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Fig. 1. Hlustration of the crystal graph convolutional neural networks: (a) Construction of the crystal graph. Crystals are converted
to graphs with nodes representing atoms in the unit cell and edges representing atom connections. Nodes and edges are character-
ized by vectors corresponding to the atoms and bonds in the crystal, respectively. (b) Structure of the convolutional neural network
on top of the crystal graph. R convolutional layers and L; hidden layers are built on top of each node, resulting in a new graph

with each node representing the local environment of each atom. After pooling, a vector representing the entire crystal is connected

to Lo hidden layers, followed by the output layer to provide the prediction!
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Fig. 2. Mean absolute error (MAE) and coefficient of determination (R?) for the training set (Train), validation set (Val), and test set
(Test) of shear modulus ((a), (b)) and bulk modulus ((c), (d)) in crystal graph convolutional neural network (CGCNN), random forest
(RF), extreme gradient boosting (XGBoost), support vector regression (SVR), gradient boosting (GB), and decision tree (DT).
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Fig. 3. Comparison between the volume modulus and shear modulus predicted by CGCNN model and the calculated values of DFT.

(a) and (b), (c) and (d), (e) and (f) are the results in the train set, validation set, and test set, respectively.
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Fig. 4. Statistical analysis of predictive datasets from MPED: (a) The distribution of 7 crystal systems, with monoclinic being the
most common (16101 structures), followed by triclinic (14461 structures), while hexagonal is the least one (1361 structures);
(b) distribution of range of number of atoms in the primitive cell (1-444 atoms) across the dataset; (c) elemental distribution that
illustrates the frequency of 77 distinct elements. The dataset encompasses transition metals, main group elements, and rare earth

elements, with oxygen showing the highest frequency.
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Fig. 5. Statistical analysis of predictive datasets from NED: (a) The distribution of 7 crystal systems, with monoclinic being the
most common (8063 structures), followed by triclinic (7491 structures), while hexagonal is the least one (779 structures); (b) distri-
bution of the range of the number of atoms in the primitive cell (3-84 atoms) across the dataset; (c) elemental distribution illustrat-

ing the frequency of 76 distinct elements. The dataset encompasses transition metals, main group elements, and rare earth elements,

with oxygen showing the highest frequency.

SEME M B T

HE— 4, ) CGCNN A& &L 43 51 F5 0 1
MPED %t#i4E 53k H NED %48 4 rh bR 57 7]
R VAR B BRICT R L e S A S 1
W (45 5RAn5% A1 FiZk A2). MPED %% 51 NED
B A 1 BT DI R AR it G 114040 DA SO B G
o HImE 6 S5 7 fn, i wUs E g S g E
DR NER =S W €/ (M B UMER VNSO RT )
PETF-B, 14 5y VIR i 5 (R RS B AR A [ B 4
H A FEIE RGP T i 2 30, S ik — 25 bt
RHAEREZ (B A RIRAUE T EES . WOs IR
BRI AR R ISR X 7R
) S PRZER . HAAOR UL, 8 6(a) 518 7(a) JEFTA TR
BT YRR AR 31, K] 6(b)—(h) FI&l 7(b)—
(h) il =R R CARNH R IEXSMAR . =i
R UTTEBR ST R LT R, SRR R AR E]

3.3

. BRI T LA Y AR B DT 5 B AR R
HAATE R B OCHR, YRR Y] s B4 = i, AT
JE4anYRe St [a) P g sm. HAh, 18 6 FIEl 7 ik
il T W%k B/ G HAEMEL, Pugh th3¥ (B/G) fEZ
R CAEH I 5 i S W A S AR OC, JF B
HE— 20 GIAMS OARSCE 2. SIB RS T 45 dh R A
BHY SR S A R G A . S B, KZ
BRI IRR A B P 10—100 GPa
A9 DI TRTER) DA S it 2R A8 8080 23 A1 TT LA Y, s h)
PRYEARZR (WS & R FIZSTT i &R ) 10 s s 4R
H A TE I 07 DI, R S A Y A
AR . X —Z5R DA B RE Y 5C
BRI T EESE. )n, AHEAEEZ4UE,
VIR S https://doi.org/10.57760 /sciencedb.
j00213.00104.

120702-8


https://doi.org/10.57760/sciencedb.j00213.00104
https://doi.org/10.57760/sciencedb.j00213.00104
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 74, No. 12 (2025) 120702

6000 (a) 1800 (b) 1400 (c)
3000 | ‘ 900 . 700 ‘
0 0 0
< —B/G=1 % < < : g
A q2b T B/G=5 3 a2k & g2k
O 10 O 10 <] 10
>~ S~ S~
n 1] 12
= = =
% 1ot 3 10t 3 100
S 10'F S 10'f € 10
= - Orthorhombic = =
X~ + Trigonal 4 4
= s * Tetragonal = —B/G-1 3 —B/G-1
A 100 Loagonal A 100 + Triclinic M 100F - Monoclinic
100 10! 102 0 6000 100 10t 102 0 2400 100 10t 102 0 1600
Shear modulus/GPa Shear modulus/GPa Shear modulus/GPa
(d) 600 (e) 400 (f)

300 . I 200
0 0

£
2L
o 10
~
P
3
Z 1ot
g 10'F
g
5: —B/G=1
— B/G=5
= Tetragonal M 100 h,,r" . Tr/igonal
102 0 350 700 100 10! 102 0 200 400

Shear modulus/GPa

Shear modulus/GPa

(h)

200 .

g g
2L
O O 10
~ ~
1] 1]
= =
ks Z 1o
g g 10'F
g g
= =
E : E
= - Orthorhombic @ 100F -
100 10! 102 0 450 900 100 10!
Shear modulus/GPa
150 (2) 400
75
0
£ g
2
o 10 O
< <
n w
= =
2 10 Z
s 10 <}
g g
4 ]
= —B/G=1 =
2 | -~ ch =5 2
A o100 e + Hexagonal A L
100 10! 102 0 75 150 100 10!

Shear modulus/GPa

6 MPED $udi 42 i AN [R1R ) 9 05 U i 5 (A 82t 43 A7

102 0 200 400

Shear modulus/GPa

(a) FTA DR BT UIBE &L 55 A I 0 A7, R A I R

(b) ZHHRF: (o) BAHRER (d) MR (o) =7 M F: (6 WM FR; (2) A0 R: () Sy R, IR T 45 MR bR

B LA A ik S A

Fig. 6. Shear modulus and bulk modulus distributions of different materials in the MPED dataset: (a) Shear modulus vs. bulk mod-

ulus distributions for all materials, with different colors representing different crystal systems; (b) triclinic; (¢) monoclinic; (d) or-

thorhombic; (e) trigonal; (f) tetragonal; (g) hexagonal; (h) cubic. The bar graphs show the statistical distribution of shear and bulk

moduli for each crystal system material.
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# A1 MPED 5 oAl RL LR B S BUNE (F547). X B, ID-number F1 Formula 735524 845 Fifk

Table Al. Fundamental physical properties (partial) and predicted values of inorganic crystalline materials from MPED

datasets. The CIF files of these materials were obtained from the Materials Project. Here, ID-number and Formula represent

the material ID and chemical formula, respectively.

ID-number Formula N p v M B G vl Ut Us v Op
mp-1000 BaTe 2 4.938 89.094 264.927 31.764 23.469 2180.121 3573.541 2407.744 0.204 160.498
mp-10009 GaTe 8 5.1549 254.251 789.292 24.095 16.757 1802.955 3001.379 1994.276 0.218 93.722
mp-1001012  Sc,ZnSe, 14 3254 289440 567.162 53.623 32.397 3155.374 5454.806 3502.473 0.249 157.640
mp-1001015  Y,ZnS, 14 3.675 335.691 742.961 60.652 25.843 2651.771 5087.157 2967.069 0.314 127.104
mp-1001016  ScyZnSe;, 14  4.687 333.879 942.322 54.940 22.543 2193.172 4258.659 2455.876 0.320 105.395
mp-1001019  MgSc,Se;, 14 4.086 349578 860.114 52.875 22.985 2371.850 4521.352 2652.741 0.310 112.113
mp-1001021  Y,ZnSe, 14 4.811 385.950 1118.121 55.070 22.939 2183.662 4219.640 2444.462 0.317 99.958
mp-1001023  BeC, 6 1.879 58402  66.067 132.395 102494 7386.608 11967.830 8148.016 0.192 625.248
mp-1001024  Y,MgS, 14 3.173 345765 660.753 56.994 26.037 2864.435 5375.943 3200.229 0.302 135.747
mp-1001034  MgIn,Se, 14 5.031 376146 1139.562 39.515 21.476 2066.136 3680.578 2299.251 0.270 94.830
mp-1001069  LijgP1gSe; 125 1.743  2652.952 2784.713 19.812  7.267 2041.845 4114.028 2291.557 0.337 49.283
mp-1001079  LiC,N, 10 1505 130.116 117.952 56.823 20.405 3681.742 7471.454 4133.696 0.340 242.869
mp-10013 SnS 2 3596 69.620 150.775 17.613  5.617 1249.772 2642.016 1406.249 0.356 101.772
mp-1001594  C,05 84 1.656 1155.735 1152.492 19.101 12.904 2791.530 4682.464 3090.023 0.224 87.663
mp-1001604  LuTIS, 4  7.377 99.825 443480 49.490 20.396 1662.754 3224.127 1861.754 0.319 119.486
mp-1001611  LuTISe, 4 8001 111508 537.270 43.737 22.793 1687.844 3043.848 1880.122 0.278 116.295
mp-1001780  LuCuS, 4 6522 77.056 302.643 74.239 35316 2327.021 4313.132 2597.493 0.295 181.731
mp-1001786  LiScS, 4 2700 71.362  116.027 58.972 36.372 3670.409 6309.130 4072.100 0.244 292.285
mp-1001790 LiO, 4 2130 42.828 54939 46463 28415 3652.317 6292.720 4052.874 0.246 344.878
mp-1001831 LiB 42099 28.090 35504 111.075 134.490 8004.910 11762.661 8727.079 0.069 854.731
# A2 NED ZIEETHL R AR SRR R BE (3R4). X B, Filename 367 0144

Table A2. Basic physical properties and predicted values of inorganic crystalline materials (part) from NED datasets. Here,

Filename represents the file name.

Filename N 1% M G B vl Ut Us v b
FIrS 3 7798 51.805  243.280  28.413  54.027  3433.128  1908.824  2125.825  0.276  244.862
AuGeP 3 7381 67.619  300.580  23.064  55.970  3427.627  1767.655 1979.213  0.319  208.603
GdHO 3 7.384 39190  174.257  62.945  113.409  5169.778  2919.774  3247.588  0.266  410.537
LiPrPtSn 4 9285 82565  461.643 31.112 78216  3590.578  1830.554  2051.127  0.324  222.617
ErLiPdSn 4 8792 75424  399.330 36.874  81.235  3851.257  2047.962  2288.361  0.303  255.968
BaBiHgNa 4 6.817 138.827  569.887  11.187  24.989  2419.500 1281.048  1431.855 0.305  130.688
BeGeHLa 4 5801 63421  221.566  49.688  90.981  5206.069  2926.621  3256.448  0.269  385.920
AIHKSD 4 3.004 104.402 188.848  14.352  23.461  3765.877 2185915  2425.631  0.246  243.454
EuHgNaSb 4 7135 115739 497.304  15.654  30.762  2690.122  1481.228  1650.873  0.282  160.097
LiNiSmSn 4 7617 72963  334.704  36.441  70.798  3958.873  2187.199  2437.061 0.280  275.632
DyLiPdSn 4 8557  76.573 394571 35786  81.074  3879.627  2045.067  2286.509  0.308  254.475
N,SSe, 5 2175  166.436  217.998  2.459 2.521 1632.981  1063.352  1165.878  0.132  107.904
LiNaSe,Zn 5 3916 107.396  253.260  17.754  31.924  3767.961  2129.286  2368.236  0.265  253.647
BrGeLa,Rh 5 6436 137.585  533.260 27.302  50.532  3675.249  2059.620  2292.318  0.271  226.057
CsHgNaS, 5 4774  146.289  420.615  9.852  18.449  2572.057  1436.510  1599.245  0.273  154.518
AlAs,CsMg 5  3.863 143.606  334.035 20.025  28.181  3769.434  2276.944  2517.185  0.213  244.713
BryGeSmY 5  4.803 163.091  471.714  19.469  32.496  3488.675 2013.383 2235315  0.250  208.287
As,Ca,Sr 5 3392 155481  317.619  28.093  37.392  4697.360  2877.774  3176.871  0.200  300.774
KLiMnTe, 5 3.860 153.218  356.177  12.890  26.438  3361.705  1827.331  2038.601  0.290  193.953
AlLC,Yb 5  6.426  64.862  251.024 88.642  125.838  6162.150  3713.927  4106.697  0.215  520.350
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Machine learning-driven elasticity prediction in advanced
inorganic materials via convolutional neural networks”
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Abstract

Inorganic crystal materials have shown extensive application potential in many fields due to their excellent
physical and chemical properties. Elastic properties, such as shear modulus and bulk modulus, play an
important role in predicting the electrical conductivity, thermal conductivity and mechanical properties of
materials. However, the traditional experimental measurement method has some problems such as high cost and
low efficiency. With the development of computational methods, theoretical simulation has gradually become an
effective alternative to experiments. In recent years, graph neural network-based machine learning methods
have achieved remarkable results in predicting the elastic properties of inorganic crystal materials, especially,
crystal graph convolutional neural networks (CGCNNs), which perform well in the prediction and expansion of
material data.

In this study, two CGCNN models are trained by using the shear modulus and bulk modulus data of 10987
materials collected in the Matbench v0.1 dataset. These models show high accuracy and good generalization
ability in predicting shear modulus and bulk modulus. The mean absolute error (MAE) is less than 13 and the
coefficient of determination (R?) is close to 1. Then, two datasets are screened for materials with a band gap
between 0.1 and 3.0 eV and the compounds containing radioactive elements are excluded. The dataset consists
of two parts: the first part is composed of 54359 crystal structures selected from the Materials Project database,
which constitute the MPED dataset; the second part is the 26305 crystal structures discovered by Merchant et
al. (2023 Nature 624 80) through deep learning and graph neural network methods, which constitute the NED
dataset. Finally, the shear modulus and bulk modulus of 80664 inorganic crystals are predicted in this study
This work enriches the existing material elastic data resources and provides more data support for material
design. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.
00104.

Keywords: inorganic crystal materials, elastic modulus, machine learning, data prediction
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S5 B Y FRE 2R Y L A AR BT

i3y MG TSRS T COT TR I
BC o3 BRECRIAN I B B2 B T BRAE A <\ BRI
ZRHRE (FAAL: cm/molecule) TTEAZN
s (2054 1) A e B/T (1 — ee20/T)
B 8mcv2 Q(T) ’
(7)
Horh, Ag J2 22 NI 280 (A7 s 1), gos EREE
WREN T, & B FESNEE TR, o=
he/kg J& RS R R, B = B /he JEWH, 05 &
BRIT £« i Y IEER, TRMEEmiRE (A K). X
T T, 9o % ATCH A BYEEL, HAAL N
gns = (2L +1) 2Ly + 1), e I, 1 1, 53512 AH )Y
IR ETE. Q (T) f2lerrhgl, Ha=U2
QT)=gw Y, (@1 + e BT (®)
BRI 19 W SO IAT o (0) 5 AH L 18 R0 IR AL 2R
B L ZEEERN

&:[mm@m7 (©)

A o 2P TIALBLIE sREL f5, () 5, WRUSCHR
Il (FAA7: em?/molecule) & XN

I(f« 1)

Ofi (f}) = aﬁfﬂﬁ (f]) ’ (10)
Hr f5, (0) RMFAE—4h 1 Ay B R %L,
/700 S (’LNJ) dv =1. (11)

3 WHEXRE M

3.1 BEEHZK IRINBER . ITEHIEMR
R ERE 5B

FATEE A LR B T A T P4 COTY
3ANHLTFA X2, AL R B2 BEIh 4k, —4d
{8 Modified-Morse ¢ pREUES A 52 506 1S4 i
UG et a2k, 51 —418 1 MRCI+Q
254 aug-ce-pV6Z FEA T E ML TR AGEIZ,
W 1 R (DRI EIRTZER 1 LSRR, Bk
PERER S LASER R, 45 R, st i3 e
MTERATE S 20 R, JF 55
WiTE RIS 2. &1 EoR, X2t
AL A B2S+ = AN AR AL R A, JF A
CO*orF B F M50 — FIERE 25 M B BR 430l CF
(*P,) + O(*P,) Al C*(°P,) + O('D,). ik Wi 425
FREYAE R 22 {H N 16015.52 cm L, SCHE B AU A
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147.66 cm ! (w22 (0.92%). X M IEEL s Hr A
oy TR SRR T B SR

10
sl | —
!
g
Z ef C* (3P +O(Py)
S
Al < . s
< « X2Z+t (ab initio)
§5 4+ e A1 (ab initio)
g . B2X+ (abinitio)
Hooo0 — X252+ (Refined)
—— AZII (Refined)
— B2X+ (Refined)
O 1 1 1

1 2 3 4 5 6
R/A

FEl 1 COfy X?S+, A Al B2+ A5 A RE il 4%
Fig. 1. Potential energy curves for the X?%+, A?IT and B?2+
states of CO™.

AT COMr TR PSR 5505
) X235+, A2 Al B2SHH PRSI BB 2 [A] iR 2=
MILEXNHE, NIE 2 B, fE 2 AT, 552 R 2
I, e RiRZEUA 0.15 em L. Ak, COMr T B
THY X20F, AT F1 B2+ = AN TS IR B e
(B PR 51 T35 1, 55E0g5 0 PL9 AR L, Rk
Z4r518 0.81%, 0.05% A1 0.15%. COTE T4 FhY
3BT AR PR Bl R g4 1] b Bl 41k o) 2 - F0 K
SUSUIE WA ot i R ES iU E | e R e R == GO

X225+ AT B2E+

Obs.-calc./cm~!

0 1 2 3 4 5 6 7

Vibrational energy level

K2 COMrFH+ X22+, A2 M B2E &S Ay Bk 5 5056 /Y
IR B RE PR =[] 15 22 1 246 X

Fig. 2. Absolute value of errors of the vibrational energy
levels between our refined results and those given by experi-

ment for the X22*, A%l and B2L+ electronic states.

CO™r T8 T 1Y X2+, A2IL I B2S+25 AH B
R e B A e %o — A% i S 1 R AT AR
KA IAAS B N2 2 Frgl), TR R T 4K
KRE T, FHREEE R, SR w, M woxe. 75
HEL B, MIHEIRE D, % OCHESAL, IF 5550 H M

PG ZE R IEAT RGNS . X F XS T8, R,
MMER 1.1152 A, 5 HABFRIR(E 1O Fnsce B 455
FRRAT, we, weXe Al B, 5350819 2508 B9 AH LAY
AN ES, 2530028 0.12%, 0.53% F1 0.01%,
B FE T R aug-cc-pV6Z F 4 /Y T 3] #35 B9,
WORZS AMT Y w,, wexe M D, 552560 {1 B i f 22
4351 0.05%, 1.55% F1 2.04%, Hod T, fl R, {H
FHTA], 48 7% - B SR A50UN, 1) 15 K 2 4 348 g
T1. WRFS BPSH wexe FEHE P A 2R
(A = 72485 cm ™), HH 5 aug-cc-pV6Z Fig il
DB AU ES 2.7120 em 'y AR ZSHL T, w,., B, fil
D, 555 AB A AR 22 BT 1%, 3X S0k T 3RATT
G B i SR Y P

R1 COMpTET XS, AR B2 S A4RE)

AESIRE (7 cm )

Table 1. Vibrational energy level intervals for X25+,

AZII fil B2S+ state of CO* (in cm™).

X2+ AT B+
Refined Exp?! Refined ExpP! Refined Expl)
2183.96 2183.89 1535.08 1535.05 1679.49 1679.55
2153.53 2153.56 1508.02 1508.03 1626.18 1626.61
2123.18 2123.24 1481.08 1481.11 1575.66 1575.77
2092.87 2092.92 1454.26 1454.29 1527.62 1527.02
2062.56 2062.58 1427.55 1427.56 1481.78 1480.36
2032.21 2032.20 1400.93 1400.92 1437.90 1435.78
2001.79 2001.79 1374.40 1374.40 1395.74
1971.26 1971.33 1347.94 1347.95 1355.11
1940.61 1940.82 1321.56 1321.32 1315.81
1909.80 1910.26 1295.25 1295.09 1277.70
1878.80 1879.68 1269.00 1268.82 1240.61
1847.60 1849.06 1242.80 1242.60 1204.42
1816.18 1818.42 1216.65 1217.00 1169.02
1784.50 1787.79 1190.54 1190.00 1134.28
1752.56 1757.19 1164.47 1100.11
1720.33 1726.60 1138.43 1066.44
1687.79 1695.30 1112.43 1033.17
1654.93 1666.00 1086.45 1000.24
1621.72 1632.00 1060.50 967.57
1588.14 1601.00 1034.56 935.11

<

© 0 N O Ot R W N

[ T e e e e
S © 0 N S Ut e W Ny = O

ERARTAER—E5, PR T COrFET
X235+, AP A1 B2+ =/ -2 2 ] B9 B A A BR AT
S (B2OH-X20+, B2U-AZMT HI A2IL-X25 ), TRl 3
7R, HEL 3 AT, A A R i e~ i A% [ R
BT (1.05—1.30 A) S8 M EARAE, Hoh gtk
B 2 (002 B2S X2 KT AR = 1.15 ALk %
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#2  COTHTHOLIEHYE

Table 2. Spectroscopic constants of the doublet A-S states for CO™.
AS states T,/cm R./A wofom ! woxe/em B,/om ! D./em”
Refined 0 1.1152 2214.72 15.2312 1.9767 67533.4167
Theory!3 0 1.119 2214.6 14.75 66731
Theory!* 2212.05 17.74 1.980561 67813.483
X2+ Theoryl1’] 0 1.1153 2214.15 15.15 1.9769
Expl? 0 1.1151 2215.1 15.27 67535
ExpP! 2214.3904(10) 15.1304(31) 1.976964(12)
Explt 2214.2219(79) 15.1509(31) 1.976949(26)
Refined 20733.0015 1.2437 1561.17 13.3236 1.5895 46186.90
AT Theoryl*l 20594 1.246 1570.0 12.86 46473
Theoryl1’] 19628.2 1.2438 1562.79 13.93 1.5894
Expl 20733.3 1.2437 1562.0 13.53 47128
Refined 45876.6989 1.1689 1712.84 22.3220 1.7989 37988.4876
Theory®l 45979 1.170 1742.7 25.99 37123
— Theory®) 45868.20 1742.94 19.61 1.805184 37854.825
Expl 45876.7 1.1687 1734.1 27.92 37692
Expl 45878.204(95) 1734.480(98) 28.033(90) 1.799491(21)
Expl! 45876.724(48) 1734.626(86) 28.272(38) 1.799526(20)

WE(E 0.31 a.u. YHZAIEE > 3 ARF, APy Ao (B M R
IR TE, X579 CH(*P) + O(°P)
() e 38 X PR 1 2 RS A AT, IE S R
PG 25 AT A Bl B X 3 A H A A R A
B2+ X 28 BRI S I AR T 7Y D R K.

03k — B2EF-X2m

’ —— B2n+-A21
o B — A[[-X2%+
2% o2t
< 4
ERG
23 01
75
5 g
@
-~ O
EE o}

_o01 , , , ,
1 2 3 4 5 6

R/A

3 — SR PH B T it P AR BRI 6 B % (B BE R 19 A £k
Fig. 3. Transition dipole moments for different states of CO*

cation as a function of internuclear distance R.

3.2 EHREFNANERE

BT COYpFETrmAmEmmaik-%2
B, ARSI T LI PRECFIN B I . 38
1t LA S R KA I B i i MRCI+Q 77
Bt IR, 78R T2 P (LTE)
U, dE (8) RARGIA T 15—15000 K %

TEREIN COTrT B FIIEL Sy sR %L Q(T) KR 1
Ak, W 4 Fs. VR OGIE T B SHL i
3 BRE FR IR BR L L TR T B R B S Rl e, I A
2 S I W A Bl B A AT T TR L TR R R
B Q(T) Wi B /) T B R IS fa 8, 7 T =
15—15000 K i Bl 3 Bk 4 A Eom g, H e
AR IR BRI ST T A S AR REOE K.

50000

40000

30000 -

20000

Partition function

10000

0 3000 6000 9000 12000 15000
Temperature/K

Bl 4 CO4F T HRLS B 8K
Fig. 4. Partition functions of CO*.
T UEB COM o+ B OGS AL B HEf 4,
S geml a5 Rt xf e, B 5 4T COa T
B 7E 100 atm 38 T, iR A 298 K A1 2000 K
B, 254 HL T 25 22 1] 1 BR A X 3% (AR AN 325 B B 19 o
k. B2 XS R R R R A H kT, W
SEa BN R 1) e £ | B A 2 RN g . Ak,
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APTI-X2X A1 28 A 51 ik 2 1A 58 T B2X+- AT, (HAR
PEFRATHIATY, 5 &5 7E 15000—22000 cm * [X 35,
AR S, 35 525 142 X330 B 4iR B0 7 A S0 00 275 SR
—. AN, 1E 40000 cm ! LA FAYIX IR, B2O-X20 T
i 5 S, X5 Szajna 55 3] 7E X A XA
W4 Shaty A

~15
1o — B2o+-X2n+
— AZI-X?2%+
— B22+-A1

‘ If | St
h M Ul ““'1 ”

20000 40000 60000 80000
Wavenumber/cm~1!

1018

S

10-2¢

10—24

10-%

w

1030

Cross-sections/(cm?molecule 1)

1033

—15
10 — B2ZF-X25t
I — AZL-X25+
— B2D+-AI

10—21

10—24

1027

10-%

Cross-sections/(cm?molecule 1)

10-33 4 : : ! :
0 20000 40000 60000 80000

Wavenumber /cm !

5 7E100 atm M5y, COMF 7B FAEAFRRE T, 4%
AL 28 Z (8] 1 BRAE X B RS W BE I TTHR () 298 K
(b) 2000 K

Fig. 5. Contributions of electronic state transitions to the
total opacity of COT cation at different temperatures un-
der pressure of 100 atm: (a) 298 K; (b) 2000 K.

COMIr FE B AE Bk 7y T 455k
i, LA K FEL (PR R A R 4 PRESC ) ity b A 731
B, K6 Won TALE 100 atm BYEIREMET, A
TR (298 K, 2000 K, 5000 K, 10000 K #1 15000 K)
X COHrF BT X228+, A2 Ml B2 tH, T2 A
A RE R g Horp e R AR H BEAE T = 298 K
HIEE (0) 9 45440 em ! FOYE I, BES 1R B O TH
1o, AN BH B ) B KIG(E B #T08/N. COH o F T
(ANIZ I BE A AT LT A1 B B S A M B, Bl T
FTh s, PR AS AT F B2+ B AR FE B0 e, M
T A TG . X Bk A TR S Z R ER
i, B B*SH-AL fEASE P LA S| 34

LA 4 i N A N 7 DS VA s D I © S
B2XH- AT A1 APT-XPSHBRAE ) ek, H & 6 38 1]
DL BR, Bl A ek BE A0 s, S [R) A 5 s AH TRl
TR IRF] 10000 K B, 3 A4~ 06Xt i FLBR AN F-
B, X SEIG AR T IR SRR S
A1 Jy it 2 R T R TN Y. I AT, g
TER R RS AR A S BA S RN B L AR R ) &
BT W KA IR vh o1 iR 43 BERAE,
h ZRAMT R e B A AR FH (R 3R S A
UFRAL T OCHES R,

Cross-sections/(cm?molecule 1)

0 20000 40000 60000 80000

Wavenumber /cm~!

K 6 FE 100 atm JE58 T, CO/r -85 1 X250+, A201 FIl B22+
209 R 7 BA B E R A9 AR 4K (T = 298, 2000, 5000, 10000,
15000 K)

Fig. 6. Opacities of CO™ cation for temperatures of 298 K,
2000 K, 5000 K, 10000 K and 15000 K at a pressure of
100 atm including transitions of B*X+-X22+, B2X+-A%1 and
AL-X2%H.

4 % ®

A SCHEF S E A MMorse fiff 2 et

T COy T B 1 X2+, AT Fil B2EHH 1245 1Y 34
RemZe, JHahth TIRSh AL . Jeuik w45 . Bl oy gL
FURNBE AR, SRBhaege b AGig w0t aas i S
CAS R 1 LR EAT S AR, AT LARIEDR
SRR WERA M T R LA R S AN B B A
&7 S0 TR I X2, A2 M B2S =N
BIRBBEH P TTRR; ARG A REh & AT
BRI TR, 5 T 100 atm FESRAAF R, IR
7 298 K, 2000 K, 5000 K, 10000 K F1 15000 K
BB, 450360, COY T B FRIANIE I
JFE AT LT A BER 58 A% B Bl 25 TR i T
PR AS AR R EICE n, AS32s B B A I 43 A i L AR
FE. YIRE T 10000 K B, SECNFERER 250
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TR B BOULHILHR . AR SCRT A Al oL H R R
BYIRIAE WL KSR iz S RO, SRR B
AU I — L8 PR AR Sy

HHE ¥ i = A
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SPECIAL TOPIC—Atomic, molecular and materials properties data
Opacities of X2+, A?I1, and B?X+ states of CO* molecule ion’
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Abstract

Carbon monoxide cation (CO™) plays a dominant role in some astrophysical atmosphere environments, and
theoretical research on its opacity is crucial for modeling radiative transport. In this work, based on
experimentally observed vibrational energy levels of the XX+, A%, and B2X* electronic states of COT, the
potential energy curves are improved and constructed using a modified Morse (MMorse) potential function,
then the vibrational energy levels and spectroscopic constants are extracted. In the meantime, the internally
contracted multireference configuration interaction (MRCI) method with Davison size-extensivity correction
(+@) is used to calculate the potential energy curves and transition dipole moments. The refined MMorse
potential shows excellent agreement with the computed potential energy curves, while the spectroscopic
constants and vibrational levels indicate strong consistency with existing theoretical and experimental data. The
opacities of the CO™* molecule is computed at different temperatures under the pressure of 100 atm. The result
shows that as temperature rises, the opacities of transitions in the long-wavelength range increases because of
the larger population on excited electronic states at higher temperatures. All the data presented in this paper
are openly available at https://doi.org/10.57760/sciencedb.j00213.00136.

Keywords: carbon monoxide cation, spectroscopic constants, opacities
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TEAA ST A B LA 2R AN IOGTE, I8 ek s 5L
AR AR = AR RO h, BB AL T (813624
80) cm ! AT BEXS BT ICIH4:F B F 1Y X2, 5.
T1E 55— T o Tuckett 45 10 3 A G HL -2 0606
FREE B AR AR MEZLR] ICIHr T 58 1988, IR
PP /2R VUIR LI R G Nel Uk ICT 73
FEFITERAE A2TTSMBE T2 R 0.4.
Kaur % M H5E T ICL 43 h B FXHE AL, W)
U L B DX, A BRAE | B il e B AR AR [
WESE T EATTE & X 2 rh 2L R /R . Yencha
5 120 ) FH [R) 25 550 R 28 3 B - R TS A 3
P B X6 ICT o F B F AT T PR (1—
11 meV) W HYEH FREIEMF 5T, 48] T ICIHr
T B XA WA [ e-#01E 535 AR i ik 3
R, R ICT 11 1 1Y XPT0 0 Al X o 25
vt = 0 IAIREEHES 518 (10.076 + 0.002) eV
F1(10.655 + 0.002) eV, 135 A2 & vt = 0 94
PO BN 12.5 eV. Ridley 25 131 | IC1 4311y
EHHEIEIE IC1 019 (2+1) LRI R 26T
HLEDGIE B AR, SR AT ICL 43 F i HAas 5 4h
WSO, 133 ICT 7B TS X0, 5(vF = 2)
P BTN (81246 + 3) em L.

AL T2 30T 5T, AR HATC T ICIH /e 15
T HL T4 A A B8 F 5T A X &L . Straub
McLean™ 3 [l A& 5r FHULE T HE T 101 4
TR ICI o FEFIHR 451, 45t T 101 7071
HL I RE. BliJ5, Dyke 55 ') SR 25 FE AR XS RN &
1EAY Hartree-Fock J7 45 ) IC1H 9 F 15— Z 4
LA A9 3 15 FL 2 fiE. Balasubramanian'® 1l H14H
X A A A BAE TR A 5 (relativistic con-
figuration interaction, RCI) 718 T IC1*4 ¥ i
T B e B ANM 7 A 0 #aE 4 (potential
energy curves, PECs), #4374 A X115 ),
X2 o, 2TI(ID) A1 28], BOEIER AL, BHE T 1015y
FE AR A S AT RS Hir, UXHEA
Balasubramanian® Jij F % F&AH X 18 %0 0 1) 40 2
MEAE T EVIR T IC1 7 T8 TREE KA L
AL AR ARG L Z T ES A
v A [ B A5 2 TR A BV L Toufee s ML D
SHREYERT. FEA TAET, RAVMEHEBENEZ S
% 5 M HEAEH (multi-reference configuration
interaction, MRCI) FiETHE T 21 4~ A-S AF1 42
QSR EAME. M5 T ICIH 4 FE TR H

THEHOETE F BB Y. AN, SR R A
OB B LA TAIT ST, TR R 2
FF AR AT T

2 WHI®

Bz MOLPRO!M F2 Fp ) ICTH 73185 1 I
BORSHAT NI, FEit &, TR el Y
el A E S ECP28MDF fiY aug-ce-pwCVQZ-
PP B4, Cl g+ i FH A B4 /2 aug-ce-pVQZ
HE US9] ARSCHY FIr A THIEAE O, sURE IR BT DL 7K
THE Gy, FHERFRME T 47, Gy, FFELE 4 1R
AAFIRA Ay, By, By Al Ay PRI
RN AT 293R8 Z IR R OC R IR : BH—A,
5 —A,, =B, +B,, A=A, +A, fl d—B,+B,.

X T T 45 HAR M TSR S8 3 DR 25
PRATHY. 762K Hartree-Fock (HF) HG 7%
P33 ICIH 3+ B R A Y B 20 25 U8 oR AR iy -
5 406 25 (8] F 333 (complete active space
self-consistent field, CASSCF)20-21 5 2 41 &%
PR, TR CASSCE i R 1T MRCI
TIE 22231 [ i =% P 30 AT 2H 28 TR X Fl, - 25 R
W EE M &2, 5] AT Davidson & 1E (+Q)PY. 7E
CASSCF 5, 2 [ A e O + /- B 2461,
223 MKW T 11 470 FHUE bay, 3by F1 3by 1F
RILST T TG ZS B 78 MRCI+Q i3I, 4%
4s4p(1) 72JZ2H 1s2s(Cl) 722 B H FRUA GG HLE,
W 1Y 4d BUEAE R 5 D AEIE PEFUE N A
FORHRRETHAE. SR HE-HIE ECP 54T, ¥ A TiE-
HiE H4 (spin-orbit coupling, SOC) 1E N Lk,
XFFAAk A Tie- BB e R R 2, 75 B0 SOC 2
BATEREE MIAHE R AL, JF2aH T Q 1) PECs.
JF PECs 1147, il LEVEL #2729 sk figt—4%
Schrodinger J5f&, 4 H A-S Fl Q A9 4L

3 Rt
3.1 ICI*9FEF A-S SHIBEE L it
EHIERE

of SRS BE ) MRCT ki3 T 101 T 55
F P A IR A B BRI (PP,) +CL(2P,), T+('Dy)+
CI1(2P,) ¥R 21 4~ A-S ASHIAAERE R, AU BE
WA W, Davidson & IE FLE-H HL T B REXT
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PR AS SRR I 2 T ARA B B s, PR e FRAT]
1E ICIH3 B 71 MRCI 345+ % & T Davidson
BIEFLES T OCHRRE P72, K 1 A T 1540
B 6 A PUEAM PECs. # 1 5H T ICIH 71
BT RSB R STE %R (R, = 2.25 A)
A7 B AL B T 2 S BT A3 AT B
RAE, I LE1R R 10 DR A 1OGRE H 5
TR 2. DR 1ATLEH, A 115, 2200, 124,
1254, 321, P M FASE Y RA B HE N2
ZHAFRAE, SR A MRCT J5 5k THA BE AR IE I & &
HL P25 A8 B MR

4
225+
) 5211
3l Y ZZA 325+ 120 4211 I+(1D,) +CI(2P,)
T 4 iy 14
g 211 213~ 141 I+(3P,) +CI(2P,)
< 2 [
=}
—
<
1
99
Im
1k
ok
2 3 4 5 6
BibgiR/A

Bl 1 ICH TR A-S S AE L
Fig. 1. Potential energy curves of the A-S states of ICI™ mo-

lecular ion.

R 1 ICHTET R, MHL A2 Z5H0E I3 1
K

Table 1.  Electronic configuration and vertical ex-
citation energies of ICI" molecular ion at R,.

A-S 3 R, WIE A SRR /% T/em'!
X1 76%80%90%100%110%3 14 w*5m3(91) 0
76%80%90%100%110'31*4~45m2(77)
4 —_
> 76280%90%100%110'31*4 3573 (20) 18885.3
76%80%90%100%110%3 #4735 (87)
2
2 76°80290%100'110'3w*4~*573(6) 23660.8
76%80%90%100%110'31'4~5m2(67)
2 5
A 70°80°90°100%1 10'3n'dn5m(20) 200490
125+ 706%80%90%100%110'31'475m2(59) 93700.8

76280%90%100%110'31*4 353 (34)
225+ 76%80%90%100'116%3 #4754 (94)  33963.0
1A 70%80%90%100%110'31'47%513(99)  35589.7
22A 76%80%90%100%110'31#4=%5m3(96)  43617.4
(
(

3E+ 70%80%90%100%110'31'4=%5m3(95)  44332.0
706%80%90%100%110'31*4 w3513 (67)

32%- 76%80%90%100'110231#47*5m2(22)  52169.3

75%80%90%100%110'3n*4n!5m3(9)

76%80%90%100%11023 14 w*5m! (48)

70%80290%100%11623m*4m3572(48)

301 53534.0

[CIH B PRy R X200, HEZny 4
DT 7080290210021 163744453, FE S D,
£ MRCI KF R A EISTTHEAE N 2.50 eV, 555
S50 2.52 eV W AT, 2211 A5 BB T4
DA 70%80%90%100%110%31*435m4(87%) Fl 702802
902100 116'3 74! 5m3(6% ), 43 AR R F IS 4n—
5w BRiE Ml 100—110 BRIE. 2201 1 18] 18 B 8 B 2R
we FPPHAZBIEE R, T4 33 5100 259 cm ! Fl
2.59 A, 5 Balasubramanianl6 F| A& 2H 5 AH
HAE B EER 207 cm 1 2.78 A—F. 321
M) F R TFHES R 702802902100%1 1023 w4 mi5wl
(48%) Ml 7062862902100%110231* 435 m2(48%). PR
THAES R R 3201 ALk BE T, 0 22122 cm ™,
b 52 5 455 22420 em P A /N 298 em 1(1.3%).
VA, 325+, 22A BFELERHEFHEIE 7028029021002
11031 4m3smd, BREREAAY 4n 1 —ANH I A 3|
1lo. 25 B FE N FHE R 70°80°90°100'110°
3ni4i5T(94%), B RS 100 B— A HFIA
FIHMNZHY 5.

40 0 AR T DL S AR E (dipole
moments, DMs) /RBL H k. F b, 48 C#E MRCIT
K EIFEH 21 4 A-S AR, Hgh 1+
K2, MEWE DL, K 2(a), (b) 433145 H T XU A
PUTE A-S ZSRMH AR R . Wil 2 FirR, Bl 1
FEAYIER, A F A AR R i S BB ke T 1
Teg5, 2 W AR PR A fifk 125 4% PR fie 5 7 0 34 R 5
T N 1AL H, 2211 /3200 il 225+ /32544 3
TERZ A 3.05—3.20 ARl 2.50—2.65 A [i] & 4
A 5 Akt B 58 IR, AR, ML 2 38 ] DLZ 3K,
TE B R X P, 2211 /3211 A1 225+ /3251 DMs f
LA KA T B EA. ST A AR — I
% & 3451 T 2211 /3200 Al 225+ /325 A AR GAN
S A R

K 3(a) FFm iy 220045 (S24R) Al 320 4 (K
2%) ) L F A AR con-A 1 con-B Y45 1k
thek. Hp, con-A A 70280290%100211023 743572,
con-B N 702802902100%116%3 w44 m35mt. 24 #% 6] 1R
BN, 320 AT con-A KR IEE CHAEH, (HAE
FEIT W0 38 X (Racp) IV G R 55 ; e 3=
HL 143 con-B G R EZAE/. UL Rycp BN
A, 2201 5 32T A BB R TS A B
HAMA AR LR
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F2 IO TFET A-S BRI
Table 2. Spectroscopic constants of the A-S states of ICIT molecular ion.
A-ST T./em ! Dy/eV B./em! we/cm ! R,/A
e AL 0 2.50 0.1221 432 2.24
S 0 2.52
ES'S 18218 0.27 0.0915 259 2.59
2211 T 19551
Higo) 14352 207 2.78
12A AL 17516 0.35 0.0737 109 2.89
DY AL 13617 0.83 0.0889 218 2.63
1A AL 17183 0.39 0.0670 138 3.03
125+ AR3C 18015 0.28 0.0654 153 3.05
- AL 22122 0.80 0.0628 526 3.14
S 22420
22A AL 24768 0.52 0.0696 171 2.97
225+ AL 25192 0.47 0.0687 164 2.99
325 AL 25241 0.46 0.0630 181 3.13

HE: SCHR[33]; DICHk[12]; ¢ STk [16].

{0 .

4.0

3f5
HHEiR/A

3.0

E 2

IO 1 B 1 1Y A-S AR AE it 48

1B /a0

4.5

3f5 4jO
iR/ A

3.0 5.0

(a) WESRIMEIRAE; (b) MU E SR HERAE

Fig. 2. Dipole moments curves of the A-S states of ICI* molecular ion: (a) Dipole moment of the doublet state; (b) dipole moment of

the quartet state.

[ 3(b) 4 T 325+ (SE4R) A 22844 (M
28) M EEH TSRS con-C Fl con-D 8L
2k, con-C K 70%2802902100'110%37*41*5w4, con-D
M 76%80%902100%1 1013w 4m35m3. 7 4% [A] A /N
225+ con-C AR B T M B MVEH. FRIFEAE
238 Rycp 2 )5, 2258 M FE R TSN H
con-C ¥ 725 A con-D. 222+ 5 329+ S EBEHE
W ZEACLL Rycp N5 B R TR RE 2 B BN Y
FER.

21/ 5 225+ /3PS EEAH B M TFE Racp

DA B T A B A IS L. X — B AR
B, HA A R AR M R A, R S U 4
Rycp MZJGE KA T, MiH, 22T1/3211 &5 22%+/
320 B U AR 2 B Rycp XBRAY
DMs EHR7E.

ICI* FBEF A-S SR BIE-HIERE
EifEs

N TS A-S ZS R A ST 2 8y i 13
Z A RH LA FH A R G 26 vl 1285 R 5 A il

3.2
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(@) 10F

con-A: 7028¢29¢2100211023n44n35m?
con-B: 762802962100%116"3n*4n35m?

AU c2

2.95 3.00 3.05 3.10
il R/A

(b) 1.0

con-C: 7¢28062902100'11¢%3n44n*5mt
con-D: 7628629621002%116'3n%4n35n3

0.9

0.8

0.7

0.6 |

0.5

AUH 2

0.4

0.3

0.2

0.1f

2.50 2.55 2.60 2.65 2.70
il R/A

B 3 22M0/3%M (a) I 222+ /325 (b) MABILE (&)
Fig. 3. The R-dependent weights (c?) of the electronic configurations of 22II/3%II (a) and 223%/32X* (b) states.

