国科学院上海技术物理研究所 红外物理国家重点实验室,上海

200083)

摘要

本文采用光抽运-太赫兹探测技术研究 Cd0.96Zn0.04Te 的载流子弛豫和瞬态电 导率特性。在中心波长 800 nm 的飞秒抽运光激发下, Cd_{0 96}Zn_{0 04}Te 的载流子弛 豫过程用单指数函数进行了拟合,其载流子弛豫时间长达几个纳秒,且在一定 光激发载流子浓度范围内随光激发载流子浓度增加而减小,这与电子-空穴对的 辐射复合有关。在低光激发载流子浓度 (4.51×10¹⁶-1.81×10¹⁷ cm⁻³)下, Cd0.96Zn0.04Te的太赫兹《terahertz, THz》瞬态透射变化率不随光激发载流子浓 度增加而变化、主要是由于陷阱填充效应造成的载流子损失与光激发新增 的载流子数量近似。随着光激发载流子浓度继续增加(1.81×10¹⁷-1.44× 10¹⁸ cm-3 THz 瞬态透射变化率随光激发载流子浓度的增加而线性增大,是 由于缺陷逐渐被填满, 陷阱填充效应造成的载流子损失与光激发新增的载 流子数量相比可忽略不计。在光激发载流子浓度为 1.44×10¹⁸-2.17×10¹⁸ cm-3 时, Cd0 96Zn0 04 Te 对 800 nm 抽运光的吸收达到饱和, THz 瞬态透射变化率不再 随光激发载流子浓度增加而变化。不同光激发载流子浓度下 Cd_{0.96}Zn_{0.04}Te 在 THz 波段的瞬态电导率用 Drude-Smith 模型进行了很好的拟合。此研究为碲锌 镉探测器的设计和制备提供重要数据支撑和理论依据。

关键词:光抽运-太赫兹探测技术;载流子动力学;瞬态电导率;碲锌镉PACS: 72.20.Jv, 42.65.Re, 78.30.Fs, 72.80.Ey

基金: 国家自然科学基金(批准号: 62205194, 52177185)和上海市自然科学基金(批准号: 17ZR1411500, 20ZR1466300)资助的课题.

* 通讯作者. E-mail: phymagh@t.shu.edu.cn, zmhuang@mail.sitp.ac.cn
 第一作者. E-mail: ligaofang@shiep.edu.cn

1 引言

碲化镉(CdTe)作为探测器的传感材料, 在高能探测领域有着重要的应用。 对 CdTe 进行锌 (Zn) 替位掺杂得到的碲锌镉(Cd_{1-x}Zn_xTe)具有更高的电阻率和 更低的暗电流,更适合在室温与低电压环境下工作^[1,2],且 Cd_{1-x}Zn_xTe 拥有更高 的堆垛层错能和可调的晶格常数,降低了孪晶和位错形成的可能性,增加了热 稳定性,并具有优秀的能量识别和光子计数能力,是制备室温高能探测器的首 选材料。然而,Zn 替位掺杂会引入新的缺陷,进而影响 Cd_{1-x}Zn_xTe 探测器的性 能^[3]。

目前对 Cd_{1-x}Zn_xTe 的研究主要集中在缺陷对其探测器性能的影响。Guo 等 人利用 α 粒子源瞬态电流技术研究了扩展缺陷对 Cd_{1-x}Zn_xTe 晶体电子漂移时 间和探测器性能的影响,并采用势垒控制俘获模型解释了扩展缺陷处的载流 子俘获机理^[4]。Liang 等人利用光谱成像仪研究了 Cd_{1-x}Zn_xTe 晶体内缺陷浓度 对红外吸收边的影响,发现 Cd 空位缺陷是影响其红外吸收边斜率的主要原因^[5]。 Zhao 等人使用红外光谱分析仪并结合第一性原理研究了本征缺陷对 Cd_{1-x}Zn_xTe 晶体导电类型的影响,发现 Cd_{1-x}Zn_xTe 晶体导电类型的转变与晶体生长过程中 形成的 Cd 空位缺陷和 Cd 间隙缺陷有关^[6]。 Cd_{1-x}Zn_xTe 的载流子迁移率和寿命等载流子动力学特性是设计和制备高性 能探测器的重要理论依据^[7],然而,目前对 Cd_{1-x}Zn_xTe 载流子动力学特性的研 究比较有限。光抽运-太赫兹探测(OPTP)技术是研究半导体超快载流子动力学特 性的强有力工具。与传统的 THz 时域光谱技术^[8]和全光抽运-探测技术^[9]相比, OPTP 技术能够提供亚皮秒到纳秒时间尺度上的峰值电导率和瞬态电导率,从 而深入了解载流子的性质、迁移率及其时间依赖关系^[10];通过扫描 THz 时域波 形并结合瞬态电导率拟合模型,可以独立地获得光致载流子浓度和迁移率^[11]; 电荷分布随时间变化与迁移率之间的相互作用决定 THz 光电导动力学和光谱的 形状^[12];在这种频率范围和时间分辨率下,测量的 THz 瞬态光谱直接反映了超 快载流子的运动状态和机制^[13,14]。

