Schottky 势垒高度理论计算中的平均键能方法

李书平 王仁智

(厦门大学物理系 厦门 361005) (2002年4月17日收到 2002年6月15日收到修改稿)

以平均键能 E_m 作为参考能级,计算了 10 种不同半导体的 Schottky 接触势垒高度,计算值与实验值符合较好. 计算值与实验值的符合程度与 Tersoff 的电中性能级 E_B 方法相当,优于 Harrison 和 Cardona 等人采用 sp³ 平均杂化能 $\overline{\epsilon_h}$ 和介电函数隙中能级 E_D 的计算结果.

关键词:势垒高度,平均键能方法,费米能级 PACC:3120A,7115A,7125

1.引 言

金属-半导体(MS)接触在技术上十分重要,在 各种半导体器件和集成电路中都广泛地利用不同性 质的MS接触,主要是肖特基(Schottky势垒)二极管 和欧姆接触.早期Schottky^[1]提出的接触势垒模型如 图I(a)所示,他认为金属-n型半导体接触中的电子 势垒高度 \$_m 为

$$\phi_{Bn} = \phi_m - \gamma_s , \qquad (1)$$

其中 ϕ_m 为金属的函数功 , χ_s 为半导体的亲和势 ,而 空穴的势垒高度 $\phi_{B_p} = E_g - \phi_{B_n}$, E_g 为半导体的禁带 宽度.显然该势垒模型的 ϕ_{Bn} 或 ϕ_{Bn} 与金属的功函数 ∮__密切相关 ,然而 ,实验结果表明 ,许多半导体的 Schottky 势垒高度几乎与金属的功函数 ϕ_m 无关,与 (1) 式不符. Bardeen 提出^[2], 如果在半导体界面的禁 带中存在带隙态(GS),半导体界面处费米能级"钉 扎 "于 GS 的高能态密度 D_{cs} 的位置 , Schottky 势垒高 度就不受金属功函数的影响,此后,所谓的费米能级 "钉扎"成为接触势垒高度研究中的惯用模型.Cowley 和 Sze^[3]基于 Bardeen 表面态的费米能级" 钉扎 " 模型 根据半导体界面处带隙态中电荷 $Q_{
m cs}$ 、半导体 势垒区电荷 $Q_{
m sc}$ 和界面处金属面电荷 $Q_{
m m}$ 相互平衡 条件(即根据 $Q_m + Q_{cs} + Q_{sc} = 0$) 推导出金属-n型 半导体接触高度的计算公式,表示演算结果的势垒 模型如图 1(b)所示.近期,Tung^[4]基于 MS 界面化学 键极化与费米能级"钉扎"模型,也导出类似图1(b) 的势垒模型.

电子(空穴)的接触势垒高度 ϕ_{Bn} (ϕ_{Bp})通常指的 是接触界面处半导体导带底(价带顶)与金属费米能 级的能距离 $E_c - E_F^m$ ($E_F^m - E_v$),因为在零偏压下的 接触势垒中金属费米能级 E_F^m 与半导体费米能级 E_F 处于同一能量水平线上(见图 1(a)或(b)),即 E_F = E_F^m ,所以空穴的接触势垒高度 ϕ_{Bp} 和电子的接触 势垒高度 ϕ_{Bn} 可表示为

$$\phi_{\rm Bp} = E_{\rm F} - E_{\rm v} , \qquad (2a)$$

$$\phi_{\rm Bn} = E_{\rm c} - E_{\rm F} = E_{\rm g} - \phi_{\rm Bp}$$
, (2b)

其中 E_{e} , E_{v} 和 E_{F} 分别为接触界面处半导体的导带 底、价带顶和费米能级.(2) 武表明,如何确定接触界 面附近的半导体 E_{F} 值是 Schottky 势垒高度计算中 的一个关键问题.

目前,在异质结带阶和 Schottky 势垒高度理论 计算中采用的参考能级主要是:电中性能级 $E_{\rm B}^{[5]}$ 、 sp³ 平均杂化能 $\overline{\epsilon_{\rm h}}^{[6]}$ 、介电函数隙中能级 $E_{\rm D}^{[7]}$ 等,其 中 Tersoff 首先提出的电中性能级 $E_{\rm B}$ 为典型. Tersoff ^{5]}认为,MS 接触的在半导体界面处存在所谓 的金属诱生能隙态(MICS),而半导体界面处费米能 级 $E_{\rm F}$ " 钉扎"于 MICS 的电中性能级 $E_{\rm B}$ (即 $E_{\rm F} = E_{\rm B}$),因此接触势垒高度表达式((2)式)可以表示为

$$\phi_{\rm BP} = E_{\rm B} - E_{\rm v}. \qquad (3)$$

此后 ,Harrison^[6]和 Cardona^[7]相继说明他们用于在异 质结带阶计算的参考能级(sp_3 平均杂化能 $\overline{e_h}$ 和介电 函数隙中能级 E_D)与 Tersoff 的电中性能级 E_B 类 似 ,假设费米能级" 钉扎 "于该参考能级(即 $E_F = \overline{e_h}$ 或 $E_F = E_D$),可以由 $\overline{e_h} - E_y$ 或 $E_D - E_y$ 表示接触势

(a) Schottky 模模 (b) Bardeen, Cowly 和 Sze 模型 图 1 金属-半导体接触势垒高度模型

垒的高度.