2.3

(a)

/(10* cm 1)

5
2

250 275  3.00 3.25 3.50
Bl R/A

(b)
2411
2.7F
1411
2.6
- v=4 22A
‘ 1
g Y
S a5t -
(=)
Al
<
i)
B8 ooyl 3211
2.3}
>~=0
9.9 L , ,
2.75 3.00 3.25 3.50

Bl R/A

B4 22 X IR 3h RE R Y Tl R LA

Fig. 4. An amplified view of crossing region with the corresponding vibrational levels.

s, B 4 FRR 4 A28 XIS OCILIE, F 15
TS SIS FAR SOC HEFFIT. K 4(a)
) R A 38 LKA T 1700022000 cm ! BE
WHEIN. 2 1 X IXIEAE R = 2.60—2.80 Ak,
i 2201 250 125, 1254, 1491, 12A, 1A B8 |
Y. 5 2 M XA R = 2.80—2.95 A, 1 12A
A 1S, VA B GEA. B 4(b) h P4
XA T 22000—26000 cm ! ERTEFEN. 45 3
ASEXIKIRAE R = 2.70—2.95 A4b, i 22A 251 1410,
241, 32 8 X5, 58 4 M X XIRAE R =
3.00—3.20 A, F 3201 251 1411, 241 2558 X5 ).
H T WX A IS A BEAEH, B 5(a),

(b) 5t TSR B A S 2201 /12A Fi 22A /3710
AR SOC MG, i 4(a) FiR, EIRBIAEYH
v =0,v =1Fv =2, 2200 28 122, 1287,
Yt 12A, 1*A 28 . MIAS A 1 SOC JH 4 T HE
LN LAEFHEI L 664 cm ) X FE 221 K
AR TR S 2210 (v) = 2)—12%, 22 (v = 1)
—120F, 22I(v' > 1)—148+, 22I(v' = 0) —12A,
2M(v' = 1)—VA. PABERNEL v = 0
A 1S, A SHHEE, AHBS S SOC 4 Moo 4
XA Y ML 1484 em !, T AR & A TR 5 10 4 1
AR vV = 0 RehREH & 12A—148 1, 12A—
A GHIBE AT, ERSIBER v =0 fl v/ = 1
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(a)
20 |

12A-14A
/
15 /\

2211-14%+

/
2201-14A

10 L1zs+02m1
/// 12A-2211
/\12A-14E+

o

| Hsol/(10% cm™1)

ot

N
| 12m--22m

2.5 3.0 3.5
Bl R/A

5
Fig. 5

tance.

BT, 22A 255 1411, 2411, 3200 AH%2, AHAC .Y SOC
%Eﬁlﬁizéﬁxﬁﬁi@ﬂ# 454 em!, X FEL 22A KW
JRENBEGMIT 22A(V = 1)—140, 22A(V' = 0)—
200, 22A(v' = 0)—32I1 i iH KA U ES. 3201 54F
PRBNBED v/ = 0, v/ = 1 1 v/ = 2 {HE AN 1410, 2410
BAHAE, FHAE Y SOC HEMTTAaRHER T 321 cm ™,
[RIAE il e A TR 5 P 2%, 3PS v = 0 Bk 3
fEom I 32— 1401, 32TT—24T1 3 18 T 5.

ICIHAFEF Q 5B HEMAILTEEH
SOC BN 2252 i 25 R 25 440, i 2 A AH TR
Q) A-S ﬁf*ﬁﬂiy\&ﬁﬁﬁiﬁﬁaiﬁfm%
S T 0 A5 3 2 3R 0 22 X Sk PECs 28154 S &
XA ECP B TR %R ﬂﬁ&‘fﬁﬁ@k

3.3

20 F
22A 1411
15+ <

22A-24%7
10 +

|Hsol/(10% cm—1)

2.5 3.0 3.5
il R/A

AL 2200, 12A 25 (a) F122A, 3°T1 25 (b) BY A E-PUIE RE-5 HE K 0 R 18] B9 22 1k

. Variation curves of spin-orbit coupling matrix elements of 22II, 1A states (a) and 22A, 3%II states (b) with internuclear dis-

fift AR 7 8, TSRS T Q BRYRESR. 35 3 5
TR O AN R OC R R B BR = TA] Y e
Al A S A FR AR T AR B R T+ (PPg,) + Cl
(*Pug o) I RE T 22 70 31 4 821, 6433, 6901, 7254,
7722, 13950 F1 14771 cm !, 5520045 B B 1 254
3 61 ¢cm 1(6.91%), 15 cm (0.23%), 186 cm !
(2.62%), 76 cm! (1.04%), 247 cm! (3.10%),
223 cm™ (1.62%) 1 161 cm™ (1.10%). L4k, Cl
(*P39)-C1(*Py j5) 1Y SOC BFRLHFEERN 821 cm' Y,
X5 882 em !SI I £ 45 W) &l B4, SOC
BN FE ICIH o F B 1 19 21 4> A-S 8 BF 2L AL
424 QA& N TIEMWAT UL, MRS FRIE Q = 1/2,
Q=3/2,Q=5/2H Q= 7/2H1 PECs 4 % 40
K 6(a), (d) fn. JETFHISTHE R Q&K HEE

#3 ICHHTET Q SHMELR
Table 3.  Dissociation relationships of 2 states of ICI™ molecular ion.
T A (I 4Cl) 0% PeRjom'

A S

It (*Pg,)+CI(*Puys) 7/2,5/2(2), 3/2(3), 1/2(4) 0 0

It (*Pgy) +CI(*Puy 5) 5/2, 3/2(2), 1/2(2) 821 882

I+(*Pgy)+C1(2Pug ) 3/2,1/2 6433 6448

I (*Pgy)+ClI(*Puy/s) 5/2, 3/2(2), 1/2(3) 6901 7087

I (*Pgy)+CI(*Puy ) 1/2 7254 7330

I (*Pgy)+CI(*Puy ) 3/2,1/2(2) 7722 7969

I*('Dg,)+C1(*Puy ) 7/2,5/2(2), 3/2(3), 1/2(4) 13950 13727

I+('Dgy)+Cl(*Puy ) 5/2,3/2(2), 1/2(2) 14771 14610

VE: 9 3CHR[34].
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(a) 4 (b) 4
I+ ('Dy2) + CI(2Py1 2) I+ (1Dg2) + C1(*Pu1/2)
T+(1Dg2) + Cl(2Pysy2) 1('Dga) +ClCPusy2)
3 3F
. , T5(3Py1)+C1(Py1 o) . I+ (3P 1) +C1(?Py1/2)
P ngg ;18}@5 u1/ 2; 7 I+ (3Pg1) + C1(2Pyy3/2)
g 1P +OICPLs | B 1 (P) +C1CPusy2)
< 92 7 1 (3Pg2) +CI(?Pui 2) <+ 92 T+ (3Py2) +C1(2Py12)
= I+(3Py2) +C1(°Py3.2) S 14(3P ) 4 C1(P o 2)
e e
= 1/2(111) e 3/2(111)
=gt =gt 3/2(11)
1/2(I1)
X211, /s
A oLV XMy o 9T
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
HilEgE R/A HilEgE R/A
(c) 4 (d) 4
K?JID;&H'CMZPM/?) 7/2(11)
3t [ ('Dga) +C1CPusy2) 3t I+('Dy2) + CICPa2)
—~ I+ (3Pg1) + C1(*Pu3z/2) o
| |
é I+ (3Pg2) + C1(*Pu1/2) é
L 2 L 2
& I+ (3Pg2) + CL(*Pus/2) < I+ (3Pg2) + C1(2Poa)2)
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Fig. 6. Potential energy curves of the €2 states of ICI" molecular ion.
F 4 ICHHFETF Q BEDGIEHEL
Table 4. Spectroscopic constants of €2 states of ICI* molecular ion.
(97 T./cm! Dy/eV B,/cm* w,/em™ R./JA R AL FEEHIA-SHLSY /%
AL 0 2.31 0.1216 419 2.250
X211 S 390 X211 (98.1)
i S 429 2.240+0.01 '
Hige) 311 2.470
AL 4501 1.75 0.1217 426 2.248
X211 Jesa 1080 X211 (97.7)
" S 4670416 437 2.22440.001 '
Hiigo 5424 314 2.460
1/2(11) AL 14808 0.50 0.0864 244 2.666 142~ (79.7) 125+ (12.5)
, 122~ (38.3) 1'%F (25.7)
1/2(TI1 17191 21 . . ‘
/2(I1I) ES'S 719 0 0.0656 78 3.063 01 (10.8) 1211 (5.8)
3/2(11) AL 15202 0.44 0.0831 156 1.518 14%~ (80.7) 1S+ (6.7)
AL 16795 0.21 0.0649 107 3.003 1A (58.3) 12A (34.8)

3/2(11I)
[

T I 3CHR[6]; P SCHR[12]; 9SCHR[16]; DSCRR[33).

ek, N HIBUE R Jr ks 1R el Q 250635

B, XA IER 4. 12 SOC aME’J%HHT BS XL
BESLBAS Q25 X0 o Al X200, PUTEZS 11543

R4S QA 1/2(10) 1 3/2(T0), 1/2(11)-3/2(10)

[ A Jie-$LaE

B34k 394 cm !

1w, A 419 cm!

IS SOC R, RATHSIES X1

, HEaEEG2E R 390 ecm ! 1 29 em !

(7.42%)0. Ft Yencha 45 2 I B9 w, fH 429 cm !
U/ 10 em 1(2.33%). FATITHEA X2113/2 ¥ R, M
2.250 A5 szuG 4k
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XF 22 B A PR G S50 2.470 ADS i 25 4 BN W B
A5/ X T X gy, w, il wez, FITHEEE R 50500
426 cm ' A1 2.13 em™!, 5 Yencha 5% 12 52 5 {H
437 cm ' F12.08 cm ! AUHHZE 11 em ™t (2.52%)
0.05 cm '(2.40%). A1 B 1Y X2H1/2 1 R, M
2.248 A, (UL S B 2551 (2.224 + 0.001) A2 i
0.024 A(1.08%), 52 A ERIE45 3 2.460 A9 A
Mo, IRZEA BN IR AL . AT R XL -
XMy H) F E-BUIE 70 24H N 4501 em !, L5
Y9 fH 4680 cm ' Fl (4670 4+ 16) cm !/ 179 cm!
(3.82%)133 1169 cm ! (3.62%)12.

54l A-S & VS ML, THE 1/2(10) A1 3/2
(I0) fY T, 4353875 1191 1 1585 cm ', % J& SOC
SBLAYREIR, 1457, (1/2(10) B w, fEM 218 cm!
ARAEE] 244 em T R T 26 em Y 1455, (3/2(10))
(1) we (HAEHR 156 cm !, J/N T 62 em L. FHETTHAAS £
(¥ 1/2(11) A1 3/2(11) B Dy 4351k 0.50 1 0.44 eV,
B /NT4lE A-S S 1S 453 0.83 eV. 2,
FIEF| T, 1 Dy B2, n IR SOC 2L
X Franck-Condon X 383 & 2 19 PECs JE{R F1fi#
BIRE Dy HA .

3.4 ICI*Hr FEFHIKITMER

& Franck-Condon J& ¥ , Franck-Condon
7] LR v - BRIE G IS B9 B 4r A . 78
MRCI K b+ 5 7 H BRI 4 (transition
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H1 22A-X2T1 i TDMs W& 7(a) Fizs. FfE A RNEE
HY 3G K, 22A-XT BRAE /9 TDM & i ik /)y, 12A-
X201 ) BRAT M £R 26 A% IR 2.00—2.50 A [1] 3%
Wk, ZJE RN, ZERZIRIEE 2.90 Akh B —
AR 0.018 a.u Ay I 16 . 229+ X21T & 325+
X201 FERZ A 2.50—2.75 AAbBRAE ih £k A= T 28
A, X I Y AR [R]OR: B F, 285 22 ] 1) e £ 22 S
BGFTE F 7(b) ST 1/2(10)-X210, 5, 1/2(100)-
X5 H 3/2(II0)-X2T15 5 £ TDMs Hi£k. WA 7
T, MK )3 K T Franck-Condon X (T,
FiA TDMs #fIT T2, 1/2(11) 21 A-S B
157(79.7%), 3/2(111) FEH A-S g2 11A(58.3%)
A1 12A(34.8%), 1/2(111) FE ) A-S A& T
Y ENN A ZES. ARYE B R EKE R
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TDM e HAl 1/2(TI0) 2581 3/2(111) 75 5| HE 25 A IR
SENIVE

I LEVEL F2/7 P9 R/13 1 225 +-X211, 3%%+-
XL, 12A-X2M, 22A-X2T AL 1/2(11)-X2T0, 5, 1/2
(II1)- X113, 3/2(III)-XII5 5 BR LAY Franck-Con-
don HF, MHOCHITTEZE RN 5 BTy, BEE R
REZR v/ v/ B WIS R, IR A BRI AR A 1Y
Franck-Condon KT FEZ HIHE K.

(b)
0.12}

| 1/2(111)-X2M05,
3 /
0.06 f

BRIE R /a.u.
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Fig. 7. Transition dipole moments curves of ICI* molecular ion.
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#*5 IO & FEER Frank-Condon HF

Table 5. Frank-Condon factors for the transition of ICI™ molecular ion.

v'=0 v'=1 V=2 v'=3 V=4
12A- X211
V=0 AL 1.888x10°17 8.612x10 16 1.956x10 14 2.919x10 18 3.193x10 12
V=1 AL 3.271x10°16 1.436x10 14 3.138x10°13 4.501x10 12 4.724x10 11
V=2 AL 2.958x107% 1.252x10°13 2.635x10 12 3.635x1071! 3.662x10710
22A- X211
v = AR 4.361x10°% 5.255x10°% 2.996x102 1.085x 102! 2.796x 102
V=1 'S 1.373x10°% 1.547x10 2% 8.325x10 22 2.864x10°% 7.046x1019
V=2 AR 2.081x102 2.230x10 22 1.149x10 20 3.797x1071 8.989x 10718
223+ X201
V=0 AL 5.553x 1027 5.602x10°% 2.715x10°2 8.439x10 2 1.889%1020
V=1 AL 2.304x10 % 2.065x10 % 9.017x10 2 2.559x10 20 5.290x10 1
325X 201
V=0 AR3L 4.161x10 2.943%10°16 1.010x10 14 22161013 3.456x10 12
V=1 AL 4.071x10"7 2.814x10°15 9.431x10 4 2.019x10 12 3.067x10 1
V=2 AL 2.033x10°16 1.374x10 14 4.503x10 13 9.412x10 12 1.394x1010
1/2(11)- X?TI3
V=0 AR3L 1.226x10°9 3.102x10 8 3.870x10°7 3.155%10°¢ 1.872x10°%
V=1 AL 1.923x10°8 4.431x10°7 4.996x10 3.649%10°° 1.921x10+4
V=2 AL 1.679x10°7 3.501x10 3.541x10°? 2.206x10* 1.060x10°3
1/2(110)- X *I1
V=0 AR3L 1.314x10 22 9.703x10 2! 3.517x10°19 8.368x10 18 1.457x10°16
V=1 AL 5.532x10 2 3.879x10°19 1.346x1017 3.083x 1016 5.184x10 1
V=2 AL 2.944x10°20 1.987x 1018 6.647x10°17 1.468x 1013 2.379x10 1
3/2(100)- X I,
V=0 AR3L 1.106x10 22 5.929%x10 2! 1.542x1019 2.607x10 18 3.216x10 17
v =1 AR3L 3.736x10 2 1.836x10°1 4.435%10°18 7.052x1017 8.256x 10 16

#6 ICIHFBTFIES 4o

Table 6. Radiative lifetimes of ICI™ molecular ion.

o R /s
v =0 v =1 v =2
12A-X21I AL 5.69%10°3 4.92x1073 4.40x1073
22A- X1 AL 5.83%107° 6.18x10° 6.99%10°
2251+ X201 AR3C 2.91x10°° 3.28x10
322 X200 AL 1.58x107% 1.66x10°% 1.83x10°%
1/2(11)- X 115 5 AL 3.73x10°2 3.42x102 3.09x102
1/2(I11)- X 115 5 AR 1.38x10°2 5.43x10°3 7.61x10°3
3/2(110)- X1 A3 3.28x10°2 2.06x102
H & HES i A E Al " P 845 Z [8] 1) Franck-Condon A, TDM
(A BV an WEBGE I, AR, (B cm 1)
” EIRIBER v 5 v BIRE R ] R, R RE B RK
= 5 3 HPR shRE R SR 5 5w, (DL s BT Al LLGHE
6474 age TDM[* > " sy (AE, ) \ o ‘
vee SN (1) AR 6 AR T 225X, 320t
4.936 x 10°

= (1) X201, 12A-X211, 22A-X20T il 1/2(T0)-X2Ty5, 1/2(I10)-
TOMEY o (A L e
v X2y, 3/2(I0L)-X20L, 5 BRIEARAS 19 50 55 75 4.

Horh, ag JRBUIRPAR, bR BITEREL, g H 12A-XPIT T 1/2(10)- X200, 5 BRI (9 8 55 75 i B
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Pshi TR R, T 1/2(10) -X2I0;)
S f % [8] BE B TR TDM He 3 1/2(I00)-X05 9,
3/ 2(I00)-X2T1, o BRI/ MY £ B 1/2(11) A4RE)

RESAR ST 5o i 1E 1/2(T00) 2580 3/2(T00) Ak,

4 % #

AR Fﬁm** #) MRCI+Q HiEITAE TS
ICIH 3 2 W SR AR B AR R DG 1Y 21 4> A-S
AL *@. HHREPZIET SOC &N Ff-1r i
TR, BiE T 21D A-S A 424 Q B HY
PECs. 7189 PECs 2t |, 8 T Rai A 10%

TR, 5L EE R A B TERE T 28 SN,
225 /325 2201 /3201 251 DMs 2745 2 K T4
Méﬂuﬁkﬁ%éﬁﬂ’r k. B Ee IR R SOC Al

JG, MBH T 2201, 3210, 12A, 22A FARE s 2 ] 42 2
B’J*HE{/EFH. 2201 538 3 12A BAE v = 0 PR3N fiE
9 BT P IR TR, 12A St VA BV = 09k
BIREH R LA TR, 22A 2580 3211 A4l 2411
A I BTE v = 0 IRSI BB PR g . 1
A, AT 225 1-X200, 320 +-X201, 12A-X211, 22A-
X1 1/2(11)-X?M3)9, 1/2(I10)-X?I135, 3/2(111)-
X35 BRATE (9 TDMs, 9 22 5 - 55 K 5 F1 8
il

B4 ¥ R M E WA
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Abstract

The electronic structure of the ICIT molecular ion is investigated by using high-level multireference
configuration interaction (MRCI) method. To improve computational accuracy, Davidson corrections, spin-orbit
coupling (SOC), and core-valence electron correlations effects are incorporated into the calculations. The
potential energy curves (PECs) of 21 A-S states associated with the two lowest dissociation limits I7('D,)+Cl
(°P,) and I*(°P,)+CI(*P,) are obtained. The dipole moments (DMs) of the 21 A-S states of ICI* are
systematically studied, and the variations of DMs of the identical symmetry state (225+/32X+ and 2%1/3%1) in
the avoided crossing regions are elucidated by analyzing the dominant electronic configuration. When
considering the SOC effect, the A-S states with the same 2 components may form new avoided crossing point,
making the PECs more complex. With the help of calculated SOC matrix element, the interaction between
crossing states can be elucidated. Spin-orbit coupling matrix elements involving the 22IT, 32II, 12A and 22A
states are calculated. By analyzing potential energy curves of these states and the nearby electronic states, the

possible predissociation channels for 2211, 32I1, 12A and .

22 states are provided. Based on the computed PECs,

the spectroscopic constants of bound A-S and ) states 5201
. . . o 22A 32T 128 4711 I+(!D,) +CI(2P,)
are determined. The comparison of the spectroscopic 3 s .

constants between A-S and (2 states indicates that the 311

241 245 141 I+(3P,) +CI(2P,)

SOC effect has an obvious correction to the spectro-

scopic properties of low-lying states. Finally, the

transition properties between excited states and the

Energy/(10* cm~1!)

ground state are studied. Based on the computed
transition dipole moments and Franck-Condon factors,

radiative lifetimes for the low-lying vibrational levels of

excited states are evaluated. All the data presented in . . . L .
this paper are openly available at https://doi.org/10. Internuclear distance R/A
57760 /sciencedb.j 00213.00140.

Keywords: IC1T, MRCI+ @ method, spectroscopic constants, spin-orbit coupling, radiative lifetimes
PACS: 31.50.Df, 31.15.aj, 31.15.ag DOI: 10.7498/aps.74.20250510

CSTR: 32037.14.aps.74.20250510
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ou(hv) R i B ISR ¢ BB A OG L B . %
ST S W W A 375 B B2 DTk AT ] Kramers #%
3
_16n2e*h? Z3Nugin
3v3c(2mm)*? (kT) V2 (hv)®
Hr, N, AR R A i TR, Z, N
FHLAT, g PRV A H-H H Gaunt . 5 I
ZAuE 1t Thompson HUF #1235,
XHE, XFREE N e DG, SRR AN E DA
pr’ (hv) = [pey (hv) + puor () + pue (hv)]

x (1= 4T+t (), (8)

B FE ) — R T & % 182U
X B g (ho) i prgean (hv) 5300 2278 H |- H R
(free-free transition) I FE (scattering proc-
ess) DTRRAYI IS R EL.
Rosseland F1 Planck ~FYAREH R
1 Wk (u) du
ml ®

(7)

Oiff (hl/)

Ky — /0 0 (1) — b ()] Wp (u) i, (10)

ok (w) T kgean (w) 73 R85 18T 52 B0 Y
SV SN B R U R STk 0 AN B B, 294k
Y FRERE X K u = hv/ET , Rosseland il Planck
FEE SR 0N

_ 15 u*exp (—u)
ey E

15 ulexp (—u)

)

(12)

Rosseland #1 Planck A PREVHITE u~3.8 Fil u=~
2.8 PUKAAE, BHRIAENEALL, Rosseland F1 Planck
U PRBSGRSOR /.

22 EBFFHEBTE
M EIRANE ) T LR, AN IR
RN R e NG R SR N g N = e ANt U A A
MEH , X LR AT AR B R 5%
B IRR R BT, R A AR B A S
TIRBRI AT B R B RE T RE. 7R H i
THITC ST PRAT, I A5 B A B R S B
FH g/ DR B, 759 3145 B U Ha B2 P4
Niv1 _ Zin ﬁiefw/w
N; Z; h3 N, ’
(13) XFRIAT i+ 1 EEEE TS B EE T
RFECH Z B TR R A FL B SRR 2
[ O R X TP 19 45 B R, — B[] FL iy
KL A XS o A i 2, IR 2 AR PR B IR 25 = et
ARl LR A H BRI 3. X o, FoR
i FLBS R BT Y .

(13)

23 EFSH

SRS TR 17 B R A T OR EOR  A AR Jit
TS, XTSRS T RES . RETRESR
ZIF] R SR R TR | R RB S ) o F B A A
HELEAS 2 B A WS4 R BY 20 B A A
A BRI TR R, — BT A R, X
TERF B TR FERU N, PRBE 88 11 R i AN
HE R . BT ANy S AT S Y
I SCHR [28,29]. HUR LR % 5B TR B, 4%
IR A s 1 B BRE IAR 5, X S5
AR, AT F S AN B WL, R 2%
JE T 22 ) AR

3 BREBEFME

H Al B b =2 AN B R T W22
SCHiK [32-37). BRI IR, X HORNRIFISIR. X
JPA Y — R R AR & A B 1A, BRI
FEAT &S, ATOMICET 41 X% Z 285 71k, it
BT W ANIEW B, e R i G B
B, A F B XTI R T
HJ2, &% B TR AR IR & Bz, M LU 350
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FRITELR ISR A T HREEAS M TR T8 n = 2 BRI
R RAEERATE, MG T-REEAE 1500—2100 eV
ZIRELk H THRESNER/RFHE 0 = 1 KR
D RARAE . AN SRS I = S O6 TR
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TRl L2 Wi R E TR, 75— e FEE
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100 F |
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Fig. 1. Comparison of opacity obtained by present work and

ATOMIC code for Al plasma at a density of 0.1 g/cm® and
a temperature of 100 eV.
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LRI R Y T RE B X ek, P AR R B TR

B —BhE. X TSN = G RE X,
W) & BF. X 1s-np MYBRIETEER, Rl & 1s-2p
TELR, TELsE B S Z4Y BRI — Bk, FERAIR
HFRERE X, SRR, A, XA
& FRE & X 4 22 5 %F Rosseland A1 Planck “F- 1A
175 I EE S AR /)N, 33K 2 PR A THIRLEE SR 100 eV Y
25 B TR, Rosseland A1 Planck A% 5 pR 405> 5] 75
380 eV il 280 eV St RERH AL IR KAE, St TAE
AR, AR PRGN, MUY Rosseland Fl
Planck ~F-¥ 532 B FE 1) TTRR 8/ ).

B 2 IR AR SO R R R 0.1 g/em?®,
JEH 10 eV SR AEE TR AE W EZ 5 ATOMIC 4%
PRSP R, FEgh R FRER N, AN CZ
R ATOMIC AT 5 B X T BoA 1 Ik
WG RE i X8, B TR A SR B R A
— B, HR, W TSR R I E RO RE R X
B, 5K 1R A K. X 1s-2p M,
ATOMIC PHE- R T AL TG TRER 29 1700 eV
P E AL F BRI, BSRXT TR N 10 eV ISR
T, AT A E R RO T Rosseland
F1 Planck V#1488 BB (52 AN K A2 A SO
IR SRR H JR IR T ik S s 2540, XA F) T4 fl
PO A B A B S5 R R AL
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—— This work
---- ATOMIC

105

L
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I
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I
103!
I

102 L . .
0 1000 2000 3000
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2 RN 0.1 g/em?, IREEHR 10 eV 1Y Al 55 5 F AN B
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Fig. 2. Comparison of opacity obtained by present work and
ATOMIC code for Al plasma at a density of 0.1 g/cm® and

a temperature of 10 eV.

Pl 3 T 7R R AR ST 1) 40 45 8 TR AS 35 W)
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Fig. 3. Comparison of opacity obtained by present work and
ATOMIC code for Al plasma at a density of 0.001 g/cm?®

and a temperature of 100 eV.

(] 4 I 7R SR AR SCHBRL ) B0 5 B AR AS 375 B
5 ATOMIC 3 HR45 R e, A B IR/
N 0.001 g/cm?, JHEHN 10 eV. H5E 3 —FE,
ATAEI B ES A EW S ATOMIC )
PRIZE BAF AR R 4, (HJE, XTS5/
HFRER XL, E S RAE— xRy, T2
ATOMIC 58 e T 8 43 i= BBV Y 1s-np LR
W SRR 10 eV FIARAE B PR, X B85k
FELR T T34 Rosseland 1 Planck "3 A5
HH SIS K, R ATOMIC &l R A 6
1, (EJEAR SO R S5 SR AR b R R T X Sl
S5 SO TR Sz T 5T = AN AT s .

15 THR S B FARLES R 0.001, 0.005,
0.01, 0.05, 0.1 g/cm?® FNR FE A 2, 5, 10, 20, 50,

100, 150, 200, 250, 300 eV %% 14 T f{) Rosseland

1 Planck FHABEI . 7T LAE H: FE4 E R
T, Rosseland F1 Planck AN 375 B [ #R b 2% i 1
RIMBEK; FELL E R E T, Rosseland F1 Planck
SEEEAN 375 W — R i Y A R il ), ER A R
U BE DX B i 2 3 B i — A (ANAE 10 eV
20 eV JREm).
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—— This work
---- ATOMIC
_105F
&
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2
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E oo}
i3]
&
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o .
103 F
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Photon energy/eV

3000

4 #JEH 0.001 g/cmd, N 10 eV 1Y Al S8 AR
BEWIE S ATOMIC F PR a0 L, b S8 A
TAER B LS R, L0 ATOMIC B4 45

Fig. 4. Comparison of opacity obtained by present work and
ATOMIC code for Al plasma at a density of 0.001 g/cm?

and a temperature of 10 eV.

BREB T

Bl 5 BT AR TAE TR0 4k 45 B 1RO 35 B
JE5 ATOMIC B R M ZE R L, S5 s+
KRB %R 0.1 g/em?®, JWEE R 100 eV, SEZHAR
TAEMSRIMEE R, AL ATOMIC F AR5 E11)
SEOL. B 5 AL, A AR R AR I IR A T AR A
3 N 2 WAL X 8 A R A T 22 1] ) WA X 3k
HFREE/NT 500 eV HUTELR ISR H T £ & F

3.2

# 1 AEEFREAREEMANRIRE T %44 T Rosseland Al Planck P4 AREWIEE (cm?/g)
Table 1.  Rosseland and Planck mean opacities (cm?/g) of Al plasmas at different densities and different temperatures.
0.001 g/cm? 0.005 g/cm? 0.01 g/cm? 0.05 g/cm? 0.1 g/cm?
Tjev Rosse. Planck Rosse. Planck Rosse. Planck Rosse. Planck Rosse. Planck
2 74333 500110 87959 474839 110647 474197 177509 402629 180822 359046
5 7551 44620 8766 68329 11913 80658 25790 113542 30749 118019
10 1042 12392 2314 14992 3704.4 17395 9399.6 28422 13504 36801
20 1246 28704 3385 40416 5206.4 45251 14575 56812 22679 62396
50 405.4 5686.7 1711 10153 2826.8 12598 73214 18380 9899.5 20553
100 13.35 102.87 70.71 430.02 141.81 748.41 575.15 2409.4 875.08 3486.0
150 1.856 66.030 7.442 102.91 17.045 142.69 75.255 399.56 136.60 626.05
200 1.011 113.10 2.888 208.52 7.2548 254.77 32.294 366.71 68.368 447.57
250 0.632 49.966 1.903 161.38 4.4554 239.37 22.087 461.37 51.632 571.70
300 0.446 15.575 1.180 68.428 2.7127 123.48 15.009 353.16 38.217 499.53
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JETRERTE 700—1400 eV Z Al Lk 1 T ol
BEETE n = 2 R RGRT, ETRE R
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TR T BN B RS 4.
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Fig. 5. Comparison of opacity obtained by present work and
ATOMIC code for Fe plasma at a density of 0.1 g/cm® and
a temperature of 100 eV.
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ZE A BRI ERIE. FTLUE Y, A TAER TS5 R
5 ATOMIC 3 472 6 TR &=/ T 5000 eV i [
A FLARC T, XFT 10 eV 33X BE AR T 25 35 114
X —RER XX Rosseland I Planck 344 i% H
B T Tk, SR, B FRERE KT 7000 eV 1Y

X3k, ATOMIC FHHEA35 A IS AW RE I . LeAS
TAERFRIRR. [Al, & fE A iSLm e ATO
MIC B9 A Bk, BARIX /%) Rosseland
F1 Planck V344 % B R L A7 H4 ok
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Fig. 6. Comparison of opacity in photon energy range of
0-1500 eV obtained by present work and ATOMIC code for
Fe plasma at a density of 0.1 g/cm® and a temperature of
100 eV. The Rosseland and Planck mean opacities are
largely contributed by this photon energy range.
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Fig. 7. Comparison of opacity obtained by present work and
ATOMIC code for Fe plasma at a density of 0.1 g/cm® and

a temperature of 10 eV.
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Fig. 8. Comparison of opacity obtained by present work and
ATOMIC code for Fe plasma at a density of 0.001 g/cm?

and a temperature of 100 eV.
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Fig. 9. Comparison of opacity obtained by present work and
ATOMIC code for Fe plasma at a density of 0.001 g/cm?

and a temperature of 10 eV.
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XS TIEETRER 800—870 eV X, BN HIS
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Fig. 10. Comparison of opacity in a photon energy range of
0-1200 eV obtained by present work and ATOMIC code for
Fe plasma at a density of 0.001 g/cm? and a temperature of
10 eV.
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%2

B FIREA R BERIASRREE T 4514 T A9 Rosseland Al Planck AN EHEE (cm?/g)

Table 2. Rosseland and Planck mean opacities (cm?/g) of Fe plasmas at different densities and different temperatures.
0.001 g/cm? 0.005 g/cm? 0.01 g/cm? 0.05 g/cm? 0.1 g/cm?

Tjev Rosse. Planck Rosse. Planck Rosse. Planck Rosse. Planck Rosse. Planck
2 69215 122715 93585 143915 101029 143805 100652 120432 85765 113541
5 9788 13619 23498 27432 31742 35133 48273 52965 52803 61748
10 5315 29879 12131 32782 16194 34114 26873 38585 31552 42038
20 7161 36974 12584 43595 15700 46071 25757 50931 31150 54002
50 1445 5884.9 4158 12006 5332.3 14315 7820.3 16013 8793 16451
100 28.18 1047.9 103.6 1480.7 191.43 1796.2 698.52 2675.0 1064 3285.1
150 26.39 1153.8 76.25 1883.5 114.02 2283.2 257.79 3101.6 358.9 3324.9
200 9.206 507.14 49.10 1130.5 87.143 1487.9 245.45 2462.3 349.5 2887.7
250 2.560 118.79 15.45 424.09 36.795 661.47 173.29 1455.3 280.1 1878.9
300 1.009 28.096 5.710 127.37 13.817 229.07 79.424 685.91 158.0 1000.9

(RS HAA P 5—P&] 7 FE 9 5 RAFAE2E R X
U2 S ) S R LU AR 4, B SR PR S U e A E
WA [ WA TR T BRI, TR
D B A T BB AR AE 25 57, IO A5 B 1A 25
iy A AT A — R T, AR T
(SR 1 FH 3R 43 DTRR %) 3% 2 AN 355 W B 45 R T e A
TE2E 5. AW-H BBV ZERNRERE, 5§
Sh- 11 F AR DTk N2 B B A 2 S A DR DR 2 .

2 90 T RS B FRTER L 0.001, 0.005,
0.01, 0.05, 0.1 g/cm?® FIEEE N 2, 5, 10, 20, 50, 100,
150, 200, 250, 300 eV 514 T ) Rosseland il Planck
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Fig. 11. Opacity of Au plasma at a density of 0.01 g/cm?
and temperatures of 10, 20, 40, 100, 200 eV.
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Bl TR R T, XS 5T =T R AT A I 40000 =
AR >, X AN 325 B B2 1 DTk sk K 45 15, 4dat

BFRIRER] 100 eV B, 23 A4 5THRAR B2, X
SO 2 MR I 3 A AR AR RO TR R X (N T
1200 eV) DGRBS X B (55T 2000 eV). Ky
TGS b R X SR 2, X A S SR
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JEH 0.01 g/cm?, A 100 eV F51F T O HE S A
B, EEA SRS bR R, v LR
 FEBARGFRE R B, EZ ROk A
T FERFEH 4 BFRGTERIE, Hrd M 4f F TR
I B L N B sk, AN 4£-5d, 4f-5g, 4f-6d, 4f-6g,
A£-7d SERTUA LR

R G T RE VB, AL 12(b) AT AR
h, BRSOk A TN EETECY 3 BERST
BRI, Hor M\ 3d HLFBRIE TR S e, AN 3d-
4f, 3d-5f, 3d-6f FFARIAYIELL, HAb, 3d-4p, 3d-5p,
3p-4d, 3p-5d, 3p-6d SFEERIE ISR B A — % 1Y DTk
TSR T IRTEREHR 0.01 g/cm?, IR 100 eV
ZAER, TS ZR M G G 1 B 203 KT S IR AN
B, R THE 100 eV RUTERE TR, S5 TR 4T
AN R 4 e R H FAEIRBEN 10 eV
B AR, 2RI TR B M A R SRR AN ).

2 3G T & B FRTER R 0.001, 0.005,
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SEYIRBEIH . G E IR T, SRS T
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Fig. 12. Opacity of Au plasma at a density of 0.01 g/cm?
and a temperature of 100 eV contributed dominantly by

line absorption.

4 A
AEWIEERIPTTE C LT TARKIERE, T
HAEA AR R AR S U A F 2N, AV e B 10
RS WA Y BRI AE AW A AT R B
B IEAHORAS R K, XA B Y B S
BARE R oR St — e, X4 S A ELE AT T
$RH T HE AP

#*3  SHFEFRAEANFEEMANRRE T 54 1 Rosseland A1 Planck ‘4 AEHEE (cm?/g)
Table 3.  Rosseland and Planck mean opacities (cm?/g) of Au plasmas at different densities and different temperatures.
0.001 g/cm?® 0.005 g/cm?® 0.01 g/cm? 0.05 g/cm? 0.1 g/cm?
T/ev Rosse. Planck Rosse. Planck Rosse. Planck Rosse. Planck Rosse. Planck
2 25768 51205 43857 54878 49268 53670 44582 43170 35752 35122
5 15954 38279 30437 44722 37862 46872 46119 47813 43420 45362
10 14646 43051 21935 48723 26683 51154 36889 55148 39932 55264
20 3779 30135 5571 34903 6315 36553 8716 39240 10146 39855
50 1565 7258 1922 8683 2099 9326 2711 10886 3113 11492
100 594.7 5570 882.9 6501 1041 6926 1648 7894 2108 8307
150 346.7 2781 683.5 3523 922.5 3890 1460 5088 1707 5579
200 181.2 1239 383.6 1830 495.8 2099 874.0 2838 1093 3156
250 57.16 529.3 212.2 932.5 298.4 1127 561.7 1679 699.8 1945
300 11.19 342.6 69.32 573.9 138.7 717.1 349.9 1093 456.5 1284
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Database of radiation opacity of low-density aluminum,
iron and gold plasmas”
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Abstract

Radiative opacity plays an important role in investigating radiative transfer, radiation hydrodynamics and
other relative disciplines. In practical applications, these data are mainly obtained by theoretical calculations.
The accuracy of the theories is checked by limited experiments. Within the theoretical framework of detailed
level accounting model, systematic theoretical investigations of the radiative opacity of plasmas such as
aluminum, iron, and gold plasmas are conducted. A database of spectrally resolved radiative opacities and
Rosseland and Planck mean opacities is established for densities ranging from 0.001 to 0.1 g/cm? and
temperatures from 1 to 300 eV. A data base is built based on these theoretical opacities. A huge number of
quantum states are involved in the calculation of opacity, especially for high-Z gold plasmas. This poses a great
challenge for obtaining accurate opacity of gold plasma. For such high-Z plasmas, it is necessary to develop
other codes such as unresolved transition arrays or even average atom models to quickly obtain the opacity.
Accurate opacity data are very lacking for such high-Z plasmas and the data presented in this library provides
important references for other less detailed opacity codes.

For aluminum and iron plasmas, their opacities are compared with those from the code ATOMIC. It is
found that they are in good agreement for most cases of plasma conditions. Yet, discrepancies are still found in
a few cases of plasma densities and temperatures, as indicated in the figures shown in the text. At photon
energy of approximately 850 eV, however, some strong lines of aluminum plasma are notably absent in Al
plasma generated by other codes, which will affect the radiative transfer in the X-ray region. In our code, we
avoid such problems by including all possible line absorption and photoionization channels. The present dataset
should be helpful in studying inertial confinement fusion, plasma physics and astrophysics. All the data

presented in this paper are openly available at https://doi.org/10.57760/sciencedb.22232.

Keywords: opacity, aluminum, iron and gold plasma, configuration interaction, detailed level accounting

model
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Fig. 1. Schematic diagram of the workflow for calculating
electrical conductivity and electronic thermal conductivity
using the TREX code (based on the Kubo-Greenwood for-
mula and AIMD simulations). The red dashed box indic-
ates the core functions of the TREX code (including equi-
librium configuration extraction, electronic transport prop-
erty calculations, etc.). The blue boxes represent calcula-
tions related to first-principles software (such as ab initio
molecular dynamics, electronic structure, and transition

matrices).

FESE — MR B 3l 7 2E i, R NVT
R (T R4 e e R e TR ) RN I s
(1) Kk A& TN, I Nose-Hoover fH i #%%
B R GREE. A2 RS 10000 A [R]
B, R 1 s FER GRS, A 200 43
T Sy R I — A AR 2. TR A,
Wk S IR AT RS S T R ELS (DFT) it
B, Ot KG A1 Onsager R 7EALTE 6
PRI R FE AT, SR S K- 2k hr v 43 A R R, T

RS RGEEEAAR. & sRERY IR XA L b
R R CEE, JUHETEPH Onsager RELHT.
FEVFRET, R R AR AT RE /NG /= e T, (075 ke
PR v ik /N BORE AT A5 R B b i 5 | R 4k B,

o e>—>b

2 SI2DET R AZ3IB 5 Ml A5 s B R (R
TR, LA T RARE)

Fig. 2. Schematic diagram of the supercell structure of
AZ31B alloy with 512 atoms. Blue atoms represent mag-

nesium, and red atoms represent aluminum.
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Fig. 3. (a) Comparison between the calculated electrical conductivity of magnesium single crystal and the experimental values, with

the vertical dotted line indicating the melting temperature of magnesium under ambient pressure; (b) the comparison between the

calculated electrical conductivity of AZ31B alloy and the experimental values, where the black (red, blue) legend represents the ex-

perimental and calculated results at 0 GPa (40, 50 GPa).
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Table 1.  Fitting formula for the electron relaxa-

tion time 7 (unit: 10 s) as a function of temperat-

ure T'is given by 7= AT™" .

g IE#/GPa BEA BMr R
Mg 0 1306.36 1.12 0.9999
AZ31B 0 52.54 0.58 0.9976
AZ31B 40 230.74 0.76 0.9953
AZ31B 50 182.05 0.73 0.9993
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Fig. 4. (a) Composition of various contributions to the thermal conductivity of magnesium; (b) the composition of different contri-

butions to the thermal conductivity of AZ31B alloy, where solid lines and solid symbols (dashed lines and hollow symbols) repres-

ent the calculated results at 0 GPa (40 GPa). Here, ETC denotes the electronic thermal conductivity, LTC represents the lattice

thermal conductivity, and TTC stands for the total thermal conductivity.
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Fig. 5. (a) A comparison between the calculated and experi-
mental values of thermal conductivity for pure magnesium,
with the vertical dotted line indicating the melting temper-
ature of magnesium under ambient pressure; (b) a compar-
ison between the calculated and experimental values of
thermal conductivity for AZ31B alloy, where black (red)
symbols represent the experimental and computational res-
ults at 0 GPa (40 GPa), and the red dashed line denotes
the linear fit to the experimental data at 40 GPa.
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Electrical and thermal conductivity of Mg and typical Mg-Al
alloys at high temperature and pressure”
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Abstract

Metallic materials are widely used in the industrial field due to their excellent electrical transport
properties and superior thermal dissipation performance. However, experimental measurements of electrical and
thermal conductivity under high-temperature and high-pressure conditions are challenging and costly. This
makes numerical simulation an efficient alternative solution. In this study, we develop a computational software
named TREX (TRansport at EXtremes). It is based on the Kubo-Greenwood (KG) formula combined with
first-principles molecular dynamics. This software is used to calculate electrical conductivity and electronic
thermal conductivity. Using magnesium and magnesium-aluminum alloy AZ31B as research subjects, we
systematically investigate their electrical and thermal transport properties. The temperature and pressure are in
a range of 300-1200 K and 0-50 GPa, respectively. The method involves using first-principles molecular
dynamics simulations to obtain equilibrium configurations of high-temperature disordered structures. Electrical

conductivity and electronic thermal conductivity are calculated using the KG formula. Lattice thermal

-
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conductivity is determined by the Slack equation. To validate the reliability of our approach, we perform
comparative calculations by using the Boltzmann transport equation. The research results are cross-verified
with experimental data from Sichuan University and the Aerospace Materials Test and Analysis Center. The
findings demonstrate that the maximum relative error between computational and experimental results is
within 20%. This confirms the accuracy of our method. Additionally, we elucidate the variation patterns of
electrical and thermal conductivity in magnesium and AZ31B alloy with temperature and pressure. These
patterns include the reduction in electrical conductivity due to aluminum doping, the significant enhancement
of conductivity under high pressure, and the unique temperature-induced thermal conductivity enhancement in
AZ31B alloy. The TREX program developed in this study and the established performance dataset provide
essential tools and data support. They are useful for research on electrical and thermal transport mechanisms in
metallic materials under extreme conditions, and also for engineering applications. All the data presented in this
paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00128.