OPTP 技术已经用于研究半导体材料的载流子动力学特性。Yuan 等人运用 光抽运-THz 时域光谱技术系统研究了 Te 掺杂 GaAsSb 和稀氮化物 GaAsSbN 纳 米线的非平衡载流子动力学过程,发现氮掺入显著提高了载流子散射速率,并 使载流子迁移率大幅降低^[15]。Mithun 等人证明了在使用 800 nm 抽运光激发后, Bi₂Te₃纳米线中存在等离子体振荡,并观察到其峰值电导率 Δσ(t)存在一个 50 ps 以上的长弛豫过程^[16]。Zhang 等人使用 OPTP 技术系统地研究了 Sb₂Se₃ 基异质 结中光激发载流子的动态竞争机制,发现带边电子转移和俘获过程的竞争将降 低光伏器件的电荷分离效率^[17]。Xing 等人利用 OPTP 技术系统地研究了石墨烯 与过渡金属二硫化物(TMDs)异质结间的超快电荷转移,发现光激发可以有效地 把石墨烯中的电子超快地布局到 TMD 导带中,产生电荷分离态^[18-20]。

本文利用 OPTP 技术研究 Cd_{0.96}Žn_{0.04}Te 的载流子弛豫和瞬态电导率特性。 研究发现在光激发载流子浓度为 4.51×10¹⁶-1.81×10¹⁷ cm⁻³时, Cd_{0.96}Zn_{0.04}Te 的

THz 瞬态透射变化率基本不随光激发载流子浓度发生变化,当光激发载流子浓度为 1.81×10¹⁷-1.44×10¹⁸ cm⁻³时,其 THz 瞬态透射变化率随载流子浓度的增加 而线性增大,且在光激发载流子浓度为 1.44×10¹⁸ cm⁻³时 THz 瞬态透射变化率 达到最大,继续增加光激发载流子浓度至 2.17×10¹⁸ cm⁻³时 THz 瞬态透射变化 率不再发生变化。不同光激发载流子浓度下 Cd_{0.96}Zn_{0.04}Te 在 THz 波段的瞬态电 导率用 Drude-Smith 模型进行了很好的拟合。此研究为碲锌镉探测器的设计和 制备提供重要数据支撑和理论依据。

2 实验

本文使用的 OPTP 实验光路系统示意图如图 1 所示,实验中所用的激光光 源是 Spectra Physics 公司生产的再生放大器(Spitfire Pro),它以振荡器(Mai Tai HP)的飞秒脉冲作为种子光。此放大器的中心波长为 800 nm,重复频率为 1 kHz, 脉冲宽度为 120 fs。从放大器发出的光被分束器分为三部分,一部分用于产生 THz 波,称为产生光,一部分用于探测 THz 波,称为探测光,另外一部分较强 的光用于激发样品,称为抽运光,抽运光、探测光和 THz 波均为水平偏振。 THz 波是由功率约为 100 mW、中心波长为 800 nm 的光聚焦于厚 1 nm、(110) 取向的 ZnTe 晶体上产生的^[21],并通过自由电光取样^[22]方法探测。弱的探测光 透过厚 1 nm、(110)取向的另外一块 ZnTe 晶体后进入平衡探测器,接入锁相放 大器,通过电脑采集到 THz 波信号。通过连续可调衰减片的调节,抽运光激发 载流子浓度的变化范围为 4.51×10¹⁶-2.17×10¹⁸ cm⁻³。THz 波光斑直径约为 1.5 mm,激发样品的抽运光光斑直径约为 6 mm,抽运光光斑直径大于探测光光斑 直径的两倍,能够充分保证探测光探测到被抽运光均匀激发样品的部分。整个 OPTP 实验在充满 N₂的湿度为 3.8%的室温环境下进行。

实验样品采用垂直布里奇曼法生长,选取高纯(6N)的 Te、Cd 和 Zn,按 Cd_{0.96}Zn_{0.04}Te 的组分称取原料,置于石英安瓿中,真空封装后,放入垂直三段 温区的电炉中生长。生长结束后,晶体锭条按(111)面和(211)面切割为厚约 1 mm 的晶片^[23]。此外,CdTe 晶体同样采用垂直布里奇曼法生长,厚约1 mm。

Fig. 1. Experimental arrangement for optical-pump THz -probe measurements.

3 结果与讨论

Cd_{0.96}Zn_{0.04}Te 的晶体结构示意图如图 2(a)所示,由 Cd (Zn)原子与 Te 原子各 自组成的面心立方亚晶格沿空间对角线位移形成。Cd_{0.96}Zn_{0.04}Te 可以看作是 CdTe 中 Zn 原子占据了晶格点阵中某些 Cd 原子的位置,Zn 的占比为 0.04。 Cd_{0.96}Zn_{0.04}Te 室温下的紫外-可见透射光谱如图 2(b)的红色实线所示。从图 2(b) 可以看出,Cd_{0.96}Zn_{0.04}Te 吸收边对应的波长比 CdTe(图 2(b)中的蓝色虚线所示) 更短,其禁带宽度也更大,与文献中报道的禁带宽度 1.54 eV^[24]基本一致。从图 2(b)还可以看出 Cd_{0.96}Zn_{0.04}Te 和 CdTe 对 800 nm (1.55 eV)的光吸收足够大,800 nm 光激发能够使 Cd_{0.96}Zn_{0.04}Te 和 CdTe 中的载流子重新分布。

图 2 (a) Cd_{0.96}Zn_{0.04}Te 的晶体结构示意图; (b) Cd_{0.96}Zn_{0.04}Te (红)和 CdTe (蓝)室温下的紫外-可见透射光谱

Fig.2. (a) Crystal structure for $Cd_{0.96}Zn_{0.04}Te$; (b) The UV-visible transmittance spectra of $Cd_{0.96}Zn_{0.04}Te$ (red) and CdTe (blue) at room temperature.