Keywords: Kubo-Greenwood, magnesium and AZ31B alloy, electrical conductivity, thermal conductivity
PACS: 71.15.Mb, 72.15.Eb DOI: 10.7498/aps.74.20250352

CSTR: 32037.14.aps.74.20250352
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NZ+(2p? 2P°)+He"(1s) 7%, 611 28.5454 28.5665 0.0211
N*(2s%2p? 1S)+He?* 81y 28.9204 28.8690 0.0514
N%+(2s23p 2P°)+He*(1s) 9%, 71 30.4405 30.4586 0.0181
N?+(2523d 2D)-+He*(1s) 10's, 811, 4'A 33.1233 33.1333 0.0100
N2*(2s2p3s *P°)+He"(1s) 1113, 911 36.8428 36.8421 0.0007
N2+ (252p3p 2P)+He*(1s) 1011 38.2795 38.3274 0.0479
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Fig. 1. Adiabatic potential curves of the singlet of NHe?** collision system.
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Charge transfer cross sections of collisions of N3+ ions
with He atoms in low energy region
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Abstract

The collision process between N3t ions and He atoms is of great significance in astrophysics, interstellar
space and laboratory plasma environment. The single- and double-charge transfer processes for the collisions of
N3+ with He atoms are studied by using the quantum-mechanical molecular-orbital close-coupling (QMOCC)
method. The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) methods
are employed to obtain the adiabatic potentials and the radial and rotational coupling matrix elements that are
required in the QMOCC calculation. In the present QMOCC calculations, 10 'Y states, 8 'II states and 4 'A
states are considered, and total single- and double-charge transfer cross sections and state selection cross
sections are calculated in an energy region from 3.16 x 102 eV-24 keV (i.e., 2.25 x 10 eV/u-1.73 keV/u).
Comparison of our results with the previous theoretical and experimental results shows that our results agree
well with the experimental values for the total double-charge transfer (DCT) cross sections. For the total single-
charge transfer (SCT) cross sections, our QMOCC results are slightly higher than the experimental results in an
energy region of 0.2-11 eV/u. When the energy is higher than 11 eV /u, the present QMOCC results are in good
agreement with the experimental results. The total SCT cross section is significantly larger than the total DCT
cross section, so SCT process is a dominant reaction process. For the SCT process, it can be observed that the
charge transfer to N?+(2s2p? 2D) and N2+(2s?2p 2P°) is very important. It should be noted that although we and
Liu et al. (Phys. Rev. A 2011 84 042706) both used the QMOCC method to study the charge transfer cross
section, our calculation results are still significantly different from their calculation results. It is due to the fact
that Liu et al.’s calculations only considered 10 'Y states and 8 'II states, and ignored the effect of 'A states.

The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.
00165.

Keywords: charge transfer, cross sections, high angular momentum states
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Tl BT T e EE

7 = 6—>51 HEEEFEREFFT
A BE R EEHTER TR ER"

B 5 il

RE R

KK Fat

(R TRE= B R, B 650500)

(2025 4E 5 H 8 HUk#; 2025 4 7 A 14 HUgBHERR)

ARUEF LU Dirac-Fock ¥ (multi-configuration Dirac-Fock, MCDF) FIZH 24 B AEH % (configura-
tion interaction, CI) REIIA T REEH FIF ] Z = 6—51 [A] C3+, Fo+, Mg+, P12+, Ar'5+, Sc!8+, Cr?'+) Co?'+,
Zn2T+ AsP0+ Kpdt, Y36+ Mo+, Rhi2t, Cd%+, Sn3™+, Sh3+3t 17 B F 1s2nl (n <4, 1< 3) %R 15 4 fe gk
R BE DL X BESR 1) /Y T A B AR (1), BEMER (M1) Fle DU (E2) B R . F a1 45 1 5 NIST 5k
JE B SE i — e S 25 JAF AT X LY, Y AT A 24 KRS A OR BE T 45 R 5 NIST 04 19 22 %4 0.02% LA, H
R TS R0 AR SR A MCDF-+CI 5 45 3] (9 3 45 3L . 107 K84 BRAE S 3R 115 45 5L 5 NIST 048 i 2 505
TE 5% LA, #4355 NIST BUH 25 5 55 K 10 3 & BB LA K BRI R B50die , 4 /i A 45 SR 5 56 A 6] 2R T MCDF +
CI 7 iEA5 2 MBI 25 AR AF, 31X — 45 AR 7R A o0 77 X 130 26 BRAT HEAT BE IR A 09 BRI A SC B0 WY . AHIF 58 ] Ky
AR NS00 2 5 B TR SE B WA B AU B A TSI R 85 S . AR SCBURSE 7T 4E https: //www.doi.org/

10.57760/sciencedb.j00213.00154 5 [A] FRHL.

KR KM T, T4, 2475 Dirac-Fock 5, FSHKT # %

PACS: 31.15.ag, 31.15.am, 32.30.-1
CSTR: 32037.14.aps.74.20250611

A T T HATTEZ i TR T AR
L4548, 7 A T ks B A BTSRRI T T
FEIEAN Breit R0 55 = B AH X8 F &1 HL 3l ) o
(quantum electrodynamics, QED) & 1E #9352 il J2
PREERLAE 3 oAb, PR 7 S HARMIE TS R 2 A7
TE T UM Ry o R AE L R H 8 XS4 H i
IO S50 A5 A R AR AN S 6 25 1 R rp B9 5
SEELL AR IZ WA INoT R I R | R AR
BT RSE SCHRERET 1071, SR, R 1 ff 52 R AN
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S B A O R 7 A% T MR 1 i e
CHF, AR RES AR BRI AR A Horh ) Ak
(E1) BRiT F R ZHO6HE, (HRE a7 8 K,
HL PO (E2) RGN (ML) BREFER E 5 T A
AT ZARBIEHT .

B4R, BRI F O ARZ G TR R
55 ML F B RE GORNBRAT AR Y AR B2, 7R3
WIS, # M2 A (many-body perturba-
tion-theory, MBPT), 4= 3Z il K Hk (full-core plus
correlation, FCPC), £ 413 Dirac-Fock(multi-con-
fituration Dirac-Fock, MCDF) Fl 41 & A1 H./E H
(configuration interaction, CI) %5 I 1E LT 8
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PR E T ER T FFIHE. e 1988 4F,
Johnson % Bl BN i} MBPT Jyiit3 1 4% s far 4%
Z = 3—92 MBS T IS [15725]) o LA S IRAR G A
PR [15%2]1 o, 32 BIRERE; ZJS1E 2005 4F, Gull”
i MBPT 454 CI Jik, sE—118 T % f 4L
Z < 60 B (R TS 17 5)1s220¢
(q<8)XF N BEL A RE 1 2011 4, Sapirstein I
Cheng!'0 ffi i S 5 /% (S-matrix) J7 kit —2 15
T Z = 10—100 8] JSHE 25 T 119 HL 2 B e IR ¥
RAERRER, IR PR ABOhEIE T QED &
TERIEEMm; 2017 4, Yerokhin 5% 7 i [ CI Jy kit
T Z = 6—17 M2 E 1 1s221 A1 182020 % [
REZRIMRE . X T B SO AR R REBE L REZR A ER
TR IR TOREE, 1992—1993 4, Wang 4 (1921.22)
i FCPC Jrik -5 [EADX TS A B IE T3 T 2%
B FEHFF Z = 3—10 Z 18] 1s?nl (n < 5,
1< 3) %F 0L AE G Y AE HH XT38 e 2 g i DA SORS 40
SEFEFSL. X — T kb R s Al 2 T
TS 5 P 50 1R, IR A% H far 5K
Zit— B T 11—30 2 [8] 182024, 2002 4F
Nahar®! fifi /] Breit-Pauli R %i[% (Breit-Pauli R-
matrix, BPRM) J7 ik RGIHE T Z = 6—28 ] 15
FPEST 1s2nl (n < 10,1 < 9) XF L BB Y HE = I Bk
GeI] E1 BRAE 0 BRAE o 3 SR R . 7E 2010—
2013 4E[8], Aggarwal 55 911U JLF MCDF #1 CI /s,
RGH T Z =128 BT 1s’nl (n<5,1<4)
XoF I R 2% 1Y) Rl i L S BB AT E1 BRAE 1 BRI
RRPRT R EE, I T EKIE] E2, M1 FIRE DU
BRI (M2) B BRIE 3R . i AE 2017 4, R R
MCDF #1 CI J71, Khatri 251244487 Z = 32—
56 18] 7 FES T 12l (n < 3,1< 2) XA RELL K BE
HXRBGE] ) E1 BRIE Y BRI R AR 7
SR, S SEA G T2 B P4 T 0 T AT
LUK, b 250 TARZ A XA 8 TS [15%2s] 19
A B AR AR [1522p)) o, 50 RERAE BE K BE
Gla] B BRI SRR 5 B A 2 15 e 17l
X B g i 25 i A e LA R BE S A] IR AT e R AR
FOREERTHE, W E 2T TRIKELE BT (Z <
30 )[O-1118-22:24.25 iR vy B AR B TR
A RTBRTIHEWRE S T EL BT 1208, A
BERE (40 NISTR0 45) X m AL SR F (7 >
30 ) BE R MBCERIMCN A B, /06 F E2/M1
LRI BRI B B Wi s 261, R O 2 i A B T4

HL TP FI AR G B i LA e 8y Z B FAERIR S
S A B R RS W R K.

A e F Sl & 40 BPRM, FCPC %77
%, 7 MCDF Jyikh, i F H# 5T Dirac 2,
AEXT IS RN v B R AR5, A LT MBPT Jiik
FS HiFEJ7 7%, MCDF J5 ik B 48 A0 B OCHRB5U0,
BRI R, [EIN, MCDF J7 ik MA] DL if B
REEHFRE L) 78537 SR [R] DTSN 5 ), £
ETEAEE. KL, M4[7 MCDF ikt 4l £
HL R AR e e Z —, Tz
T8 55 i T 9 R 4500 )R+ S50
i—i—%: [9—14].

AW TS ST 2 N B R SS RRR
¥ GRASP2018272 3§ MCDF Fil CI 7k )
It 785 7% 1E Breit 800 5 H25 WAL 55 5 B A XS
M QED B IEMSEI, REHAE TR E 1
f?ﬂ 7 = 6—51 E"J C3+, F6+7 Mg9+, 1312+7 Ar15+, SC18+,
Cr2+, Cot, Zn?™, As30+, Kr¥+, Y36+, Mo*+, Rhi2t,
Cd®+, Sn37+, Sh3s+3L 17 BT 1520l (n < 4,1 < 3)
XFREAY 15 A~ REH MY RE DL BB A Y E1, M1 Al
B2 BRIE . it 5 NIST Kds 122 50408 A S iy 2
WA ST L 1915191625261 B NTST £l i) AHXF
255 /N TS ERT IR ] MCDF+CL 5 i1t
A AR TAE T A AR AR NS5 % 55 B AR
SEESIZ W AL AL P B A Rl S 1.

2 BT %
N HF-J5iF (BF) k& M4Z 1 Dirac-Coulomb

N2 R
A al AN
O PR S
=1 T i<y |’I‘i — ’l“j|
(1)

Kb p, &% « THRTFISIEER; ¢ 2EETPIDE
;o il B2 4x4 1Y) Dirac FilF, a = ( g g >7

oiaar = (o Oy ), DR 2 mmk

FERE. 55 2 ANSRANITUE H [ AH BRI, v A
v =5 DR T IA E R R, BT Dir-
ac-Coulomb Wy 75 B R i () AR [ 25
HPC|rPJM) = EXC|TPJM), (2)
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PR%Y (atomic state function, ASF), HZ&—/> N-
HL 7 U R B, AR E YRR PSS J A
iR M, ATURIF NI S BA MR P, J, M
ZH A PREL (configuration states function, CSF)
|TPJM) LA

|TPJM) = Z CllyPJIM), (3)
i=1
Horp, CF ZEITREL, v Fm HAb T A {25 b
B — 105 B, ne 2 CSF MACH , 4175 I ek 8L
|yPJIM) ZTE—E MR FHET, h N5
18 )% PRAL (atomic orbital wave function, AO) ¥
Slater 175120l i £k PEAL A5 5. HPC Ry B i
DA 2SI PRAESCR B JR T 30 A ey B IR e . o) B
THUE PR B AR B 1O T AR ) R K 2
2075 Dirac-Fock 724, R HiE ZHE HIGY
(multi configuration self-consistent field, MCSCF)
7 15 SR nT A5 2 AR 1 BUIE 7 R R BRI
MCDF 77, fE3f45 5l TR R U, rTAR s
BRI B PR BSOS R, AR TR Y
14 2 45 0% PR BIOR A Hilbert 23 8] i i — 4136 2%, 70
375 PEHL ) JCIR AN A 200, 7RI — 2R T 3R
P B R A E G I (2), TR
[7i) BE 50 %8 L 18 51 285 0 R B LA B AR AR RE 7, G B
S CL 5 k. TEM EE 25 W MO X f Ak i ft
PR E BTARXT R R QED B ITE, W1 Breit 2500, B4
Wt A REAE IEAF UM ARG B 6 rh, T 8905
JEHCH e bR EICFIRE B 5201
FIH] MCDF+CI J7 ¥ 345 J5 1 25 9 pR U
A LU DA ZS B I pR 0T 58 A 25 22 ] ) R
A BRI 2

2w (2J441)

2
AY=— oo (T Pa Jol|OM|| TPy T3)|
(

¢ (2L41)(2J3+1) ’
4)
KPR o 1 B4 B RN AR BE G N4 = RE 2
w HERITREE, (TaPalolOF | T5P 4J5) HPIRELK ]
1 294 BR G B TT, OF R WL BRIE 22 W AT
L AERERER.

ASCfH ] GRASP2018 BRI TAH, MCDF
M CLHE. 75 BRI R, BEBUA 133 %
J& MCDF F1 CI 55 i B e 5 24T 240 7% 5t 1) [R) .
WE S, FAVFRIR BN B 0 — 4l i 415
T PRESURS 14) PRBICRE Ry o 52 A5 3. MESE RS SR, M

JCZH A U R AR ) HA R LA D R R B L T —
ZBVY GBS AR BT S A IR IGE . e
o T B ) BRI K P SR B SR BT R
TEPIE. AR5 XTI kA ) MCSCF 5 i
Ak, X set Ak a0 oA i U I iR B S 15
B — TSP PREL. 2 S5 JZIA BaE B i e
W 2 AR D FE 5075 R T[] IR sl iF
— it MCSCF Jrik Ak B bR Be 4% KT 1 I
. A ] AR A R A R S a1 — 4]
LML, g H A R A R S B sk —
A BEALRACE. I 5E 4 MCDF J7 kA8 7 Jf:
i MCSCF J5 kA3 8], HORET S A E 20
JEEBAE A, S — 255 T S 4 A
MG BE IR BT FRG BE I, FRUCA T A 62
WESE AL, TEMESE A B8 )T, B T A I 3Ll
PRI, FREET P BB J I I bR B B 4 7
W pR B, I CT 5 vk Xt f Ak iy S i B, M T A
LRGSR A RE R B . i S A
FoOr ik n el A IR AT R S T A R AT
RENTSEMLE IR, Hoi T4 2229 KM, AFT
XPTHRRZE A T8 2 1T

3 HEZ%E

AT, A0 Z = 6—51 ik 17 4oz
REE M 14 MESIRER X RER K EL,
M1 Fil E2 B A B SR. fE I R B B B
S, i MCSCF J5ik, #EH 1s, 2s, 2p #LiE Rl
TEELIE, FIH 1s%2s, 1s22p U275 20 250 I 1)
SNBSS, RIALITAH 34X LR I 1s, 2s,
op B, MM FIEA (n < 2). TEMLEERE EFE
1s, 2s, 2p BL3H, TN 3s, 3p, 3d BB K OGI%H
B, BN 1s23s, 1s23p, 1s23d =S 4185 W 1)
5B, I LT 8 NREY K 3s, 3p, 3d
BB, P RIEAMBAG R A (n<3). Z
J&, 2 AR BE, BN 4s, 4p, 4d, Af B
TEVEROCRERE, BN 1s24s, 1s24p, 1s%4d, 1s%4f Y
NS ASXT NI 7 A MBAS, ATA 15 4
REL N 4s, 4p, 4d, Af FUE, DMFFEIZEL (n < 4).
BiJe, e Bk A IS EE, E—2mA n =5
ROBLIE VR N R BIE, L) 1s22s, 1s%2p, 1523s, 1s23p,
1s23d, 1s%4s, 1sp, 1s%4d, 1s24f NS EZHS, RPF
FL 3 3 BN R IR T s s, T A
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n = 5B AT LA B 22, R M e 5 A
15 AN RELELA I = 5 B9 AR, WA 45 34
(n<5). W5, BE B, FE o mILm i
FHGH, IEEIA n = 6 B R HOHIEE I8
S, 3 o A BB B R B O
SMLBLIE K, FHI0 25 BT TR, M 25
BT, B I R . AT
PPl SRR R R 1 75,

AFTCR A BEL [1522p] ) F [1s%46]5 5 HY
PR RERHSELATIUSTY R IS LAl 1 FR, A
SCHEHR Mg+, Cr2tt, Mo+t 3 Fhss T4 ks ik
JE v A B A R e B AL B AR SR AT R
ML L AT 0L, Bt FE A FUERE R, PIANTOR S
K RERWAE TS, MR E T, 2SAH4R LA a3
RBEFIXT AL/ T 0.005% iF, BIIA iHE B 455
L. YRTHEX T 42 5 Mo LURTHITTE, TN

F 1 WAL
Table 1.  Construction of the quasi-complete basis.
By REAISE BIER SH P SEIC) R AN G
A (n < 2) 152s2p [1s%2s, 1s%2p] [15°28]1 /2, [15”2p]1 2, 372
[15‘225}1/27 [15?21)}1/2, 3/25
A (n < 3) 3s3p3d [1822s, 15?2p, 1823s, 15?3p, 1s23d] [18238%?%%([11]8231)}1/2' 3/2;
S 3/2,5/2
[15225]1/% [1522Ph/2, 3/2
: : : [15738]1 2, [1873p]1/2, 3725
4 < . [1s?2s, 1s*2p, 1s%3s, 1s23p, 1s?3d, 123d R
Hl(n < 4) 4s4padaf 1245, 15%4p, 154d, 15241 1[22 3d]3/2, 5/271 [‘ZZd sl
[1s 9]1/2, 3/2 [1s ]3/2, 5/2
[1324ﬂ5/2, 7/2
4 (n < 5) 595p5d55 [1s22s, 1s*2p, 1s%3s, 1s%3p, 1s23d, 1s%4s, I8
A= Sopodotog 1s%p, 1s%4d, 1s24f—5s5p5d5E5g)S P
1s%2s, 1s%2p, 1s%3s, 1s23p, 1s23d, 1s%4s, 15?4
H(n < : [1s%2s, 15%2p, , 1s%3p, ; , 18%p, —
£ii(n < 6) 6s6p6d6f6g6h 1524d, 1s%4f—6s6p6d6£6g6 hJs: P L
1s%2s, 1s%2p, 1s?3s, 1s23p, 1s%3d, 1s%4s, 1s*4p,
4| < H [ kl P, El P, ’ El P, 5
Hili(n < 7) TSTPTATITgThTi 15%4d, 1524f>TsTpTdTiTgTh7i]5 P RS
18225, 1s?2p, 1823s, 1s?3p, 1s23d, 1s%4s, 1s%4p,
4] < H [ El 1% El 1% ) El P, =
#i(n < 8) 8s8p8dsfsgshsisk 15%4d, 1524f—»8s8p8d8iRgS h8isk]s: D RES
1s22s, 1s22p, 1s2 1s2 1s2 1s4s, 1s%4
4l (n < 9) 959p9d9fIgIh9iok [15°2s, 1%2p, 15%3s, 1s°3p, 15%3d, 15*4s, 1s%4p, I I-

1524d, 1s24f—9s9p9d9fog9 h9igk]s P

{E: 9n =1, 2, 3, 4PUENDOCHEPUE, n > 5 BIPLEIHLE; P1s%2s, 1s2p5F HARAMMIRSBAIE, “97, “D7/il3m . WE M &

FEAES; OMCSCFH SRR AL RELL.

19.95 + Mgt [1s°2p]12 (a)
% 19.90 |
~
S
19.85 |
9.85 \.\_ .
Cr21+ [1s22p]1/2 (b)
44.45 ¢
2 44.40 f
5
44.35
44.30 R .
M039+ [152213]1/2 (C)
86.40 -
= 86.35
~
R
86.30 |
8625t , . , ., v
4 5 6 7 8 9
n
& 1

E/eV

E/eV

E/eV

(d) . .
282.50 | .
282.45 |
282.40 Mg+ [1s%4f ]5/2
e ———a——8
1310.00 }(©) /_/-
1309.95 L
1309.90 L
1309.85 Cr21+ [1s24f |5
L(f —a
4353.45 F(f) =
4353.40 |
4353.35 |
4353.30 ¢ Mo+ [15%4F Js2
4 5 6 7 8 9

n

Mg, Cr2+, Mo = Flt g T PR 25 [1572p] o T [15%4f]5 o B UK BEFEAT S L4 I Wi 51 0

Fig. 1. Convergence of the excitation energy for two excited states [1s?2p];/, and [1s%4f];, of Mg®", Cr?'* and Mo™* ions with basis

set expansion.

153102-4


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

¥ 1B ¥ Acta Phys. Sin.

Vol. 74, No. 15 (2025) 153102

An <9I <THIFTAPE, BN (n < 9)
PLiE s, it T Mo Z GG, HTHT5
ﬁl‘EﬂEﬁ@l‘EE?ﬁFﬁiﬁﬁi, FL [ SISO A X 5555,
WOATEIA < 8,1 < 7HHLE, RIFEFHEA (n < 8)
RIAT 3K B8

fﬁ”ﬁf‘/’ﬁf%ﬁﬁt)ﬁ i CL 7k, THE

AU PREIC L T R I I A AIE BE 5, AE HEAT CT
ﬁ‘ﬁ E‘Jﬂ*}* JMA Breit 200 . H BB IE . A=
e Ak 55 5 B AR X R QED A& 1E D K — i F AR
PRI AE IF DA — 20 B S RORS B AS A B i
K fig J 5 NISTRO %4 FlHAth — 26 335 11 5 25
RN0-1215.16] 1y FpAG N 3% 2—3% 4 T 1)L 31X FLIRAT ]
FEGEIL Mg, Cr2i+, Mo?t =FEs FE MR, A
SCHTA B IR 45 R T 5 NISTR0 4 A HAth
PB4 L 19-12:15.06.25.30] (1 W AGHI L csv LUK xlsx #%
RIEANFEREL (online) HZA H.

e 2—3R 4 g, A A AR S NIST
BRI 57E 0.02% LALN, K srikhie 5 NISTRO
BIGAI2ZEFEE/NT 0.01%. 525 T A HAY L4
[ E VYN i NOE- %45 B W W e I A T
T R RE 8T MCDF+CI 5 B 48 3 19 113 2%
OO TEHXS T [1872p]1 o, 570 I HRARFCEE,

F T HL ] SC RO 50, TRt I it
HAF T HEZ R0, YRR RBEIE kit T T KR
P BO IS 1728] R P A e A A S, AT
S5 NISTEO Bl i AH XF 22 5 Lb S i [l A fiff
I MCDF+CI A3 B E5 5/ 1—2 a9, £
AT SCHR [15) H il MBPT J7 B 5245 K w4
AR S AT =S BE T, INHZ IR T SR [16]
el S R R D R 2 B T A B AR & At
MRS BT 2 RN S AR vk AT Eﬁfr;%?
H X QED Ow #EA T T NS g, H AW
PRALIEZS P B AR A, T 4w T AR h 2
IR AL IS B 14 M RARUR RS, SATiH o 4s

SR B AR TR B 6T AR A UK g
55 NISTRO) Ffis 22 5+ B R s B0 (1 an#h 7o 44 L
(online) H¥ Sc!** ¥~ [1s23s], o A RE, 5 NISTI
B 22 52355 0.183%), MR AR 45 R 5 H
MES LTI 25 32 S N IS AR IR AT
X X BEREL AT B A AN EL A B SR A 5% .

TEUE 25 1 58 26 FE I 5 0 DR 25 0 PR BN
BT A FH D 25 0 R BT AN [ BB 20 ) 1 R AT 5
FRORTAETR T 15 Mgt 116 /4~ E1, E2,
M1 BT (I BRIT 2 0825 S AT AR A

2 Mg HURRE (A7 oV) T AR S NISTRO FUHABHE T 455 1 19516 () g
Table 2.  Excitation energy (in ¢V) data for Mg and its comparison with NISTP?S and other theoretical computational res-
ultslii15.16],
e RE MEA NIST » HLAEST SNISTAAR 25 /%
MCDF " MBPT 9  S-Matrix ¥ Hjif%% MCDF MBPT  S-Matrix
1 [15%2s]1 /5 0 0 0 — — — — _ _
2 [1s*2plyp  19.8405  19.83922 19.9758 19.8297 19.8382 0.007 0.688 -0.048 -0.005
3 [1s?2ply»  20.3343  20.33202  20.4655 20.3242 20.3315 0.011 0.656 -0.038 -0.003
4 [1s?3s];»  208.6336  208.628  208.5291 — — 0.003 -0.047 — —
5 [1s 23p]1/2 214.0728 214.061 214.0012 — — 0.006 -0.028 — —
6 [1s?3pls/s  214.2184  214.224  214.1457 — — -0.003 -0.037 — —
7 [1s 23(:1]3/2 216.1664 216.17 216.0475 — — -0.002 -0.057 — —
8 [1s?3d]5;» 2162115  216.215  216.0921 — — -0.002 -0.057 — —
9 [1s%s],  279.2771 279.29 279.1520 — — -0.005 ~0.049 — —
10 [1s*4ply/s 2815067  281.463  281.3948 — — 0.016 -0.024 — —
11 [1s*4pl3,  281.5680  281.463  281.4556 — — 0.037 -0.003 — —
12 [1s*4d]y, 2823775  282.359  282.2479 — — 0.007 -0.039 — —
13 [1s%4d]5,»  282.3965 282.40 282.2667 — — -0.001 -0.047 — —
14 [1s*4f]5,y 2824407  282.443  282.3021 — — -0.001 -0.050 — —
15 [1524ﬂ7/2 282.4510 282.453 282.3114 — — -0.001 -0.050 — —
T ) NISTEW R R YCR K SOk HMCDF - CURARITH545 2R OSCHR[15) {8 FIMBP TI7 3k BT H545 2R O30k [16] IS AR

[y prS i DX
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#3

Cre UL RE (007 eV) HHESER KI5 NISTE0 A ISR L5 R 101510 (1 Ly A

Table 3. Excitation energy (in eV) data for Cr?'* and its comparison with NISTP?! and other theoretical computational

results/10:15,16],

. HAbF LR EINISTHIAHXS 225 /%
i 224 AR NIST® -
MCDF» MBPT® S-Matrix ¥  4{[it% MCDF MBPT S-Matrix
1 [1522s]; /9 0 0 0 — — — _ _
2 [1s*2p]1/s  44.3259  44.3322  44.4933 44.3417 44.3209 -0.014 0.363 0.021 -0.025
3 [1s*2p]3»  55.6001  55.5958  55.7466 55.6222 55.5918 0.008 0.271 0.047 -0.007
4 [1s%3s]1,  967.4110  967.40  967.2840 — — 0.001 -0.012 — —
5 [1s?3pl1s  979.7019  979.68  979.6261 — — 0.002 -0.005 —
6 [1s23pls»  983.0371  983.02  982.9546 — — 0.002 -0.007 — —
7 [1s23d]y,  987.7139  987.70  987.5784 — — 0.001 -0.012 —
8 [1s23d)5,  988.7666  988.75  988.6288 — — 0.002 -0.012 — —
9 [1s%s];  1300.2631  1300.12  1300.1223 — — 0.011 0.000 —
10 [1spl,  1305.3243 130528  1305.2034 — — 0.003 ~0.006 — —
11 [1s™ply,  1306.7288  1306.69  1306.6053 — — 0.003 ~0.006 —
12 [1s4d]y,  1308.6689  1308.66  1308.5255 — — 0.001 -0.010 — —
13 [1s4d]s,  1309.1131  1309.10  1308.9686 — — 0.001 -0.010 —
14 [1s%4f]5,  1309.2268 — 1309.0709 — — — — — —
15 [1s%fl;  1309.4480 — 1309.2923 — — — — —

TE: ©) NISTPOEE AR A © SR [10)fTIMCDF +CUF i L5 2R, ST 1) HIMBP T 5 i R THAE SR OSCHR[16] (8] SHE

W7 i BT

#4

Mo™ UL RE (S07 eV) THFAE R SIS NISTRO FUHABBEIS T 455 121910] (g L

Table 4. Excitation energy (in eV) data for Mo** and its comparison with NIST®! and other theoretical computational

resultsl12:15:16],

- - W NIST HAb iS55 ‘ ENISTHIAHX 227 /%
MCDF"  MBPT ¢ S-Matrix ¥  4iii}4% MCDF MBPT S-Matrix
1 [1s°2s]; 2 0 0 — — — — — — —
2 (1s*2p];  86.1124 86.108 86.2085 86.1764 86.1041 0.005 0.117  0.079 ~0.005
3 [1s2p]3s 2120023 2119956  212.1476  212.1689 211.982 0.003 0.072 0.082 0.006
4 [1s23s];, 32069762  3207.1  3206.7966 — — -0.004  -0.009 —
5 [1s?3p]1»  3230.8215  3230.8  3230.8328 — — 0.001 0.001 —
6 [1s%3pls»  3268.1729  3268.1  3268.1355 — — 0.002 0.001 —
7 [1s?3d]3»  3276.6290  3276.5  3276.5429 — — 0.004 0.001 —
8 [1s23d]5, 32882659  3288.1  3288.1599 — — 0.005 0.002 — —
9 [1ss], o 4314.1977  4313.9 — — — 0.007 — —
10 [1sp]i»  4323.9937  4323.8 — — — 0.004 — — —
11 [1s™Mply,  4339.7142  4339.5 — — — 0.005 — —
12 [1s”4d]ys 43432364 43431 — — — 0.003 — —
13 [1s?4d];, 43481528  4348.0 — — — 0.004 — — —
14 [1s%fl;,  4348.3516 — — — — — — —
15 [1s%4f];/5  4350.7885 — — — — — —

) NISTEOEE PRI B ) SCiik[12]f FIMCDF+CT A 545 51

oy pFS i SRR

SEBER T X E1, B2 BRAT, THRE R 7
REERLE AN B R BT RAE R, (e R xRS
HIATEOLS, PIRPRLIEE 58 AR (Y, T07E I PR AR

153102-

) SCER[L5) [ FIMBP T 7 ik (TR 45 58 OSCRk[16) 8 FH SR

TCEERREAI O T, P Z 2257 K/ el
T i 2 PR AR MR R DA R AT R A
ORI, 5 —J5 i, WSS 4L T TRy
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TR TN

NI ERAVORs T

2 AL AY, A3 R R S T
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F M LIFT AT E, JE4 (n < 9) NESE R I,
I b — G2 B R 4 (n < 8). AT Mo+
ZJEHITR, HTERA (n <8) AL RER
F T sk, BT IELE (n < 8) MUESEAREE, Pk
Mo**Z JG ML R b — I HIHA (n < 7). AN
Ivi) B85 AN [v) BR AT ) IR 3T 8 38 5 ARG AN Aff o 1) £
KR 2 Fs. 1% HLFEFEER Mg, Cr2i+, Mo+
SR TR ARE A | b AR R R B A
TIRFI TR,

Ur =
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10-2F X XX;’ix" X X% 2

S o10F T
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10-% f(a) Mg
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R et & RRPRX — =T ==
10-2F % X x ;!6&3()8 =
10-3F X xxx X

b 1074 F Q}O%?e‘ %"ﬁxﬁ h
10~°F (b) Cr ]
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= 1073 F Ll &’sqg} X 3%%
10-4F xxx&%xQ‘& X% x
}g:b F(c) Mo > % .
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Ayfs

2 Mg, Cr?'*, Mo** = Fl & T-RE 4L 1] E1, M1, E2 BKiE
AT BBR 3T o 45 R X AN i JBE 2 T Y DG R

Fig. 2. Relationship between the calculated transition rates
(E1, M1, E2) and the relative uncertainties of the results

for level transitions in the Mg?*, Cr?'* and Mo** ions.

WE 2 s, S 1 BRAT R 5 A X AN 2 1
A —E A, BRIT AR BRAT AR AN o B
SN BT A BIRAT S R AE 103 s~ LAY 55 R
TEAb, REB o BRAT 158 235 T ) A X AS 1 2 AR AE
10% LA ; [R]B X BRAE S #7E 108 s—1 DL _E (5%
BRAT, 46 K4 B AR X A 5 BE AN T 1%, 13X —
S5 7R Y R BRGE R AE 108 571 DL YR
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Table 5.  Comparison of transition rates (in s') calculations for Mg’ with NISTI® data and other Ref. [11].

] EINISTIHAHYT 25 5/ %
5 LRERSS O TRERSS  BGESSE 4R NIST ®  HABIHIBZERY)
MEE AR

2 1 E1 6.982x10%  6.95x108 7.176x108 0.45 3.25
2 5 1 E1l 2.149%x10™  2.17x10M 2.136x 10" -0.96 ~1.55
3 10 1 E1 9.744x101  9.93x1010 9.700x 1010 ~1.88 -2.31
4 5 4 E1l 8.870x107  8.85x107 9.023x 107 0.23 1.95
5 10 4 E1 2.678x101°  2.69%1010 2.672x1010 -0.44 -0.67
6 10 9 El 2.060x107  1.91x107 2.090x 107 7.84 9.40
7 3 1 E1 7.530x108  7.51x108 7.736x108 0.27 3.01
8 6 1 E1l 2.135x101  2.16x10M 2.122x10" ~1.18 ~1.76
9 11 1 E1 9.693x101  9.88x1010 9.651x1010 ~1.89 -2.31
10 6 4 E1l 9.616x107  9.67x107 9.771x107 -0.56 1.04
11 11 4 E1 2.656x101°  2.68x1010 2.651x101 ~0.89 ~1.10
12 11 9 E1l 2.238x107  1.91x107 2.267x107 17.17 18.66
13 4 2 E1 3.456x101  3.39x1010 3.428 %1010 1.96 1.12
14 9 2 E1l 1.353x10  1.34x10% 1.340%x 1010 0.95 0.00
15 9 5 E1 9.319x10°  9.47x10° 9.324x10° ~1.60 ~1.54
16 7 2 E1l 5.569x10  5.48x10M 5.580x 10" 1.62 1.83
17 12 2 E1 1.826x10'  1.85x10! 1.835x 10! ~1.28 -0.79
18 7 5 El 3.315x106  3.38x106 3.096x 106 ~1.92 -8.42
19 12 5 E1 5.791x101°  5.83x1010 5.795x 101 -0.66 ~0.60
20 12 10 E1l 1.018x10°  1.11x10° 9.542x10° -8.28 ~14.04
21 10 7 E1 4.340x109  4.26x10° 4.323%10° 1.88 1.48
22 11 7 E1l 4.278x10%  4.26x108 4.262x108 0.41 0.04
23 14 7 E1 1.289x 10" — 1.290x 10" — —
24 14 12 E1l 2.635%10? — 1.704x10? — —
25 4 3 E1 6.967x101  6.81x1010 6.909x1010 2.31 1.45
26 9 3 E1l 2.724x10%°  2.67x10% 2.694x 100 2.02 0.90
27 9 6 E1 1.878x100  1.88x101 1.878x 1010 -0.12 -0.11
28 7 3 E1l 1.111x10"  1.09x 10 1.113x 10" 1.94 2.11
29 12 3 E1 3.637x101  3.66x1010 3.654x1010 -0.64 -0.16
30 7 6 El 5.339x10°  5.31x10° 4.968x10° 0.54 —6.44
31 12 6 E1 1.160x10  1.16x10 1.160x 10 -0.04 0.00
32 12 11 E1l 1.634x10°  2.21x10° 1.528x10° ~26.04 ~30.86
33 8 3 E1 6.666x101"  6.55x 101! 6.680x 10" 1.77 1.98
34 13 3 E1l 2.183x10M  2.21x10M 2.194x 10" ~1.20 -0.71
35 8 6 E1 3.432x10°  3.43x10° 3.198x10° 0.05 -6.77
36 13 6 El 6.950x10°  6.96x10'0 6.955x 101 -0.14 -0.08
37 13 11 E1 1.052x106  1.51x10° 9.843x10° ~30.36 ~34.81
38 11 8 El 3.865x10°  3.82x10° 3.851x10° 1.18 0.81
39 14 8 E1 9.201x10° — 9.202x10° — —
40 14 13 E1 6.379 — 3.394 — —
41 15 8 E1 1.380x 10" — 1.381x 10" — —
42 15 13 E1l 1.786x10? — 1.035%102 — —
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Table 5 (continued). Comparison of transition rates (in s') calculations for Mg+ with NISTP? data and other Ref. [11].

Bidgns  LRESSS  TRESMS  BOERA MAETHE NIST®  H{BREHEZLRY

ENISTAHXS 255 /%

HHE bR

43 7 1 B2 7.367%107 — 7.356x107 — —
44 12 1 E2 1.208x107 — 1.208x 107 — —
45 7 4 E2 36.65 — 36.27 — —
46 12 4 E2 4.721x10° — 4.718%10° — —
47 12 9 E2 6.189 — 6.128 — —
48 8 1 E2 7.372%107 — 7.361x107 — —
49 13 1 E2 1.212x107 — 1.212x107 — —
50 8 4 E2 37.81 — 37.40 — —
51 13 4 E2 4.722x106 — 4.720x10° — —
52 13 9 E2 6.386 — 6.321 — —
53 3 2 B2 1.824x10°6 — 1.755%x10°6 — —
54 6 2 E2 1.263x107 — 1.261x107 — —
55 11 2 B2 5.390x 106 — 5.420x 109 — —
56 6 5 E2 1.544x10°7 — 1.468x10°7 — —
57 11 5 B2 1.329%105 — 1.328%106 — —
58 11 10 E2 2.373x10°® — 2.187x10°® — —
59 14 2 B2 4.816x107 — 4.180x107 — —
60 14 5 E2 5.013x10° — 4.997x10° — —
61 14 10 B2 7.343x10° — 6.368x10°* — —
62 9 7 E2 4.852x10° — 4.852x10° — —
63 12 7 B2 8.342x10° — 8.342x10° — —
64 8 7 E2 6.385x10 ! — 6.073x10 1! — —
65 13 7 B2 2.383x10° — 2.383x10° — —
66 13 12 E2 1.368x101 — 1.291x101 — —
67 5 3 B2 2.521x107 — 2.517x107 — —
68 10 3 E2 1.071x107 — 1.076x 107 — —
69 10 6 B2 2.655x106 — 2.654x106 — —
70 6 3 E2 1.259%107 — 1.257x107 — —
71 11 3 B2 5.359x106 — 5.384x106 — —
72 11 6 E2 1.326x10° — 1.326x10° — —
73 14 3 B2 1.376x107 — 1.374%107 — —
74 14 6 E2 1.422x10° — 1.418%10° — —
75 14 11 E2 1.491x10°3 — 1.286x10°3 — —
76 15 3 E2 6.186x107 — 6.180x107 — —
7 15 6 B2 6.405x106 — 6.384x 106 — —
78 15 11 E2 7.114x10° — 6.118x10°® — —
79 9 8 B2 7.277%x10° — 7.278%x10° — —
80 12 8 E2 3.572x10° — 3.572x10° — —
81 13 8 B2 9.526x10° — 9.526x10° — —
82 15 14 E2 1.519x10°13 — 1.057x1013 — —
83 4 1 M1 31.71 — 29.21 — —
84 9 1 M1 26.58 — 24.18 — —
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Table 5 (continued). Comparison of transition rates (in s') calculations for Mg+ with NISTP? data and other Ref. [11].

5NISTHIAR 22 5 /%

BRiTgms  LRESOT TR BRIEZET HETHSE NIST 9 HAUBEHSZERY

Jo

B 12 AN B e

85 9 4 M1 2.899x10! — 2.728x10! — —
86 7 1 M1 1.639 — 1.625 — —
87 12 1 M1 9.801x10! — 9.693x10! — —
88 7 4 M1 6.509x10°¢ — 6.565x10°° — —
89 12 4 M1 5.915x10°° — 5.842x10°3 — —
90 12 9 M1 2.665x10°7 — 2.683x10°7 — —
91 5 2 M1 6.256 — 5.847 — —
92 10 2 M1 4.903 — 4.585 — —
93 10 5 M1 7.465x10°? — 7.429x10°2 — —
94 3 2 M1 5.674x10! — 5.534x10°! — —
95 6 2 M1 41.41 — 39.89 — —
96 11 2 M1 21.22 — 20.35 — —
97 6 5 M1 1.456x10°2 — 1.421x10°2 — —
98 11 5 M1 2.307 — 2.258 — —
99 11 10 M1 1.084x10°3 — 1.060x10°3 — —
100 9 7 M1 7.338x10° — 8.191x10° — —
101 12 7 M1 1.849x10! — 1.841x10! — —
102 8 7 M1 5.203x 104 — 5.012x104 — —
103 13 7 M1 1.458%10! — 1.410x10* — —
104 13 12 M1 3.887x10° — 3.748x10°° — —
105 5 3 M1 1.550% 102 — 1.543x102 — —
106 10 3 M1 90.07 — 89.89 — —
107 10 6 M1 6.361 — 6.287 — —
108 6 3 M1 42.40 — 43.34 — —
109 11 3 M1 33.34 — 34.06 — —
110 11 6 M1 5.226x10°! — 5.291x10°! — —
111 14 3 M1 4.582x10! — 4.541x10°! — —
112 14 6 M1 1.620x 102 — 1.619x10°2 — —
113 14 11 M1 1.431x10° — 1.290%x10° — —
114 12 8 M1 5.510x10! — 5.408x10! — —
115 13 8 M1 6.109x10! — 6.116x10! — —
116 15 14 M1 6.636x10°¢ — 5.095x10 6 — —

T @) NIST RO AR AdE DSk (1) FAMCDF 4+ CTr ik T3 45 1.
6 CrBRETHA (B o) TSR KOS NISTRO Hdli f HAB PRI 13 45 58 10 Ay b g

Table 6.  Comparison of transition rates (in s') calculations for Cr?'* with NISTP?% data and other Ref. [10].

BRiTgn's  LAeSgS  TRESURYS  BRERE CHATHHE NIST »  HAbFREZEARY INISTIRIARTE
ML HAbResR
1 2 1 El 1.642x10°  1.65x10° 1.660x10° -0.51 0.61
2 5 1 El 5.277x10"2  5.28x10'2 5.260x 10" ~0.06 -0.38
3 10 1 El 2.325x10"  2.5x10%2 2.319x10" ~7.00 ~7.24
4 5 4 El 2.142x10°% — 2.160x10° — —
5 10 4 El 6.891x10"  7.100x10"  6.880x10" ~2.95 -3.10
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Table 6 (continued). Comparison of transition rates (in s') calculations for Cr?'* with NISTI?Y data and other Ref. [10].