需要说明的是为了更直观的讨论光激发载流子浓度对 $Cd_{0.96}Zn_{0.04}$ Te 载流子 弛豫和瞬态电导率的影响,利用 $N=(1-R)I/Lhv^{[25]}$ 换算了不同抽运光强度下的 光激发载流子浓度,其中, R 是反射率(菲涅耳损耗), $Cd_{0.96}Zn_{0.04}$ Te 的反射率 R 为 $0.21^{[26]}$, I 是激发光强度, hv 是 800 nm 抽运光的光子能量,L 为光在样 品中的有效穿透深度(趋肤深度), 由 $L=\lambda/4\pi k$, $k=0.05^{[27]}$, 得到 $Cd_{0.96}Zn_{0.04}$ Te 的 趋肤深度约为 1270 nm。

首先,用中心波长为 800 nm 的抽运光激发 $Cd_{0.96}Zn_{0.04}Te$,观察不同光激 发载流子浓度下 THz 瞬态透射变化率与延迟时间的关系。图 3(a)是不同光激 发载流子浓度下 $Cd_{0.96}Zn_{0.04}Te$ 的 THz 瞬态透射变化率(- $\Delta T/T_0$)与延迟时间的 关系图,其中, $\Delta T=T(\underline{\tau})-T_0$, <u>T(\tau)为有抽运光激发时的 THz 峰值透射强度随延</u> <u>迟时间的变化</u>,T₀为无抽运光激发时的 THz 峰值透射强度。从图 3(a)可以看出, 在低光激发载流子浓度(4.51×10¹⁶-1.81×10¹⁷ cm⁻³)下, Cd_{0.96}Zn_{0.04}Te 的 THz 瞬 态透射变化率基本不随光激发载流子浓度的增加而改变。在光激发载流子浓度 为 1.81×10¹⁷-1.44×10¹⁸ cm⁻³ 时, THz 瞬态透射变化率随光激发载流子浓度的 增加而增大。光激发载流子浓度从 1.44×10¹⁸ cm⁻³继续增加至 2.17×10¹⁸ cm⁻³ 时, THz 瞬态透射变化率基本保持不变,是由于 Cd0.96Zn0.04Te 对 800 nm 抽运光吸 收达到饱和,随着光激发载流子浓度的增大,产生的载流子数目不再增加,导 致对 THz 波的吸收不再发生变化。

从图 3(c)的 Cd_{0.96}Zn_{0.04}Te (红色曲线) THz 瞬态透射变化率最大值(-Δ T/T_{0 max})与光激发载流子浓度的关系图也可以看出,在低光激发载流子浓度 (4.51×10¹⁶-1.81×10¹⁷ cm⁻³)时, Cd_{0.96}Zn_{0.04}Te 的-ΔT/T_{0 max} 基本不随光激发载流 子浓度的增加而改变,在光激发载流子浓度为 1.81×10¹⁷-1.44×10¹⁸ cm⁻³ 时, Cd_{0.96}Zn_{0.04}Te 的-ΔT/T_{0 max} 随载流子浓度的增加呈线性增大,光激发载流子浓度 从 1.44×10¹⁸ cm⁻³增加至 2.17×10¹⁸ cm⁻³ 时, Cd_{0.96}Zn_{0.04}Te 的-ΔT/T_{0 max} 达到最 大值且保持不变。

图 3 <u>不同光激发载流子浓度下 Cd_{0.96}Zn_{0.04}Te (a) 和 CdTe (b)的 THz 瞬态透射变化率与延迟时间的关系图</u>; (c) Cd_{0.96}Zn_{0.04}Te 和 CdTe 的 THz 瞬态透射变化率最大值(-ΔT/T_{0 max})与光 激发载流子浓度的关系图; (d) Cd_{0.96}Zn_{0.04}Te 和 CdTe 的载流子复合时间与光激发载流子浓度的关系图; (e) Cd_{0.96}Zn_{0.04}Te 的能带结构示意图; (a)和(b)中实线是单指数函数拟合结果。 <u>Fig.3. The transient transmittance change (-ΔT/T₀) of THz probe pulse as a function of probe</u> <u>delay with carrier density from 4.51×10¹⁶ cm⁻³ increases to 2.17×10¹⁸ cm⁻³ for Cd_{0.96}Zn_{0.04}Te (a) <u>and 1.12×10¹⁷ increases to 7.82×10¹⁷ for CdTe (b). Solid curves are monoexponential fits; (c)</u></u>

Maximum value of the transient transmittance change $(-\Delta T/T_{0 max})$ of THz probe pulse as a function of carrier densities for $Cd_{0.96}Zn_{0.04}$ Te and CdTe; (d) The relationship between relaxation time and carrier density, in which the red triangle represents $Cd_{0.96}Zn_{0.04}$ Te, and the bule square represents CdTe. Points with error bars show experimental data and the lines are guide to the eye; (e) the band structure of $Cd_{0.96}Zn_{0.04}$ Te.

不同光激发教流子浓度下 Cd_{0.96}Zn_{0.04}Te 的载流子弛豫过程用单指数函数进行了较好的拟合,其拟合结果如图 3(d)的红色曲线所示。从图 3(d)的红色曲线可以看出,Cd_{0.96}Zn_{0.04}Te 的载流子复合时间随光激发载流子浓度的增加分别为 5.34±0.05 ns, 5.29±0.04 ns, 4.11±0.02 ns, 2.99±0.06 ns, 2.23±0.07 ns 和 2.16±0.03 ns,其复合时间长达几个纳秒。在低光激发载流子浓度(4.51×10¹⁶-1.81×10¹⁷ cm⁻³)下,Cd_{0.96}Zn_{0.04}Te 的载流子复合时间随光激发载流子浓度的增加变化不明显。在光激发载流子浓度为 1.81×10¹⁷-1.44×10¹⁸ cm⁻³ 时,Cd_{0.96}Zn_{0.04}Te 的载流子复合时间随光激发载流子浓度的增加呈线性减小。光激发载流子浓度从 1.44×10¹⁸ cm⁻³继续增加至 2.17×10¹⁸ cm⁻³ 时,Cd_{0.96}Zn_{0.04}Te 的

载流子复合时间随光激发载流子浓度的增加基本不发生变化,且载流子复合时间最短,约2ns。需要说明的是,Cd_{0.96}Zn_{0.04}Te的载流子复合时间远大于数据的有效扫描窗口,主要是由于实验中延迟线长度有限,可以实现的最长扫描时间约230ps,因此,所有数据采用230ps的有效扫描时间窗口。

为了进一步理解 Cd_{0.96}Zn_{0.04}Te 的载流子弛豫机理,测量了不同光激发载流 子浓度下 CdTe 的 THz 瞬态透射变化率(- Δ T/T₀)与延迟时间的关系,如图 3(b)所 示。需要说明的是, CdTe 的光激发载流子浓度也由 N=(1-R)I/Lhv 换算得出, 其中 R=0.23 (R=(n-1)²/(n+1)², n=2.876 是 800 nm 彼长处的折射率^[28]), 趋肤深 度 L=500 nm (800 nm 处的消光系数 k =0.125 [28])。如图 3(c)蓝色曲线所示, CdTe的 THz 瞬态透射变化率最大值(AT/T_{0 max})随光激发载流子浓度的增加基 本呈线性增大,从光激发载流子浓度 1.12×10¹⁷ cm-3 时的 0.3 左右线性增加至光 激发载流子浓度 7.82×10¹⁷ cm³ 时的接近 1。CdTe 的载流子复合时间也用单指 数函数进行了拟合,如图 3(d)的蓝色曲线所示,载流子复合时间随光激发载流 子浓度的增加依次为 4.61±0.04 ns, 3.58±0.02 ns, 2.46±0.05 ns 和 1.69±0.02 ns。其复合时间长达几个纳秒且随光激发载流子浓度的增加呈线性减小,这与 之前所报道的 CdTe 载流子主导复合机制电子-空穴对的辐射复合^[29]一致。 Cd0.96Zn0.04Te 的载流子弛豫过程中没有发现明显的快弛豫现象,并且其复合时 间同样长达几个纳秒,在光激发载流子浓度为 1.81×10¹⁷-1.44×10¹⁸ cm⁻³ 时, Cd0.96Zn0.04Te 的载流子复合时间也随光激发载流子浓度的增加线性减小,与 CdTe 的载流子弛豫过程类似,因此 Cd_{0.96}Zn_{0.04}Te 的载流子复合机制也是以电子 2 -空穴对的辐射复合为主。

在光激发载流子浓度小于 1.81×10¹⁷ cm-3 时, Cd0.96Zn0.04 Te 的 THz 瞬态透

射变化率和复合时间几乎不受光激发载流子浓度变化的影响,与 Te 反位缺陷 的陷阱填充效应有关。Cd_{0.96}Zn_{0.04}Te 中 Zn-Te 键离子性较弱,比 CdTe 中的 Cd-Te 键更容易断裂, Zn-Te 键断裂后产生阳离子空位^[30],在晶体生长过程中过 量的 Te 将占据阳离子空位,形成 Te 反位缺陷^[31],因此, Cd. Zn. 04 Te 比 CdTe 拥有更高浓度的 Te 反位缺陷[32]。图 3(e)为 Cd0.96Zn0.94Te 的能带结构示意 图, Te 反位缺陷作为典型的电子型陷阱^[33],能够俘获自由迁移的电子,使其滞 留(或局域)在陷阱中直至被填满。当陷阱未被填满时,光激发载流子被缺陷俘 获的概率 P_c 可表示为 $P_c = N_t \delta V_{th}$ ^[34],其中, N_t 为缺陷浓度, δ 为缺陷能级的 俘获截面, V_{th} 为热迁移速率。由于库伦力作用^[35,36],δ随抽运光功率的增 加而增大,载流子占据缺陷能级的概率也随之提高。因此,在低光激发载 流子浓度 $(4.51 \times 10^{16} - 1.81 \times 10^{17} \text{ cm}^{-3})$ 下,电子占据缺陷能级的概率与光激发载 流子浓度成正比,陷阱填充效应导致的载流子损失与光激发增加的载流子 数量相近,从而使 Cd_{0.96}Zn_{0.04}Te 的 THz 瞬态透射变化率和载流子复合时间 基本不随光激发载流子浓度增加而变化。由于缺陷浓度有限[37],陷阱逐渐 被填满后,随着光激发载流子浓度的继续增加,陷阱填充效应造成的载流 子损失与光激发新增的载流子数量相比可以忽略不计,因此,在光激发载 流子浓度为 1.81×10¹⁷-1.44×10¹⁸ cm⁻³ 时, THz 瞬态透射变化率随载流子浓度 的增加线性增大,载流子复合时间也随载流子浓度的增加线性变化。在光激发 载流子浓度为 2.17×10¹⁸ cm⁻³时 Cd_{0.96}Zn_{0.04}Te 对 800 nm 抽运光的吸收达到饱和, 随着光激发载流子浓度的继续增加, THz 瞬态透射变化率和载流子复合时间 不再随光激发载流子浓度增加而变化?