N " N s st . SNISTHIARRS 225 /%
Bidgns  LRESARS  TRERSnY  BOERRE METHE NIST ®  HAlBEE5 R

MEFR HABIELEETER

6 10 9 E1 5.015x107 — 5.060x107 — —
7 3 1 El 3.270x10° 3.29x10° 3.300x10° -0.62 0.30
8 6 1 E1 5.129x10'?  5.13x10" 5.110x10"? -0.02 -0.39
9 11 1 El 2.279x 10" 2.5x10"? 2.270x 10" -8.83 -9.20
10 6 4 E1 4.428x10% — 4.450x10% — —
11 11 4 El 6.661x10'  7.100x 101 6.650x 10! -6.18 -6.34
12 11 9 E1 1.054%108 — 1.060% 108 — —
13 4 2 El 6.456x 10" 6. x101 6.427x 10" 7.60 7.12
14 9 2 E1 2.585x 10" — 2.576x 10" — —
15 9 5 El 1.800x 10" — 1.801x 10" — —
16 7 2 E1 1.296x101  1.29%x10'3 1.300%x 1013 0.50 0.78
17 12 2 El 4.220x 10" 4.1x10'2 4.230x10"? 2.93 3.17
18 7 5 E1 3.793x107 — 3.730x107 — —
19 12 5 El 1.366x 1012 1.4x10% 1.370x 10" -2.43 -2.14
20 12 10 E1 1.183%107 — 1.160x107 — —
21 10 7 El 9.770x 10 — 9.759x 1010 — —
22 11 7 E1 9.101x10° — 9.090x10° — —
23 14 7 El 3.027x 10" — 3.030x 102 — —
24 14 12 El 3.741x10* — 3.590x10* — —
25 4 3 El 1.350x 1012 1.3x10"? 1.344x10" 3.88 3.38
26 9 3 E1 5.386x 10" — 5.353x 10" — —
27 9 6 El 3.754x 10" — 3.754x 10! — —
28 7 3 E1 2.562x 10" 2.6x10" 2.320x10"? -1.48 -10.77
29 12 3 El 8.256x 10! 7.9x10" 8.030x 10! 4.51 1.65
30 7 6 E1 1.502x106 — 1.461x105 — —
31 12 6 El 2.745x 10" 2.7x10" 2.745x 10! 1.65 1.67
32 12 11 E1 4.591x10° — 4.466x10° — —
33 8 3 El 1.537x101  1.54x10'3 1.540x 10" -0.19 0.00
34 13 3 E1 4.974x10" 4.9%x10'2 4.990x 10" 1.52 1.84
35 8 6 El 1.662x107 — 1.630x 107 — —
36 13 6 E1 1.639x10'2 1.7x10" 1.640x 1012 -3.58 -3.53
37 13 11 El 5.139%10° — 5.010%x 106 — —
38 11 8 E1 8.356x 10 — 8.349x 101 — —
39 14 8 El 2.152x 10" — 2.152x 10! — —
40 14 13 E1 19.64 — 16.90 — —
41 15 8 El 3.231x 10" — 3.230x 102 — —
42 15 13 E1 8.590x103 — 8.040x10? — —
43 7 1 E2 7.117x10° — 7.113%x10° — —
44 12 1 E2 9.610x108 — 9.618x10% — —
45 7 4 E2 2.242x102 — 2.224x102 — —
46 12 4 E2 4.891x10% — 4.890x10% — —
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Table 6 (continued). Comparison of transition rates (in s') calculations for Cr?'* with NISTI?Y data and other Ref. [10].

BRitgns  LRESWS TR BOIEE AT NIST® HABEESZERY

5NISTHIAR 22 5 /%

B 12 AN B e

47 12 9 E2 39.00 — 38.65 — —
48 8 1 E2 7.144%10° — 7.140x10° — —
49 13 1 E2 9.797x10% — 9.806x10% — —
50 8 4 E2 2.902x10? — 2.879x102 — —
51 13 4 E2 4.900x10% — 4.899x 108 — —
52 13 9 E2 50.64 — 50.17 — —
53 3 2 E2 4.938x10°! — 4.917x10°! — —
54 6 2 E2 1.408x10° — 1.408x10° — —
55 11 2 E2 6.093x10% — 6.122x10% — —
56 6 5 E2 4.167x10? — 4.114x10°2 — —
57 11 5 E2 1.493%108 — 1.493%108 — —
58 11 10 E2 6.296x10°° — 6.130x10°* — —
59 14 2 E2 5.450x10° — 5.446x10° — —
60 14 5 E2 5.589x10% — 5.585x10% — —
61 14 10 E2 3.995x10! — 3.805x10°! — —
62 9 7 E2 5.199x107 — 5.199x 107 — —
63 12 7 E2 9.476x107 — 9.476x107 — —
64 8 7 E2 1.884x10°° — 1.872x10° — —
65 13 7 E2 2.707x107 — 2.707x107 — —
66 13 12 E2 4.064x10°6 — 4.010x10°° — —
67 5 3 E2 2.795x10° — 2.794x10° — —
68 10 3 E2 1.183x10° — 1.186x10° — —
69 10 6 E2 2.974x10% — 2.973x10% — —
70 6 3 E2 1.390%10° — 1.390x10° — —
71 11 3 E2 5.952x10% — 5.965x10% — —
72 11 6 E2 1.480% 108 — 1.480%108 — —
73 14 3 E2 1.555%10° — 1.554%10° — —
74 14 6 E2 1.545%108 — 1.544x108 — —
75 14 11 E2 1.221x10°2 — 1.142x10°2 — —
76 15 3 E2 6.974x10° — 6.972x10° — —
T 15 6 E2 6.973x10% — 6.968x10% — —
78 15 11 E2 8.422x10°? — 7.921x10°? — —
79 9 8 E2 7.807%107 — 7.806x107 — —
80 12 8 E2 4.045x107 — 4.045x107 — —
81 13 8 E2 1.079%108 — 1.078%108 — —
82 15 14 E2 3.185x10°® — 3.199x10°® — —
83 4 1 M1 6.556x10* — 6.418x10* — —
84 9 1 M1 5.548x10* — 5.416x10* — —
85 9 4 M1 6.576x10? — 6.488x102 — —
86 7 1 M1 3.608x10° — 3.594x103 — —
87 12 1 M1 2.117x103 — 2.106x103 — —
88 7 4 M1 2.540x10°® — 2.558%10°% — —

153102-12


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 74, No. 15 (2025) 153102

6 (5) CrX BT (7 s 1) THEEPR KIS NISTRO $offi 2 HAB BRI T 455 1 A

Table 6 (continued). Comparison of transition rates (in s') calculations for Cr?'* with NISTI?Y data and other Ref. [10].

. e . 5 NISTHIARINS 22 5 / %
BOEmS REESORY O TRESGRS  BRERAY MATTSE NIST o HABIEpLEAY

MEER AR

89 12 4 M1 15.42 — 15.34 — —
90 12 9 M1 1.094x10+ — 1.099x10* — —
91 5 2 M1 1.541x10* — 1.484x10* — —
92 10 2 M1 1.210x10* — 1.164x10* — —
93 10 5 M1 1.910%x102 — 1.877%10% — —
94 3 2 M1 6.737x10°  6.76x10° 6.699x10° -0.33 -0.90
95 6 2 M1 1.044x10° — 1.029x10° — —
96 11 2 M1 5.354x10* — 5.263x10* — —
97 6 5 M1 1.747x102 — 1.737%10% — —
98 11 5 M1 5.859x10% — 5.820x10° — —
99 11 10 M1 13.06 — 12.98 — —
100 9 7 M1 1.938x10* — 2.052x10°! — —
101 12 7 M1 4.925x10? — 4.915x10? — —
102 8 7 M1 6.596 — 6.552 — —
103 13 7 M1 3.830x102 — 3.821x10? — —
104 13 12 M1 4.957%x10! — 4.921x10! — —
105 5 3 M1 3.847x10° — 3.855%x10° — —
106 10 3 M1 2.239%x10° — 2.248%x10° — —
107 10 6 M1 1.598%10* — 1.595%10* — —
108 6 3 M1 1.033x10° — 1.045%10° — —
109 11 3 M1 8.104x10* — 8.197x10* — —
110 11 6 M1 1.318x10% — 1.325%10% — —
111 14 3 M1 1.198%10% — 1.193x10% — —
112 14 6 M1 41.17 — 41.19 — —
113 14 11 M1 7.411x10°7 — 7.092x10°7 — —
114 12 8 M1 1.449%10% — 1.449%10% — —
115 13 8 M1 1.620%x10% — 1.622x10% — —
116 15 14 M1 6.561x1072 — 6.579x102 — —

) NTISTEORE PRI ) SClik[10] (8 FIMCDF+CT 1Y 525 31

T Mo BRITEA (B s 1) RSB S HAB IS A5 12 jy LL#s

Table 7. Comparison of transition rates (in s'!') calculations for Mo** with other Ref. [12].

S NISTHYFHN 225

=

BRiTgws  LRESGRS  TREMGNS  BROEZER METHSY NIST o HABERRLRY

HETE HAERRS

1 2 1 El 3.549x10° — 3.54x10° — —
2 5 1 E1 6.057x10" — 6.06x10" — —
3 10 1 El 2.625x10" — — — —
4 5 4 E1 4.656x10° — — - —
5 10 4 El 8.009x 10" — — — —
6 10 9 E1 1.085%108 — — — —
7 3 1 El 5.448%x 1010 — 5.48x 10" — —
8 6 1 E1 5.520x 10" — 5.52x10" — —
9 11 1 El 2.466x 10" — — — —
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Table 7 (continued). Comparison of transition rates (in s!) calculations for Mo** with other Ref. [12].

ENISTHAHNT 22 5
LRSS FRESNS  BRIERA YA NIST ) HABHENREERY ———— -
£k = A B el S

10 6 4 E1 7.999%10° — — —
11 11 4 El 7.165%x1012 — — —
12 11 9 E1l 1.949x10° — — —
13 4 2 El 6.644x1012 6.64x1012 — —
14 9 2 E1l 2.681x10'2 — — —
15 9 5 E1 1.867x 1012 — — —
16 7 2 E1l 1.442x 10" 1.44x10™ — —
17 12 2 E1 4.742x1013 — — —
18 7 5 E1l 2.118x 107 — — —
19 12 5 E1 1.493x10% — — —
20 12 10 E1 6.753%108 — — —
21 10 El 1.211x10%2 — — —
22 11 E1l 9.602x 1010 — — —
23 14 E1 3.331x1013 — — —
24 14 E1l 8.822x 100 — — —
25 4 El 1.547x10% 1.55x10% — —
26 9 E1l 6.168x10'2 — — —
27 9 E1 4.307x102 — — —
28 7 E1l 2.770x1013 — — —
29 12 E1 8.805x 1012 — — —
30 7 E1l 2.566x 100 — — —
31 12 E1 3.034x 1012 — — —
32 12 E1l 8.156x10° — — —
33 8 E1 1.663x 1014 1.66x 104 — —
34 13 E1l 5.364x10'3 — — —
35 8 E1 2.143%x108 — — —
36 13 E1l 1.794x 10" — — —
37 13 E1 6.846x107 — — —
38 11 E1l 9.245x 10" — — —
39 14 E1 2.344x1012 — — —
40 14 El 22.52 — — —
41 15 E1 3.528 %1013 — — —
42 15 E1l 1.295x106 — — —
43 7 E2 2.551x 101 — — —
44 12 E2 3.348x 1010 — — —
45 7 E2 9.550%x 103 — — —
46 12 E2 1.786x 1010 — — —
47 12 E2 1.729% 103 — — —
48 8 E2 2.584x 10! — — —
49 13 E2 3.573x 1010 — — —
50 8 E2 2.102x10* — — —
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Table 7 (continued). Comparison of transition rates (in s!) calculations for Mo** with other Ref. [12].

5 NISTHAHX 22 5

2y o 2y o g g { e a [ /4 EFLT
RS FRESGRYS  BRTEE O MEETE NIST o HABEHBZURY SR LR
51 13 E2 1.797x10% — —
52 13 E2 3.821x10° — —
53 3 E2 7.513x103 — —
54 6 E2 5.155x 1010 — —
55 11 E2 2.269x1010 — —
56 6 E2 6.462x102 — —
57 11 E2 5.488 %107 — —
58 11 E2 97.35 — —
59 14 E2 1.960x 101 — —
60 14 E2 2.172x10' — —
61 14 E2 3.443x10? — —
62 9 E2 1.898x10° — —
63 12 E2 3.444x10° — —
64 8 E2 2.786x10! — —
65 13 E2 9.830x10% — —
66 13 12 E2 6.059x 102 — —
67 5 3 E2 1.003x 10" — —
68 10 3 E2 4.105x10% — —
69 10 6 E2 1.083x1010 — —
70 6 3 E2 4.946x 10" — —
71 11 3 E2 2.108x 1010 — —
72 11 6 E2 5.347x10° — —
73 14 3 E2 5.576x 100 — —
74 14 6 E2 5.558%x10? — —
75 14 11 E2 5.488x10! — —
76 15 E2 2.483x 101" — —
7 15 E2 2.528 x 1010 — —
78 15 E2 8.617 — —
79 9 E2 2.856x 107 — —
80 12 E2 1.457x10° — —
81 13 E2 3.883x10° — —
82 15 E2 4.660x10* — —
83 4 M1 2.594x107 — —
84 9 M1 2.189x107 — —
85 9 M1 2.650x10° — —
86 7 M1 1.438x 108 — —
87 12 M1 8.373x10° — —
88 7 4 M1 1.138 — —
89 12 4 M1 6.242x103 — —
90 12 9 M1 5.005x102 — —
91 5 2 M1 6.440x 106 — —
92 10 2 M1 5.038x 106 — —
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Table 7 (continued). Comparison of transition rates (in s!) calculations for Mo** with other Ref. [12].

SNISTHHRAN 22 5
BRiEgS  LREMNS O TREMUNS  BREZSM MERTHR NISTY HASEAERY ——— -
MErE AR g R
93 10 5 M1 8.012x10* — — — —
94 3 2 M1 9.297x10° — — — —
95 6 2 M1 4.442x107 — — — —
96 11 2 M1 2.269x107 — — — —
97 6 5 M1 2.443x10° — — — —
98 11 5 M1 2.493x10° — — — —
99 11 10 M1 1.825% 104 — — — —
100 9 7 M1 80.40 — — — —
101 12 7 M1 1.985x10° — — — —
102 8 7 M1 8.877x 103 — — — —
103 13 7 M1 1.564x10° — — — —
104 13 12 M1 6.709x10? — — — —
105 5 3 M1 1.540x 108 — — — —
106 10 3 M1 8.971x107 — — — —
107 10 6 M1 6.495x 106 — — — —
108 6 3 M1 3.961x107 — — — —
109 11 3 M1 3.100x 107 — — — —
110 11 6 M1 5.186x10° — — — —
111 14 3 M1 4.714x10° — — — —
112 14 6 M1 1.633x10! — — — —
113 14 11 M1 3.355x10 — — — —
114 12 8 M1 5.801x10° — — — —
115 13 8 M1 6.412x10° — — — —
116 15 14 M1 87.54 — — — —

T ) NISTROEIE 4 224 Fif 4 1% 70 28 BT S R A0 To s ; Sk [12)f FIMCDF + CLT iR TR A5 1.

4 %

A GRASP2018 72 /541, 3 F MCDF
1 CL ik, R385 % & Breit 500 . A BB IE . B
B WACSE R B AEXHE T QED B IEMFEI, RS
BT TR Z = 6—51 1k 15 Fh2ss g1
) 1s2nl (n < 4, 1 < 3) XTI 15 A BELL Y BE =
PhRGX 15 ASRE R Y Fir A7 116 4~ E1, M1, E2 Bk
TR R, I8 2 5 NIST %0k A M Se i) —
SIS ZE ST AL, X T IOL e, RATH AL
RBEMSIRAr M5 NIST $508 & O A i HLS T  45
FARRE, KER 5T REQE R 5 NIST Bl i) 22 = 7
0.02% LA, 1525 A BRI S A I R A SR
Y SELH BURE, o 5 2R B 250 T Je A IRl AR
Fi MCDF+CI J7 545 8 a5 58, JoHx ik

SICBEAB I [1522D], o, 30 PH N BARIUR DS, AT
gk L5 NIST B AR X 22 5 /T 5 i [l R R A
MCDF+CI 5 iR R 1—2 Mg, 2%
T S AR T T IS KA 1
RRPATRACRIEE . Rt T BT #R, Ry
BT HORANT 108 s IS ERE AN, FRATTI0 1A 45
5 SEETRRE R ] MCDF4CI J7 v B EIE 45 S AR
X2 AE 1% LAY [RIETRER A BT AR S8
gh L5 NIST S04 AR X 22 S rE 5% LA, i
55 NIST %d L K SEnr A B 25 5 0 L, T
BT T8 e LA SR SRR, A St
A NIST AAAE K22, 5 HAL S 15
SRR, X — S5 R R T XX SERE LR L) K BRAT
SRRy ES B v S M g A T 1S e == 1
BRMBE FHIRES e BRI R, L HE B2 Ml
M1 45 L A A BR AT 1Y) BR AT S R i 15 8% 1 4
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Excitation energies and radiative transition rates of
isoelectronic sequences of Li-like ions with Z = 6-51"

ZHAQO Jiaxun WU Chensheng! SONG Qinghe!

(Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China)

( Received 8 May 2025; revised manuscript received 14 July 2025 )

Abstract

Li-like ions widely exist in astrophysical and laboratory plasmas, and their precise atomic parameters (e.g.
excitation energies and transition rates) are very important for plasma diagnostics and spectral analysis. In this
work, we employ the GRASP2018 software package, which is widely used in atomic structure calculations, to
systematically compute the lowest 15 energy levels and the electric dipole (E1), magnetic dipole (M1), and
electric quadrupole (E2) transition rates between them of 17 Li-like ions across the isoelectronic sequence (Z =
6-51: C¥F, Fo+, Mg+, P12+, Ar's+, Scl8+, Cr2l+, Co?+, Zn2™, As¥+, Kr¥+, Y36+, Mo?+, Rh¥2+, Cd®+, Sn¥™, Sh¥+).
The calculations are based on the multi-configuration Dirac-Fock (MCDF) and configuration interaction (CI)
method combined with high-order relativistic corrections and quantum electrodynamics effects such as Breit
interaction, self-energy correction and vacuum polarization. The computational convergence is achieved. The
calculated excitation energies and transition rates are compared with the NIST database and previous
theoretical results. Due to the reasonable construction and larger scale of baseset, the current computational
results show evident improvement compared with the results obtained using the same MCDF+CI method
previously. Particularly for the two lowest excited states, [1s*2p];;; and [ls*2p]ss,, which exhibit slower
convergence, the relative difference between current results and the NIST data is reduced by one to two orders
of magnitude compared with previous MCDF+CI calculations. This accuracy even approaches that achieved by
S-matrix methods specifically optimized for the ground state and these two lowest excited states. For transition
rates, except for certain weak transitions with rates below 103 s™!, the difference between our calculations and
previous theoretical results obtained using the MCDF+CI method is still within 1%. Furthermore, our
calculations accord with the NIST data within 5% for the majority of transitions. A comparison of NIST data
with other previous theoretical results shows evident discrepancies between our calculations and the NIST data
for some excitation energies and transition rates. Our results are consistent with other theoretical results for
these specific values, indicating that these particular energy levels and transitions need more detailed theoretical
and experimental investigation. This work provides highly accurate data for supporting experimental diagnostics
and theoretical modeling of astrophysical and laboratory plasmas in future research. The datasets presented in
this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00154.

Keywords: Li-like ions, atomic structure, multi-configuration Dirac-Fock method, radiative transition rates
PACS: 31.15.ag, 31.15.am, 32.30.—r DOI: 10.7498 /aps.74.20250611
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T [EF 9 Fs e
EWEF (Z = 10, 14, 32, 36, 50) 1s22s22p?
1s%2s2p® ZHZSHIYBEZR A0 B (B R BRIT"
WAEY {144

(LTI A=Y o TR 2B, K3 116029)
(2025 4E 4 ' 28 HUH; 2025 4£ 7 A 14 HEMEUH)

F H % 41 25 Dirac-Hartree-Fock 77 X 285k S5 B F 7 51 (Z = 10, 14, 32, 36, 50)15?2s22p2 Fll 1522s2p? 2 2%
1) RE 9 285 ¥4 A E B A BR TR A7 o0 1E AT BRI B 5T . TERS B FE A0 B F T ORI AN . FUARE Y RS, F IR
Breit #H B AR . & HL 30 7 S 800 AR F AR BT ER AN, LEER A BT T - SCHRAR R | S~ f G I Ak I A A - 5 G
IO X I F A SR BB 2, S8 AR T R T ASIOR BRI RS B B T 5. S A S A5 A L, AR SO
Ne V & F 0¥ & BE45 5 NIST (National Institute of Standards and Technology) i £ 4 #5231 ; HoAh &5 7
R R Rt B B RS B AR EEAE I, 255 LS # A R T AR A A4 A NIST $d, %of h 3 i R &5
ZAEOLIEAT M, W T AR B R F A A 4. AR SCHR T T LA () B AR BT IR AR K | BRI R | 4Rk
FIMAL R ¥ 38 B2, Ne V I Si IX 8 F A3 2K 5 NIST B G134, AHXT IR 22/ T 0.62%; BRIT#H R
HABPRIS 45 R e — B0 46, AR5 45 3 A9 Babushkin #1 Coulomb T A1y 19 B H R BRE 2 5 EA B I
B —ee ) BE—HAIE B T AR SCR A BRI Ty Bk O vER A ] S50 . A SCEAJE4E AT FE https: //www.doi.org/10.57760/

sciencedb.j00213.00145 HviJ7 A) 3R R

KR SR T, £ 4 Dirac-Hartree-Fock J77%, BEZ, HLHRERIT

PACS: 31.10.4z, 31.15.ac, 31.15.ag, 32.70.Cs
CSTR: 32037.14.aps.74.20250568

1 5

Fe R BE B L A T K A P i R AR A
TR FE R AT R S R AT AR A T
SHEGL . 2N R R S RO R | P AT IA IR 1
5 B SF BRIE S RUR MGG A U AL T

i

TR AT BLZ —, R T 5B T R

WL F BRI o B A SR AR A T A
TR B LR 610, BROCE BT A B RS
MCR, MR RS B rh BAT 2], FAT,
TERPH H %2 . PRI Wi SN2 8 1A XA

* ER HRFPIER ST TR IS S 12204214) PEBIYGYEL

t BfE1E#E . E-mail: humuhong@163.com
© 2025 FEYIEZS Chinese Physical Society
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LIS R T KA 2R s T ik 12 &
SRR E R T IR T IESRAM i
AN W 2R AN N XS N DGR RAE, 7
B0 B PRI AR RN IR AIE. PR IL, 20k 25T RE K
SR RIS R A BRI A SR T HE S A O BE A
SEERAF T Y & R HAT FUARAE H.

AR, STk B IR A OC BRI AF 9T e LA
W, A E RS AR T E R g R
1996 4 Vilkas 55 3 F] ] Z2 (R 4 38 B8 (many-
body perturbation theory, MBPT) J7 k115 T2
BT (Z = 8—30)1s22s22p?, 1522s2p® Ml 1s22p*
ZHASTE] (1 HL DO M BRAE (electric quadrupole, E2) Fl
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AR M B (magnetic dipole, M1) [ BKiE S %L
1999 4, Safronova # Shlyaptseval' >k} 1/Z
ER T RmEH 775 (Z = 6—54) A HLE
AR A BB SRECARE. 2003 4, Aggarwal 55 (19
& H 2 417 Dirac-Hartree-Fock /7 ¥ (multi-con-
figuration Dirac-Hartree-Fock, MCDHF) HET
Zp K XIV, Sc XVI, Ti XVII, V XVIII, Cr
XIX Fll Mn XX &FH 1s22522p?, 1522s2p?, 1s22p?,
1522522p3s, 1522s22p3p Fl 1s22s22p3d 4 4 Y HE 2%
FIELAEHL (electric dipole, E1) BRiFHRFHRE. 2001
AEFN 2004 4 Tachiev A Fischer!'6:17 F|F MCHF+
Breit-Pauli J7ik 5 T 2RKE T Z = 6—15 1Y 1s°
25%2p?, 1s22s2p° A INRED. . FFan ABERIE S8, 15
FIMZERS NIST £5 5 13884; 2005 4F Gul'™s R H]
ZAFMEAEFAM MBPT J5 ik, 118 T 288 1
7 = 6—60 Z a1 152217 (1 < ¢ < 8) HIREL,
PAG T FE R BISSR, 5 NIST 8 i —2
2006 4F Safronova 4§ 9 F| A Xf i Hartree-Fock
ITEETHR T 285 OB T 1s22522pnl, 1s22s2p2nl 1
1s2pnl (n = 2—8, | < n— 1) S HREH NGRS
BRIE S8 2008 4F Aggarwal &5 20 5% | MCDHF
T T 280K Kr BT 1522522p2, 152252p?, 1s22p?,
1822522p31, 1s22s2p231 Fl 1s22p331 HASHIREL . iy
VX E1, E2, M1 #1#PUH (magnetic quadrupole,
M2) BT RYBRIT A IR0 B | e AE BT 240
2010 4F Jonsson I Bieronl! | F§ MCDHF &
TEWRET 7 = 722 1Y 1s22522p2, 15222p® 415
AIREZR . (Al 3R A0S | A A4 40 o 4. AR ¢
T E1 BAES4K, /N Z B2 B IR R I
P At T 0 RS 40 AN R 67 3R AL 28K, 2011 4F
Jonsson 55 22 MO T AR 1 Z = 9—28 1 1s?
2s%2p?, 1s22s2p3 fll 1s22p* 2L S AU RE SR | TRl v A7
B RG4S 1 8. IR g 7 F E1 BRIE 24
AT T ERT R 2Rk B T RE RS BRI 2400
FREZ5 L. 2013 4F Liu % 29 R H] MCDHF Jyiit
BT XS R TR (Z = 7—92) [ 1s22s22p?°P
1 182252p° 5S, =R TFEMIGES . E1 BaEP K | K
TR M. 2014 4F Ekman %524 fi|H MCDHF
TF AR BT Z = 18—30 19 15 1414 262 4
REZLAN E1 S50k AT 17T, HHR 4 R B 281
KGR, AR T S5 I A5 3 Ze 1 PR 3R 2014
4F Nazés ) fi| F§ MCDHF J5 3315 T8 1
Z = T—28 1 3 MEHAHYBELR . I AR BT 1 or

B, T g 5 ST (i 0 H Al BES (E H
2014 4F Wang 55 20 F| ] MBPT J ik T8 T 2k
B 13 < Z < 36 196 MHIAMBEZA E1 Bt
RO EARERERE. 2020 4 Alwadie %527
F|F Hartree-Fock pseudo-relativistic(HFR) 115
TS Ca XV B T REH AR T50 5. 2021 4F
Almodlej %28 J&F HFR #1 Thomas-Fermi-Dirac-
Amaldi (TFDA) 7731581 Na VI 2] ArXIII &1
n < 5 WA HENEES . E1 BiE4R 750 3 AR
TEHCR, ST RA R LA S5 R, B L5 5
A 19 NIST $EAF A 15847 2025 4F Tang 55 29
HT MCDHF JyiEit 8 7K E 1 Z = 2130
M) 4 BRI REY Al E1 BRI MERIE S 4K,
5 H A BEE Jy T NS B 4 S ELA Y
CIER:

A LSRR 2T ARG (Z <
30) FIZEBRE T, o HL AT AS ISR R B REGL S F AN
R A B S S E DO E N SR - R E %N
PEIRAELEZS . T3 Ah, e B F IS S HE A O
SRS Tz, SiIX RIS AETE TR H
B Mo 8 AR X A R Y Kre XXXT R
FR TP ASEI AR Z TR S5
IR AR A B (2 2L, IR, AR SCRI A MCDHE
Tk B2 P e A G BLIS HESL T /) GRASPR
TP RSB, 785375 FEAR XS R0 Fl L - DG I
BN, MR TS (Z = 10, 14, 32, 36, 50)1s?
2522p? I 1s22s2p® A FER L5 L E1 BRE S8
PEAT RS BE ) BS T, S5 UE B 25 A H,
ARICTHEAA RN Ne V3 FIRF 5L RE %L
NIST %udli, HA & KT ; Si IX, Ge XXVII,
Kr XXXI F1 Sn XLV & 1Y & se 45 R} 5 HA
PG ZE R AR A Y. BN, RSCHETTE T Ge
XXVII, Kr XXXI 1 Sn XLV &1/ E1 BRiTES4,
FIFH P ALE T BGE S 800 — Bk 56 T A SO
AR AT AR, SR80k Sn XLV &1 E1 KiE
FIFEAK . AR TS REGOT R R T 50

2 HEFE

N-HLF BT (B F) 7R R A2 0 a h 9374
HAE RS A EAE R R, F5 R BRI 350 AR
A Dirac-Coulomb M %51 i Fe ik 20 B4
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al Z
HPC = i_zl[ca-pl—&—(ﬁ—l)cg—m]
Y
e W

A p B DTS EBST; ¢ RESHADE
W ol BJE 4x4 W) Dirac 5[5, a= < 0 @ ),

o 0
ol 6= (o O p ), IR 22 ot

FRRE. 5 2 ASSRAN L 1) RO AR B AR, s
i AR AN T B

B TR B T (nem) & 1 BT 7
BAFT2G =1+ 8) SR EATE 2By 1 4
J. FRSHE TRREAT p L FAAE %L, AR A

_ } PnK(T) an(’r’/’l“)
(r | nrm) = < 1Qni(r)  X—rm(r/T) > -

,
K, P (r) T Qe (r) 43 51 A 428 ] U BRER 1) K 43
AN, X (r/7) S F TGRS PREL.

B -1 D ok B SRR SO R AL
SR WU 4 AR G 7 A 4 A5 % PR (configur-
ation state function, CSF), ¥ HAMFFH P, &
gl A J AL R R M 2 A I R ARG
17 2 Mk & 0 s A5 B 5 3 pREL (atomic state

wavefunction, ASF):

HPIM) =Y e PIM)). (3

=1
R, & (PIM;) AT RE, n, AP R
BOECH, v FRE P, JR M, Z ANy HAb = F
B, o MHBIRAZRE, W R IERIH—1b 5

> e =6 (4)
i,J
i A5 3] Hue 333 2IAY Dirac-Coulomb P 25 i i
IOEGEZEY R
EPC = (w(PJMy)| H™ [@(PJM,))
— (CPC)* HPCOPC (5)

K, CPC€={c;i(a),i=1,2,-- ,n.} WHATIRE
FREBUERE; Wi () TR s N

HDC = (&(~;PTM,)| H’C |&(~; PIM,)).  (6)
I BT AT X £ Ak, T LB R T I S

A WIAAE BE f& FIAE 2% B IR & 2R BOL. FE IE 36 A
b, FFH AL B Breit AHEAEH . &30
2# (quantum electrodynamics, QED) v A1 Ji 1
W2 BT O P08 DAt — 24 i BRI TH A ARG B

TR T EIREE TR AR ITERIT BT
B IARF5m B | 2 S R TR S 80T LU R
AT A T RR B

(@ (PJ) |0 |jw (P])), (7)

X, OB R RGBT ZWAE AT, L = 1 g
WBRIE; W (PJ) W (PJ") HEREEWT . AR R %L

M @ IR j BRATHYZR08 S ]

S = (i P || O™ ||y Py, 2, (8)
H R SRS BRIE R A, FRTFIREE fi; 530 0Fm N
del; A(L) 2
Aij = 555 NP JiMi| O e P J;My) [, (9)
TC N
fij = WK%PMHO(L)HaijJjHQa (10)

O, wiy JERSSERIT G TR AR 756 B
9.fi; SERITEARE R AR AR

mc g, _ gj
— A2 A =149 x 107 N2 2L A (11
8n2e2 g, x g (1)

A, A MBS, BAREA; g g 735l R
T RS GEHALE.

g9fij=

3 #XR5it%m

R T3R5 IR M AR SRR B 1s22s%2p? I
1s2252p? A AT L SCIRAUNE , A SCR WU R -1
K, ACIE WAL 16 25 18] (active space, AS)
|

AS1 = {2s,2p},

AS2=ASI + {3s,3p,3d},

AS3 = AS2 + {4s,4pAdaf}

AS4 = AS3 + {55,5p,5d,5f,5¢} ,

ASS5 = AS4 + {65,6p,6d,6£,6g,6h} ,

AS6 = ASS5 + {75,7p,7d,7.7¢,7h,7i} ,
AS7 = AS6 + {85,8p,8d,8f,82,8h,8i,8k} .

Bl 1 FR k53l % 1 VV G (valence-valen-
ce correlation), VV+CV Xk (core-valence correla-
tion), VV+CV+CC KBk (core-core correlation)
i Ne V(Z = 10) F1 Si IX(Z = 14) &+ 1s?2s*2p?

153103-3


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

#) 32 2 3R Acta Phys. Sin. Vol. 74, No. 15 (2025)

153103

BELH M 18228208 R S W IR T BBk BE S
NIST(National Institute of Standards and Tech-
nology) Zd 10 AN R 22, [l Hks A bR 5 X
NET 15 MRS, Hr 1—5 FEASR 5 N5+
A, 6—15 MR AN 10 META (AR
WA 1) L1 AT LAFE H, ASTR] B HL 5 SRRSO X
J5 7 35 K RE I R R N M, VVECY
VV+CVACC RER LB TE 15 JE T 152
Rl R ALV PN SN AN NS 25 bk Oodi cedr
R NIST Sudls e 4 ir, A IR ZE 4 T
0.05%—0.10% Z [i]. VV JCIK 3= Z M & T L 7
Z ARSI, 20 T TS AL XA Y

1.2
(a) 0 VV4CV4CC
1.0 F e ® = X VV+CV
e VV
X
> 0.8} °
o
-
g 06 .
Z X ‘
E 0.4} - o e o
Q e ©
~ e o o
0.2} X
X = . X
[0 S S— L I B> U O S
012345678 9101112131415

Level number

B 1
VET; (b) SiIX BT

VV KB VVHCV BRI VV4HCVACC B X Ne V AT Si IX B F 1522522p?, 152252p® 41 25 R T 530 & it B9 52 i)

JiERCAANE, 153 AR BEZE A 5 NIST 54l A B i
25 HEEMADEFHIETE 4, 5, 6('D,y, 1S, Hil
5Sy) H, FHIE VV CHR YL BESS SR BT 4% NIST
s, AR, DBURRER N VV SCHR ML g
G5 B, M4 R Z M = REH, VV+CV+
CC R & RS R EA AP rRE . FH AT UL,
YN AT 2 R B TR R TP 5 RS
ZAB] A LT 2 (R SIS, 2 S BN A AR
SEA TR A B A, AR SO SR TR DL VV 4
CV+CC S HHE Il

TE% & VV4HCVHCC SEBRAEERE I, #hseptrt
3k S1—3K S5 (online) FH T HRKEF (Z = 10,

361(m) 0 VV4CV+CC
X VV+CV
3.0F
3¢ o VV
X
= 24¢t
o
&
S 18}
)
2
= 1.2+ .
&
0.6 }°4 Q Q °
X ® e o o e v
oY S E— ¢ e xmxxXBRARXXE]
012345678 9101112131415

Level number

(a) Ne

Fig. 1. Effects of VV, VV+CV and VV+CV+CC correlations on the excitation energies of atomic states for 1s?2s?2p? and 1s?2s2p?

configurations in Ne V and Si IX ions: (a) Ne V ion; (b) Si IX ion.

# 1 NeVHET (Z=10, 14, 32, 36, 50) 15?25?2p? Fil 1522s2p? 41 AT A M0 % fil
Table 1.  Excitation energies of states for 1s?2s?2p? and 1s?2s2p® configurations in Ne V ions (Z = 10, 14, 32, 36, 50).

. N, State / CEICIéllll E1>1;ZIEIS] E/}éiﬁ[‘zl?] E;EIILAEZS] E‘\/'ICC;FEM] EM/C(J:)I?IFII[QZ] EM/CCDI?IFIZ[B] E}Nérsg[jm 5%  6/em?
1 1s72s”2p? °P 0 0 — — 0 0 — 0 0 0
2 1s?2s22p%P;  411.82  410.6660 — — 413.52 411.4 412 411.227 0.1442  0.593
3 1s22s?22p?%P,  1111.74  1105.544 — — 1109.89 1108.6 1112 1109.467 0.2049 2.273
4 1s?2s%2p? 'Dy  30394.93  29963.98 — — 30388.87 30428.1 — 30290.67 0.3442 104.26
5 1s%2s22p% 1S, 64537.13  64660.65 — — 63932.41 64141.3 — 63915.4 0.9727 621.73
6 1s?2s2p®°S,  87979.45  89949.36 — — 89417.23 88176.6 87782 88399.5 0.4752 420.05
7 1s2s2p®3Dy  175793.08 175362.7 — — 177091.78  175906.6 — 175832.3 0.0223  39.22
8 1s%2s2p® 3Dy  175863.71 175431.2 — — 177161.79  175976.7 — 175902.7 0.0222  38.99
9 1s%2s2p® 3Dy 175887.35 175453.0 — — 177184.54  176000.3 — 175925.0 0.0214 37.65
10 1s22s2p% 3P,  208147.27 208283.8 — — 209479.97  208347.0 — 208151.3 0.0019  4.03
11 1s?2s2p® Py 208151.98 208288.6 — — 209485.10  208351.9 — 208153.3 0.0006  1.32
12 1s2s2p® %P,  208185.58 208321.7 — — 209519.18  208388.7 — 208185 0.0003  0.58
13 1s?2s2p® 1D,  270878.89 269549.6 — — 271972.52  270855.6 — 270552.9 0.1205 325.99
14 1s?2s2p®3S;  279567.62 278211.2 — — 280689.94  279582.4 — 279371.2 0.0703 196.42
15 1s2s2p® 1Py 304246.43 302434.5 — — 305326.16  304289.6 — 303819.2 0.1406 427.23
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14, 32, 38, 50)1s22s22p2, 1s22s%p® LSRR 15 4
JRFATE AS2—AST G R RES. W LLE H,
TS Y R AS3 B, £ R F A BB /)N
WrEzs A AS3 VR R AST B, T ASREH 1R
/N, BT RRE.

T 1—F 5 WAGHEM K E T (Z = 10,
14, 32, 36, 50)1s?2s?2p> Fl 1s?2s2p? LA i+ 25
WRRE, B BALHEIE VVHCVHCC KB, L5
T Breit %0 . QED 2500 F 5 4% 5 12 5500 59 1
B, R gy T H A I8 45 SR [18:22.2327.28.31]
HINISTHO $54f, Feh i Jg — 81 A AR SCRY IOk g
g5 L5 NIST B A xR 2. ASCTHE R TA 5
TR R BELS e, Breit 200 1 QED K40
BTk 9 55 G 2, X BB R 5 Y L 43 A
33.5090—77774.7532 cm'!, 1.0400—34093.9904 cm
Jir A% Jo 1 2500, Y BT R AR X LN, R 0.1221—
376.9990 cm . 530k [18,22,23] BTSSR L,
B TIRFA& 5, ARG Ne V B TR T AHA
AE-5 NIST Bdfafe Mz, 4axfiR25/NF 430 cm !,
AR XI5 22 95 Bl 0.0003%—0.48%. FRAT Y Si IX
BT ENSTHE AR LA S, MR, SOk [22]
(Y28 R 50T e 4 RGBS i, 5 NIST 54l
B ML, FIRRZE/NT 0.43%; AR LR T
AR NIST 8, Br 772 2, HAth i 78
K BERYZEXTIRZETE 1000 con ! LN, MHXHRZ /N T

0.62%, 5 3CHR [22] BYAE EE A Y. XF T Ge XXVII
B, AR RREE A L HA IS g R S A TR
NIST £ #04F S 15 AR 4, 5 SCHk [18] 5 A 3K
BEfEE] 3—4 1. Kr XXXI &7, BREE T
A4, R 2Bk ES NIST B4 bz, A
X iR 2 FA 0.001%—0.070%. H ET i A& 4A Sn
XLV &1 NIST &ifs, 53 A i HAL IS 45 R
HEE, A8 SC5 SCHER (23] 19 3 A& RE 4 SR Hu g —
B, Ay AH 2 193 emt, 81 em?, 245 em' ;5 XX
Mk [18] M & Regs AR, — & Wi/ MR
ZAHA 9 71 cm ! FI 1469 cm L.

X Kr XXXT B 525 4(°P,), ASCHISC
Mk [18] I A REST B 935443.18 em !, 934400.51
em !, AR R 22 43 0 R ik 95.62% Fl 95.59%; 3¢
Mk [23] MIE5H R 478950 em !, 5 NIST £ 44 &
PRI, WA SO R T2 3('Dy) M A RE>
478893 cm !, HEE NIST ¥, X125 4 0.14%.
T34h, Kr XXXT &7 24 12 F 14 HI3E 7 4R
METFAm4 (B albRich 1D A8 DS ),
T WK BE 45 2R 4 0 2064345.2 cm ! Al
2431024.8 cm !, i LS 54 F 19 1s2252p3 3P, 25
JRFAEGY T, 5 NIST $edli Al ke, A SChy It
T4 12('D3) BB S NIST # 152252p% 3P, 75
PR REZE R 2062900 cm ! FLESHEIT, AR 2ZE N
0.07%.