为了进一步探究 Cd0.96Zn0.04Te 的光激发载流子动力学机制,计算了

Cd_{0.96}Zn_{0.04}Te 和 CdTe 在抽运光延迟时间为 50 ps 时的瞬态电导率。首先测量了抽运光延迟时间为 50 ps(图 3(a)和(b)箭头处)时不同光激发载流子浓度下 Cd_{0.96}Zn_{0.04}Te 和 CdTe 的 THz 时域光谱,如图 4(a)和(b)所示。从图 4(a)和(b)中观测到 Cd_{0.96}Zn_{0.04}Te 和 CdTe 被抽运光激发时,THz 脉冲峰值减小 且发生负的相移,负相移随光激发载流子浓度的增加而增大^[38]。图 4(c)和 (d)分别是图 4(a)和(b)经过傅里叶变换后的频谱图,可以看出两者的 THz 频谱振幅均随光激发载流子浓度的增加而减小。

图 4 Cd_{0.96}Zn_{0.04}Te (a) 和 CdTe (b) 的 THz 时域谱; 傅里叶变换后的 Cd_{0.96}Zn_{0.04}Te (c) 和 CdTe (d) 的频谱图; (e) 无抽运光激发时 Cd_{0.96}Zn_{0.04}Te 和 CdTe 的折射率图。

Fig 4. THz time domain spectroscopy of Cd_{0.96}Zn_{0.04}Te (a) and CdTe (b); THz spectrum of

Cd_{0.96}Zn_{0.04}Te (c) and CdTe (d); (e) Refractive index of nonphotoexcited Cd_{0.96}Zn_{0.04}Te (red) and

CdTe (bule) in THz frequency ;

接下来计算 Cd_{0.96}Zn_{0.04}Te 和 CdTe 在抽运光延迟时间为 50 ps 时的瞬态 电导率。把没有抽运光激发时的 THz 光谱作为参考信号、有抽运光激发时 的 THz 光谱作为样品信号,瞬态电导率随频率的变化关系式为^[39]:

$$\tilde{T}(\omega) = Ae^{i\phi} = \frac{\tilde{E}_{pump}(\omega)}{\tilde{E}_{ref}(\omega)} = \frac{1+n}{1+n+Z_0\,\tilde{\sigma}(\omega)L}$$
(1)

其中,A 是有抽运光激发和无抽运光激发时 THz 信号在频谱上的强度 之比, Ø 是有抽运光激发和无抽运光激发时样品的相位差,Z₀=377 Ω 是自 由空间阻抗,L 是趋肤深度,n 是无抽运光激发时样品的折射率。<u>图 4(e)为</u> <u>无抽运光激发时 Cd₀%Zn₀04</sub>Te 和 CdTe 的折射率图,从图 4(e)可以看出两样</u> <u>品的折射率随频率增加略微增大,主要是受到 2.1 THz 处二阶声子峰的影响⁽⁴⁰⁾,</u> <u>但此声子峰对折射率的贡献比较有限。从 0.4 THz 到 1.5 THz, Cd₀%Zn₀04 Te 和 CdTe 的折射率仅增加了 0.06,折射率随频率增加分别约为 1.9%和 1.8%。并且 两样品的其它声子峰^[41-43]均远离 0.4-1.5 THz 波段,因此可以近似的认为两样 品的折射率与频率无关。为了严谨,这里选取该频率区间折射率的平均值,其 分别为 3.18 和 3.24 作为两个样品的折射率,该值也与文献中报道的折射率接近 ^[40,44]。Cd_{0.96}Zn_{0.04}Te 和 CdTe 的瞬态电导率分别如<u>图 5(a</u>)和(b)所示,两个样 品的瞬态电导率实部均随光激发载流子浓度的增加而增大,且在不同光激发载 流子浓度下瞬态电导率的实部都是正的,均随频率的增加而增大,虚部都</u> 是负的。<u>此外,虽然在 2.1 THz 处 CdTe 存在二阶声子峰^[40],但二阶声子效</u> 应对电导率的贡献非常小,为简单起见,在电导率拟合中忽略了 2.1 THz 处的 <u>二阶声子效应对 0.4-1.5 THz 波段瞬态电导率的影响</u>。因此,选用 Drude-Smith 模型对电导率的实部和虚部进行拟合,其表达式为^[45]

$$\tilde{\sigma}(\omega) = \frac{\varepsilon_0 \omega_p^2 \tau_s}{1 - i\omega \tau_s} (1 + \frac{c_1}{1 - i\omega \tau_s})$$
(2)

其中, $\omega_p = \sqrt{\frac{Ne^2}{m^* \varepsilon_0}}$ 是等离子体频率, N 是载流子浓度, m*是载流子的

有效质量。 τ_s 是散射时间,即载流子的平均碰撞时间, c_1 是 Smith 参数,当 $c_1=0$ 时,其表达式为 Drude 模型,表示载流子散射完全是随机的;当 c_1 取 值在-1到0之间时,表示载流子不同程度的背向散射或者局域;当 $c_1=-1$ 时,表示载流子完全背向散射或者局域。

<u>Fig.5.</u> The THz photoconductivities of Cd_{0.96}Zn_{0.04}Te (a) and CdTe (b) at different photogenerated carrier density. The red and blue circle symbols represent the real and imaginary part of conductivity; The relationship between carrier concentration and photoexcited carrier
 <u>concentration at 50 ps delay time of Cd_{0.96}Zn_{0.04}Te (c) and CdTe (d). (e) The relationship of Smith parameter c₁ with photogenerated carrier concentration <u>of Cd_{0.96}Zn_{0.04}Te (red) and CdTe (bule)</u>; (f) The carrier scattering time τ_s varies wigh the photogenerated carrier concentration <u>of Cd_{0.96}Zn_{0.04}Te (red) and CdTe (bule)</u>. The solid lines of (a) and (b) show the fitting results of the
</u>

Drude-Smith model

根据拟合结果得到了延迟时间为 50 ps 时的载流子浓度 N, 如图 5(c)和(d)所示。在 光激发载流子浓度为 3.61×10¹⁷、7.22×10¹⁷ 与 1.08×10¹⁸cm⁻³ 时 Cd_{0.96}Zn_{0.04}Te 在延迟时间为 50 ps 的载流子浓度分别为: (1.77±0.16)×10¹⁷、(2.73±0.19)×10¹⁷和 (3.96±0.17)×10¹⁷ cm⁻³;在光激发载流子浓度为 8.94×10¹⁶、1.79×10¹⁷与 2.68× 10^{17} cm⁻³ 时, CdTe 载流子浓度分别为: $(5.27\pm0.19)\times10^{16}$ 、(7.01±0.21)×10¹⁶、 (9.02±0.17)×10¹⁶cm⁻³。拟合得到的载流子浓度低于光激发载流子浓度,主要 是由于与频率相关的瞬态复电导率是在抽运光延迟时间约为 50 ps 时获得的,此 时光激发产生的部分载流子已经复合。图 5(e)是 Cd_{0.96}Zn_{0.04}Te 和 CdTe 的 Smith 参数 c1 与光激发载流子浓度的关系图。从图 5(e)可以看出,当光激 发载流子浓度由 3.61×10¹⁷ cm⁻³ 增加至 1.08×10¹⁸ cm⁻³ 时, Cd_{0.96}Zn_{0.04}Te 的 c1 从-0.88±0.03 下降到-0.98±0.02, 接近-1。CdTe 在光激发载流子浓度为 8.94×10¹⁶-2.68×10¹⁷cm³时, c₁ 依 次 为-0.73±0.03、-0.81±0.02 和-0.92±0.01。两样品的 c 值均随光激发载流子浓度增加而减小, 说明两样品 的载流子运动均不是自由散射,都有不同程度的局域或背向散射。当载流子作 散射运动时,载流子浓度越高,碰撞概率越大,载流子散射时间 τ_s越小。 图 5(f)是不同光激发载流子浓度下 Cd0.96Zn0.04Te 和 CdTe 的载流子散射时间 τs的拟合结果图。从图 5(f)可以看出,随着光激发载流子浓度的增加 Cd_{0.96}Zn_{0.04}Te 的散射时间 τ_S(红色曲线)从 41±5.61 fs 逐渐增加到 61±3.23 fs, CdTe 的 τ_s(蓝色曲线)也从 <u>151±5.2 fs 逐渐增加到 174±6.91 fs</u>, 这说明两样 品的载流子运动不是背向散射, 而是受到了不同程度的局域, 并且局域程 度随光激发载流子浓度的增加而增强。

从图 5(e)还可以看出,在光激发载流子浓度为 1.08×10¹⁸ cm⁻³ 时

Cd_{0.96}Zn_{0.04}Te 的 c₁值接近-1,说明在一定光激发载流子浓度下 Cd_{0.96}Zn_{0.04}Te 的光激发载流子可以完全被局域。从图 5(f)还可以看出,Cd_{0.96}Zn_{0.04}Te 的载流子散射时间远小于 CdTe 的,载流子的散射时间和迁移率成正比^[46],因此 Cd_{0.96}Zn_{0.04}Te 的载流子迁移率远小于 CdTe 的。