F 2 SIIXET (Z=10, 14, 32, 36, 50) 1522s22p? Fl 1s22s2p? AT A% K fiE
Table 2.  Excitation energies of states for 1s?2s?2p? and 1s?2s2p? configurations in Si IX ions (Z = 10, 14, 32, 36, 50).
LeNo. St e Ber B Bron B B Bueonn = Breone B gy e
1 1522522p? 3P, 0 0 0 0 0 0 — 0 0 0
2 1s22s22p?°P; 2472 2539.017 2533 2637 2582 2540 2473 2545.0 2.8684 73
3 1s22s2p%%P, 6376  6404.025 6721 6753 6452 6411 6377 6414 0.5925 38
4 1s22s?2p* Dy, 52987  52731.80 50726 56291 53076 53070 — 52925.9 0.1154  61.1
5 1s?2s?2p?1S; 108352 108410.6 119027 132263 107826 108017 — 107799  0.5130 553
[§ 18%2s2p®°S, 149841 151487.8 146529 128561 154077 150120 149624 150770 0.6162 929
7 1s?2s2p®D3 292026 292093.6 286103 285832 296224 292323 — 292232  0.0705 206
8 1s?2s2p®3Dy 292089 292151.7 285850 286020 296405 292384 — 292296  0.0708 207
9 1s22s2p®°D; 292231 292290.4 285798 285866 296274 292525 — 292441  0.0718 210
10 1s%2s2p® 3P 343838 344277.7 332017 337703 348047 344313 — 344009  0.0497 171
11 1s%2s2p 3P, 343895 344330.1 332217 337800 348157 344202 — 344075 0.0523 180
12 1s%2s2p® 3P, 343941 344390.6 331907 337756 348103 344256 — 344118  0.0514 177
13 1s22s2p® 'Dy 440482 439823.7 431290 449098 444583 440751 — 440403  0.0179 79
14 18%2s2p%3S) 446940 446248.8 436901 454797 451039 447194 — 446942 0.0004 2
15 1s%2s2p3 1P 492902 491959.4 477444 500967 497004 493218 — 492755  0.0298 147
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%3 Ge XXVILET (Z= 10, 14, 32, 36, 50) 1s22s22p2 il 1522s2p3 AR TSI A fiE
Table 3.  Excitation energies of states for 1s?2s?2p? and 1s?2s2p® configurations in Ge XXVII ions (Z = 10, 14, 32, 36, 50).
LvNoo  Swe Fe o Buwer® Sedh Bt o T B Buon ™ B g sjan
1 1522822p? P, 0 0 — — — — — 0 0 0
2 1522522p2%P; 219998  220040.9 — — — — — 219953 219880 0.0537 118
3 1522s22p25P, 288064 2880464 ~ — — — — 288122 287736 0.1140 328
4 1s2822p?'Dy, 562851 562703.1  — — — — — — — —
5 1s?2s%2p? 1S, 729240 7290049 < — — — — — — — —
6 15?252p7 %S, 840329 8415588  — — — — 840075 — — —
7 152252p° 3D, 1175235 1175835  — — — — — — — —
8 152252p°3D, 1212157 1212816  — — — — — — — —
9 152252p° 3Dy 1294534 1295181  — — — — — — — —
10 1s2262p%3P, 1440794 1441490  — — — — — — — —
11 152252pP5P; 1468812 1469518  — — — — — — — —
12 152252p° 5P, 1515861 1516612 ~ — — — — — 1516690 0.0547 829
13 1s2282p°3S; 1634306 1634571  — — — — — 1633620 0.0420 686
14 1s22s2p*'Dy 1767417 1767693 ~— — — — — — — — —
15 15252p° P 1975301 1975518  — — — — — — — —
F 4 Kr XXXIBT (Z =10, 14, 32, 36, 50) 1s22s22p? il 1522s2p3 4 JE T2 0BUK At
Table 4.  Excitation energies of states for 1s?2s?2p? and 1s?2s2p® configurations in Kr XXXI ions (Z = 10, 14, 32, 36, 50).
beNo. st P B Bl B B B B Bt g e
1 1522522p? °P, 0 0 — — — — 0 0 0
2 1522522p2%P; 397033  397090.1 ~ — — — — 396962 396820 0.0537 213
3 1s282p? 'D, 478893 478885.2  — — — — — — — —
4 1522522p2%P, 935443 935288.5 ~ — — — — 478950 478200 95.6175 457243
5 1522s22p% 1S, 1128073 1127837  — — — — — — — —
6 152252p%5S, 1175162 1176400  — — — — 1174960 — — —
7 152252p%3D; 1530587 1531276  — — — — — 1530200 0.0253 387
8 152252p°3D, 1653780 1654590  — — — — — 1653800 0.0012 20
9 152252p%3D; 1784435 1785211  — — — — — 1783500 0.0524 935
10 152252p° 5P 1954591 1955386 ~ — — — — — 1955900 0.0669 1309
11 1s282p%%P;, 2000162 2000973  — — — — — 1999100 00531 1062
12 B IDY oh6unus 065150 — — — — — 2062900 0.0700 1445
(1s%2s2p? 3Py)
13 152252p5 %S, 2151587 2152024  — — — — — 2151900 0.0145 313
14 (1;;3;3’;3 11]]3325) 2431025 2431535 ~ — — — — — — — —
15 152252p° P 2691220 2691625 — — — — — — — — —
*5 SnXLVET (Z=10,14, 32, 36, 50) 1s22s22p? Fll 1s?2s2p3 A F Tk fig
Table 5.  Excitation energies of states for 1s?2s?2p? and 1s?2s2p? configurations in Sn XLV ions (Z = 10, 14, 32, 36, 50).
Lv. No. State / CEIC]rallll EI}?;TEIS] E/Iépr;{zl] E/r;r;? [128] El}fgi[lm EI\,I/C(IET[ZZ] EM/CCDIEZQ[N] E/hgiﬁo} §/% §fem’
1 1822822p? 3P, 0 0 — — — — — — — —
2 1522822p? %P, 1885654 1885837  — — — — 1885461 — - -
3 1s°2s°2p” 'Dy 2004135 2004255 ~ — — — — — — — —
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# 5 (2k) Sn XLV BT (Z =10, 14, 32, 36, 50) 1s22s22p* Fl 1s22s2p® A TS A AL E
Table 5 (continued). Excitation energies of states for 1s?2s?2p? and 1s?2s2p? configurations in Sn XLV ions (Z = 10, 14, 32, 36, 50)

Lv. No. State /5101? 1 E>1§;?£18J E;ﬁﬁ[jﬂ E;EIDn é[lzs El}f’;{[fu EM/C(]:)Iﬁf]lsz EM/?I?:?[Q;;] E/N éfgf()] 5/ e
4 2;?2‘35; 3:2) 3220891 3222265 ~ — — _ _ 3990810 -
5 1s2252p% Dy 3674549 3675597  — - _ _ _ o -
6 1s2222p? %P, 3979255 3979184  — — _ _ 3979010 - B B
7 1s?2s%2p% 1S, 4273686 4273568 ~ — — — _ _ o -
8 1s2252p* 3Dy 5008169 5009638 — — _ _ o - - B
9 1s?252p% Dy 5265644 5266985 ~ — - _ _ _ o -
10 1s252p %Py 5532862 5534116 ~ — — _ _ _ -
1 1s%282p° %) 5638071 5639355 ~— — — — _ o o -
12 1s22s2p®'D, 5719867 5721043 — _ _ _ - - - B
13 1s?2s2p°°P; 5751679 5752781  — — _ _ _ o -
14 (1;:?;:2"; j}zg) TAB4367  TA35689  — _ _ B B -
15 1s%2s2p® 1Py 7851752 7852863  — - _ _ _ o - -

J T o ERJE TSR e 2 ORI, £b
FEM R S6—3K S10 (online) F1) ) T AR SCIHA
USSR ES T (Z = 10, 14, 32, 36, 50)1522522p? Fl 152
2s2p® AT IR F ARG B S br . R
JRFSRRA A oI IE H, Kr XXXT &5 F
253, 4(122522p? 3P, 'D,) F1 12, 14(1s22s2p® 'D3®)
AR R AR IR A 4. 7E GRASP R 7,
HE LIRS B h stk K e i ran 44, [\
— R F AR A hoTik e R, 5 th B+
B4 EERE, Hln, 1s2s2p° 'D, 75 i F 25
12 Fl 14 HRRRA R B3B8 0.46 A1 0.51, XF &
() DTRRER 2 e K, SEURTA 12 f1 14 4
2. 5 NIST ¥l FSCiik [23] L5 RAf L, TLLK
M Kr XXXI B FETFE 4 (PPy) Wk Dy 2, i
JRFZS 3 ('Dy) WA 3Py 25 JRFZS 12 (DY) WK
GHRTHOP, &, LT 14 (DY) Nk 'Dy 2. 2K
I, Sn XLV B 1)1 4 4 A1 14(3P3 F13PY)
Wi Tar 4 ERE WIS, B T3A NIST £,
AT Sn XLV BT R 4(°P%) Al fg>
58, 2%, JRFAS 14(°PY) ATREN 3P, 25, LR AT HEM)
J A A 44 40 AR IRTER 1—3R 5 vt iz i) J 5
BTSN, RS EE AR K2 HAT
JR 2w BER A EIE, B S5 TP 9 A% H far B
R38R, LS FbA 2 JJ FA 0, 2EH LS #5
AR AR FEAE, JJ A B
TR ZETHRTAMA.

F 6—35 10 5 TASGHE M EREF (Z =
10, 14, 32, 36, 50)1s?2s2p>—1s228?2p? [A] E1 BRiE
M) 2R I K M. Coulomb FI Babushkin #LIE T B9
BRIT TR A MBUR TR of S8 S LA LIA 1Y
O R 45 0 (22262831 F) NTST #4 0. %} F Ne
VA S IX B, ASCHAER EL R K S5 0A
1) NIST 45 SRAF & A45 84, AN 52 22 40 il 430 Ay
0.00021%—0.48%, 0.001%—0.62%; BRiT # % 5k
JERAFIY SR [22] S5 R R —8, —E M Ne V BT
BRIE HR AR /T NIST %4, Si IX B F I ERIE
5 NIST ¥ [t 423K . Coulomb Fl Babushkin
PRS0 E1 BRIE S E00— B2 A 40 s AL
B T vk 22— W PR AR 6—3% 10 1 T I
LG T BRIT BRI HAH A/ Ap LK ARA AT Hods
B 0 HA 2 71 E1BREZE. M ER P T LA
B, ASOTHE R 4R ZERIRIT N Aq/Ap 45
RAEWEAE 1, BUE A ET T 0.9—1.1 Z Al )
R R R BN S IRIE A/ Ap 255 B 50
BT 1 FE L, SHEGET I TUELS X Babushkin
B (R B RV ) 1 BRAT SR A T Bk, I
Coulomb I (F BRI ) Y BRAT 3 52 4 Ry 1
/N 1245 SRR R S R 1Y L™ e
T 1, R B A I R BT T W BE . A AT
=, S ERGE T PR T BRI 22 S AN
M R 205 SR 11 AR VAR 1
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Table 6. The El transition wavelength, rate, weighted oscillator strength, and line strength between the 1s2s2p? and 1s%2s?
2p? configurations in Ne V ions with Z = 10, 14, 32, 36, 50.
Transition A—B A Ag/st Ag/st afc afs Sc/a.u. Sp/a.u. Ac/Ap
568.53 6.7218 6.7298 9.770 2 9.782°2 1.829°¢ 1.831¢ 1.00
SDI—Py — 6.620° 2 6.615° 22 — — — — —
568.424 [40] — 7.708 140] — — — 2.10°1 1l —
480.40 1.032° 1.029° 1.072°1 1.068! 1.695 ¢ 1.689°¢ 1.00
P—P, — 1.027° 2 1.0319 2 — — — — —
480.415 110 — 1.399 [10] — — — 2.10° 110 —
357.68 2.347° 2.410° 1.351°1 1.3871 1.590! 1.633! 0.97
35,—P, — 2.378° 2 2.3859 2] — — — — —
357.947 140 — 2.50° 140] — — — 1.70 1 [0l —
1p_p 328.67 8.756* 8.510¢ 4.254°6 4.135°6 4.603°6 4.474°6 1.03
b — 9.087422 8488 — — — — —
5D —1g 898.04 1.7794 1.679* 6.452°6 6.090°° 1.908° 1.801° 1.06
o — L7580 1730122 — — — — —
5p.__1g 696.29 1.083° 9.2444 2.361° 2.016 % 54115 4.620° 1.17
b — 1.114° 22 9.4744 2 — — — — —
35 _ig 465.04 4.082° 4.136° 3.971° 4.023° 6.079°° 6.159°° 0.99
b — 3.04122  3.908° 22 — — — — —
p._1g 417.16 3.080° 3.136° 2.411°" 2.455! 3.311°! 3.371°! 0.98
b 41683410 30719220 3064922 — — — — —
481.28 3.144° 3.134° 1.0921 1.088! 1.730°! 1.7251 1.00
3PP, — 3.124° 122 3.140° 22 — — — — —
481.293 [10] — 4.00° (1) — — — 2.20 1 [10] —
569.86 4.7008 4.7118 6.864 2 6.8812 1.288°1 1.291°! 1.00
‘D,—Py — 4.6298 2 4.630°8 22 — — — — —
569.756 (1] — 5.808 [10] — — — 1.60 1 110 —
481.36 8.289% 8.264% 8.638 2 8.6122 1.369°! 1.365! 1.00
3P—3P, — 8.238% 22 8.275% 2 — — — — —
481.366 110 — 1.009 1401 - _ — 1.70 1 [0l —
358.21 7.047° 7.2357 4.067! 4.1751 4.796! 4.924! 0.97
38173131 _ 7.1429 [22] 7.1599 [22] _ _ J— J— J—
358.474 [10] — 7.309 [10] — — — 5.00 1 [10] —
1p._sp 329.12 4.731° 4.908° 2.305 4 2.3911 2.4974 2.5914 0.96
b — 479302 485192 — — — — —
1141.94 3.518° 2.329° 3.439°¢ 2.277°6 1.293° 8.558 ¢ 1.51
38,—Py — 3.485% 2 2.340° 2 — — — — —
1136.515 1 — — — — — — —
569.94 9.000% 9.002% 2.191! 2.192°! 4.112°! 4.113! 1.00
3Dy—Py — 8.866° 22 8.850% 22 — — — — —
569.828 [40] — 1.00° [0 — — — 4.60 " 1] —
481.37 7.414% 7.379% 1.2881 1.282°1 2.041°1 2.0311! 1.00
3Py—P, — 7.373% 2 7.3978 2 — — — — —
481.371 110 — 1.009 101 — — — 2.80°1 (101 —
) 369.72 1.173° 1.2745 1.202° 1.306° 1.463° 1.589° 0.92
D,—P,
— 1.159° 22 1.273% 122 — — — — —
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Table 6 (continued). The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s2s2p
and 1s?2s?2p? configurations in Ne V ions with Z = 10, 14, 32, 36, 50.

3

Transition A—B NA Ag/st Ap/st afc afs So/a.u. Sp/a.u. Ac/Ag
b 572.15 2.7367 2.7507 4029%  4.049%  7.589% 7.626% 1.00
b — 260472 270072 — — — — —
482.98 1.273 1.270° 13361 13320 21241 21181 1.00
PP, — 1265922 1.272002 — — — — —
482.990 [0 — 1.709 10 _ _ - 2.80°1 10 —
359.11 1.1801 1.21110 6.8421  7.0217 8089 8.301" 0.97
58, —9P, — 11961012 11981022 — — — — —
359.374 10 — 1.2010 0] — — — 8.251 10 —
b 329.88 5.077 5.506° 2485°  2.695°  2.699° 2.927° 0.92
b — 1265922 19272902 — — — — —
. 687.30 3.189 2,338 67766  4.966°  1.533° 11247 1.36
o — 3377422 2.3081 2 — — — — —
D 562.55 2,923 2.795° 4161°  3.979° 77060 7.368 1.05
b — 28872 278052 — — — — —
i 401.32 6.659° 6.588° 48235  4772° 63720 6.304° 1.01
b — 6.765°122  6.801 2 — — — — —
365.15 1.30310 1.32610 78151 79511 9.3947 9.558 1 0.98
lPlle2 _ 1.32010 [22] 1.33010 [22] _ _ _ I J—
365.593 (10 — 1.3510 (0] — — — 9.77 110 —
5 ap 1151.14 9.075% 5.839 9.0146  5800°  3.416° 2,198 1.55
Lo 1145.606 10 92073122 58773122 — — — — —
572.22 2.613° 2.620° 64132 64312 1.2081 12121 1.00
SDy—P,y — 2.573% 2.5748 — — — — —
572.105 10 — 3.508 1] — — — 1.60 1 (0] —
482.99 2.376° 2.368" 41551 41400 6.607" 6.584'1 1.00
PP, — 2.361° 122 2.3720 12 — — — — —
482.994 10 — 3.00° 10 — — — 8.30°1 10 —
Do ap 370.68 2.673° 2,815 27531 2.899¢  3.360 3.5384 0.95
L — 27335122 273302 — — — — —
5D 1736.53 6.487 1 3.006 1 1466° 67961 83839 3.885° 2.16
Lo — 9.0841122 3,080 — — — — —
DD 687.41 5.119! 4.699" 18135 16645  4.103° 3.766 ° 1.09
Lo — 5.048422 456342 — — — — —
S 562.56 4,720 4.852! 1120°  1151° 20747 2.132° 0.97
Lo — 4214022 4864012 — — — — —
415.82 9.471° 9.671° 1.228 1.253 1.680 1.716 0.98
lDQ*IDQ . 9.507° [22] 9.5239 [22] J— J— — — —
416.212 10 — 1.1010 0] — — — 1.96 10 —
572.45 1.148° 1.148° 39491 30461 74427 7.4371 1.00
3Dy—P, — 1.1319 22 1.1289 22 — _ _ o o
572.335 10 — 1.409 10 _ — — 9.10°1 1] —
DD 687.75 24295 2.2495 12024 11134 2722 2,520+ 1.08
b — 2302922 92189712 — — — — —

H: R A, BRI 1s22s2p3 Fl1522522p2 8 2% ax 10°R 7R M al.
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Table 7. The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s*2s2p® and 1s*2s

2p? configurations in Si IX ions with Z = 10, 14, 32, 36, 50.

2

Transition A—B NA Ag/st Ap/st afc afs Sc/a.u. Sp/a.u. Ac/Ag

342.19 1.493° 1.502° 7.861°2 7.9102 8.8552 8.9112 0.99

D, — 1494912 14949 P2 — — — — —
342.36 20 — 1.468° 20 — — — 8.724220] —

341.949 [0 — 1.499 0] — — — 8.81°2 [0l —

290.83 1.916° 1.907° 7.29°2 7.2552 6.980°2 6.947°2 1.00

o — 1.917° 22 1.919° 22 — 6.352 27 — — —
R 200.93 24 - Tl I PR T - T L A
290.69 (0! — 1.949 140 — 7.37°2 31 — 7.05°2 140 —

223.74 3.975 4.037° 8.950°2 9.0892 6.5922 6.6952 0.98

— 4.008° 22 4.015 22 — 1.22°1127 — — —

35, —P,

223.93 20 — 3.9549 20 — 1.23°112 — 6.574°2 0l —

223.743 (1] — 4.04° [10) — 9.12231 — 6.70 2 1] —

202.88 4.495° 4.114° 8.320°6 7.616° 5.557°6 5.0867 1.09

1P, — 4.300° 22 3.9415 2 — — — — —
203.22 [0 — 4.4775 20 — — — 5.563 6 [20] —

202.941 [10] — 3.525 [10] — — — 4.36°0 110 —

543.82 4.079° 3.957 5.426° 5.263° 9.714°5 9.423° 1.03

N — 4.079° 22 4.029° 22 — — — — —
P 542.99 21 - 3.9445 20 - - — 9.349° 20 -
541.589 [40] — 3.640 [0 — — — 8.56°5 140 —

424.65 2.190° 1.977 17764 1.6034 2.4834 2.2424 1.11

— 2.2166 22 2.005 22 — — — — —

R 424,08 1 — 1.9706 20 — — — 2,225 4] —
423.352 [0 — 1.876 0] — — — 2.104 0l —

295.34 5.957° 6.053° 2.337°4 2.3754 2.272 2.3094 0.98

L — 5.8746 2] 5.8280 22 — — — — —
S 295.3 20 — 6.0300 20 — — — 2.299 4 0] —
294.861 [0 — 5.156 [10] — — — 1.95 10 —

260.04 5.801° 5.889° 17641 17911 1510 1.5331 0.99

) — 5.839° 2] 5.820° 221 — 2,961 27 — — —
Fi 260.31 20 — 5.7229 [20] — 2.92°1 28 — 1.4941 0] —
259.770 1401 — 5.809 [10] — 179131 — 1.51 1140 —

292.89 6.069 6.054 7.8042 7.78572 7.52572 7.50672 1.00

_ — 6.064° 22! 6.083" 22 — 7.01°2 27 — — —
R 292.99 01 — 1.196 20 — 6.89 2129 — 7.422°2 0] —
292.800 0] — 6.07° 0] — 7.902 Bl — 7.53-2 0] —
345.11 8.7448 8.830° 4.6842 4.730°2 5.321°2 5.3742 0.99

- — 8744822 8.766° 22 — — — — —
D 345.37 120 — 8.606° 20 — — — 5.249 2 20 —
344.951 [0 — 8.778 0l — — — 5.33 2 [0l —
292.94 1.835° 1.832° 7.084°2 7.069°2 6.831°2 6.8172 1.00

o — 1.8349 22 1.838% 22 — 6.71°2 7 — — —
e 293.1 0] — 1.806° 20 — 6.512 12 — 6.733-2 (0] —
292.857 4] — 1.849 140 — 7.162 131 — 6.852 140 —
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7 (2R)

The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s?2s2p

and 1s?2s?2p? configurations in Si IX ions with Z = 10, 14, 32, 36, 50.

Si IX BT (Z = 10, 14, 32, 36, 50) 1s?2s2p3-1522s22p? [i] E1 BRITIELR IS | BRATHCR | AR T30 5 FZk o
Table 7 (continued).

3

Transition A—B A Ac/st Ag/s! afc 9fs Sc/a.u. Sp/a.u. Ac/ A

994.98 1.19410 1.21210 27191 2.760 ! 2.014! 2.044 1 0.99
— 1.20410 22 1.20610 22 — 3.7071 127 — — —

38 iJP
b 295.21 20 — 1.18710 2 — 3721028 — 2.008 1 20 —
295.024 110 — 1.2110 (0] — 2,771 B — 2,051 [0 —
203.90 7.2337 7.3967 1.352°3 1.3833 9.078 1 9.284 1 0.98
— 7.2367 22 7.2987 22 — — — — —

lP 7313
bt 204.27 21 — 7.3717 20 — — - 9.302 120 —
203.994 40 — 6.707 40 — — — 8.43 4 140l —
678.56 7.9144 6.199¢ 27317 2.139 5 6.102°% 47795 1.28
— 8.0524 22 6.3304 22 — — — — —

552_31:)1
673.72 120 — 6.4814 20 — — — 4.891°5 2 —
674.65 10l — 6.19% 10 _ _ — 4.69 5 10l —
345.28 1.950° 1.959° 17431 17511 1981 1.990 ! 1.00
. s _ 1.9519 [22] 1.9479 [22] _ _ _ J— J—

D,—5P
: ! 345.5 [20] — 1.9149 [26] — — — 1.948 1 1261 —
345.124 [0 — 1.949 140) — — — 1.97 110l —
292.85 1.219° 1.210° 7.834 2 7.7782 7.5532 7.499 2 1.01
— 1.219° 22 1.219° 22 — 6.47 2 27 — — —

SP _3P
Lo 293.04 1 — 5.0749 20 — 6.46 229 — 7.420 2 6] —
992.763 40 — 1.239 l40] — 7.912 51 — 7.64°2 0] —
998.30 2.834° 2.9586 1107 1.156 4 8.323 7 8.685 7 0.96
— 2.8206 22 2.9646 22 — — — — —

ID _3P
L 228,73 4 — 2.9476 120 — — — 8.703 7 20 —
228.385 40 — 2,886 [10 _ _ — 8.48 7 1] —
349.82 3.5887 3.6547 1.9745° 2.0113 22743 2.316 3 0.98
— 3.6257 22 3.6447 22 — — — — —

3D iiip
e 350.05 201 - 3.5717 20 — - - 2.268 3 201 —
349.617 140 — 3.697 0] — — — 2.34°3 [0 —
296.32 2.2619 2.2569 8.930 2 8.909 2 87122 8.691 2 1.00
— 2.2599 2 2.2699 22 — 7.90 2 27 — — —

3p. 3P,
b 296.46 20 — 2,927 20 — 7.80°2 2 - 8.592°2 2 —
296.213 140l — 2.28° [0 — 9.0472 B — 8.7972 [40] —
926.98 2.04010 2.06810 47261 47921 3.5321 3.581 1 0.99
_ 2.05710 [22] 2.05810 [22] _ — _ J— i

351_31:)2
297.19 26 — 2.02610 20 — — — 3.5171 2 —
297.000 [40] _ 2.0710 [40] _ _ _ 3.58 1 [40] _
205.53 2.5765 2.866° 4.895° 5.446 7 3.312° 3.685 7 0.90
_ 2.5606 [22] 2.6456 [22] _ _ _ _ _

IP i3P
b 205.9 20 - 2.0486 20 — - - 3.8115 0 —
205.617 140 — 2,066 10! — — — 2,66 1] —
417.97 8.6325 7.1145 6.782 5.590° 9.332% 7.692 7 1.21
— 8.676° 22 7.1575 22 — — — — —

'3D 71D
b 417.85 1 — 7.123° 0 — — — 7.694°% ] —
417.510 10l — 7.115 [0l — — — 7.667 140 —
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Table 7 (continued).

The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s2s2p?
and 1s?2s?2p? configurations in Si IX ions with Z = 10, 14, 32, 36, 50.

Transition A—B NA Ag/st Ap/st afc afs Sc/a.u. Sp/a.u. Ag/Ag

343.81 6.293° 6.123° 3.3464 3.2554 3.7874 3.684 1 1.03
) ) — 6.2116 22 6.1076 221 — — — — —
R 343.7 20 — 6.1146 20 — — — 3.675 4 (] —
343.545 110 — 5.766 101 — — — 3.46 10l —
253.83 3.7936 3.6476 1.099 1.057 9.186° 8.832°7 1.04
— 3.7346 22 3.7956 22 — — — — —

3SlilDQ
253.94 201 — 3.9866 20 — — — 9.6647 20 —
253.797 110 — 3.300 [40] — — — 8.007 [0l —
227.31 2.26010 2.27310 5.2511 5.2811 3.9301 3.95271 0.99
— 2.2760 [22] 2.28410 [22] — 4.78 1 17) — — —
R 927,63 20 — 223510 20 — 483119 — 3.902 1 20 —
227.361 10 — 2.3110 101 — 5.3671 Bl — 4.02°t 1101 —
697.02 1.943° 1.473° 7.077°5 5.363° 1.624°¢ 1.231¢ 1.32
s — 1.915° 2 1.466° 22 — — — — —
S 691.75 201 — 1.505° 1201 — — — 1.229 0] —
692.73 110 — 1.435 140l — — — 11874 14) —
350.00 3.949° 3.9998 3.6262 3.6722 4.1782 4.231°2 0.99
o — 3.9618 22 3.9728 122 — — — — —
D 350.18 120 — 3.895% 6] — — — 4.1282 20 —
349.795 110 — 4.008 101 — — — 4.232 140 —
296.23 4.685 4.669° 3.0821 3.071 3.00571 2.99571 1.00
_ — 4.682° 122 4.691° 22 — 2.83°1 127 — — —
REN 206.35 0! — 4.608° 01 — 2,761 29 — 2.959 1 4] —
296.117 (401 — 4,719 10 — 3.12'160 — 3.02'1 140 —
230.35 5.8127 6.0027 2.312°3 2.3883 17533 1.811°% 0.97
) ) — 5.8077 122 5.9117 22 — — — — —
Py 230.78 20 — 5.8747 0] — — — 1.7823 20 —
230.421 110 — 5.467 10] — — — 1.6573 110 —
1032.47 2.5842 1.3382 2.0657 1.069°7 7.0187 3.6337 1.93
5S5—1D, — 1.6812 22 1.0802 22 — — — — —
1018.31 20 — 1.1972 20 — — — 3.1207 20 —
418.22 1.118° 1.0746 1.466 ¢ 1.408 ¢ 2.019 4 1.939¢ 1.04
‘ — 1.1246 2 1.0596 122 — — — — —
Pl 418.05 29 — 1.0520 20 — — — 1.897 4120 —
417.763 0] — 9.825 10] — — — 17741400 —
343.69 9.5375 9.669° 8.4457 8.561° 9.5557 9.6867 0.99
J— 90185 [22] 98575 [22] J— J— _ N N

"Py—'D,
343.55 20 — 9.677° 120 — — — 9.683 20 —
343.416 1401 — 8.27 0 — — — 8.267 10l —
258.06 1.75910 1.78110 8.7811 8.8911 7.460! 75541 0.99
: : — 1.770'0 22 1.77010 22 — 1.21 7] — — —
DD, 258.42 0] — 1.73810 20 — 1.20 9 — 7.403 1261 —
258.08 110 — 17710 10 — 8.9371 61 — 7.52°1 10l —
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7 (2R)

The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s?2s2p

and 1s?2s?2p? configurations in Si IX ions with Z = 10, 14, 32, 36, 50.

Si IX BT (Z = 10, 14, 32, 36, 50) 1s?2s2p3-1522s22p? [i] E1 BRITIELR IS | BRATHCR | AR T30 5 FZk o
Table 7 (continued).

3

Transition A—B A Ag/st Ag/st afc afs Sc/a.u. Sp/a.u. Ac/Ap
350.07 2.247° 2.255° 2.890 2.900! 3.3311 3.34271 1
— 2250002 2.2419 1 — — — — —
SDy—P,
350.25 [20] — 2.2019 [26] — — — 3.268 1 20] —
349.873 10 — 2,249 140 — — — 3.311 ) —
418.33 5.8086 5.5750 1.067°3 1.024°3 1.469 3 1.410°3 1.04
— 5799522 5492022 — — — — —
Dy—1D,
418.15 1 — 5.4836 [20] — _ — 1.385 3 [ —
417.875 1) — 5.196 10 — — — 1.31°3 10 —

HE: RHA, BRI 1s2s2p3F11522522p2 20 2% ax 10°R /R H al.

# 8  Ge XXVII BT (Z = 10, 14, 32, 36, 50)1s22s2p3-1522s22p? [i] E1 BRITIEL K . BRI R | AR T30 58 Fn gk o

Table 8. The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s?2s2p? and 1s22s?
2p? configurations in Ge XXVII ions with Z = 10, 14, 32, 36, 50.
Transition A—B NA Ag/s Ap/s’! afc afs So/a.u. Sp/a.u. Ac/Ap
iD,—p, 85.09 3.145% 3.148%0 1.024! 1.0257! 2.86972 2.87272 1.00
85.07 0] — 3.14310 20 — — — 2.865 2120 —
sp —ap, 68.08 5.270° 5.2559 1.0992 1.095 2 2.462°3 2.4553 1.00
68.07 0] — 5.260° 20 — — — 2,456 20 —
15,—P, 61.19 1.12210 1.12910 1.8902 1.9022 3.8063 3.831°3 0.99
61.18 0] — 1.12510 29 — — — 3.813 7120 —
PP, 50.62 4.6717 4.6197 5.384° 5.324° 8.973°6 8.873°6 1.01
50.62 0] — 46367 20 — — — 8.902 6 20 —
DS, 224.22 5.6477 5.2747 1.277°3 1.1933 9.424°4 8.8034 1.07
223.88 20 — 5.3297 20 — — — 8.854 4120 —
ip s, 135.21 4.1148 3.848°% 3.3833 3.1643 1.506 3 1.4083 1.07
135.08 — 3.8518 20 — — — 1.405 3120 —
15,18, 110.49 1.901° 1.858° 1.044 2 1.020°2 3.7963 3.710°3 1.02
110.41 21 — 1.850° 201 — — — 3.688 % 20 —
P, 80.25 2.85210 2.84910 8.2602 8.2532 2.1822 2.1802 1.00
80.21 0] — 2.83910 20 — — — 2.169 220 —
T 81.91 4.17310 4.17310 4.198? 4.1982 1.1322 1.1322 1.00
81.89 0] — 417410120 — — — 1.1312120 —
D3P, 104.69 2.6217 3.1337 1.2924 1.544* 4.452°5 5.322° 0.84
104.66 21 — 3.0567 20 — — — 5,188 20 —
3pp, 80.08 4.486'° 4.49110 1.294°1 1.295 1 3.411°2 3.41472 1.00
80.06 201 — 4.48510 20 — — — 3.408 2 20 —
T 70.71 2.94110 2.94510 6.6132 6.6212 1.5392 1.541°2 1.00
70.70 0] — 2.93510 20 — — — 1.535 2120 —
T 56.97 1.05410 1.06010 1.539°2 1.5472 2.886 3 2.9023 0.99
56.96 0] — 1.05810 20 — — — 2.895 % 20 —
S 161.20 4.005% 3.7728 7.802°3 7.348°3 4.14053 3.900°3 1.06
161.01 201 — 3.7928 20 — — — 3.906 20 —
D, 9P, 100.79 1.5801 1.56710 1.203! 1.193 ! 3.991°72 3.9582 1.01
100.75 201 — 1.56410 20 — — — 3.948 2120 —
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%8 (4%) Ge XXVII BT (Z = 10, 14, 32, 36, 50)1522s2p3-1s22s22p? [] E1 BRITHGERI K BT HE R | AR T35 52 Fiksm

Table 8 (continued).
and 1s?2s?2p? configurations in Ge XXVII ions with Z = 10, 14, 32, 36, 50.

The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s2s2p?

Transition A—B NA Ag/st Ag/st afc afs Sc/a.u. Sp/a.u. Ac/Ag
— AV 9.9147 1.0708 4.4251 4.7744 1.1244 1.2134 0.93
’ ' 77.15 [20] 1.0548 [26] 1.194 4 [26]
Dosp 64.62 1.1549 1.1599 3.611 3 3.629 3 7.683 4 7.7214 0.99
: ! 64.62 (201 — 1.163° [26] — — — 7.741-4 20 —
S 112.72 1.1049 1.0599 6.310°3 6.050°3 2.341°3 2.2453 1.04
b 112,68 120 1.058° 20 2,241 29
N 84.69 1.577° 1.593° 5.087 3 5.140 3 1.4183 1.4333 0.99
b 84.67 20 — 1.599° (21 — - — 1.437° 20 —
i —p 74.28 9.93410 9.91910 2.465 1 2,462 6.029 2 6.020 2 1.00
1 2 74.97 [26] _ 990510 [26] _ . . 6007—2 [26] _
p_p 59.27 1.106° 1.095° 1.7483 1.730°3 3.4104 3.376 ¢ 1.01
b 59.26 20 - 1.1049 29 - — - 3.403 4 (2] —
DD 163.29 3.2148 2.9908 3.855 3 3.586 3 2.072°3 1.9283 1.07
b 163.19 01 — 3.010° 20 — - — 1,937 20 —
D, 110.38 8.6246 1.1257 4.726°° 6.167°° 1.717°5 2.241° 0.77
' ? 110.33 [20] — 1.1687 [26] — — — 2.322°5 (20] —
51D 93.33 1.971° 1.940° 7.721°3 7.599 3 2.3723 2.335 3 1.02
' ? 93.30 [20] — 1.9219 [20] — — — 2.310°3 (20] —
D 70.80 1.1091 1.1101 2.501! 2.503 ¢ 5.829 2 5.835 2 1.00
1 2 70.78 [26] _ 1.10911 [26] . . . 5.826—2 [26] _
g p 181.07 2.3298 2.1398 5.723 3 5.258 3 3.4123 3.134 3 1.09
? : 180.81 [26] — 2.1538 [20] — — — 3.140°3 (20] —
S 108.21 4.0698 3.8918 3.5723 3.416 3 1.2733 1.2173 1.05
’ ’ 108.17 20 — 3.9078 [20] — — — 1.220 3 [26] —
— 81.45 5.19210 5.195%0 2.5821 2.583 1 6.922 2 6.927 2 1.00
2 2 81.42 [26] _ 5.19110 [26] _ . . 6.915—2 [26] _
Dosp 67.60 1.421%0 1.43010 4.866 2 4.898 2 1.083 2 1.090 2 0.99
2 2 67.59 [26] _ 1.42210 [26] _ . . 1.083—2 [26] _
'S 360.39 6.5476 5.3496 6.374 ¢ 5.207 * 7.563 4 6.178 4 1.22
2o 359.24 20 — 5.4336 20 — - — 6.2154 20 —
— 154.01 6.5817 6.2307 1.1703 1.1083 5.933 4 5.616 * 1.06
Lo 153.89 (2 — 6.1507 20 — - — 5.531-4 20 —
D, 104.93 7.7217 6.9777 6.372 ¢ 5.758 * 2.201* 1.989 14 1.11
Lo 104.88 (21 — 6.9087 20 — - — 1.967-4 20 —
DD 83.02 6.36210 6.34010 3.287 1 3.2751 8.982 2 8.951 2 1.00
2 2 82.99 [26] _ 6.32510 [26] _ . . 8.923—2 [26] _
S 99.36 9.492° 9.441° 9.833 2 9.781 2 3.216 2 3.199 2 1.01
P 99.31 2 — 9.4189 20 — - — 3.187-2 20 —
‘DD, 136.67 2.640° 2.5459 5.174°2 4.9882 2.3282 2.2442 1.04
’ : 136.58 [26] — 2.5399 [20] — — — 2.235 2 [20] —

B A, B2 1s2282p3F1122522p241 4% ax 10°% 7R K al.
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F9  Kr XXXIET (Z=10, 14, 32, 36, 50)1s2s2p™>1522s22p? [f] E1 BRIFIELRIIC | BT | AR 758 )i Fsk i
Table 9. The El transition wavelength, rate, weighted oscillator strength, and line strength between the 1s2s2p? and 1s%2s?
2p? configurations in Kr XXXI ions with Z = 10, 14, 32, 36, 50.

Transition A—B MA Ac/s? Ap/st afe afs Sc/a.u. Sp/a.u. Ac/Ap
D, P, 6533 59000 5900 L1331 L1331 24367 24362 1.00
65.32 (0] — 5.89410 [26] — — — 2.43272 [0 _
ip P, 50.00 6.467° 6.459° 7.270°3 7.261°3 1.1973 1.1953 1.00
49.98 [20] — 6.4689 [20] — _ _ 1.196°3 [26] .
— 46.48 11301 11361 10982 1103 1680 1.688° 0.99
46.47 120 — 1.13210 [26] — — — 1.681°3 [26] _
PP, 37.16 4.2727 4.2627 2.653 ° 2.646° 3.245°6 3.237°6 1.00
37.15 26 — 4.2797 2 . _ _ 39446120 _
DS, 248.44 3.2157 2.9087 8.92514 8.0734 7.300* 6.6034 1.11
248.00 2 — 2.9437 1201 — — — 6.646-4 20 _
_— 114.67 6.304° 5.878" 37289 34763 14077 13129 1.07
114.57 120] — 5.8808 [20] — _ _ 1.309°3 [26] _
5 g, 97.70 3.061° 2960/ 13142 12717 42979 4087 1.03
97.63 [20] — 2.9529 [26] _ _ _ 4.067-3 201 .
ps, 63.97 4.190% 4.178% 771272 7.691°2 1.624°2 1.620°2 1.00
63.94 20 — 4.1681 — - _ 161426 _
ip—p, 64.20 6.625% 6.625' 4.094 2 4.094 2 8.654 3 8.6533 1.00
64.19 261 — 6.62710 [26] _ _ _ 8.6503 261 o
D, 88.22 1.640% 1.4828 5.7414 5.1874 1.6671 1.5061 1.11
88.19 [20] — 1.4938 [20] — — — 1.5164 [26] _
ip P, 62.38 8.55710 8.560%° 1.4981 1.498 ¢ 3.0752 3.076 2 1.00
62.36 1261 — ].55310 [26] _ _ _ 3.072°2 [26] o
N 56.99 3.10910 3.1071 45422 45392 85223 8517 1.00
56.98 20 — 3.10010 [26] — — — 8.494 3 [26] _
PP, 43.59 1.40910 1.4151 1.204 2 1.2092 1.7273 1.7353 1.00
43.58 [20] — 1.41210 [26] _ _ _ 1.731-3 20 o
3,5P, 128.51 1.266° 1.199° 1.567 2 1.4837? 6.629°3 6.276 3 1.06
128.39 20 — 1.2029 9 — . _ 6.280°3 2] _
3D,—P, 79.57 2.2001° 2.179% 1.0441 1.034! 2.7352 2.7092 1.01
79.54 20 — 2.17710 20 - _ _ 9,703 -
3p,—3p, 59.98 1.408° 1.435° 3.7953 3.870°3 7.494 1 7.6414 0.98
59.96 20 — 1.430° 2] _ _ _ 7 607-4 20 _
D, P, 49.16 1.576° 1.581° 2.8563 2.865 3 4.622°1 4.63714 1.00
49.16 20 — 1.5879 26] — _ _ 4.650- 201 _
3D, 95.08 3.241° 3.111° 1.3182 1.265?2 4.1253 3.9603 1.04
95.05 [20] — 3.1119 [26] — _ _ 3.9553 20] .
— 65.73 7.946° 8.086° 15443 LHTLS 3.3421 3.401 1 0.98
65.72 1261 — ].1398 [26] _ _ _ 3.4904 26] o
1,3, 59.78 1.4021 1.3991 2.2541 2.2501 443772 4.42372 1.00
59.77 20 — 130811 20 _ _ _ 449126 _
p P, 45.20 1.678° 1.672° 1.542°3 1.537°3 2.2951 22874 1.00
45.19 [20] — 1.6849 26] — _ _ 2.3024 [26] .
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RO (Z) Kr XXXIET (Z =10, 14, 32, 36, 50)15?2s2p* 15?2s?2p? [i] E1 BRIEIHAN I | BRITHA | AR 755 B 12k i
Table 9 (continued). The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s?2s2p?
and 1s?2s?2p? configurations in Kr XXXIT ions with Z = 10, 14, 32, 36, 50.

Transition A—B )\/A Ag/st Ag/st afc afs Sc/a.u. Sp/a.u. Ac/Ag
3D —1D) 168.03 2.2558 2.0738 2.863 3 2.6323 1.584 3 1.456°3 1.09
b 167.89 20 — 2.090% 20 . . — 1.465°3 20 —
3p D 93.92 2.2238 1.9978 8.8211 7.9211 2.728 1 2.449 1 1.11
! : 93.88 [20] — 1.9758 [26] — — — 2.419 4 [26] —
35 1D 82.23 3.119° 3.043° 9.483 3 9.2543 2.5673 2.505 3 1.02
b 82.20 201 — 3.0259 20 — — — 24879 2] —
p_1p 56.95 1.6341 1.6351 2.3841 2.3851 4.469 2 4.4732 1.00
b 56.94 20 1.63411 20 4.4662 20
35, —3p 143.62 6.3928 5.9288% 9.884 3 9.166 3 4.6733 4.3343 1.08
2 143.46 21 — 5.9558 20 . . — 4,339 0] .
3D.—1p 85.11 8.3678 8.096% 4.5443 4.3963 1.2733 1.232°3 1.03
: : 85.07 [20] — 8.1068 [26] — — — 1.232°3 [26] —
3p.—3p 63.07 9.77910 9.78010 2.916 1! 2.916 1 6.055 2 6.056 2 1.00
2o 63.06 20 — 9.77310 (2] . . — 6.047°2 (2] .
ID.—p 51.23 1.28210 1.28810 2.5222 2.534 2 4.2533 4.2743 1.00
2 2 51.21 [26] . 1.28210 [26] _ _ . 4.24973 [26] _
5. 1D) 417.15 5.0226 3.8886 6.550 14 5.07214 8.996 4 6.966 4 1.29
B 415.63 21 — 3.9576 20 . . — 7,011 0] —
3D—1D) 139.21 1.265% 1.1698 1.838°% 1.6993 8.42214 7.7851 1.08
P 139.08 120 1.160° 20 7.705-4 2]
3p—1D 88.58 1.3719 1.3087 8.066 3 7.691°3 2.352°3 2.2433 1.05
? : 88.54 261 — 1.3039 [26] — — — 2.232 3 [26] —
D—1D 66.86 8.53010 8.49010 2.8591 2.8451 6.293 2 6.263 2 1.00
P 66.84 20 — 8.47910 (2] . . — 6.249°2 2] —
5D.—5p 76.60 1.420%° 1.411%0 8.7402 8.686 2 2.204 2 2.1902 1.01
P 76.57 20 — 1.40910 20 — — — 9.184 2 —
DD 117.79 3.796° 3.627° 5.5272 5.280 2 2.1432 2.048 2 1.05
’ : 117.70 [26] — 3.6219 [26] — — — 2.040 2 [26] —

H: RHPA, BRI 1s2s2p3 Fl1522522p2 21 75 ax 10°R /8 H al.

10  Sn XLV EF (Z = 10, 14, 32, 36, 50)1s2s2p3-1522522p? [i] E1 BRITFELR I | BRATHER | BER 155 B FIZk o
Table 10. The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s?2s2p?® and 1s?2s
2p? configurations in Sn XLV ions with Z = 10, 14, 32, 36, 50.

2

Transition A—B A/A Ac/s™ Ag/s gfc 9fs So/a.u. Sp/a.u. Ac/Ag
3D,—P, 27.21 4.5891 4.57211 1.529°1 1.5231 1.370°2 1.3642 1.00
33, —P, 17.74 1.6461 1.64810 2.329°3 2.3323 1.360* 1.362* 1.00
3P, —3P, 17.39 8.023° 8.042° 1.091°3 1.0933 6.243° 6.258 7 1.00
P, —P, 12.74 1.5027 1.5207 1.096 1.109 6 4.5958 4.650° 0.99
3D—'S, 166.91 6.3747 7.3987 2.662 4 3.090* 1.4634 1.698* 0.86
33,—18, 73.29 9.9528 8.878¢ 2.404°3 21453 5.8024 51754 1.12
P1—1S, 67.66 9.011° 8.265° 1.8552 1.702°2 4.1333 3.790°3 1.09
P,—1S, 27.95 2.277" 2.2621 7.999 2 7.9452 7.3603 7.3103 1.01
3PP, 27.42 3.99211 3.98411 4.4992 4.490 2 4.061°3 4.053°3 1.00
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#2010 (88) Sn XLV BT (Z = 10, 14, 32, 36, 50)1522s2p>-1522522p? [A] BE1 B | BRIE AR | AR T30 B ki
Table 10 (continued). The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s?2s2p?
and 1s?2s?2p? configurations in Sn XLV ions with Z = 10, 14, 32, 36, 50.