4 结论

本文采用光抽运-太赫兹探测技术研究 Cd0.96Zn0.04Te 的光致载流子动力学特 性。在 800 nm 飞秒抽运光激发下 Cd0.96Zn0.04Te 的载流子弛豫过程用单指数函 数进行了拟合,其载流子弛豫时间长达几个纳秒,且在一定光激发载流子浓度 范围内随光激发载流子浓度增加而减小,这与电子-空穴对的辐射复合有关。 $Cd_{0.96}Zn_{0.04}Te$ 的 THz 瞬态透射变化率在低光激发载流子浓度(4.51×10¹⁶-1.81×10¹⁷)下几乎不变化,这主要是由于在晶体生长过程中加入了过量的 Te, 形成 Te 反位缺陷,缺陷的陷阱填充效应造成的载流子损失与光激发新增的 载流子数量近似。随着光激发载流子浓度继续增加(1.81×10¹⁷-1.44×10¹⁸ cm⁻ ³),大部分缺陷被占据,由于陷阱填充效应导致的载流子损失与光激发新 增的载流子数量相比可以忽略不计,因此 THz 瞬态透射变化率随载流子浓 度的增加而增大。在光激发载流子浓度高于 1.44×10¹⁸ 时, Cd_{0.96}Zn_{0.04}Te 对 800 nm 抽运光吸收达到饱和, THz 瞬态透射变化率不再随光激发载流子浓度增 加而变化。不同光激发载流子浓度下 Cd0.96Zn0.04Te 在 THz 波段的瞬态电导 率用 Drude-Smith 模型进行了较好的拟合, 拟合结果显示 Cd_{0.96}Zn_{0.04}Te 的 载流子运动不是背向散射而是被缺陷局域,局域程度随光激发载流子浓度的增 加而增强,且 Cd_{0.96}Zn_{0.04}Te 的载流子迁移率远小于 CdTe 的。结果表明,在

Cd_{1-x}Zn_xTe 生长中严格控制 Te 的含量,将在一定程度上抑制 Te 反位缺陷的形成 ^[31],减少光生载流子损失,提高载流子迁移率。此研究为碲锌镉探测器的设计 和制备提供重要数据支撑和理论依据。

参考文献

[1] Koch-Mehrin K A L, Bugby S L, Lees J E, Veale M C, Wilson M D 2021 Sensors-

Basel 21 3260

[2] Szeles C 2004 Phys. Status Solidi B 241 783

- [3] Bolotnikov A E, Babalola S, Camarda G S, Cui Y, Gul R, Egarievwe S U, Fochuk
- P M, Fochuk P M, Fuerstnau M, Horace J, Hossain A, Jones F, Kim K H, Kopach O
- V, McCall B, Marchini L, Raghothamachar B, Taggart R, Yang G, Xu L, James R B 2011 IEEE Trans. Nucl. Sci. 58 1972
- [4] Guo R R, Jie W Q, Xu Y D, Yu H, Zha G Q, Wang T, Ren J 2015 Nucl. Instrum.Meth. A 794 62
- [5] Liang S J, Sun S W, Zhou C H, Xu C, Min J H, Liang X Y, Zhang J J, Jin C W, Shi H Z, Wang L J, Shen Y 2020 Mat. Sci. Semicond Process 108 104871
- [6] Zhao W, Kong J C, Jiang J, Zhao Z L, Chen S P, Song L W, Yu J Y, Chen S, Tuo M
- H, Li J, He Z, Ji R B 2022 Infrar. Technol. 44 560 (in Chinese) [赵文, 孔金丞, 姜军,
- 赵增林,陈少璠,宋林伟,俞见云,陈珊,庹梦寒,李俊,贺政,姬荣斌 2022 红外技术
- 44 560]

[7] Wu R, Kang Y, Wei D K, Fan D H, Li Y R, Wu S, Dong J P, Chen D L, Tan T T,
 Zha G Q 2022 *IEEE Trans. Nucl. Sci.* 69 1773

- [8] Wang Q, Xie L J, Ying Y B 2021 Appl. Spectrosc. Rev. 57 249
- [9] Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201
- [10] Xia C Q, Monti M, Boland J L, Herz L M, Lloyd-Hughes J, Filip M R, Johnston
- M B 2021 Phys. Rev. B 103 245205
- [11] Jin Z M, Peng Y, Fang Y Q, Ye Z J, Fan Z Y, Liu Z L Bao X C, Gao H, Ren W,

Wu J, Ma G H, Chen Q L, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S

L 2022 Light Sci. Appl.11 209

- [12] Li G F, Nie X B, Zhou W, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H,
- Ma G H 2021 Appl. Opt. 59 11046
- [13] Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao JQ 2021 Appl. Phys. Lett. 118 011102
- [14] Magnanelli T J, Heilweil E J 2020 Chem. Phys. 540 111005

[15] Yuan L, Pokharel R, Devkota S, Kuchoor H, Dawkins K, Lee M C, Huang Y, Yarotski D, Iyer S, Prasankumar R P 2022 Nanotechnology 33 425702

[16] Mithun K P, Kar S, Kumar A, Muthu D V S, Ravishankar N, Sood A K 2021

Nanoscale 13 8283

[17] Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J,

Leng Y X 2021 ACS Energy Lett. 6 1740

[18] Xing X, Zhao L T, Zhang W J, Wang Z, Chen H Y, Su H M, Ma G H, Dai J F,

Zhang W J 2020 *Nanoscale* **12**, 2498 ²

[19] Ma Q, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J.

Phys. Chem. C 125, 9296

[20] Zou Y Q, Ma Q S, Zhang Z Y, Pu R H, Zhang W J, Suo P, Sun K W, Chen J M,

Li D, Ma H, Lin X, Leng Y X, Liu W M, Du J, Ma G H 2022 *J. Phys. Chem. Lett.* **13**, 5123.

[21] Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764

[22] Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523

[23] Huang G S, Zhang X P, Chang Y, Yu F J, Yang J R, He L 1999 J. Infrared Millim. W. 06 460 (in chinese) [黄根生, 张小平, 常勇, 无福聚, 杨建荣, 何力 1999 红外与毫 米波学报 06 460]

[24] Lmai F, Moubah R, Amiri A E, Boudali A, Hlil E K, Lassri H 2018 J. Phys. Chem. Solids 100 45

[25] Sabbah A J, Riffe D M 2002 Phys. Rev. B 66 165217

[26] Li Y J, Gu Z, Li G Q, Jie W Q 2004 J. Electron. Mater. 33 861

[27] Maeshima H, Matsumoto K, Hirahara Y, Nakagawa T, Koga R, Hanamura Y, Wada T, Nagase K, Oyabu S, Suzuki T, Kokusho T, Kaneda H, Ishikawa D 2022 *J. Electron. Mater.* **51** 564

[28] Palik E D 1985 Handbook of optical constants of solids (Vol. 1) (San Dicgo:

Academic Press) pp416-417

[29] Cohen R, Lyahovitskaya V, Poles E, Liu A, Rosenwaks Y 1998 Appl. Phys. Lett.

73 1400

[30] Carvalho A, Tagantsev A, Oberg S, Briddon P R, Setter N 2009 Physica B 404

- [31] Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mersropian S 2001 Appl. Phys. Lett. **79** 2728
- [32] Li G Q, Zhang X L, Jie W Q, Hua H 2006 J. Crys. Growth 31 295
- [33] Cheng Z, Delahoy A, Su Z, Chin K K 2014 Thin Solid Films 558 391
- [34] Suzuki K, Sawada T, Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958
- [35] Lang D V, Henry C H 1975 Phys. Rev. Lett. 35 1525
- [36] Cola A, Reggiani L, Vasanelli L 1997 J. Appl. Phys. 81 997
- [37] Soundararajan R, Lynn K, Awadallah S, Szeles C, Wei S H 2006 J. Electron.

Mater. **35** 1333

[38] Shi Y, Zhou Q, Zhang C, Jin B 2008 Appl. Phys. Lett. 93 121115

[39] Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B, **76** (12) 125408.

[40] Schall M, Helm H, Keiding S R 1999 Int. J. Infraren Milli 20 (4) 595

[41] Dzhagan V, Lokteva I, Himcinschi C, Jin X, Joanna K, and Zahn D 2011 Nanoscale Res.Lett. 6 1

[42] Hawkins S A, Villa-Aleman E, Duff M C, Hunter D B, Burger A, Groza M,

Buliga V, and Black D R 2008 J. Electron. Mater. 37(9) 1438

[43] Zeng D M, Wang T, Zhou H, and Yang Y G 2010 J. Synth. Cryst. 39 221 (in

Chinese) [曾东梅, 王涛, 周海, 杨英歌 2010 人工晶体学报 39 221]

[44] Xie X, Xu J Z, Zhang X C 2005 Opt. Lett. 31 (7) 978

[45] Smith N 2001 Phys. Rev. B 64 155106.

[46] Jensen S A, Versluis J, Cánovas E, Pijpers H, Sellers I R, Bonn M, 2012 Appl. Phys. Lett. 101 222113.

Photocarrier dynamics in $Cd_{0.96}Zn_{0.04}$ Te measured by optical-pump terahertz-probe spectroscopy^{*}

Li Gao-Fang¹⁾ Liao Yu-Ao¹⁾ Cui Hao-Yang¹⁾ Huang Chen-Guang¹⁾ Wang Chen²⁾ Ma Guo-

Hong^{2) †} Zhou Wei³⁾ Huang Zhi-Ming^{3) †} Chu Jun-Hao³⁾

1) (School of Electronic & Information Engineering, Shanghai University of Electric Power, Shanghai

200082, China)

2) (Department of Physics, Shanghai University, Shanghai 200444, China)

3) (State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Shanghai

photogenerated carrier relaxation process and terahertz conductivity of investigated $Cd_{0.96}Zn_{0.04}Te$ optical-pump by terahertz-probe are spectroscopy at room temperature. With photoexcitation at 800 nm, the photogenerated carrier recovery process can be fitted with a single exponential curve, and its recovery time lasts several nanoseconds, which decreases with photogenerated carrier densities at a certain range of photogenerated carrier densities, relating to the radiative recombination of electron-hole pairs. The transient transmittance change of terahertz pulse remains the same with increasing photogenerated carrier densities from 4.51×10^{16} cm⁻³ to 1.81×10^{17} cm⁻³, due to the number of loss carriers by defect trapping approximates the augment carriers by photoexcitation. As the photogenerated carrier densities increase from 1.81×10^{17} cm⁻³ to

 1.44×10^{18} cm⁻³, the magnitude of photoinduced absorption increases linearly with photogenerated carrier densities due to most of the defects are occupied. When the photogenerated carrier densities are higher than 1.44×10^{18} cm⁻³, the magnitude of photoinduced absorption remains almost the same due to the absorption of <u>800 nm pump pulse</u> reaches saturation. The evolution of complex conductivity with photogenerated carrier density at the delay time of about 50 ps can be well fitted with Drude-Smith model. Our analysis provides important data support and theoretical basis for design and fabrication of Cd_{1-x}Zn_xTe detection. **Keywords**: Optical-pump terahertz-probe spectroscopy; Photocarrier dynamics; Terahertz conductivity; Cd_{1-x}Zn_xTe

* Project supported by the National Natural Science Foundation of China (Grant Nos. 62205194,

52177185) and the Shanghai Natural Science Foundation of China (Grant Nos. 17ZR1411500, 20ZR1466300).