Transition A—B MA Ag/s?! Ap/st gfc 9fs Sc/a.u. Sp/a.u. Ac/ A
D,—P, 55.90 3.966° 3.703° 5.57473 5.204°3 1.0263 9.578°4 1.07
38,—P, 26.65 6.922!1 6.902!1 221171 2.2057! 1.94072 1.9342 1.00
3P,—3P, 25.87 1.94310 1.92810 5.845% 5.801°3 49784 4940 1.01
P—P, 16.76 2.73810 2.74610 3.460°3 3.46973 1.909+ 1.9144 1.00
3S,—3P, 74.89 7.647° 7.011° 3.21572 2.94872 7.9273 7.268°% 1.09
D3P, 32.03 1.0341 1.0231 7.95172 7.86472 8.38373 8.291°3 1.01
Dy—3P, 26.08 3.70610 3.709'0 1.8902 1.8912 1.62373 1.624°73 1.00
Py—3P, 18.02 2.765° 2.771° 6.731* 6.747* 3.9937° 4.003° 1.00
3D, —!D, 59.86 1.90710 1.78610 3.07472 2.87872 6.05973 5.673% 1.07
38,—'D, 27.52 1.069'° 1.05510 3.641°3 3.59373 3.298+* 3.255™* 1.01
3P,—1D, 26.68 5.99911 5.982M1 1.921°1 1.9167! 1.6882 1.6832 1.00
P,—'D, 17.10 4.191° 4.207° 5.513* 5.534+ 3.104° 3.115° 1.00
3D;—3P, 328.18 3.2769 4.3876 2.645* 3.5424 2.858 4 3.826 0.75
38,—Py 60.28 7.776° 7.141° 1.27172 1.1672 2.52273 2.3167 1.09
3P,—3P, 56.42 4.052° 3.808° 5.801°% 5.45273 1.0773 1.0137 1.06
P—P, 25.82 8.045! 8.032!1 241371 2.4097! 2.05172 2.04872 1.00
5Sy—'Dy 82.19 4.328° 3.907° 2.1912 1.97872 5.929°% 5.352°% 1.11
Dy—1D, 33.29 2.9829 2.920° 247773 2.4257 2.715* 2.6587* 1.02
'Dy—'D, 26.91 6.88911 6.866" 3.740! 3.72871 3.3142 3.3032 1.00
Py—1D, 18.42 7.738° 7.754° 1.9673 1.971°3 1.193# 1.195 1.00
38,—3P, 131.86 4.7977 5.4727 6.25274 71334 2.714* 3.096* 0.88
D3P, 97.19 7.2928 6.276% 5.1637 4.44373 1.65273 1.42273 1.16
'D,—P, 57.45 1.10210 1.02410 2.72572 2.53472 5.1557% 4.7933 1.08
Py—3P, 28.94 3.875!1 3.850!! 2.43371 2.4187! 2.31872 2.30372 1.01
3Dy—1D, 30.66 9.15210 9.068'0 9.02872 8.9462 9.1133 9.0303 1.01
D3P, 77.74 8.168° 7.370° 5.18072 4.67472 1.32672 1.1962 1.11

H: RHPA, BRI 1s2s2p3 Fl1522522p2 21 75 ax 10°R /8 H al.

ASCHIH MCDHF J7ikit 58 17 25mess i 1 ¢
§ (Z = 10, 14, 32, 36, 50)1s22s22p2 HLZH 5 H 1s2
2s2p® Wk A M BER S5 A FN E1 4R 9 BRE S48
FER R T RSS2 | 78500 B L SIS0, (3 AE T
W20 PR B Lt L A AL PE Breit
FHEAEH . QED SO0 AR 4% BT 3500, ASCRSE
AT T VV LB CV LA CC B =R+
KHRBL XS BER S 2, SE % T Ne V, Si IX,
Ge XXVII, Kr XXXI fl Sn XLV & T 1s22s22p?
Fl 1s2252p® A BB A M B Sk BE LT S0
A H AL S 45 A, AR SCGHTE R Ne VBT

JE - 2S5 R BE B 45 NIST ¥ ; Hofth B8 1 1Y
RAEH A H Y MR B, 54 R NIST 4 4%
BAFRAE. WP R B B R A 44 TR L
ML, R A LS A IR A By . HAbH e 2
SR NIST %, e oA e 7 521 SEPR
44,

AR SCARGIf TR T Sk S 1 1s22872p2 il 12
252p° LA AN E1 BRE TSR 1 | B = | A
PRFIREE | R BT S A SO R BT 4R
Pk 54 R NIST BsfF G984, XTI 22/N
F 0.62%, BRIFHR S HALIS 25 R A — 5 A
LR T Coulomb A1 Babushkin PR FELTE T Bk
TSR — B0k, #E— PR 50 T BRAE o S i 1 i
PE. X oz 0T BRI Sn XLV BT, Ak
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Energy levels and electric dipole transitions of 1s?2s?2p? and
1s22s2p3 configurations in carbon-like ions

(Z = 10, 14, 32, 36, 50)"

HU Muhong? HE Jizheng

(School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China)

( Received 28 April 2025; revised manuscript received 14 July 2025 )

Abstract

The atomic energy level structures and transition properties of 1s*2s?2p? ground configuration and 1s?2s2p?
excited configuration in carbon-like ions with Z = 10, 14, 32, 36, 50 are investigated theoretically using the fully
relativistic multi-configuration Dirac-Hartree-Fock (MCDHF') method.

Based on the wavefunction constructed with careful consideration of electron correlations, the theoretical
calculations are completed by taking into account the Breit interaction, quantum electrodynamic effect and
nuclear mass effect. Then the effects of three types of electron correlations, namely valence-valence, core-
valence, and core-core correlations, on energy levels are studied in detail, and high-precision excitation energies
are obtained. Compared with other theoretical results, the calculated excitation energies for Ne V ion are the
closest to the NIST (National Institute of Standards and Technology) data, and the excitation energies of other
ions also possess relatively high precision. Additionally, by combining the NIST data and the LS coupled atomic
state compositions, the fuzziness in identifying atomic states generated from the code is analyzed, and the
corresponding renamed atomic states are presented.

For electric dipole transitions, the transition wavelengths of Ne V and Si IX ions reported in this work are
in good agreement with the available NIST data, with the relative errors being less than 0.62%. Their transition
ratesaccord well with other theoretical results. And for majority of electric dipole transitions, the electric dipole
transition parameters calculated in Babushkin and Coulomb gauges are well consistent with each other, which
demonstrates the feasibility and reliability of the MCDHF method for theoretically calculating the energy
structures and spectral properties of 1s?2s?2p? and 1s?2s2p? configurations in carbon-like ions. The results cover
a wide range of levels and transitions for carbon-like ions, and the data are expected to enrich the fundamental
database for carbon-like ions and provide valuable theoretical references for relevant studies. The datasets
presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00145.

Keywords: carbon-like ion, multi-configuration Dirac-Hartree-Fock method, energy level, electric dipole

transition
PACS: 31.10.+z, 31.15.ac, 31.15.ag, 32.70.Cs DOI: 10.7498 /aps.74.20250568

CSTR: 32037.14.aps.74.20250568

* Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12204214).

1 Corresponding author. E-mail: humuhong@163.com

153103-19


https://doi.org/10.57760/sciencedb.j00213.00145
http://doi.org/10.7498/aps.74.20250568
https://cstr.cn/32037.14.aps.74.20250568
mailto:humuhong@163.com
mailto:humuhong@163.com
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 74, No. 15 (2025) 153402

LE: BT S TR

SERAS NCEFS H EFaiEpAitE
oy R #Rd R I T 3

EEED KEED HARY

—_ /5 N

B 1R X Dt
1) (WUMIBTE KA B e, AT 311121)

2) (FEMREENUM TR B, 724 314001)

(2025 4F 4 J 24 HYE; 2025 4E 5 A 15 HIEMHERHR)

AT R A 2 2 MO A A G 7 15, RGEMETE T NOH(1s) #5115 H(Ls) J& ¥R IR R AE 0.25—
225 keV /u REIX NI B A7 AR B RS 2] T A eV 5 A BE > BEO SO | FE 8 n o B LA K BLE
TR ne S FE R B B, OF 5 IR SRS R X 2 R A O 1 T R R AT RGO AT A R
A, R TR 7R I B DX RE S A MR A5 55, T 6 re Al DX 0 S22 B B i 3. A A AT 40 o, IIRRE IX 45 52
J2 2Z A7 AE b 35 1 22 308 38 A A R0ONE 5 157 v R DX, AT R BUE R B A s T LA, B
A ) T AR T R B AU . R ATAS SR — 2 AR WY, X Ay A Sl A R o A [
G o VA R A3 I R KON B L R HRAE . SR, R TR B O A ZEAR AR X R A W 3 2 S, I X i —
A IF IR B A A543 BERE 0 S0 I 1 A 38 VDG SR . A AR SR A A TR RN | X R ARy B R S 6 5 A B AR 12
W A A 5% ELAT H 2 B B L. AR OB 4 WT £ hittps:/ /doi.org/10.57760 /sciencedb.j00213.00143 H i ] 3K B

KGR AR, B - R, O
PACS: 34.70.+e, 34.10.4x
CSTR: 32037.14.aps.74.20250541

1 5 =

L faf 223t (charge exchange, CX), JRFRHL ¥
73k, f84 B 5 vk R - 50 & 2R R
PR TR — B A IR LR
PRSI R R R AR R AR L DX [H] N G ]
EIEYGA 107 em? 1Y 25 #EAE 10, (Y
FEFERARETNERRNZ —. HHFEENZ,
B S BEAS B TR ATAS | fii#ERE R 5 2
R AN B AR O . FLAT SS 4T I A A S
TR SRS B S W Y R AR =

*ER HRBIARES (ES 12374229) BF BhAY IR
t ABIE1EE. E-mail: yying_ qi@zjxu.edu.cn
i BIE1EE. E-mail: gaojunwen@hznu.edu.cn

© 2025 FEYIEZS Chinese Physical Society

DOI: 10.7498/aps.74.20250541

WG AF B AR, th s AVE R I 512
W= (491 A0 SR B AE SR 3 T A0 R Aok
AR (charge exchange recombination spectro-
scopy) 7. AZFATE 1 T I R A AR T ]
LTSS, B2 W THER S5 (Tokamak)
BRI B IR | A B IR S o S s T
JEE ] 3 (791,

TE R AR BRI, Fo, Aif 52 468 1) B Sk 0y T
£ C/Hyakutake X £ 48 5 i SR P A 88 1101, A
SR, WRESE T REXEF5EE R HERS
() P FL o A 4l Pl A (1), RS R R ARr RS #1755
X G m T o sy R B KX - 55 R |

http://wulixb.iphy.ac.cn

153402-1


https://doi.org/10.57760/sciencedb.j00213.00143
https://doi.org/10.57760/sciencedb.j00213.00143
http://doi.org/10.7498/aps.74.20250541
https://cstr.cn/32037.14.aps.74.20250541
mailto:yying_qi@zjxu.edu.cn
mailto:yying_qi@zjxu.edu.cn
mailto:gaojunwen@hznu.edu.cn
mailto:gaojunwen@hznu.edu.cn
http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

¥ 1B ¥ Acta Phys. Sin.

Vol. 74, No. 15 (2025)

153402

A B R M I A A A 5 T X (12200, B
WAWEA H e RS e i ok ik, E B A i+
E\;—%\ Q ﬁ?& Q6. 6)+’ N(5—7)+, 0(5—8)+’ S(5—11)+ ,
Nel 8+ Mg 10+ gi—100+  Ro(T18)+ A ey
T 25 1 21231, R[] KA LA B v b Mk 1Y
PRSI I 2 52 e P fer A et A 01N B R LK g3
F (H,0), — & Lk (CO) K HAfi B =4 (4n H,,
H, O) 2y 3= B24; K FHXE LA 205 00 275 4t ge
EWE R DRl [ SN =0 W et
1, AR5 e LA AR BH XU - 5 4% 2 rh s il
L BURENPOR R T(E X VPN LN/ B T Al
X SFR AR 2 WP B R A L R
JE e H A 280 A A S B RAT B AN
ARTAETFR T NO+(1s) B+ H(ls) I FhiffE
HH ) B TR
NO*(1s) + H(1s) — N (nen/¢'3L) + HY, (1)
FEXNZAAE RS, CA 2058 BB R T S5
5. Panov &5 B LTS = HEOK, 1E 0.43—
5.09 keV /u BEIX PN T g & & 1 B {731
SV Meyer 45 20K SO il &2 i — 20 R 2
0.2—7.5 keV /u SR FERE X ; A, Kearns 55 [+
TR REIE H R (translational energy spectro-
scopy, TES) 7£ 0.94 keV /u HLHE M T fE =
i, (B4 1k, T S ARAFE R E Rk,
i A DL S 4 BEARAT (state-resolved cross sections)
N H 41 BRI (spin-resolved cross sections) [
SR AGE . TERISHTI I, BR T TR LY B 1A
740 (Landau-Zener, LZ) BHIRTHE B33 Olson
5 Salop™! g 2 LB 5 KE R 2 (classical tra-
jectory Monte Carlo, CTMC) /7 318 T 30—
150 keV/u AEDX P 6 A fig it o 1Y AR TH {E. W 55 B
Hem o FHEEMS (quantum molecular
orbital close-coupling, QMOCC) 7%, &G iTH
T 10 meV/u—10 keV /u fig X 1) B HL {7 38 B8
KPR, JFECE R HE RS (atomic
orbital close-coupling, AOCC) 5 CTMC JriH i
B TR YE IR 2 160 keV /u; Igenbergs &5 17
Pt —2 i AOCC J7 K Be Wil E FR4E T =
500 keV /u. Hilt, Zhang 55 B8 JLF REEER (scaling
law)B T8 T 0.06—50 keV /u By B H . A8 %
T N6 (1s) B F5 H(1s) J TRl i Pk
R SR S S ES TR RN E, A

LIRS R SIS THE, DU RIS ST Z 4]
ARG B35 225, X RINIZREE R R i AR e/ Bl
i, T it — S RAIRR.

TE 0.25—225 keV /u B8 X [l P, A% SO N6+
(1s) B +5 H(1s) iRl 4E v o 7 (7300 7 T e
REIIHITY. ZREX 5 TIF 2 RIRY A 1k
5SS F W2 R AT B R ML R R AR SR
FHRCH 72 2 O S 58 A A (semiclassical asy-
mptotic-state close-coupling, SCASCC) &, If
SIAHEEAEH (configuration interaction, CI)
b PR EL OGRS T ARG S I L e
JfR. FRATRGEHLE T A2 (spin-averaged)
5 B2 HE (spin-resolved) PIFHETE T (1 & 5 1H
Fent Z5 57 R, IV RERIIE LN 5O A 1Y sE
SIS T RS R T LU, [FIEF e T S5
AEHEA ST RE R . FRA TR T &5
—E( NS (1s) 5 H(1s) Jilflf 45 L fo7 3¢
TR AT, X SRR TR AR A
A S W 2 A B AR BR B v Y A G
BRHEE

2 bk

FEATAER, RADH+ SCASCC kAT
NO*(1s) B 15 H(1s) BT REE T ol 2
M. 27 L T A TR (S0 [39-42)),
WA AT SR H: = A . U I R 15 7
2 (time-dependent Schriédinger equation, TDSE)
LN

|:H - §:| !p(’l“l,Tg,t) =0. (2)
CHL, HL IR
H = |: % 7"1) + VP(Tf):| + ﬁ,

1=1,2

(3)

Kb, vy Ml = vy — R(2) 73500 R R T8 A%

RIS A% 00 07 B 4, AR B R(t) SR Bk 1H

ﬁzi_r“iﬂu R(t) = b+ vt , HH bl v 43 HI Rl

S BRI X B O Vi B Ve 4300 L P
FUR RN A SRR A R A 3,

Vr(ri) = ——,

A D0 R RSO T 2 o IS FE AN A SR KL T 14 ¥ i
S LA E SR i R 15 07 e

153402-2


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 74, No. 15 (2025) 153402

W(,rla T2, t)

Nt Np

=SS alf ) [$Lr) e (rant)
k=11=1
+ GF (ra) @ (r1, )] e ELH B

Npp
+ Z agp(t)QEP’i(Tll, T2, t)e_iEEPt’ (5)
=1

K, Bdr T(P) fl PP AYAS i o fl E 4051 KR
B R A THERZ (ASAX) BYZS RO N i BE A
Np(Np) Il Npp R AHR A ABCR. T8 1, Mt
ARG EHE (H) MR 7245, PRHIE A A IR
TR, B (1) k. (5) b+ 5
o 1| DO AR R N I SN & ) (D I 8 O
@70 AR 1 BEXT FRPERTOCHE. AGH A A7
101 % L - F- 3 - (electron translation factors,
ETFs), ™27 | LU MRS A5 .
¥ (5) ACA (2) e 15 —Brki & o I -
i&a(t) =S Yb,v,t)M(b,v,t)a(t), (6)
Hrr a(t) K JEIF R B 1 i (H)(5) 2 ofP
™), SH M 535 S SRS AR M h
A5 A B FHR AT (JUHZE & XU ETF /Y
XHUL I RS I, BAEWHL 25 (PP) X
Al B v oA SR AT AT bl (28 Hartree-Fock 5
%), WU A S A EAE R (configuration int-
eraction, CI) HEZE.
KN4 1EAE 24 Adams-Bashford-Mou-
lbon 5y R RN G 7 B4l (WG S5 1 IS 4. Al

TESH b AL v). R BRI i R S-S #
[[EEEUN =W =R
—+o0
o 1i(v) = 27 / blay (+00)[2db. (1)
0

T ABESFE, T Bk R ES S = EA
XN R A 7 R B B A S AGE (A
Ay, S ) KGR, 81 90 b
B A T4 .

FEYRTTTR , SRFH B S AR AT
ST YRR SR T R S, Hed NG SR
92 Pl E R (Hrpe=08uE 121, ¢ =1
i m BTN T x 34, €= 25138 4 x
54, =383 x 74, £ =488 2 x 91),
H i 19 AN EiiiE (= 03B 74, 0= 1

BUE 4 x 34). B IR R A i/r e R SN AR
TR A 3126 MFLS SIEA [ 618 H M N6+
[ 1340 75 NPHIY 1786 A4S |, 76 — B ASXFRIE
HRIU A 3107 N2 [ AL H AT NOHE) 1340 4248 N5+
1Y 1767 DA | 33X S8 L 25 AT A ORI SR RO
PR PR AR BRI L SO B AR R SRR, A
SO A L2 P L T e R Y 0 AR A T A F
P B A R % Bk (R iR i B .

3 #X54
3.1 HBEFERIESIER

ARTAERGHITE T NO+ + H Al 8 & & 7
0.25—225 keV /u AEIX PN Y [ HEAS -1 B FF 3K
SVEUE, 2505 A R SEIR R B2 fis T
GAL 538 X b & 1 PR, A TR A, o B e
AV A ERS Z B A T A e R A {43
BB T % 1—3% 3. 7€ 0.1—10 keV /u MIRAEX
PN, T B R AR AR N 285 TTAE 10 keV /u LA
L, T o T e S A ) PR DR B A
AEIX (=100 keV/u), A TAERITTREL RS AOCC
T3 B937 1 CTMC J5ik 185301 15 21 (1) B = o —
. AEFEIBEIX (2—85 keV /u), HSR 5 Igenbergs
S5 BT T AOCC J7 Ik 1153 1 25 JAE AR ft At
P B2, H A (R R AR v T AR AR,
T KIMZEL N 25%. Wu 45 B9 JLF AOCC FiEM

”
50 | 1
32]
—
E
E 40t
7 b
o
i
Z L
< 30
= %
2
§ .
“w 20k y:
0 rese
g e} of Wu et al. (2011)36)
= CTMC s of Wu et al. (2011)030]
o — - QMOC ptimized basis)
10t
ions of Tgenbergs et al. (2012)[37]
Scaling laws from Zhang et al. (2023)3]
O ions of Olosn & Salop et al. (1977)03
0 L L

10° 10' 10?
E/(keV-u?)

F1 NS (1s) 5 H(1s) filf 78 FH B A 35 50 d {2 3K Bl
I AR E B AR, AR CY TSR [R) A A 52464 B152.49)
FIHE T3 538 iy L

Fig. 1. Spin-averaged total single-electron capture cross sec-
tions as a function of collision energy for N*(1s) + H(ls)
collisions. Present results are compared with experimental

datal3243] and theoretical calculations[5 38,
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A5 RAE 1—40 keV /u 35 BB N 7R 38 5 TR T
i, WifE 1 keV/u LJ?)WJ@%WEHZI@‘C%%, SN
X 25 S L 36%. X 46 2E R Al GRIE T SCHR [36,37)
HR R AOCC J5 I3 T Bt e (b, il A ASE A
PR N+ (1s) [ HFRIMAHEAER, K5 EH T

CTMC J5 i FEARRR X A 50 J=y FR - ——TC i8R H
R UG 20 A, FLIAXE LUERG A IR RE IR AR 2,
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crossings) J7 THAAFE A2 M. 5%6FF Wu 45 B0 g
F QMOCC J7 k435 kA, HAE 2 keV/u Ui

IR A H e A X AF AR IT R A . EAh, Wu
25 0 JF CTMC Hiz A3 8Ipgskm R T 40 keV /u
1 BE X B A A TAESS SR

T%HDZIKIVE FHTE 8 keV /u BT 15 3 i KAk 2=
22%). X
X Fh 25 F AT T

F 1 AFBHEREL B (B0 keV/u) T, N (1s) BT 5 H(1s) i FRid8E B T34 09 50 i 47 50 S BOR FI7 38 28 N+

(Is ne ) 43T (B2 10710 em?)
Table 1.
(1sne) states in N7(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units

of 107'% cm?.

Spin-averaged total single-electron capture cross sections and state-resolved cross sections for capture into N°*

E 1s3s 1s3p 1s3d 1s4s 1s4p 1s4d 1s4f 1s5s 1s5p 1s5d 1s5f 1sbg  CVRIE
0.25  0.0002 0.0002 0.0002 3.7648 12.7027 8.5685 13.3494 0.1747 0.6930 0.9648 0.4290 2.0774 42.7323
0.56  0.0002 0.0007 0.0013 6.4063 10.4408 5.2656 13.6226 0.2466 1.9896 0.9673 1.0273 1.4035 41.4063
1.00  0.0023 0.0054 0.0108 9.2673 9.5404  5.9963 11.9886 0.8304 0.9395 1.0427 1.9539 0.9143 42.5571
225 0.0273 0.0799 0.1115 7.5560 8.9939  7.4811 12.8323 0.6563 0.4619 0.4968 2.3590 2.3944 43.5764
4.00  0.0927 0.4714 0.2950 5.7645 8.3648  9.1302 12.2192 0.3532 0.4350 0.7830 2.5118 3.1321 43.8349
6.25  0.2357 0.6419 0.4629 3.3885 6.5808 10.4578 13.2696 0.4157 0.8553 0.9404 2.9255 4.2443 44.7038
9.00 0.3394 0.6624 0.5941 1.8598 4.7615  9.9354 14.5785 0.2967 0.7135 1.1683 2.7464 5.8699 43.8333
16.00 0.3529 0.9129 1.1518 0.6615 2.6646  7.6238 14.9072 0.1737 0.5804 1.4345 2.9620 5.9363 39.9444
25.00 0.3508 1.0430 1.6138 0.3115 1.5698  4.7657 12.1202 0.1464 0.5298 1.3658 3.1366 5.4187 33.7083
36.00 0.2659 0.9920 1.7688 0.1915 0.9180  2.7773  8.3503 0.1050 0.4919 1.1551 2.9266 4.6950 27.5872
56.25 0.1245 0.5889 1.5077 0.0920 0.4132  1.1599  4.1918 0.0741 0.4061 0.7697 2.0000 2.7565 19.0517

100.00 0.0250 0.1622 0.6719 0.0243 0.1261  0.4415 0.9926 0.0292 0.1383 0.3505 0.7732 0.6489 6.8768

156.25 0.0103 0.0393 0.2537 0.0096 0.0326  0.1687  0.1934 0.0105 0.0340 0.1390 0.2303 0.1001  1.8768

225.00 0.0035 0.0209 0.0742 0.0026 0.0170  0.0480  0.0392 0.0022 0.0130 0.0392 0.0594 0.0148 0.5114
# 2 RFIRHERER B (F7: keV/u) T, NO*(1s) &5 H(1s) U7l A REE S AT A SR TE S AIE R 2 No+

(1sne 'L) &4 HERE (B4 1076 cm?)
Table 2.
(1sne 'L) states in NO*+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of

1016 cm?

Spin-singlet total single-electron capture cross sections and state-resolved cross sections for capture into N°*

E 1s3s 'S 1s3p 'P 1s3d 'D 1sds 'S 1sdp 'P 1sd4d 'D 1s4f 'F  1s5s!S 1s5p 'P 1s5d 'D  1s5f'F 1s5g !G AL
0.25 0.0001 0.0002 0.0002 4.9841 4.1948 6.0168 13.7765 0.1364 1.1173 0.7492 0.4985 3.0177  34.5024
0.56  0.0003 0.0010 0.0013 6.6345 3.7956 8.0072 13.0620 0.3696 1.9096 1.1744 1.0736 1.6679  37.7347
1.00 0.0023 0.0073 0.0076 8.8291 4.8926 9.4065 12.8317 0.9635 1.1060 0.8840 1.9907 0.9559  41.9406
2.25 0.0314 0.0879 0.0599 6.6027 5.3151 11.9836 14.0620 0.6144 0.5642 0.4328 2.4516 2.4166  44.7399
4.00 0.1416 0.4313 0.2924 5.0184 5.9133 12.5596 13.2306 0.2941 0.4484 0.7915 2.4992 3.1441  45.0342
6.25 03049 0.6447 0.4420 28775 5.0788 12.7611 14.0163 0.3535 0.7570 0.9597 2.8547 4.2684  45.5828
9.00 0.3949 0.7666 0.6046 1.5960 3.9072 11.1796 15.1420 0.2527 0.6901 1.1460 2.6755 5.7122  44.3560
16.00 0.3889 1.0895 1.2582 0.5916 2.5040 7.9453 14.9587 0.1480 0.6129 1.3966 2.9507 5.7149  40.1231
25.00 0.3696 1.1997 1.7008 0.2885 1.6088  4.8367 11.9200 0.1366 0.5699 1.3379 3.0703 5.4103  33.7599
36.00 0.2757 1.1118 1.8295 0.1861 0.9715 2.7831 8.2105 0.0998 0.5225 1.1366 2.8470 4.7282  27.6453
56.25 0.1240 0.6285 1.5212 0.0906 0.4484 1.1474 4.1679 0.0700 0.4274 0.7624 1.9865 2.7557  19.0999

100.00 0.0249 0.1684 0.6648 0.0245 0.1309 0.4330 0.9952 0.0297 0.1417 0.3476 0.7773 0.6477  6.8638
156.25 0.0101 0.0413 0.2503 0.0092 0.0340 0.1657 0.1940 0.0101 0.0347 0.1368 0.2312 0.1003  1.8767
225.00 0.0033 0.0222 0.0735 0.0024 0.0180 0.0474 0.0392 0.0021 0.0136 0.0387 0.0594 0.0148  0.5149
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# 3 AFREERER B (B0 keV/u) T, NO+(1s) B F5 H(1s) JRTFRERE A BE = EA FAY S ARSI AR E No+

(1s ne L) &5 HRE (FPA72:10716 cm?)

Table 3.  Spin-triplet total single-electron capture cross sections and state-resolved cross sections for capture into N°*+

(1s ne 3L) states in No*(1s) + H(1s) collisions at various collision energies £ (unit: keV/u). All cross sections are given in units of

1016 cm?.

E 1s3s 35S 1s3p 3P 1s3d 3D 1sds 3S 1sdp P 1s4d D 1s4f 3F 1s5s %S 1s5p P 1s5d D 1s5f3F  1s5g 3G ML
0.25 0.0002 0.0002 0.0002 3.3584 15.5386 9.4191 13.2070 0.1875 0.5515 1.0366 0.4058 1.7640  45.4756
0.56  0.0002 0.0006 0.0013 6.3302 12.6558 4.3517 13.8094 0.2056 2.0162 0.8983 1.0119 1.3154 42.6301
1.00 0.0022 0.0048 0.0119 9.4133 11.0897 4.8596 11.7075 0.7860 0.8840 1.0955 1.9416 0.9004 42.7626
2.25 0.0260 0.0772  0.1287 7.8738 10.2202 5.9803 12.4224 0.6703 0.4279 0.5181 2.3282 2.3870  43.1886
4.00 0.0764 0.4847 0.2958 6.0132 9.1819 7.9870 11.8821 0.3729 0.4305 0.7801 2.5160 3.1281  43.4352
6.25 0.2126 0.6409 0.4699 3.5588 7.0815 9.6901 13.0207 0.4365 0.8881 0.9340 2.9492 4.2362 44.4108
9.00 0.3208 0.6277 0.5906 1.9477 5.0463 9.5207 14.3906 0.3114 0.7213 1.1757 2.7700 5.9224  43.6591
16.00 0.3409 0.8540 1.1163 0.6848 2.7181 7.5166 14.8900 0.1822 0.5696 1.4472 2.9658 6.0101  39.8848
25.00 0.3445 0.9908 1.5849 0.3192 1.5568 4.7420 12.1870 0.1497 0.5165 1.3750 3.1587 5.4216  33.6911
36.00 0.2626 0.9520 1.7486 0.1933 0.9002 2.7754 8.3969 0.1067 0.4817 1.1613 2.9532 4.6839  27.5678
56.25 0.1247 0.5757 1.5031 0.0924 0.4014 1.1641 4.1998 0.0755 0.3991 0.7721 2.0045 2.7568  19.0356

100.00 0.0250 0.1601 0.6743 0.0243 0.1245 0.4443 0.9917 0.0290 0.1372 0.3515 0.7718 0.6493 6.8811

156.25 0.0104 0.0387 0.2549 0.0098 0.0321 0.1697 0.1932 0.0106 0.0338 0.1398 0.2300 0.1001 1.8769

225.00 0.0036 0.0204 0.0745 0.0027 0.0167 0.0482 0.0392 0.0023 0.0127 0.0394 0.0595 0.0148 0.5102
TERER AT 2 keV /u B, QMOCC 45 R NIK T4 3.2 BETFERIESZEEEHE

TAE. #E— 508 neor B AR R & B (W
&l 3), XA 25 7 E LT QMOCC Jrik M7k 2
Af 25 A E T A, L, it — PR A
A3 HERE 7 Y S 6 I 6 T 50 EAIR BE XK TR B
Jr kT SR B R X

5 SEUR RO AT R, A T AR R #R
TS5 Meyer 5 B2 Al Havener 45 151 (54 it F 5C
ik [36]) SLEREHEAE 1.5—8 keV /u yu Bl N AR —
5, BPEAE SRR ETE RN . SRIMAEIRT 1.5 keV /u
MIRELX, X P LA L T4 TA/ER QMOCC
D TR, X — I AE IX 14 22 53 1 TC I 2 3
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P ArfE AR LR | B R Ak sh ik, HL5 3
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Cross section (10~16 cm?)
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Fig. 2. Spin-averaged

4
N6++H(1s) — N3+(n = 3)+H+

(a)

| — Present .
--- Wu et al. (2011) (QMOCC)[36l e
—-- Wu et al. (2011) (AOCC)B6 4
Igenbergs et al. (2012)
(AOCC)BT)

N6+ 4+ H(1s) — (c)
N5+ (n = 5)+H+
L L -\'r*
100 10! 102
E/(keV-u~1)

NO*(1s) 5 H (1s) BEFE A HEF- 4 09 32 4 750 n 70 Bt

(a)n=3;(b)n=4;(c)n=5

n-resolved single-electron capture

cross sections as a function of collision energy for No+(1s) +
H(1s) collisions: (a) n = 3, (b) n = 4, (¢) n = 5. Present

results are compared with theoretical calculations6:37,
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Fig. 3. Spin-averaged mf-resolved single-electron capture cross sections as a function of collision energy for N°+(1s) + H(1s) colli-

sions: (a) 3¢; (b) 4£; (c) 5¢. Present results are compared with theoretical calculations®037.
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Theoretical study of state-selective charge exchange processes
in collisions between highly charged N%* ions and H atoms”
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Abstract

In this work, we systematically investigate single-electron capture process in the collision between NO*(1s)
ions and H(1s) atoms in a wide energy range from 0.25 to 225 keV/u by using a two-electron semiclassical
asymptotic-state close-coupling method. Spin-averaged and spin-resolved total cross sections, as well as n-
resolved and nf-resolved partial cross sections, are calculated and comprehensively compared with existing
experimental measurements and theoretical predictions. The results show at low energies (<10 keV/u), energy
dependence of the total cross section is weak, and it follows a monotonically decreasing trend at higher energies.
The analysis of nf-resolved cross sections reveals the strong coupling effects between various channels at low
energies, while at high energies the relative ¢ distributions in each nf-resolved cross section approximately
follow the statistical ¢ distribution, for which the electrons are therefore mainly captured into subshells of the
maximum /. The present study demonstrates the importance of a two-electron treatment taking into account
electronic correlation and the use of extended basis sets in the close-coupling scheme. However, substantial
discrepancies exist among theoretical approaches at low energies. It is clear that further experimental and
theoretical efforts are required to draw definite conclusions. Our work provides a complete and consistent set of
cross sections in a broad range of collision energies, which can be used for various plasma diagnosis and
modeling. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.
j00213.00143.
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Experimental study on radiative opacity of radiatively heated
carbon plasma at SGIII prototype laser facility”

ZHAO Yang QING Bo XIONG Gang ZHANG Zhiyu SUN Ao
YANG Guohong ZHAO Yan ZHANG Yuxue HUANG Chengwu
ZHU Tuo  SONG Tianming LI Liling LI Jin CHE Xingsen
ZHAN Xiayu ZHANG Jiyan’ DONG Yunsong YANG Jiamin

(National Key Laboratory of Plasma Physics, Research Center of Laser Fusion,
China Academy of Engineering Physics, Mianyang 621900, China)

( Received 7 May 2025; revised manuscript received 2 June 2025 )

Abstract

Experimental opacity data are used to evaluate the opacity models and their accuracy of the calculated
results. In order to study the opacity of carbon material in the shell of the inertial confinement fusion ignition
target, the experimental study of the spectrally-resolved opacity of radiatively heated carbon plasma is carried
out on the Shenguang III prototype laser facility. Eight nanosecond lasers are injected into a conical-cylindrical
gold hohlraum and converted into intense X-ray radiation, the high-temperature plasma is obtained by
radiatively heating the CH film in the center of the hohlraum. Temporal evolutions of temperature and density
of carbon plasma are simulated with the Multi-1D code. By using a spatially-resolved flat-field grating
spectrometer combined with the ninth beam smoothing surface backlight technology, the absorption spectra of
CH sample and the backlighter spectra are measured in one shot. Finally, the experimental transmission spectra
of carbon plasma (with a temperature of 65 eV and density of 0.003 g/cm?) in a range of 300-500 eV are
obtained and compared with the calculated results of a DCA/UTA opacity code. The datasets presented in this
paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00153.

Keywords: radiative opacity, inertial confinement fusion, absorption spectra
PACS: 52.70.La, 52.50.Jm, 32.30.Rj DOI: 10.7498/aps.74.20250600

CSTR: 32037.14.aps.74.20250600
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bb, W4 1. Ext-FP Jrikfe 3 Fie IR T i Ko
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X R 22 /N T 0.5%. 55— 1, ext-FP J ik T
TR KS LS AR ME DET J7 ik i fisik b, H
ARG B IR A T i K

%1 Ext-FP /56 DFT Jrik FAOHIIEER

Table 1.  Comparison of results from the ext-FP method
and the DFT method.

i Ext-FPJi% PREDFT 5 1%
HL TR /MK

Now P/GPa AP/%  Nye P/GPa

0.1 40 134654 -0.01 100  134.670

0.2 60 414.783 -0.03 200  414.890

0.3 80 791144 -0.23 350  792.977
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FERIAE, LAK G5 BJ) 1 A58 e L R/ INFRERE i) 26
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TP BRI IS RS2 B 22 DM HETI

PAW-PBE #3014 (B FHEA A 5525p©5d196s%6p2),
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JE S R 38 . — D T, B v 28 e MR AR v R
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B—EE LRI, SRR WIEN2KD)
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LTI B TRDEE, AT 45 TR 2 2 1 T T3 ) e
RN I B WA, I A2 SR 7T 5
FERE.

B B TN P = 2 8- A I Fa M= R ) (S
B AR — e R B 5C B, ELAR A
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T R I 3K 2 YO N B R I AR .
I RO W42 2.3 Bohr (29 1.2 A),
TEMR B B AR R IS 1.78 AZ F BARE &
MK E, W REEARARTT{E. iX 5 Benedict
S DU FERR IV T8 X 25 7 BRI SE T A b ) JEE 34k
ZELA, B A AR T 4E 1.1 Bohr i) PAW 4]
FHF 100 g/cm?® % T A IR (%5 X0
B ISR )T 1.1 Bohr).

12000
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Fig. 1. Cold pressure results of face-centered-cubic lead cal-
culated by CESSP with the 22 electron PAW potential,
compared with full-potential results from WIEN2k.
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AR A o O 75 ™ O i il P 3R 2
B T AR SR ) 4950 1 B % B A 2 T R A&
(HNEEAY 5s ) B G REas . Wk 2 T 0L: 7E[R]—
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T2 PRI Sy ot B 24 A ek B B g 1L, 5 DA i R
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FEBLAE I A2 1T FHAY; 4R, 0.5 MK JREE T i
BAKZE 0.94—0.97 Z[H], RO E(FE AT REfAAER &,
IV 32K FHEE Z2 40 v 1) G 4T JR AL, 25 1,
Ja S A T PR RUAS Bf R 0.05—0.4 MK,
po—Dpo TN 25 AR s AL

%2 RFEEEEBBE AT RGN (B0 5s 45) 15
Hkk
Table 2.

valence state (5s state of lead) at the different temperat-

Occupation numbers of the lowest energy

ures and densities.

Po 2pg 3p0 4py 500
T=0.05 MK 1.00000 1.00000 1.00000 1.00000 1.00000
T=0.1 MK 1.00000 1.00000 1.00000 1.00000 1.00000
T=02MK 0.99973 0.99977 0.99981 0.99984 0.99988
T=03MK 0.99492 0.99576 0.99640 0.99701 0.99746
T=04MK 097704 0.98074 0.98364 0.98612 0.98821
T=0.5MK 0.94243 0.95155 0.95881 0.96504 0.96917
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WHTHPIIETE 0. = 140 (2) 2UF0 (3) AW BE R £E
Zr OGI L, R4 A bR R eR A — 5
HRAERAN.
3.2 BFn
BT 43y TR DRI DX A DX . [ A
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Fig. 2. Principle Hugoniot predicted by the theoretical mod-
el in this work, compared with the SESAME-3200 table and

the experimental data.

1.0
Experiment
= fcc
0.9} e hcp
A bcc
0.8 F Theory
—— SESAME-3200
E ar —— This work
>~
0.6
0.5
0.4 L . . . . .
0 50 100 150 200 250 300

P/GPa

Bl 3 300 K 4 45 2k (R AL -JE 58 ) B T ST 5
SESAME-32001 F15% 58 #0458 B /9 % o

Fig. 3. Room-temperature isotherm predicted by the theor-
etical model in this work, compared with the SESAME-
3200 tablel) and the experimental datal!l.
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Fig. 4. Melting curve predicted by the theoretical model in
this work, compared with the experimental data. The T-P
Hugoniot curves from our model and the SESAME-3200 ta-

ble are also given to illustrate the difference.
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Fig. 5. Thermodynamic properties of the warm-dense lead
predicted by the theoretical model in this work, compared
with the SESAME-3200 tablel®) and the ext-FPMD calcula-

tions.
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Abstract

We present a multi-phase equation of state (EOS) for lead (Pb, Z = 82) in wide ranges of densities and
temperatures: 11.34 g/cm® < p < 80 g/em®, 300K < T < 10 MK. The EOS model is based on a standard
decomposition of the Helmholtz free energy that is regarded as a function of the specific volume and the
temperature into cold term, ion-thermal term, and electronic excitation term. The cold term models both the
compression and the expansion states; the ion-thermal term introduces the Debye approximation and the
melting entropy; the electronic excitation term employs the Thomas-Fermi-Kirzhnits (TFK) model. The
thermodynamic properties of the warm-dense lead are calculated using the extended first-principles molecular
dynamics (ext-FPMD) method, with the density reaching five times that of ambient density and the
temperature up to 0.4 MK. Our EOS model is used to predict the principle Hugoniot, the room-temperature
isotherm, the melting curve, and the thermodynamic properties in the warm-dense region. A systematic
comparison with the experimental data, the SESAME-3200 table, and the ext-FPMD calculations is made and
shows that our EOS model is consistent with not only the various experimental data, but also the ext-FPMD
calculations, indicating some superiority over the SESAME-3200 table in the warm-dense region. The datasets
presented in this paper, including the tabular EOS consisting of internal energy and pressure at the different
densities and temperatures, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00166.
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Fig. 1. Elastic modulus of rare earth metals (CeYb) (Experimental data are taken from Refs. [23,24], and theoretical data are taken

from Refs. [16,21,22], except for the computational results from this work): (a) Bulk modulus; (b) shear modulus.
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Table 1.  Calculated elastic constants, bulk modulus (B), shear modulus (G) and B/ G for rare earth Ce-Yb.
Method B/GPa G/GPa (&1 Cho Cyy Ci3 Cs3 B/G Ref.
f-band 39.80 33.24 63.20 28.10 50.90 — — 1.19 This work
GGA+OP, f-band 40.89 — — — — — — — [16]
Ce PBE, f-core 29.23 13.72 39.29 24.21 20.45 — — 2.13 This work
PBE, f-core 34.62 — — — — — — — [21]
GGA, f-core 30.21 15.86 43.46 23.59 21.71 — — 1.90 [22]
PBE+U 27.20 15.76 40.59 20.52 21.33 — — 1.73 This work
n-Ce Expt. 14.83 12.86 24.1 10.2 19.4 — — 1.15 [25]
PBE, f-band 20.64 18.75 39.30 11.31 22.80 — — 1.10 This work
GGA+OP, f-band 20.88 — — — — — — — [16]
PBE, f-core 31.66 16.45 44.80 25.10 23.20 — — 1.92 This work
Pr GGA, f-core 36.65 — — — — — — — [21]
GGA, f-core 34.57 18.83 60.77 25.36 17.4 17.88 67.34 1.83 [22]
PBE+U 24.27 11.58 35.20 18.80 14.60 — — 2.09 This work
Expt. 28.80 14.80 — — — — — 1.95 [24]
PBE, f-band 18.9 14.95 30.90 12.90 21.00 — — 1.26 This work
GGA+OP, f-band 20.98 — — — — — — — [16]
PBE, f-core 33.9 18.55 49.10 26.29 25.70 — — 1.83 This work
Nd GGA, f-core 39.12 — — — — — — — [21]
GGA, f-core 36.12 20.77 65.24 25.88 19.11 17.77 7177 1.74 [22]
PBE+U 28.57 25.65 46.90 19.41 38.90 — — 1.11 This work
Expt. 31.8 16.3 — — — — — 1.95 [24]
PBE, f-band 20.67 14.81 31.60 15.20 22.00 — — 1.2 This work
GGA+OP, f-band 19.92 — — — — — — — [16]
PBE, f-core 35.67 20.37 52.40 27.31 28.20 — — 1.75 This work
Pm GGA, f-core 39.21 — — — — — — — [21]
GGA, f-core 37.96 23.21 70.36 24.63 21.00 18.62 7717 1.64 [22]
PBE+U 16.80 10.94 24.20 13.10 17.20 — — 1.54 This work
Expt. 35.37 16.70 — — — — — 2.12 23]
PBE, f-band 18.70 4.87 18.10 19.00 18.50 — — 3.84 This work
GGA+OP, f-band 19.91 — — — — — — — [16]
PBE, f-core 36.81 21.72 54.60 27.91 30.10 — — 1.69 This work
Sm GGA, f-core 38.94 — — — — — — [21]
GGA, f-core 36.91 19.60 61.81 21.27 18.64 24.56 68.58 1.88 [22]
PBE+U 12.10 7.39 15.90 10.21 13.70 — — 1.64 This work
Expt. 29.46 12.68 — — — — — 2.32 [23]
PBE, f-band 14.33 7.51 16.60 13.20 17.70 — — 2.32 This work
PBE, f-core 12.93 9.07 17.61 10.60 16.80 — — 1.43 This work
GGA, f-core 14.67 — — — — — — — [21]
b GGA, f-core 12.52 8.40 16.46 10.55 16.34 — — 1.49 [22]
PBE+U 12.20 7.56 16.20 10.21 13.80 — — 1.61 This work
Expt. 14.75 5.90 — — — — — 2.5 [23]
PBE, f-band 30.50 16.31 42.70 24.40 24.00 — — 1.87 This work
ad GGA+OP, f-band 28.99 — — — — — — — [16]
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1 (8h) ERSEIRIERMAITR Ce-Yb HPENERT
Table 1 (continued). Calculated elastic constants, bulk modulus (B), shear modulus (G) and B/ G for rare earth Ce-Yb.

Method B/GPa G/GPa Ch Chs Cu Ci3 Cs3 B/G Ref.
PBE, f-core 39.54 24.12 59.60 29.50 33.10 — — 1.64 This work
GGA, f-core 36.74 — — — — — — — [21]
Gd GGA, f-core 41.73 22.11 68.26 21.00 21.01 30.04 80.3 1.89 [22]
PBE+U 31.64 19.06 47.10 23.91 26.60 — — 1.66 This work
Expt. 38.40 22.31 — — — — — 1.72 [23]
PBE, f-band 24.37 16.76 36.50 18.30 25.20 — — 1.45 This work
GGA+OP, f-band 30.15 — — — — — — — [16]
PBE, f-core 41.37 25.17 62.70 30.70 34.10 — — 1.64 This work
Tb GGA, f-core 36.28 — — — — — — — [21]
GGA, f-core 40.87 22.77 68.43 20.07 21.85 28.59 79.25 1.79 [22]
PBE+U 32.90 15.70 46.10 26.31 21.40 — — 2.09 This work
Expt. 39.99 22.90 — — — — — 1.75 [23]
GGA+OP, f-band 29.08 — — — — — — — [16]
PBE, f-core 41.27 25.48 62.80 30.50 34.60 — — 1.62 This work
Dy GGA, f-core 36.74 — — — — — — — [21]
GGA, f-core 42.14 24.48 70.93 20.53 23.97 20.53 28.75 1.72 [22]
Expt. 38.50 25.45 — — — — — 1.51 [23]
PBE, f-band 29.09 14.26 35.90 25.69 27.50 — — 2.04 This work
GGA+OP, f-band 29.88 — — — — — — — [16]
PBE, f-core 42.14 26.15 64.80 30.80 34.90 — — 1.61 This work
Ho GGA, f-core 38.20 — — — — — — — [21]
GGA, f-core 44.12 26.26 75.40 22.30 26.74 29.63 85.06 1.68 [22]
PBE+U 14.63 7.03 15.50 14.19 20.40 — — 2.08 This work
Expt. 39.75 26.73 — — — — — 1.49 [23]
PBE, f-band 32.73 9.51 34.40 31.90 26.00 — — 3.46 This work
GGA+OP, f-band 29.95 — — — — — — — [16]
PBE, f-core 42.60 27.78 65.60 31.10 34.80 — — 1.53 This work
Er GGA, f-core 40.12 — — — — — — — [21]
GGA, f-core 45.82 28.60 81.54 24.27 28.85 28.34 88.05 1.60 [22]
PBE+U 29.43 17.13 35.70 26.30 37.50 — — 1.72 This work
Expt. 41.15 29.68 — — — — — 1.38 23]
PBE, f-band 20.75 15.21 47.70 8.86 9.02 3.86 58.40 1.36 This work
GGA+OP, f-band 27.93 — — — — — — — [16]
PBE, f-core 42.93 26.46 67.00 30.90 34.20 — — 1.62 This work
Tm GGA, f-core 42.41 — — — — — — — [21]
GGA, f-core 48.23 31.02 88.44 25.58 30.28 28.04 94.21 1.58 [22]
PBE+U 21.81 10.97 25.60 19.92 24.59 — — 1.99 This work
Expt. 445 30.5 — — — — — 1.45 [24]
PBE, f-band 16.63 10.55 20.10 14.89 24.10 — — 1.58 This work
PBE, f-core 15.87 9.35 18.60 14.50 22.30 — — 1.69 This work
GGA, f-core 15.58 — — — — — — — [21]
A GGA, f-core 16.34 10.72 23.21 12.91 17.44 — — 1.52 [22]
PBE+U 10.68 3.82 17.66 13.33 20.75 — — 2.79 This work
Expt. 13.13 9.9 — — — — — 1.33 [24]
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Fig. 2. (a) Ratio of bulk modulus to shear modulus (B/G) for rare earth metals. Comparisons are made with the experimental re-

sults??4. (b) The s- and d-valence electron occupation numbers calculated using the f-core method. (c) The variation of Cauchy

pressure (Cy, — Cyy) with the atomic number. (d) Melting points for rare-earth metals/?®.
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Fig. 3. (a) Bulk modulus B for Ce as a function of pressure. (b) Shear modulus G as a function of pressure. (c¢) Longitudinal wave

velocity Cf, as a function of pressure. (d) Transverse wave velocity Cp as a function of pressure. Comparisons are made with exist-

ing experimental results 1133, The dashed line in the figure marks the experimentally reported Y- phase transition pressure.
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Fig. 4. (a) B/G ratio as a function of pressure. Comparisons with existing experimental results!'' 33 are provided. (b) The s-

valence electron occupation as a function of pressure. (¢) The d, f-valence electron occupation as a function of pressure. (d) Cauchy

pressure (Cjy — Cyy) as a function of pressure.
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Fig. 5. Enthalpy difference between fcc and bec phase for

Yb as a function of pressure.
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Fig. 6. (a) Bulk modulus for Yb as a function of pressure, with the inset showing the bulk modulus variation near the phase trans-

ition pressure. (b) Shear modulus as a function of pressure. (¢) Longitudinal wave velocity Cf as a function of pressure. (d) Trans-

verse wave velocity Cp as a function of pressure. Comparisons with existing experimental results?) are provided.
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Fig. 7. (a) B/G ratio for Yb as a function of pressure. Comparisons with existing experimental resultsl® are provided. (b) The

s-valence electron occupation as a function of pressure. (c) The d-valence electron occupation as a function of pressure. (d) Cauchy

pressure (Cjo—Cyy) as a function of pressure.
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SPECIAL TOPIC—Atomic, molecular and materials properties data
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Abstract

Rare earth metals are of significant importance in engineering and technological applications, and their
unique f-electron-related behaviors have attracted widespread interest in condensed matter physics. In this
work, we investigate the elastic properties of rare earth metals ranging from Ce to Yb by combining first-
principles calculations with systematic data compilation. Taking Ce and Yb as representative cases, we
investigate the evolution of their elastic properties under high-pressure conditions (0-15 GPa), and we
systematically compare the simulation performances of different f-electron treatment approaches. The results
indicate a significant difference in ductility between light and heavy rare earth metals under ambient pressure.
Under pressure, the elastic properties of Ce and Yb undergo marked changes in phase transitions. Specifically,
the B/ G ratio, a key indicator of ductility, decreases from about 2.0 in light lanthanides to around 1.5 in heavy
lanthanides, crossing the critical threshold of 1.75. Notably, during the fcc iso-structural phase transition in Ce
and the fce-bee phase transition in Yb, a significant brittle-ductile transition is observed. These transitions are
closely related to the bonding characteristics modulated by atomic number or pressure condition. For instance,
as the atomic number increases, the Cauchy pressure (Cjy—Cyy) decreases with the variation of s and d valence
electrons, indicating an enhanced covalent bonding tendency. In addition, this study reveals that simulating
f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under
ambient pressure. However, when modeling high-pressure structural phase transitions and their related elastic
evolution, the method of treating f-electrons as valence electrons and performing electron correlation correction
shows better accuracy. The datasets presented in this paper are openly available at https://doi.org/10.57760/
sciencedb.j00213.00150.
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K BE 26k T AR () R P DA B R 7= A R
SN 91, RN, 5 HY, He2 TS 4% B T L i i B 1k
T AT O 7 BT E, bl S A R
R DL BB SR A= BE A X R, Het B FiXx—3E
BB T5 Hy0 4110 B fay 4 7% AT E0CH 15 SR 4
XFEEZ.

S b, WEARSCRTRTEM S H0 4 Tk 5
Het BB He IS HL 5474 (single charge
transfer, SCT) i &, (XA D58 I JR AR i Il 5t
FRAR H g B A AR TR %)) A R AR, Bk 20
40 70—80 4E4t Koopman% L Kz Rudd 4 11 435
T 70—1400 eV, 5—450 keV fEEJEHN Het
B bR SCT 8, 5298 22 Al ik 15% L) |
B B 1 DA SO TN A S H AR 1 ke, K
INEKS B A B B 32 5. 2000 4, Greenwood 45 ) ]
HTRERN 1, 2, 31 5 keV Y 3Het &5 7 Rlf 48 11
SCT #& M, JCH iR 2 /N T 7% (g s R 25 /N T
4%), FEHERR T A G B - 0 R 25 el 46 v 0] S
i LA B A3 200 SCT MimEdE 2 78, BA
JUIGURE 5 Fr 0 28 1 50 2 Ab B AT () 4245 31
He &1 SCT #k I, s # Al AHZ A i 17—
TR PEAL PR 22 . Rudd 55 21 DL ) Sataka 45 193] 43
ST 5—350 keV, 30—1800 keV fig & 7l Fl A
He 15 H,, O, 4+ FHEFERY SCT #kimi. {58
P IMAFLN (Bragg additivity rule)!™ ZbFRLL |
Hm K, B o(H20) = o(Ha) + 0(02)/2, Al LI
I 4 AE Y BE RV PR N Het 55 15 HLO 4 T-hlffi i
SCT # . 2008 4, Garcia 25 5 T 500, 750
F11000 keV He' B FHH FIFI T HyO /3 FHLES
BSR4 H,OF, OH*, HY, OTLL K 02,
XSGR R AR T 5 Het B 15 H,0 43 T-hlff 1)
SCT AT . FEdG H, M T A hiAs AR
WA Bf 1) Jey B 17 R St B 1 1 oK 5 AR )5 O
() He JAFAFA MG, IR EE B0 2 ) 8 i A e
HA —E S MMA.

TEHIS AL B 5 1, X Het 8 15 H,O 2> T-Hilf
i SCT #a R s 3R % A B, BAUS 87
Z MBI SHAU A 107 ARG AR, T
T R SR S A EH A s D) e B Ze
TRIAE XS HE A A B T LA B S 4% 50 8 1) T 1
WP b ASTE T REAL T A SIFHE G 245
SR TG R B EA 2 (24
JFFA%), ISRy a2 A EE. Bl A

TR TR ER, A BMER RS
RN, BT R HUE B S IS, Zhang 5 1Y
HHET 0.25—150 keV /u (1) N5 FF1 Hy 43 il
58 1) P Ao A RO AR, AR RSB e, SR AT
B AR, ZITIE ORI R B e THE, Tk
AEFRAL S 4 AT 9 NIEERFE T Het-H,O fif
fii, MHETRAL I HoO 5552 200 THL IR 2 P M E
Tk AW R E AT Hhrz—. i, 7em
THEAORS BEARCR R IR b, 25 35 BT pRAE 2 TR
G181 71% (time-dependent density-functional
theory non-adiabatically coupling with molecular
dynamics, TDDFT-MD) £ %1 £ 28 5 fE 5 i 34
B MR 2R 0y TR A B e B 7 1. TDDFT-
MD TEAL B S RE X (—edE 10 keV/u L 1) B
TR IR TR, BEZS H BCE Y H far e B 1K
TET P CIA T4 R TR A M1 R TR Al
AR R o2,

L BTIR, 4T Het B 15 HyO 73 il 18 1Y
SCT AT HE K SL BB 24+ 0 f ik, JEHIE 2
— PR RHUEOE. — 7T, 7E 450 keV LA ERYH
e BE DXl = T2 0 P A SIS Kl TR R T
IR BH A B2 51 I 4 100 ke VDA HR IR BE DX I 3k 20>
HETHR, MR RE X =R T —
51, B — RS (4 SRR AR PR 13
F bl (A R b A L B A R Y A T AR, PRI, 7
Vi RE LT N X He 815 HyO 23 FREf#EAY SCT
BT A B e IR T3 b B AT
YE 3T TDDFT-MD B A % 1.33—1800 keV fig
HILEIN Het® 75 H,0 4 TR SCT it #
AT TR — PRI AR, PS8 T Dy A OGS AT
FERME AT SRR S RE, MRS RS A R S AR
RS LIRS, AT 5T IR A B 7 A
Ak PEARRRAZ B 5 R0 52 2% 1l AR ) Ry B R 0
5 TEEAG 5 ) WAt P R P

2 ERFBE T %

ARTAER A TDDFT-MD 4 He 85 H,0
I3 TR R, 2051 T ] T AR R B
BRI 7 5 54T RS ) B e S i, TR
A28 A1 UL SCHik [20, 22-24]. SEBRAC PR 8 iR
i} Kohn-Sham 7 F2 38 15 HL F $U 18 I R4, H
Ehrenfest i J12# ik i 1112 30
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jection, PNP) Xf H 4182 0, HAAR] ULk [20].
PNP J5 0 = 44223 0] 3 F A B 1 FIEE IR 2
P25 [0, fedh o PR e T2 R B 1 )
Y, O T B R v A SR - R
ERZEWHB T (SR %) %% . e ns
] .

4 HyO 0 FH e Ty Py 0 XAl ¥ S8 1E

(a) y (b) y
x xr

— € 70 N AT Ry, AR B T Het By 1
E"J SCT /:éhﬁ 0'170 5 Eﬂ

bmax
71,0 = 21‘(/ bpl,odb.
bimin

i, B HyO 3 F AR ) A #R I A T 3R
¥, A2 5 A G & T He B+ 5 H,0 0+
il A9 SCT #1m.
Seg Y, HyO 43— M B A 25 FAS [ 4 Bl 1L
23 (B ), At Het 5 AT B A5 [R) 9 A B2
5 H,0 KARE. R g HyO 19728 [ I R%
7, JEIN B 7R S AR B AL 5 12T e
ARV 0¥ H ), d5e 5 XA ] B ) 1 F ey A
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Z R WAL, A TAEZE 1E Hy0 43F X
FRUERIERE T, SRR 3 N AR 1 HL
ml, WK 1R, Bl 1(a) H5rF7E zoy IFIH, A
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GO LU A s, =X Bk 3 AN N RS
YA
AR AR OCTOPUS T2 291 5¢ /. 16 5 5%

REFEHESR T, Het By 18 € A TE (0, -5 au., 0)
A pRAL, 2t ZERIA AR HyO 2 H B0 iR 4f
P EA (20 au., =5 a.u.+b, 0). 75 Al AE 4L
Hh, XK A ) LT D R BN N T AR A R
e v DUPRIE B L AL 1 A0 ) e AR N AR
P 261 A o e ST S RN 53— 22 1] B A A T
BENHEL, r o RPUE D R AT R AR AR, WIAR I

21, HyO 73 F LAKE— A SR FE 5 o Bl 1 5 )iz 5,
ilf 48 2 5500 WY 2 Bl 0E J7 ) 35 K, YE R 0—
9 a.u. B} Kohn-Sham J7 & Fl i 1% AA bR AT 1k
41 3 K Approximated enforced time-reversal

K1 RFEREEESR T Het# 15 HoO 20 Tl iR ZEIAL, Hot (a)—(c) R 3 PR 2r T IR, Vi v d F{7 a3k f T 9 25 [

Fig. 1. Schematic of Het-H,O collisions with (a)—(c) three different molecular orientations in the inverse collision framework. Vi is

the electron capture region of He' ion.
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HL T Z [ A B P9 3RS [ R/ R 80 aau. x
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U PR AT 25 (0] 10 B R A OB, 7 3 Ak 2R
sin® JE SIS, JEEEE R 5 a.u. LU Het B FAL AR
RERC T R —BRIE 23 (AR Ry B 17 4R f - 1 23 (]
V,, HRBAR U E R 10 a., FRZMIFIREAE. 3 )
FRALE Y 40 fs. YAl E GRE I 7E 100 keV
LR, ALKl 6.04x10°2 fs, 100 keV DL I
B, ALK N 2.42x10 3 fs. B SRHEESEIIC 4
TSI, DARIE T2 SR AT 5 A S —
A7 ], DL an R,

3 #£R538
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Greenwood 5% 1 iy =5 K5 B2 DU &= (B AF & . FE KT
400 keV W R AE X, AT BA B H & A AL,
U FEF AR RS A0 A5 2 4% <“lal 4 #m . A
TAETEMRER TR AR 524, 5 Murakami
A4 116) L B AR () AR T A B 1 TR 2
BA 3L, 1E 16—200 keV fERFEEN, A TAE
ARBEFEI Rudd 55 M [ B0 248 1 {E 0 AR fb
#WRER JFTE 25 keV [T AYIE(E 254, 5525
{HAHZE 10%—40%. ¥ & ] Rudd % 'Y 10 keV LA
THISEEE S Greenwood 4 19 [ kg I (B AF
KNS A A a3 A A 8 2251, I H Green-
wood %5 U ZESCR HHERR T AR Het B FXF SCT
B A2, R, 1985 4F Rudd 25 1 1) 3 i )
S T AR T RE A AN iy, TRA — 2 Le il
WA Het B+ WA B 1 AA7E P g S 20 o
RS AT A7 B — e FEEE R RZ A, I o2 i far i
& BT )l 5 B P 4RO G 2R B0

JFJE TDDFT-MD B 2 B T AS [W] 1) 43§
Ha), RIAAFZE i %58 HyO 20 FASEEUE X Het
B SCT #k I Y52 . an &l 2(b) PR, Bl
HETASRERET S, ARIJrm T SCT #mm K
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ZH; (b) J71 1, 2, 3405 RE L 1(a)—(c) =4 FHR

Fig. 2. (a) SCT cross sections of He™-H,O collisions; (b) SCT cross sections under different molecular orientations. In panel (a), the

data of Rudd et al.'? and Sataka et al.!'¥ are deduced by the Bragg additivity rule, while the data of Garcia et al.'% are the cross

sections of HyOT fragments or all ionic fragments produced by the single capture of He*t collisions. Directions 1-3 in panel (b) cor-

respond to the molecular orientations in Fig. 1(a)—(c).
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NCERTAE TR ARE, AU HyO 43 HR e SCT
BB A B . B A SRR R SR, R
] MY SCT # I AH 2= 5/, MY Re Bk VT
10 keV) B, #54rFHUA T SCT #{m 2= 5l k.
4N 1.33 keV W, AN [R) 77 1) X 8 1T %) BT Bk K /NAH 22
Ak 1.8 £ MBS - FARAE BT M A, Al
TR A I, A R 4 A B FH S B AR X
LRSI oS e 3l e D A L R DS KA A
K7, PRI i i v AN (] 3= B v ) T 25 1) A 6
BN TS RE R BAR, B -5 A R[] AH X 45
K, - FHUm BN AR LAY . AR B E, i (0L
] 1(a)) X 1 TR A R RE ok il e A
400 keV B2 —ANBE 143 A4 400 keV LAF,
J7 1) 2(VULE 1(b)) XF AT DTk A/ T 400 keV LA
B, D51 3 (WU 1(c)) SRR Y TRk AR /. X RE
25 R AT BEFN He 125 1 28 5 AR 1 L = 0K
FHEZF, Jria 1R A E AU O Ji+
B T2, ITE b= 1 aw i/ F H BT &g
T, PRSI EAR X B, ez, Ji1a) 2 7 Het
B U O JE -, iJr 1 3 Wiy Het B A1
A H R R T RCHOAER. A R RE 3G K,
TR H B SRR00 Xo ABF B F I  AE iAE FH
W, 53 Het B A1 HyO 43 AH BLAE HI B
(ETR S SN TR AR R 0k = AT = A N N [ T e
R 3 AN FHUR R Y SCT A 5 (E LA S AR
SEEE S T3 1 .

#1 Het®+5 H0 s FAFSTHU N SCT #

T8 LA K 41

Table 1. SCT cross sections of He™-H,O collisions under

different molecular orientations and corresponding average

values.

He 157 SRR 01,0 /(10710 cm?)

REREE/keV i gyl i3 P
1.33 6.4895 4.0354 7.3813 5.9687

6 7.2039 4.9772 6.5549 6.2453

16 6.7987 5.7614 6.3374 6.2992

40 5.2655 4.5122 5.6925 5.1567

100 3.3082 2.3264 2.9646 2.8664
400 0.7949 0.6441 0.6932 0.71073
800 0.2321 0.1397 0.1057 0.15917
1800 0.0226 0.0178 0.0140 0.018133

FER He B 15 Hy0 2r Thlf 8 i) SCT #%
HE 24958, BATLUIT 1A 1 R HHEERE
12 RSB S B a6 SCT HER (27bP )

AR M), JH b 43 BB i) AL 4 i e A 45 18 th— 2L
K 3(a) Frn T ANRIFEZREAR T 40 keV 1 He "B 1
PAJ5 ] 1 Rl Y SCT A Bl 24k A8 fh i .
Al WSR2 AR 5 10, 15 LA & 20 a.w i), SCT
BERARAL I LT — 2. AUEREESECN 1 au.
T (WG B, SCT ME3RS w2200, K/MHZEZ
2.5%. 3 R4 T SCT #im 1 2 51/ T 1%,
VLA TAE AR PR R A B E R 10 au. B
RSk, SCT M2 iy 2k ih U6 (i 1 B0 76 il 4 2 44
b= 2.33 a.w. kb, Sz Wt R s A ey A A Ao R i )
F/NBEE S TR AR 7 b =1 auw/e
A7 BRI S KX (R], A4 B He VB8 7 H R 7
KA T IE RIS L, PR SCT MR A 55 1 25 5
MR R, BAR BF, SCT FE L ATERTE S
b < 4 aw X E. HHHESERKT 6 aw i, lTF
He & F Al HyO 4 2Z [ AH FAE 55, SCT 748
PRXELL KA. YA S HOR T 8 acuit, SCT #E
R T, F W S50 Ak B R S HGE L, R
0—9 a.u., & LAHERGTTHE .

l 3(b) 24 40 keV Het B FREE A RIfFIR 42
™ SCT MR & mhiE A i 26, X LA 3(a)
WA AE B30, BOAIETE %0 b = 2.33 a.u i SCT %
ARSI, REWFIREART, SCT MER b 4
FIFAFAFAML. 2 2 fs LUJS, BR824 T 8L
FE. AL 22 40 fs I, 4018 3(b) H Region A Jir
IR, BHERIEARGREEAD, 25N, X RIHEISTT
BP AR IREAR 10 aa DA KA I K 40 fs 2R EL
A& FRE. TR AL TN T 2 fs Y DCHE, AnfEl 3(b)
1 Region B i, SCT ME & A RIZIAS b, X &
A& A T B - PRl e A8 72 -4
TRl L R AR D AR i st ) RUBE PN SE B, Yo 7
FHEALHE/NT 1 fs K SCT MERARBLIE, (7
VPRI, R TAR, 2O EHHEE. 1 fs
J&, Bi#E Hy0 /- T A A ], SCT MR
Tt AR RS AR, SCT MEFE TRUE.

[FIisE, B 3 AT, V; ik —4iR Het B F{73k
AR I SRS HION R far e RS AT A PR 7 TR . B
J6, Ve WA REE T B R B
M), EGE AR T AN K. R, AN v (AN AR
NS 55 I 43 R BB ST S 552 M L A 2 B AR R
R BE A AL 2R, B HL0 43 F ik i Het B
TR BT AN ], (RX e 28 i fap e RS AR
SPALEIRE YN
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2 0.5 1.0 g 37 38
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I I
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V; size 0.2 02+ V. size
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Fig. 3. SCT probabilities as a function of (a) impact parameter and (b) simulation time under different He™ capture radii.

HetB 5 H,0 4 F IR X T8 3
FLfaf e 8% . 0 FiL B RTIRIE 98 5 B LT 3 ) st 7R
AR, LA 4 R i 13 B A AL I i — 20
fEMTREE S 1%, ¢t = 0 B Zl, Het 815 H,0 20 F
(%) 285 B 4 TS, Horp HoO 43 1 RL—sE 3
JES) Het B 1123l TR 2 fs N, ADULEE 3 filf
i FHEARE RZUW R T K. t = 0.61 fs Bf, Hy,O
TR Het BTG, MEZMC&H —ERE
MAEEAE L, I B HyO 43720t 30 fnb B B Fr)
HL TR S RS Rk LR, ¢ = 1 fs B, PR
FEBERIZUHA . B Rl AE 2 1.74 s, H,O 43 F
JLFELATE S 2, BN TF. Bk ) Het
BT RS EE AT A B Ak, 2 =
2.61 fs B, He B A7 MAT5 A BH 8 1) oL 4% B 0 A
XJE HoO 73 F B P G a4 i 3. BiE X #43 He 1
FIIA TS A T F MG U 25 TR Y

b=2.33 a.u.
t=0 0.39 fs [ Tos1 s
H,0 |
4 Het &1 ' ° () Y
© o 5" 0 e 2 e I
80 a.u. l T
1.00 fs 1.74 fs H,O |2.61 fs
"",f"‘;;; 3 Heﬂ%"}\?' ""‘l\““,\\\“""" : B He? ﬁ%f 3
9 " & ®
4.24 fs 10.43 fs 39.95 fs >&
o 2 <
® ® ®
ilf A8 77 1)

Kl 4 He'¥ 5 HyO 4 Fhif 48 15545 7] P 0 B 2% B2 43
il

Fig. 4. Snapshots of the electronic density distribution in-
side the simulation box for He™-H,O collisions.

FL 2 B A A AN T L B 5 AR ML ek, T
5 R SRy SR A A FE UK SR ) Het B8 FJE L. F
H5E N Het B 75 HyO 40 TR R SCT i #t, %
At FE R L3 40 fs. AWFFEF H TDDFT-MD
D7 ARG 31 A2 R R 25 3 4 [R) 43 A 1Y) SIS
AL, VE TR T AR TS R 2 TR
T iy L R A A B AT L

4 # #

A5 T TDDFT-MD, 7£ 1.33—1800 keV
1) T8 R VS Rl Y, PR T R Het B 7 5
H,0 7 FiX —E A=k & 1 SCT #ifi. A5
AR, WBCEEE T o ASES R R
| T S E L Rt B[R] %) SCT M4 sl AT 119
S, AHFIE A T 45 R S O SR DL
FRISAEBC AT, IR P 400 keV 2247 AN 4T HL
%t SCT #5 1f 1Y 5T Mk A7 76 W 5 A 35 4, BIIR T
400 keV B}, Jya] 2 XK STk /D, & T 400 keV
B, Jr1a) 3 X #kIE A DTk /. HEAh, FE/NT 10 keV
HERRE X LA K KT 400 keV AU REIX, 450 5
A REIEE T4, 75 16—200 ke VAE =
N, ABFZERHER A 20 10%—40% BORAL . i xF
Lb A3 BT S A, A I BE X A i 22 AR AR S50
B R AT RRIR A — o LU AR B
K. BRI AL R, ARSI T
He* %75 H,0 4> Tl SCT sl i) sh Ji2#(5 B

EXF Het 15 H,0 4r Tl 1 SCT A 1fi %1
Py E = P PRIR, A TARSRAE T —HEB AT HERY
A, X R PSS R EAA —ESE N
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Single charge transfer cross sections of He*-H,O collisions’
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1) (College of Mechanical Engineering, Jiaxing University, Jiazing 314001, China)
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Abstract

The charge transfer cross sections of collisions between He ions in the solar wind and H,O molecule
constitute essential data required for the astrophysical plasma modeling. However, experimental measurements
of single charge transfer (SCT) cross sections for Het-H,O collisions at low-to-intermediate energies
(corresponding to the velocity range of the solar wind) are extremely scarce, and first-priciple theoretical
calculations have not been conducted. In this study, employing the time-dependent density functional theory
nonadiabatically coupled with the molecular dynamics, the SCT cross sections are calculated for He™H,O
collisions over a broad energy range of 1.33-1800 keV. An inverse collision framework is used to investigate the
charge transfer dynamics and electron-ion coupling processes. It is found that the SCT cross section exhibits a
strong dependence on the molecular orientation. Furthermore, there are significant differences in the
contributions of different molecular orientations to the cross section between low-energy and high-energy
regions. The computed cross section results show good agreement with the existing data obtained from
experiments and classical theoretical models. This indicates that the present theoretical method and numerical
framework are not only applicable to handling the charge transfer processes in collisions between dressed ions
and molecules but also enable the quantitative analysis of the effect of molecular orientation on the cross
section. This study lays a foundation for cross section calculations of complex collision systems. The datasets
presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00193.

Keywords: time-dependent density-functional theory, ion collision, charge transfer, dressed ion
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Tl [RF o T B SR

i R B TN PR 5 i i SR A T B B R 1
i 32 8t B R BU R 1A

BERD AR SR
B Y

Emal? EmWF? FRY
Rigg? THE?

1) (bm R R HERe, Jba 100083)
2) (bt B ST BCA RS T, I E R ES SR A, Jhat 100094)
(2025 4£ 7 1 HUEH); 2025 4£ 9 F 6 HUEME )

i 8 25 R AR % W g 2 A B W BB ME AR 1 22 7 A R EE N, AN B 2R R AR R LB KK
SERE AT . R AR 1E R U N R E P R A A R ALY A . bR T R S IR T R 8 0% 18 3 A TR Y LR
WA BR, DR, A s 25 T 0 AR R N A AR IO X T R e B T A AR SO A T AR A 2 R A
e 3 25 PF T W B R IR B Z R BRI 7 ¥R A4S DA 03 1 8 ) 2E Y (QMD) Sy AR Y B (B AL ik R L BE AL
U 7E BE RO MR (RWSP-VM) AR AT 2 20, 38 5 PPA% AR F 7 5080 = R )3 B0 2 P B T (H,
C, Al, Fe, Ge, W, U) WY R EEUE , 118 17 2 Fh 0y 25 0038 FH 2608, PPAG 1 & i Air 2 X vl 5 P R P e )
A LA B, BOE AR, T vk AR A A B e DL R B TS SR AT B, A [R] 8 BB AR A0 5 1 22 ) B A A — o 3 B
figp BT 2 AT SR 2 PR IR it 0 P 5 14 v S 2 R T B A RS DL B Y 480 A 2 9] B o S s T
& (OCP) BRI | 42 11 Yukawa B HEEIAEY (TYVM) 55, Jf 00T B850 (000K B A0 f A 8 i e, S B
AR RWSP-VM, A TR | 076 5 58 W5 H Y0 ) Y B AT 55 A5 DU BRI A >4 rooRs 2 2 2 B 4 245
PR % W R B M B 0 = RO s AR SCEHE 5 W 7E https: //doi.org/10.57760 /sciencedb.j00213.00180 P A R ER.

SRR B, ST, SR, St
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1 5 =

EA Y (warm dense matter, WDM) i
"B LR AN R A LR P LT )
Jo 1, WA 3 X6 R i BE SR JLE -+ LR AR R
(electron volt, eV, 1 eV ~1.16 x 10* K), JK /1 h
T RARECE R P i A % Y5 (hot dense
matter, HDM) W 5 e A9 U 3, 3 o JLE
eV #JL+ 75 eVE. WDM 1l HDM #B4b T & i #
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FE R o 55, 2SR T W T i s T, e
e (UPRFR 250 E X/ 22 i H i 4 8
TR flhn, 12 R R A AR LR T T R
SERTE AL ST P) i SR RN RR e ME AR A
) & Je (61,

R it 2% A4 0 IO ) R P B AR AR S 56 B3y
RIE, B s AR /D, NI, W EA Tl o Bis i
A B A . AR T,
— 2R 78 J12% (molecular dynamics, MD) &
P, 5 —F I T Y PR UG S A,
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Wk MD B, AT B E S T RS
WKL T s sIPIRES, BRI s i FE . %
FRMRIE, n] LI Green-Kubo 242X 7. 7F
MD AU, 15131 1% (quantum molecular
dynamics, QMD) 4L — A5 ERR Y 7 k.
i QMD HRZ SR TAR— PR, X AE oA
) 772 B o AR R AT LAXRL - [8] (AR BAE A i
R AR, ZENFERFECHSEEH T
() BEHCRLNE . ) o 5 R4 VT3 %% BT R S
(density functional theory, DFT) $1%8., Ifij & 19
iz g A] SR B 1 8 A H 2[R STk e #Aa AR
AlfeFl Gillanl® ¥ )M F QMD 8 T &
ALFI Fe-S MURGE. FIM RIS QMD 435353
T Al (B BR 4.27 g/em?, IREHR 0.5—1 V)P I
Pu (%R 15.7—20.1 g/cm?, HEHN 0.1—1 V)10
FIZGPE, B0 R A X . FHR S A QMD 115
T Be (%EHN 5 g/cm?, N 1—10 eV)I' Fl Fe
(%R 20 g/cm®, MREEN 1—15 V)12 R, 2
XML TR E] WDM X, 2K 5546 191 ffi ] QMD
WE T H—HelREW (%N 0.3—2.3 g/em?, i
FER 0.1—8 eV) BZLE, XA E] WDM X .
2RI AR M ] QMD Wit T H—He IRGW)
(BN 1 g/em?, HEER 0.4—1 eV) [ZEME, X
WA X . ERHHEAE 19 fd ] QMD 358 T Ne (%
FER 0.9—10 g/cm?®, RE R 0.1—10 eV) Fl Kr(%
JEH 1.5—12 g/cm?, iR 0.1—10 eV) B R,
X TR ASE] WDM X 8. #8345 1003 it 25 &
QMD FI¥R BE 22 2] J7 ik kg it 17 ARG TR B # fig
(deep potential, DP), f#| H DP i i MD 4l
HET Al (BN 2.35—4.27 g/cm?, IREH 0.1—
5eV) IR, XTI RS E] WDM X8, i TR+
AR EL AR AT LA B DP i AS 278 MD 41
A —2E R DFT 57k B, i Kok
REAR T ACADL S AT H AR RE I

AN, 42K 5 BT A T 38 i I i 3 B
(average atom model combined with the hyper-
netted chain approximation, AAHNC) }i&, i
AT (average atom, AA) B 1819 Ejig
4% (hypernetted chain, HNC)R0-22 A] DL FEAK T
AR, TG AL R R A H . AA
HNC 38 56 TR E] WDM XI5 MR b

X v i B B B R, B HDM, {03
T8 — M B QMD A2 — AN B 1E 1 k.

Ji A R A 215 — R R RE A, PRAIE
QMD #5481 8 7y 1 9 Kohn-Sham L 24 % F K
TGN, IR IIG I T 315 I AR, (A5 5
T 10 eV LLE A AR N IRIXE; 25— QMD
BV R H Y H - B9 RH B A A R T — 1 34l
R, A AR A HL - 22 R A B R Y 53
A RMTE R RE AT, IrA W FaiEz i 1R
AR SRl B, AR DA BN FE . R, X
HDM 5 2R BUHE 535 (4 )7 7%, TCHB T80 1%
(orbital-free molecular dynamics, OFMD) % & —
Tt HDM B3 B 14 J7 7 23290, B F 22X e 23t
SAHGE R T 3R B B BT T Thomas-Fermi
JETT 2O AT S S UE, [R]I RORREAR 1 3
SEIHFE.

S48 MD J7 v A] LA B8 S i 25 A 1
FLEEVE, SR A T R RS, A EAE
PHSRATR. PRI, XA i S5 1 3 ) vk
BRI AR AR A LB,

Daligault 55 ¥ & J& T —FIoii i F sl 1274
PRI AT AR o A5 R P ) O . AT TR P38

F (AA) FEHY 2829 THEOCHK pRAR, TS A R
BZFACNAAG AL (effectve potential theory,
EPT)B03U Al f a0 /. AT et s
2 (FiE N EPTHAA) A T H (% 8 g/cm?,
RJZ 1—100 eV) il Fe (%R 7.85 g/cm?, IR 10—
500 eV) [IFHTE.

Haxhimali &% 32 38 15 45 & F ] Yukawa 341
Chapman-Enskog %1 iz #1 it (CEY)P il Murillo
AL Yukawa ZEPERLE] (Yukawa viscosity model,
YVM) B @y T —MEA 1273 (hybrid kine-
tics-molecular dynamics, KMD) #i%. KMD £y
A LA SR G B S5 A B BTG Rl N I R, e
rp g R S R 55 R S DX IR o A P A ) BT
YVM Fl CEY HJERfitE.

Johnson % B HIN T —AMERIY Yukawa R
A (integrated Yukawa viscosity model, IYVM).
IYVM 21 YVMBY Bl b i — ok, it %
PIRSHEE, H Y VM LA E S50 e ]
BRSO HFATERE LS. Kk, TYVM AHX
T Y VM & F T, S,

Stanton 1 Murillo*l £F Boltzmann 77 F£Hl
FEC XA (Coulomb logarithm), 31| Chapman-
Enskog iz g B gy 7 — Mz siAl (Stanton-
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Murillo transport, SMT). SMT ¥4 T4 k1 &
e RBGE A S UG 7 2Uh TR R 1 2Rk
=, AL T AT R v g pr ik L. SMT
()38 FHYE I R BRI AL < ROBE T3S .

Arnault®7 3R AT RN A A
Pt 25 315045 5% (BERS) B9 A i 3 EE R LA
HEAT T MD AL 255 B S LA HoAth A2
HAEEAR, WA S8 I T RS 55 HE
BB — DR R % R TR O I B ke
Ji& (pseudo-ion in jellium, PLJ) #&7.

Daligault 55 B 45 4 T —FE w = 0 551 R it
BT A5 PR (one component plasma, OCP)
MRGPE 2, HP S E0E FABATTIY MD BEH%L
PTG, AR FEEH T MK, B
ESH D BRI, 238k = 0 RN S,
T2 A AT .

P T4 P40 3@ o TR AH A T WDM il HDM
R, T R B HLIZ Bl A S T R
FEBERCAMER I, 4 T RS SRR
M=, FF A WDM A1 HDM %%, 48 SCK:
AR N A SR ARV G FR A BEAIL I A B AR 1k
iRl (random-walk shielding-potential viscosity
model, RWSP-VM). £ i 58 §5iiF B4 RWSP-
VM EAEE | R | A S s SRR AL
5 2z, BT DU A A A U A R 2
By R A, IR P8 (IR 2) 2&
T (R 2).

SVATIT 5, Wi 2% P-4 B i &4 mT LA ik MD
RN 3 AR 1) Oy AR AR . AN [A) A  k HLvE Aff
PE B T A 22 R

ASCKE TR A 28 TURD TS5 O 25 AF ) o b 12
M7, 4035 OFMD, AAHNC, EPT+AA, KMD,
YVM, IVYM, SMT, PLJ, OCP L/ % RWSP-VM.
HIT RWSP-VM 838 M | ER0 1 | AT 10 S i
B, H B 5 IR 2RI R R R TR A
BEATXT LA, £U45 H, C, Al Fe, Ge, W DL U,
AT ERE VAR R, 5 45 TR Y
B AL A T BSR4 R T2 k3R
BRIGAE R, — BB ok A SR B s A 20 X A
ZER. T B A, BT KRSk T
BAEARER T A RIICER, BT, SEXEITR, A3
FEAREM ] LR P ik A T iPAG . 7R3 ] B ]
R IERE, 23 PH I Z M R A L AR Y s

2 BHEEZYHEE

TEFEAT MD AU, 22 KPR RS, 153
B R RN )k R S B SRR A Green-
Kubo 2237 AT SR 1E:
V o0

= /@7 . <Uaﬁ(0)aa,3(t)>dt7 (1)

N 1
Hoft, VRREMIEB 005 = 7 (3, piapis/mit

> riadia) RRAHE AR T, TR § SR
FHIFS, T {o, B} = {z,y, 2 REH KR ES
ARAR R T I8 i, moe iR, p A e 2 3 o Bl i
FAEFR, fRE5Z 1. VHERMERT, 385 X 5 N
JiikiE o S ATER R, o1 = 00y, 02 =0y,
03 =04, 04 = (Oux — Oyy)/2, ‘751: (Zyy —0:2)/2,
IO BB B e = 2D ;.

TESEAT Yy PRAERL, 2595 K3 T[] %) AH B AE
H, EZRECAHBAEM, I AT kg0 25
SERIHEE R 7 TR Z WOUERR TR e 3 B A B
THAE R HER . SRR Z IR R — e
S8 AT DA R S T R
FHETHE, W7 =3 jny, ol B R
GEELRE N (B0 AU ) B RUE
B, n oS AU

XFF WDM FI HDM, AT AESCHR [39] A9 2
WX M Z BRI T T HEPEAS , 15204
&, Thomas-Fermi(TF) &1 41 by F HC o ff 4
BT R EEYE, 2 —AN B T E Z k.
AP AR R M B Z ¥ TF B 3.
More* Z5 tH T H TF #ATE Z 85 A, 1
I ULR SR AL

HpR BB SEL A TS i KR 1)
VIR EHFER % B 3 Bl . HH &S5
IR R G RA R, DN, FA S, X0
O R EE (FN) AR B B SEL k F
RENBERRCR, kBN, BERCSCRER /N, X R 5
B, T IS5 0 AR R G T R R R
Sy N TP o 5 D VA R =Y OB

JEAEXT WDM & A — ™48 i S, (2]
DA 6 %5 WDM fE — A~ # w594 11, BF WDM
X 0 A 1 AgtE AL L it HDM DXL
TR e WDM B 5 ) X e, 5 HLAAR S, 7EAR SO

Ui
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kLI E X 0.1 < 0 < 10 5 WDM, i 0 < 0.1 1
0 > 10 735l5E RS X AT HDM [X.

(EAR BRI P2, AR SO FILR O e s
X PEME ST T D a i T, (AR SR
TS AT AR i 25 4 E WDM AT HDM 26 5937
fili, PRI AR S 20 8 6T R AR A A 1 HL X
WDM F1 HDM.

3 AFHAEHH

AT NEK EEANG 35 MD ik, NET
B —E R EAY QMD W&, Bt o BEE AT
HDM il WDM &4 HE ) OFMD #1 AAHNC.

3.1 EFHFIHNE(QMD)

W18 /1% (QMD), ] #) o — ks
T80 J12%. AE Alfef Gillan i TAEH B, b
MBS T DFT . AL RV aH , Hoh iy
- B AH EAE B 3K Vanderbilt A 19,
W, QMD FHUA LI H] VASP (Vienna ab initio
simulation package) 3441, & — 4 MD # &1t
LTI, XA AT AR E] 2P R i
R F T LT 2 R, DT/ 3k 1) VA o B
IRUCEL. A ant i MDD B, 15 3] A — s R A
IR ik, MJERA Green-Kubo 245K, B (1) =X,
RIATARAS R PR RS, — MM =, QMD 4L R HS
OIS X RIS e, HH MR AT 52
TR ER, BN E R, iR, Ha o
THFEAE TS i, BT {8 FH A JE AR B AN 8T
YL PR WDM Ry HDM XK, 2481
QMD Z A ME LAIE . PRI, 7 3k 46 X 5 48
X QMD 47 k.

3.2 ZIHESFINHEFE (OFMD)
TCHEE 5> T 8 J12% (OFMD) 12329 & Horp—Fif
EPXF QMD Byt Jr vk, rTH TN HDM. 7 it
DI, R T il s R R A T 9 DFT 3RO ETE T
BB R, OFMD 4@t 7 —FA 5y 2t e
(7, AR . M FRZR E HAE F(n, T)
i L B ) B R R -
F(ne) - Uee(ne) + Uei(ne) + Fxc(ne) + Fe(ne)v (2)
Hrp U, /& Hartree B 7L TAHEAEH, U ZH

T-BETHEAEH, Fo RsCBERIKI, F2m T30
AEA M AE. T ne FTLAZRIR N

ne(r) = Zm [i(r)I?, ®3)

Hrtn,; S F4 ¢ 1Y Fermi-Dirac 4317, ¢; &+
A 0 T R

f (2) S, By PR ESHEE, AR LI
R LW KT % n.(r). MMFK F, Hl Thomas-
Fermi JETF 29, JS 246 R B HEEHIE. FitE, (2) 2
1) T LA AT L™ b 4o S0 BE Y eR VAR B
Je OFMD ARICHV B &R EARTHE AT AZ 25 30K (23]
ULE R B BE AU v 2 B A M DGR I A BTk, O fi
] Thomas-Fermi #E IR ER/R B+ A Hfg, W—
Al OFMD 24 F Thomas-Fermi-Dirac KA,
I =4 T Thomas-Fermi-Dirac 43 F 3l J1 %
(TFDMD); 42 200 S e SR I 1 ST ik, Il By
Thomas-Fermi 733l /12 (TFMD)*4.

3.3 FHEFEMEIELIL (AAHNC)

S T M BE TR (AAHNC)MT & 55—
B QMD Ry i, AT T4 WDM. 7E 1
DX 35k 22 Bl RN [ B A7, 5 e — B3 A B, AN
STHLE TR RS RE AR R L
T-BE TG, LHEN TR - B G R50
KA. AAHNC 2T (AA) AR 0819 A
HEMEE (HNC) i 222 Mgs &, et 14
PP ] AA FERY, [ HAth 25 %0 H 4544 1 52
Wi HNC. T WDM AHE SRS TR, %
I PR BN BE P Iz Sl /MR e A 3, 5 5 TR
B DCIBEIN. X AT LA AR SEE RS O RS
F: GIA BRI cap(r) , Ho5 BOCHEREL hop
FZ AT Ornstein-Zernike 2R 7R M 20

has(r) = cap(r)+ 3 / 0" o () ([ —1]). (4)

SRIG ] HNC M5 K RIS FOCHK R AL g (r) -

(1) = exp |22 o) = can()] - )

AAHNC BHIHABRINT .

1) HELE — DR BRI R AL 2) TR
U 0 L F 3) R T i 7 SOR i Ak B vy
(Dirac equation), Jf H 15 2| {k 5 3 J Wy + %5 i ;
4) FHTH Y SCI pREO T 5T i L 73 5) I 1
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SitE AT, A, WEE 3)—4) LI, A3 A
A; 6) 5 Tz 7 458 JF AR ks 2l i 1Y Gordon-
Kim J5 gk W40 5308 - 5 1 X 3 7) i ] HNC
MRS Y DGR pR AR, I 5 TH % JCHE sR BN L
BT T A A RS B, A, WM EEE 2)
FEUf BT B3 —k, BRI Ba 1338 n 2
FIE (80 1R 1454 . R ] F s 5
2Ky, BIATHEAT MD AL

H T AAHNC HLFESH BRI T8 T3
HL 45 M s, X Fh b 385 X 08 T A Hb o5
L RS 2 [ AR AR .

WA, KSR AAHNC i, 5456 4
#4533l 712% (classical molecular dynamics, fij
igH CMD) Ml Langevin 43 ¥ 3 1 %% (Langevin
molecular dynamic, fijic. & LMD) B8 T Al,
Fe, U iyt b7, CMD 7 15 4 40 i %t -4
BT Ay S TR T A A AR D,
LMD WI7E Al EANA T T o -2 F A EARE
FHT S B0E @ o2 B EEEE ). X T HDM, H
THAE KRR BT, X1 R 3 12 52
PSS P LMD (97 J 82 1 53— sk,

4 WA

X EPE R A R RIS, MD BLEDR A
— D EREITTE. AR G TR, AT
AR 3355 A Rz i L )

4.1 BAIRERESTHEFESR (EPT+
AA)

il 1 (A A (EPT)E0SY 455 5724 i
T (AA) BEAY, DL i 28 8 88 - i HL i AR
& (BI XL 50 %5 B T 1K, two-component plasma,
TCP)29 J i 2 1Y v A 38 1 AR 4 7 78 (P
Ornstein-Zernike 77 ), ] DIARN T Z 1T MD #%
PR J7 1k BRI AT 3 5 9 BT 9 6 BT EPTH+AA £
PO MW AT, — AN EPT, 2D PR s AL
e pop(r), ¥ HACA Chapman-Enskog [ % iz 2
WA LIS B 56 J P 7E N & Fhin iz R4 51—
A& AA-TCP, iy 4% 0 4y 314 O 42 18] 73 A
BRI B g (r) (XFROCHK pRER), {7 FH & B AT 2o 7
B gap(r). TP RGTEMN ALY E IR

FE AA-TCP J5ik, 558 TR i 2[R
Y BRATFR B IEE J, Bl— N7 By Z iR
DER ZAHF, BT A R, — &
JEF R F25H) R i DET /) AA # A . TCP
HP B IRy B S B R R, TR
il 7, Ho, 8w SO R &
WH R H A SR, B e Z, TR
B HL AT 9 B AL T R T AR X T R
T F 8l J12% (pseudo-atom molecular dynamics,
PAMD) 4, HIAREIL A Vopg(r) . A
Vs (1) Fl g (r) [ Ornstein-Zernike 77 F 4920 1]
DIRE gop(r) . TEAEA] WICHR [50] 9 (1)—(6) =X
16 EPT Jrikh, AR i _EiRR B4R 1n]
I3 BRER N
Gap(r) = —ksT In[gap(r)] . (6
PG pap(r) J5, ¥ HAE A Chapman-Enskog fij iz
SRR A YRS, LT 3.
TARRIEAE B HUR A AT LR R
° b dr

ro /1= 02)12 = 200p(r) ) (Hapu?) 1’
(7)

Hrh, o 1 8 TARICR 7R, %F T B 5 ml B
a =P fiap =mamg/(ma +mg) =AML u=
|vo — vg| & WAl 1R 7 O A X (5 o= 8
Mw = v, —vl|); bRAEIESEL ro R fRITIEE,
b2
AT (7) AR SR RO S B L - 5 —

0
ﬁigWJL%%JMﬂ%%@ﬁ%ﬁﬁﬂu%
oy

O'(Z) U) = 2T ~ —COSl’K— .
QA>QA[1 (x—20)]bdb. (8)

=

O(b,u) =

“22
#Eﬁmzkw?ﬁﬁé%ﬁ%ﬁﬁ,%ﬁ%

« va
RS o gﬂ ﬁﬁﬂ’ﬂ R o, A RE P T 02 =
2E((xk)/ma + 2E;3k)/m/3 = 2kgT /tiap EX R4 o il
R ENRE. HETT, (1 k) BT SR AT LA
E V|

k) 1 OOU(% 2k+3 2
sk _ 2 [ TaBeakisg 62y qe (9
G=g [ Eeep-yas

FH, €= u/vag . FH, i S = 240 K EH
. KR, SRR AR
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16v/Tqzq3ns _
Sma,u/aﬁvzﬁ —af (10)
Horb, ng 25 AR IEURE. &5, (Lk) iy
R R 3 7T LASRAR A

(o) _ 3 Ma vag Sap
Q0 = Wy s By (11)

bk (7)—(11) AT FESCHER [30] B (6)—(11) Bk
ik [33) HHRE.

2,8 (11) LA Chapman-Enskog #iiz #
W, B 1 BRI B SR (33) 79 (9.84) K
sSCHK [32] 1Y (25) NER N

nept = [NCE)1 = Z(l;(%;), (12)

X, o = B FRIEAGEH A AR BE.

Daligault 55 P71 | il EPTH+AA kit & T
H il Fe B &1E. RIETHALER, % %7E WDM
I HDM X 35 QMD F1 OFMD K 5 75 & 1R
U AR, YRR GRS RIS, AHXT MD Ay TH5 45
R, OrEITERN R E R/, XOER N, RE A
BT 1 Bl B8 S B RE 24 % B A STk, 1 EPT+
AA ffif§ T Chapman-Enskog #iiz Hig 1A=, %
AN N E B S REXT B A Tk, MR
i, SIRE R Tk KRR, & S, Xl
5 EPTHAA 7R iR B T R enf. 24
AR, SR TR BT E 2N, 2
EEFEM, XEHCEIE T 3hREsTHkAY Chapman-
Enskog BUiS X & 1EA FrAh, Bl EPT+ AA 748
IR B 2 IR A 2 . AR B8 Daligault 9 X) b5 5 |
EPT+AA myi VSRS T < 30.

4.2 BREHINEFHEE (KMD)

RS AR A (KMD) B2 J&2—Fas &7
2 Fh AR (TR A . Ho—FhJ& Chapman-
Enskog fiiiz g B9 254 Yukawa 3, 5 —Fpt&h
Murillo 57  Yukawa Z AR Y B4, A5 RSO
Tz FRFR S KMD, {HJ& MD BHUE N T 45
HrSsHR G FNBRAR 540 SIS 5 TR AR DA T
BRI A 515 2 ) e 2R PRI, A A e Sy
J5 PR AT EE MD B SO SORHZ 7 TR
AR 43

Haxhimali 5 B2 5% Ji] MD #40, 3158 7R
1E 100—500 eV, B TFHEERELE 10 cm 3, Ar b T

B0 53 LLAE 0—50% 1Y IR- (D-Ar) 185 W 0 %h
P S [a] B AE ELAE S R B R 3
Bl Yukawa 3

q2

8(r) = Lexp(-1/). (13
S, A KRB, AEL, 2L T ARSI
1 ML S SR N, 89T B B
N SR MBS Moo AR MR Mo . 5]

FRUNT
9 2
€0 (]'CBT)2 + (3EF>
Ae & , 14
o (14a)
L (14b)
nZ2%e?
Aot = ;, (14c)
)\i—Q +>\e_2

Aettd = \/ by + a2 (14d)

Hor MD SR T A = A, .
42.1 CEY

KMD 955 1 Fpfsi Rl CEYB23) {fi A 20 E H
(12) XA = [nee , B2, TEITE Qgék) A, fifi
M B R BCH Yukawa #¢ (13) 20 (A & EPT-
AA SEFIAOC R YY), B = Aep -

Haxhimali &5 B2 KMD [ MD #& $L 55 P8 A1
CEY WIZ5 XTI e & B, IR0 Er, P34 A T
TR AR, PR A 25 0K O PR MDD 154022
T hEEFARERY BTk, T CEY K JEF Boltzmann
TR B T S RERY TTER, BT DLt MD B
Pk, iR m i, shak & £ E M, #aee
M /0N, BT LA A 22 AN K Y T B B ARAT, # e
FISZ A AR A3 AT, BT AR B A 22 R

422 YVM

KMD 55 2 PRAL YVMBY, % SCBF
Bkl

W

K = Qys/Ae- (15)
TR, Bkt Ik X 2 DSE0RE, TAERR A

I r
mvv=1o  0.0051 =2 +0.374 =—+0.022 ), (16)

m

K 3 A REIH & =281 309 MD g4,
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JUECNTRERE r, (HH T2 b0, B DL Ak
25— B E FEME. 51 Einstein R wy -

Wg = %wpexp (—0.27%%) (17)
(16) ZAY no FIFRRH
Mo = \/gwEmna\?vs
= /3mIkgTnaysexp (—0.26%2) ; (18)
I} T-k T BYEACIAR, W3R
Iy = 171.8 + 82.8 [exp (0.565+%) — 1] . (19)

YVM (3 FH 3 Bk i A i) MD 54 79
L, KECN2<I <1000 K% 0.1 <k <3, XF I
WDM FEAEIX. XERE, TESHREGIX I < 1(#
HXT HDM), YVM $2i2E 5 k.

423 4 CEY A2 YVM

FE 4.2.1 95 F 4.2.2 95 (9 43 #r Al A1, CEY
TESRR A X RS, 1 YVM SRR A X P
I i, KMD B 5 456 4 — AN B v
W E =)

TKMD ~ ([UCEH =+ n\Z(VM)l/2 ) (20)
FEFIH A XA A X, AR L RS D-
AriR B Y R BE AT & B Ar. 4G CEY I
YVM i FHY L, AT DAl KMD @938 75 K
O T <1000 H k < 3. [HS R IR 2, X THES
X, R YVM EFRFFE8AF, (Bl TH A ITER
IS MD FEEAR AR T YVM S 504U4
SRBEATTRERY, BT S HEL YVM X260 K 7E
WA X RS TT 22 BB BOR. B0 YVM AHC STk
BRI Au il Ag, YVM S EATZERS A5 o %G
PRI LI i S AL T 24 40%, I B BRI 22 5]
TR 341, 33X 2 TV A X PR ) A T A A X
FOMAE 2%, it — g — B (S8 E) T
KEBFTCRAEIZ X W RE M RARA PR Y. A,
TEWAS DX, AR YVM DL KMD.

4.3 ERH Yukawa FHHEEE (IYVM)

LAY Yukawa ZEPERLAL (TY VM) & —A4

TE YVM e [ A G RL | 1 Johnson 45 & 57

ey SO (16) by 3 ANEE BB 1,/ T
L) T BT TR & AL, B

mvvn =10 [A (L /D) +B (D/T)'+C|, - (21)

Hrhmlla R BOTIFOR A

A(k) = (1.45 — 1.04k 4+ 0.369x%) x 107*,  (22a)
a(k) = 1.78 + 0.13k — 0.062x2, (22b)

B(k) = 0.3 + 0.86x — 0.69x% + 0.138x3,  (22c)
b(k) = 1.63 — 0.325k + 0.247, (22d)

C(k) = 0.015 + 0.048x" 754, (22¢)

AR, IVYM AHEL YVM BT 01 < I < 1
Lo =1, 2, 38 MD 4l A TY VM i 17
T HDM X, B8R 0.1 < I < 1000 £ 0.1 <
k<3.5 YVM R, FFEHEEX R IYVM 75 )
XA,

4.4  Stanton-Murillo #iEZ#RE! (SMT)

Stanton 1 MurilloB® $E%4H T Bolzmann
Ji 7 Chapman-Enskog fi#, 5, fbfi 1 H T
— AR AR B FOR B A SY, DAJT TR X LS
ARG, R v RoR

[ 2™ q*
Q(l,k) _ e i Ic(l,k)
[e%e" oo (kBT)3/2 (g)7

K (g) =g [ exp(-gu)u? o (w), (230)
0

(23a)

q2

g= m7 (23c)
aaU?
w2=" T (23d)
)
oo
o) = 225 (23¢)
XN = o (i FHES AR 5, AT RR R
11 1 ]V
Aeft = {>\Z+/\?1+3F] . (24)
TIE, (23c) AT PIFRIR N
/2
il 30N 25

ﬁqqﬂgﬁﬁ%%ﬁj‘jﬁ = &ws/)\e 5 ;H\:EF' )\eﬁ‘[u/{ﬁﬁﬁ
(14a) =, (HIEA — ISR EHEFAIEY

A = J €0 |:(kBT)P n (?EF)T /p

nee?

ol ©

y P= %> (26)

Ho, p = 9/5 IARXEREAE 1.1% LT, ST p =2
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1 2.5% LA BT R 22 A T IHE KGR (g) ,
Stanton A1 Murillo X} H A T % @A B (L4, 7T
FIRH

(LK)

Kwe'(9), g<1,
/c“’“(g)z{ o (27)
K& 9). 9> 1,

Horp, S5 EIAT IR

5
72(143 ~1)!n (Zl ajgj) P (28)

SRFEEWUAT LARIR N
b + biln(g) + baln?(g)
1+ b3g + bsg?
FEXEARTRIY (1, k) By, 06 B2 a; F1 b; BUEAS
[F]. (HRH TR T (2,2) B, Brlitbad 23
HIZA R, S0 1 AR R EOTE SMT
Jir 3 139) 3]

KW (9) =

K (9)

(29)

F1 AeRyREERS (28) M (29) RAE (2, 2) iy
SRS i
Table 1. Coefficients for Egs. (28), (29) of the reduced

collision integrals at index pair of (2, 2)P0l.

al az as aq as

0.85401 0.22898 0.60059  0.80591 0.30555
bo by b b3 by

0.43475  -0.21147 0.11116 0.19665 0.15195

ae &, A ik R R PE Chapman-Enskog
R B (12) SUFH SMT B R AR A
5/2
s = 2(232;) - 1% g&ﬂ (9) (30)
Stanton Fl1 Murillo fifi A THEH A9 SMT 4351
HET k=1, 2, 3, 1 < I' < 100 BHEME, 375 MD
ERMAT TR, SR ER, X Fr=1,7T <10
iF, SMT #1 MD ¥4 757 & % 4f , BAE I > 100},
SMT 4 MD A 2K Al, H MR bz, 2%
UM ZEIRAE k= 2 AP A 1B, H R BRARAS Ayl A
MRBHFED =20 W T r=3, BEEMN1 < <100
JEE SMT A1 MD £ 88 47576 845 (HAR4E SMT
R B 2, 2 T 4kE Nk, v LA Bl
HED, 1k =1, 2M9TEBLZEL, SMT 5 MD AH I
LB WAL, Rk, SMT 3 78 BBl nl LAk 3
H, k=12 30, DoRIESRKRERE I < 10,
I'<20, ' <100. 84, il LRRIG RS T B < 1Y

BRBOF A — DSl UG, BRI T e 5
WS <k <3, @HERAMEITT N T < L(s) =
9.0 — 0.277exp(k) + 0.239exp(2x) .

4.5 EBTFERER (PL)

J% T B A (PL)) H ArnaultB7 42 H . 18
AR R TS 80 i T TG,
HhG A D B A ST AR R S0 5 (BRI HY
FI LT, SRV S0 LA 20 Al EA T AR R T . TR
TR AR, FH— soRA I B RO s — 1 A A
WA LT A RS 1, IR BB TR B S
B A EAE . 83 455 55 G X Y Fokkere-
Plancke-Landau(FPL) ZhPE2A 20 PU Flgs k4 X A9
Basteal®? Fi ¥ 2 30, JF 005 B A& # X 545 2
PLJ FEPEAR, Hoh ZbpBEvE AT LISRR N

F75/2
NppL = 0.965\/52, I < 0.1535,
1
" (ﬁrgﬂ)

0.7371=297,0.1535 < I" < 0.5,

* —
Mpy =

=011 2+ b8 s ' > 0.5,
(31)
Hop by =0.482, by = 0.629, b3 = 1.88 x 1073 . #%
53 PLI #ibE A
TPl = MINaLWy Tpyy- (32)
ArnaultP™ i i PLJ 1155 TR (DT) 7E% 5
95 g/emd Fl 12.5 g/cm?, N 2—10 eV %
PE, 458 5 QMD 45 R4 G 8. RIET, fhid il
H PLI AT Pu e 20—100 g/cm?, A
50—5000 eV i, 4585 OFMD 45 /A7 5
Bl X EW, PLJ £ WDM H1 HDM ¥3& . 4%
MM, PLY 78 WA X 138 H IS LU T Basteal? 24
KIS RS, 5 &S5 UEH Bastea 7£0.05 < I
< 100 B MD BB L5 1. B T Bastea B
KWANEE DS, B RR, Xk
DX e BB R, 28 BRTR, R4 PLI XHT
A LT A, A5 HAE WDM il HDM
XA H PLJ.

4.6 BRESFMEIEE (OCP)

T BRIE R, OCP AR —AN%F OCP ¥
TR GEFRAR AL FAE 1980 4F 5 T 16 9 £ ] 1531, £
EAS LB FPL A3 BU Bastea 242 B2 L &
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Table 2. Coefficients for Eq. (33a)Ps.
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(a)—(d) B 48 0.1, 1, 10, 100 g/cm?. BAAL | LB | 15 (R SO R ST (RS S L 5N

A RWSP-VM, SMT, OCP, IYVM Ml P AT E 4R, Ba+5% a2 5 | 6 B st @B B 5 5 8 AAHNC,

KMD, EPT+AA Fl OFMD #3845 5 i ok I T Sk [54)

Fig. 1. Shear viscosity of H. Panels (a)-(d) stand for the densities of 0.1, 1, 10, 100 g/cm?, respectively. Black solid, red dashed, blue
dotted, and green dash-dot, and cyan dash-dot-dot curves stand for the results of RWSP-VM, SMT, OCP, IYVM, and PI1J respect-
ively. Black crosses, red stars, blue squares, and green circles stand for the results of AAHNC, KMD, EPT+AA, and OFMD, re-

spectively, which are from Ref. [54].
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(a)—(d) AR 0.1, 1, 10, 100 g/cm®. FHIHE 1 —F. AAHNC, KMD, EPT+AA A1 OFMD H9 %4k I T SCik [54]

Fig. 2. Shear viscosity of C. Panels (a)—(d) stand for the densities of 0.1, 1, 10, 100 g/cm?, respectively. The legends are the same as
Fig. 1. The results of AAHNC, KMD, EPT+AA, and OFMD are from Ref. [54].
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SR RWSP-VM, SMT, OCP, IYVM Fl PL] fi A= HR 48, B 150 AAHNC (CMD) RYTHERE5R , Bt R I8 SCHik [47]
Fig. 3. Shear viscosity of Al. Panels (a)-(d) stand for the densities of 0.27, 2.7, 8.1, and 27 g/cm?, respectively. Black solid, red
dashed, blue dotted, green dash-dot, and cyan dash-dot-dot curves stand for the results of RWSP-VM, SMT, OCP, IYVM, and PI1J,
respectively. Black crosses stand for the results of AAHNC (CMD), which are from Ref. [47].
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(5 B | W (075 B A 2 4o+ 43 5 5 OFMD19, OFMD227 il AAHNC (CMD)B fy354 45 51

Fig. 4. Shear viscosity of Fe. Panels (a)—(f) stand for the densities of 1.6, 4.0, 7.9, 16, 32, and 40 g/cm?, respectively. The legends of
the curves are the same as Fig. 3. Orange solid stands for the results of EPT+AARY. Red circles, blue squares, and black crosses
stand for the results of OFMD1P%, OFMD2P7, and AAHNC (CMD)P, respectively.

245101-13


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

Y] 32 2 3R Acta Phys. Sin. Vol. 74, No. 24 (2025)

245101

WEEN 40 g/em® I, 7E WDM X, OCP, P1J
1 OFMD £5 4 88, SMT F TY VM T B& A AR I ;
£ HDM X | X & 77 3% (SMT, OCP, IYVM #l
PLY) BIfF A 4c4s, Hrh OCP Hl PLI RIUELT.
ZIF VRN, XF Fe, TREE (W A%
AHEE)SMT KB b, 1w % B OCP #l P1J 3%
it

= &

=

55 % (Ge)
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Fig. 5. Shear viscosity of Ge. Panels (a)—(c) stand for the densities of 0.53, 5.3, and 53 g/cm?, respectively. The legends of the
curves are the same as Fig. 3. Red crosses stand for the results of OFMDI6],
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Fig. 6. Shear viscosity of W. Panels (a)—(c) stand for the densities of 2.0, 40, and 200 g/cm?, respectively. The legends are the same as

Fig. 5. The results of OFMD are from Ref. [56].
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Fig. 7. Shear viscosity of U. Panels (a)-(i) stand for the densities of (0.1, 1, 2, 3, 4, 5, 6, 8, and 10) pg , where po = 18.93 g/cm? .
The legends of the curves are the same as Fig. 3. Black circles, red crosses (4), and blue crosses (x) stand for the results of OFMDP7],
AAHNC (CMD), and AAHNC (LMD)®, respectively. Panels (j), (k), (1) represent the zoom of panels (a), (b), (f), respectively.
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Abstract

The viscosities of matters under extreme conditions, i.e. warm dense matter (WDM) and hot dense matter
(HDM), have significant applications in various fields, such as the design of inertial confinement fusion targets,
the astrophysical structure evolution, and the interfacial instability and mixing development under extreme
conditions. Since the temperature and pressure ranges accessible by experimental techniques for viscosity
measurement are very limited, the acquisition of viscosity data under extreme conditions mainly relies on
theoretical calculations. This work introduces a variety of molecular dynamics (MD) methods and models for
calculating the viscosities of WDM and HDM, they being quantum MD (QMD), orbital-free MD (OFMD),
average atom model combined with hypernetted chain (AAHNC), effective potential theory combined with
average atom model (EPT4+AA), hybrid kinetics MD (KMD), integrated Yukawa viscosity model (IYVM),
Stanton-Murillo transport model (SMT), pseudo-ion in jellium (PLJ), one-component plasma model (OCP), and
random-walk shielding-potential viscosity model (RWSP-VM). Simultaneously, the viscosities of various
elements obtained by these methods are shown, ranging from low to high atomic number (2), i.e., H, C, Al, Fe,
Ge, W, and U. The accuracy and the applicability of each method are analyzed in detail by comparison.
RWSP-VM, which is based on physical modeling and independent of MD data, has comparable accuracy to
simulation data over a wide range of temperature and pressure, and is an efficient method of obtaining viscosity
data of WDM and HDM. This work will pave the way for calculating the shear viscosities under extreme
conditions, and may play an important role in promoting the relevant applications. The data calculated from
RWSP-VM in this work are openly available at https://doi.org/10.57760/sciencedb.j00213.00180.
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Fig. 1. (a) Supercell models of Pd; (b) the energy-volume curves for Pd; (c) comparison of the elastic modulus of Pd with experi-

mental values.

246201-3


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

Y] 32 2 3R Acta Phys. Sin. Vol. 74, No. 24 (2025)

246201

SR Y R P B S S SR R 57 X e
Bl 1(c) Frn. B A se e i R E S TS0 E,
RIS ST S, TS SR () A R4
AR, B AR i i 2k, X Rt
ARG SR E R e — L

3.2 Pdy X HERKEER

FIAT Wl AR, BT 2x2x 2 H
BEAY, B Pd ML ) — R, ARSI Pds, X
(X = Al Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd,
La, Ce, Hf, Ta, W, Re, Os, Ir, Pt, Th) 5. £
XAMEAI /N KRR PdJELT, A/ NERER
N X R, BORREEILE 283,

HTEE&7TE X 5 Pd WEFRSPA—E, X
FIRE S B A I 7 2 d s SR A2 Ak, BEI
HTEp el S B 7 v e 1PN N 2 )
Pdy X SRR T T st B b3, H R T HRA 3
AR RERDIRAS BT I RFR, RSP A RFR. Xt B 5 1
JRF AT, K3 Birch-Murnaghan(BM) [ 2%
DG IR B S S B R B A, 2

Lattice energy/

Lattice energy/

_ —5.20
E 5.18 Al E - Si
B o 3 5.24
g -5y 0
o —5.24} g —5:26T
2 (5]
B —5.26F, , . = —5.28) . .
14 15 16 14 15 16
Volume/A3 Volume/A3
> N L
% s % B 5.28 Cr
8 534 g g —530r
g o2 —s532f
§ —5.36 g2
¢ 538} T Th34r
R . ; . = _5.36 L. ; ,
14 15 16 14 15 16
Volume/A3 Volume/(A3-atom—1)
> Co > —5.14
2 -sasp 2 -
¥ 5201 %D 5'18
g —5.22} g ’
8 _5.o4f g 5201
= . - . M —5.22L ; .
14 15 16 14 15 16
Volume/A3 Volume/A3
> > —5.28
2 514t Gal 7
% 516 5 00T
g $ —5.32¢
5 —5.181 g
3 g —5.34)
—5.20
& . . . B 536 , .
14 15 16 14 15 16 17

Volume/A3 Volume/A3

il B~V gk, X — PR, AT AR E V- A
H, A AT LA B e A S B RE R, X N Z 5%
HeAT Sy e P o SR A 1 2

K 2 Pdy X S AL 7R 2 &
Fig. 2. Crystal structure of Pds X.

WP 3 7R, B0 A BB R R
(O RERESCEL, 21 €52k 2R A BM AR 7 )
L. R IITA 09 AL L, BLVIRF BM
AR T B A LB, 15T 10 R PR
A,

Pdy X HERERAFREETE

ABE TR IR ARG AR I Pd 24 A9 3
Jrfra e IR 4 T35 1 AT LA Bk 8 Rl & 4

3.3

_5.28F B
% sc| % 582
5 —5:307 5 —5.341
¥ 532 5
% . % —5.36
o TO:34r o —5.381
& 2
& 536 ) A =540, ) A
14 15 16 14 15 16
Volume/A3 Volume/A3
. —5.24 =z —5:20f Fe
T = -5.22¢
£ —5.28 5
3 i g —s24f
©
S —530f ® _5.26]
K o
~5.32F . . S . .
14 15 16 14 15 16
Volume/ (A3-atom~1) Volume/A3
5 ToI0 3 —5.06 | Zn
b>5 —5.12 S —5.08}
g _s514f g
g £ 510
g —516¢1 g —5.12¢
- —
B —5.18F N . = . ! .
14 15 16 14 15 16
Volume/A3 Volume/A3
~ —5.36 E:\ —5.38 | Nb
I, —5.38 ¢} L L
g % g 5.40
G‘,ﬁ —5.40 | 8 f’d —5.42
> —5.42 T > —5.44f
2 T
—5.44f , , ST 546, , .
14 15 16 14 15 16

Volume/ (A3-atom~1) Volume/(A3-atom~1)

246201-4


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 74, No. 24 (2025) 246201
~ ~ —5.30F ~ —5.24F, ~
B~ —5.36 | Mo | &~ Tel B o6l Rul =~ 590} Rh
B 51, —532F 51 . 5
&g —-538¢ 2 g . s 8 _ [ = B —5.22¢
©2 63 —534¢t §35 —5.28 55
g% —5.40f R 8% g8 —5.241
S S —5.36+ S —530r AN
= > s > = > s >
=0 —5.42F =G 28 539l £28 —526
q 1 1 1 A _5.38 i 1 1 1 )J ’ 1 1 1 )q 1 1 1
14 15 16 14 15 16 14 15 16 14 15 16
Volume/(A3-atom~1) Volume/ (A3-atom 1) Volume/ (A3-atom~1) Volume/(A3-atom~1)
> —5.06 Ag| B cd > 5.2 La| = —5.28p Ce
5T s g 504 < <
£g ZE 506 @ —5.241 % 5301
®S —s510f ©3 e g —532f
0w . [oR] g —5.26 =} .
85 g5 —sosf 5 5
£7% —512f £% g 528l g —5:34r1
g s — —5.10 = =
=S —5.14h . . — . . . = 530 . . . ~ —5.36L . . .
14 15 16 14 15 16 15 16 17
Volume/ (A3-atom~1) Volume/ (A3-atom 1) Volume/A3
—5.48 F,
G —sazf Hf| 3~ =544 Ta| 5~ w| = -5.28
877 . 0 07 _5.50 F N
[ 9] —5.46 5} > —5.30
= £ —b5.44¢t s £ 2 £ 55
[SIRS] o O o0 —H5.52 1 5
< < —5.48 2 5.32
O ® —5.46 (o] Q@ =]
gs —5 g .5 9.7 554l s
el E> —5.50 el o —5.34
S —5.481 5l 3 5561 s
= \ ) , = —5.52L, ) . = 0L - ) £ —5.36 ) ‘ )
14 15 16 14 15 16 14 15 16 15 16 17
Volume/ (A3-atom~1) Volume/(A3-atom 1) Volume/(A3-atom~1) Volume/A3
—5.30 F, —5.16
> Os| B~ —5.24F Ir| 3~ Pt
97 532} 57 67 58|
g g S g —5.26 o
§3 —534r 3 5§35 -520F
o R - —5.28 -
5 _5agl : 500
g5 7036 2 530} =L
%Y 538} R 22 —5.24f
— . M . = =532, ) . — . ) .
14 15 16 14 15 16 14 15 16
Volume/ (A3-atom~1) Volume/(A3-atom~1) Volume/ (A3-atom~1)
~ ~
S —5.08 Au| B~ —5.34} Th
T ool L
gg 5 Sz —536)
©2 —512p 2
8 s 8% —5.38
E»> —5.14¢ E> 540}
+ \Q_J/ + \G_.)/ .
S~ —5.16f 3
. . _5.42k . f .
14 15 16 15 16 17
Volume/(A3-atom 1) Volume/(A3-atom~1)
Bl 3  Pdy X (X = Al Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Ce, Hf, Ta, W,

Re, Os, Ir, Pt, Th) fREE R 2k

Fig. 3. Energy-volume curves for Pds; X (X = Al Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc¢, Ru, Rh, Pd,
Ag, Cd, La, Ce, Hf, Ta, W, Re, Os, Ir, Pt, Th).

JLE (Mn, Fe, Co, Ni, Ru, Rh, Os, Ir) 4}, Pd 3£F
AR A RasE, PO ARG R N, BRI
B A& ICE I LIF A Pd 3Eikd. S5EENG S 4
JCEMIL, 4% 1B K& IVB &4 6% (Se, Ti,

%1
Table 1.

tion strategies of Pd dilute solid solution.

Y, Zr, Ce, Hf, Th) J5 IR A, 30, X AT RE 5 i
SNZHFEEA L HAN, IRA R K Pdy Fe
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XA R, TR

=
HH

IRESHA K.

Fe fESLA A0S 7 (BCC) 4549, Wi S Pd 1

Pd i AR T R og th it s T BAR (V) GRAGHR (AH) SEREAEHZS% (L)

Volume (V), mixing enthalpy (AH), and zero-order interaction parameter (°L) for atomic and complete relaxa-

Atom relaxing strategy

Full relaxing strategy

Pd31 X Solid solubility
V/(A3-unit cell ')  AH/(J-mol ) oL V/(A3-unit cell ')  AH/(J-mol ") oL
Al 487.87 -8564.71 —282911.59 486.32 -8681.80 —286779.56 5%
Si 487.87 7619.23 251680.33 484.34 7644.04 252499.95 6.00%
Sc 487.87 —11153.07 —368411.25 491.01 -11418.30 -377172.35 10%
Ti 487.87 -10113.64 -334076.21 487.22 —10255.70 —338768.78 6%
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R 1(5) PARFEERET RS 2MIBEEE TRARR (V) RS (AH) SERHITIEHNSE (L)
Table 1 (continued). Volume (V), mixing enthalpy (AH), and zero-order interaction parameter (°L) for atomic and com-

plete relaxation strategies of Pd dilute solid solution.

Atom relaxing strategy Full relaxing strategy
Pd31 X : Solid solubility
V/(A3-unit cell ')  AH/(J-mol ") oL V/(A3.unit cell ')  AH/(J-mol ") oL
A 487.87 ~6175.68 ~203996.75 485.01 ~6249.44 ~206433.24 10%
Cr 487.87 1968.7 65030.61 485.57 1897.47 62677.72 12%
Mn 487.87 1093.49 36120.32 483.34 962.92 31807.49 15%
Fe 487.87 2205.78 72862.04 483.35 2006.79 66288.66 10%
Co 487.87 1678.78 55453.81 483.60 1427.42 47151.00 3%
Ni 487.87 524.51 17325.86 484.15 270.46 8933.84 SEAHIE
Cu 487.87 ~766.65 ~25324.15 485.30 -997.37 ~32945.41 20%
Zn 487.87 ~4513.42 ~149088.54 486.68 ~4589.15 ~151590.11 7%
Ga 487.87 ~6361.88 -210147.41 487.05 ~6472.09 ~213787.63
Y 487.87 10057.30 332215.41 496.61 10411.01 343899.13 8%
Zr 487.87 ~11826.39 ~390652.51 492.53 ~12047.20 ~397946.22 8%
Nb 487.87 ~9494.62 ~313628.61 489.21 ~9616.53 ~317655.76 15%
Mo 487.87 ~5023.61 ~165941.15 487.39 ~5089.07 ~168103.51 23%
Tc 487.87 973.48 32156.31 486.18 1072.43 35424.78 25%—86%
Ru 487.87 1059.92 35011.71 486.21 995.81 32893.73 4%
Rh 487.87 814.70 26911.42 486.61 531.91 17570.24 8%
Ag 487.87 ~18.04 ~595.92 490.16 ~128.24 —4236.11 SEAH
cd 487.87 3068.11 101346.48 492.11 3208.36 105979.25
La 487.87 ~8248.78 ~272475.91 501.57 ~8649.21 ~285703.03
Ce 487.87 ~11290.17  —372939.69 497.96 ~11613.00 ~383603.62 17%
Hf 487.87 ~12565.04  —415051.67 491.86 ~12765.53 ~421674.24 12%
Ta 487.87 10076.76 332858.26 489.28 10186.26 336475.27 4%
W 487.87 ~5839.20 ~192881.85 487.40 ~5887.76 ~194485.85 28%
Re 487.87 ~1398.74 ~46203.54 487.82 ~1356.74 ~44816.19 18%
Os 487.87 1196.45 39521.60 486.10 1091.13 36042.65 9%
Ir 487.87 1114.98 36830.25 486.88 910.96 30091.00 3%
Pt 487.87 ~229.64 ~7585.51 488.04 -509.93 ~16844.30 SEAHYE
Au 487.87 ~458.08 ~15131.47 490.65 ~733.56 ~24231.25 SERTT
Th 487.87 12313.59 406745.80 501.50 12676.97 418748.79
4 4
(a) Relax atom+volume (b) Relax atom
oL OsRulr ' Co g “ oL
i e A 7
L a@f = o L
g0 g 0
lar) L)
L -2t T -2t
< <
E Ay E 4
@ [}
=} =
£ —6f £ -6
() ()
0 b0
2 -8} 2 -8t
e =
2 —10F = —10}
Hf
19l . . . . 19l . . . .
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00
Molar fraction Molar fraction

Bl 4 JEFIE (a) MERME (b) K T I- X 0 & MWIRA NN =S84
Fig. 4. Three-point fitting of the mixing enthalpy of Ir-X binary alloys under atomic relaxation (a) and complete relaxation (b)

strategies.
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Fig. 5. Elastic properties of Pd-based dilute alloys: (a) Bulk modulus; (b) shear modulus; (¢) Young’s modulus; (d) Poisson’s ratio.
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i UV U iR oo Y TP TR I R S B, W T, AR, REHBREEN
REYARS RN, il S E Y 0.26(n1El 5(d) fir I AR T 204, i — /N 4 A0 S R R 22
/). AL 5 ithZeadion] LIk 3L 391 2 P ) 5 46 W K, &4 0K La, Ag fl Zn 5485 T 46
JUER BB i 5 T4 A0 R A [T A A A JE . LD, M LE R PE, T Cu, HE %54 40K WIRRAIK T 2648
FCAR W] T 3PS 8 s A R I TR 124, R LE 14 2 JEE .

C1/GPa

Shear modulus/GPa

F 2  EARWME TR R RS S0 PR (GPa), RFR IR Cy;  IRRLE | BT IRIR | A7 [ORL &
B/ G FARALE
Table 2.  Calculated elastic properties (GPa) of Pd-based dilute alloys in full relaxing strategy, including Elastic constants

Cj , bulk modulus, shear modulus, Young’s modulus, B/ G and Poisson’s ratio.

Pd31X 011 012 044 G B E B/G v PdSIX 011 012 044 G B E B/G v

Al 207 151 65 47 170 128 3.643 0.374 Tc 215 158 75 51 177 140 3.463 0.368
Si 197 160 61 38 172 106 4.548 0.398 Ru 213 155 69 49 174 134 3.550 0.371
Sc 208 147 68 49 167 135 3.383 0.365 Rh 213 153 64 47 173 130 3.674 0.375
Ti 212 151 71 51 171 138 3.381 0.365 Ag 200 151 64 43 168 120 3.859 0.381
v 212 153 73 50 173 138 3.432 0.367 Cd 199 150 64 44 167 120 3.820 0.380
Cr 211 153 74 51 172 139 3.375 0.365 La 193 143 61 42 160 116 3.784 0.379

Mn 213 155 70 49 174 135 3.544 0.371 Ce 199 147 64 44 165 122 3.720 0.377
Fe 212 154 66 47 173 130 3.655 0.375 Hf 210 150 70 50 170 137 3.405 0.366
Co 212 152 64 47 172 129 3.659 0.375 Ta 213 154 74 51 174 140 3.403 0.366
Ni 211 151 63 47 171 129 3.654 0.375 W 212 156 77 51 175 140 3.409 0.366

Cu 207 151 66 47 169 129 3.611 0.373 Re 213 155 75 50 174 140 3.402 0.366
Zn 203 152 64 44 169 122 3.814 0.379 Os 214 157 74 51 176 138 3.486 0.369
Ga 205 152 63 45 169 123 3.791 0.379 Ir 213 156 67 48 175 131 3.684 0.376
Y 202 145 66 47 164 129 3.471 0.369 Pt 214 153 63 47 174 129 3.689 0.376
Zr 210 150 70 50 170 136 3.418 0.367 Au 207 151 65 46 170 127 3.666 0.375
Nb 211 153 74 51 172 139 3.375 0.365 Th 198 148 64 44 165 121 3.742 0377
Mo 212 155 76 51 174 140 3.393 0.366

o Al o Si Sc Ti Y Mn = Fe Co ¢ Ni Cu ©Zn »Ga oY oZr Nb
oMo @Tc o Rh 9 Ag 9Cd @oLa #Ce Hf ©Ta ©W 90Os oIr @oPt o Au o Th

750 450 450
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Fig. 6. Elastic constants and elastic modulus of Pd-X binary alloys obtained through R-K polynomials.
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Fig. 7. Poisson’s ratio and B/G relationship of dilute Pd-
based alloys under the complete relaxation strategy in

terms of computational materials science.
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Fig. 8. Differential charge density: (a) (111) plane; (b) (100) plane.
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SPECIAL TOPIC—Atomic, molecular and materials properties data

Influence of alloying elements on the thermodynamic and
elastic properties of palladium based alloys and
database construction”
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Abstract

The lower friction coefficient and superior mechanical properties of palladium (Pd) alloys make them
potentially advantageous for use in high-precision instruments and devices that require long-term stable
performance. However, the high cost of raw materials and experimental expenses result in a lack of fundamental
data, which hinders the design of high-performance Pd alloys. Therefore, in this study, first-principles
calculations are used to determine the lattice constant and elastic modulus of Pd. A model of dilute solid
solutions formed by Pd with 33 alloying elements including Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and others, is
established. The mixing enthalpy, elastic constant, and elastic modulus are calculated. The results show that,
all other alloying elements except for Mn, Fe, Co, Ni, Ru, Rh, Os, and Ir can form solid solutions with Pd.
Alloying elements from both sides of the periodic table enhance the ductility of Pd solid solutions, with La, Ag,
and Zn having the most significant effects, while Cu and Hf reduce the ductility of Pd. Differential charge
density analysis indicates that the electron cloud formed after doping with Ag is spherically distributed, thereby
improving ductility. After doping with Hf, the degree of delocalization around the atoms is maximized,
indicating a strong ionic bond between Hf and Pd, which results in a higher hardness of Pds; Hf. The datasets
presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00186.
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