我们在平均键能物理内涵的探讨中^[8],研究了 在异质结带阶计算中采用的平均键能 E_m ^[9],发现 在自由电子能带中的平均键能 E_m 相当于由费米球 半径确定的费米能级 E_F ,金属能带中的平均键能 E_m 也相当于该金属的费米能级 E_F^m ,类似于上述 Tersoff 等人的做法,认为半导体界面处的 E_F " 钉扎" 于 E_m ,将计算 ϕ_{Bp} 的(2a)式写为

$$\phi_{\rm Bp} = E_{\rm m} - E_{\rm v} , \qquad (4)$$

先计算半导体的平均键能 *E*_m,再由(4)式得到接触 垫垒高度,即计算 Schottky 势垒高度的'平均键能方 法".采用平均键能方法对不同半导体接触垫垒高 度的实际计算结果表明,其计算值与实验值的符合 程度不亚于目前已经建立的其他计算方法⁵⁻⁷¹,平 均键能 *E*_m方法与其中最典型的电中性能级 *E*_B^[51] 方法一样,可作为 MS 接触势垒高度的一种理论计 算方法.本文介绍我们的计算工作与研究结果.

2. Schottky 势垒高度的计算方法

Tersoff⁵¹提出的计算 MIGS 的电中性能级 $E_{\rm B}$ 方法是 ,先采用 LAPW 能带计算方法计算半导体材料的能带本征值 $E_n(\mathbf{k})$,再由 $E_n(\mathbf{k})$ 构成实空间格林函数:

$$\mathcal{O}(\mathbf{R}, E) = \int d^3 r \sum_{n, k} \frac{\psi_{nk}^*(\mathbf{r})\psi_{nk}(\mathbf{r} + \mathbf{R})}{E - E_n(\mathbf{k})}$$

$$= \sum_{n,k} \frac{\mathrm{e}^{\mathrm{i}k \cdot \mathbf{R}}}{E - E_n(\mathbf{k})}, \qquad (5)$$

其中 k 为布里渊区中的波矢 ,n 为能带序号 ,R 为 格矢量 , ϕ_{nk} 为能带本征值 $E_n(k)$ 的布洛赫波函数. Tersoff 考虑到第一性原理能带计算中采用局域密度 泛函交换关联势所引起带隙计算值比实验值偏小的 问题 ,先根据带隙实验值对能带 $E_n(k)$ 计算值进行 修正 ,然后代入(5)式 ,由 C(R, E) = 0 计算出电中 性能级 E_B 值. Tersoff 假设半导体界面处费米能级 "钉扎 "于电中性能级 E_B 位置 , $E_F = E_B$,采用(3)式 计算接触势垒高度 ϕ_{Bp} 值. 各种不同半导体的接触 势垒高度 ϕ_{Bp} 计算结果见表 1.

表1 平均键能方法的接触势垒高度 $E_{\rm m} - E_{\rm v}$ 的计算结果(计 及自旋-轨道分裂作用)和其他方法($E_{\rm B} - E_{\rm v}$ ^[5,13], $\overline{\epsilon_{\rm h}} - E_{\rm v}$ ^[6], $E_{\rm D} - E_{\rm v}$ ^[7])的计算结果,以及文献 13 所引用 Au-p 型 半导体势垒高度 $\phi_{\rm Eb}^{\rm expt}$ 实验值(单位 eV)

半导体	本文 PM 本文 LMTO		FF	— _E	E E	p 型势垒
	$E_{\rm m} - E_{\rm v}$	$E_{\rm m}-E_{\rm v}$	$E_{\rm B} - E_{\rm v}$	$\varepsilon_{\rm h} - E_{\rm v}$	$E_{\rm D} - E_{\rm v}$	$\phi_{\rm Bp}^{\rm expt}$ (Au)
Si	0.30	0.35	0.36	-0.03	0.23	0.32
Ge	-0.05	-0.01	0.18	-0.32	0.03	0.07
GaP	0.86	0.80	0.81	0.66	0.73	0.94
InP	0.83	0.77	0.86	0.77	0.87	0.77
AlAs	1.00	1.00	1.05	0.46	0.92	0.96
GaAs	0.57	0.59	0.50	0.34	0.55	0.52
InAs	0.56	0.54	0.50	0.47	0.62	0.47
AlSb	0.42	0.44	0.45	0.23	0.41	0.55
GaSb	0.03	0.05	0.07	0.14	0.06	0.07
InSb	-0.01	0.02	0.01	0.28	0.2	0.00

对于四面体键半导体,Harrison^[6]在他建立的紧 束缚近似能带计算方法中,设计了一套普适的计算 其能带的紧束缚参量,利用这些参量可以求得阳离 子 *c* 与阴离子 *a* 组成的半导体价带顶的能量

$$E_v = \frac{\varepsilon_p^c + \varepsilon_p^a}{2} - \sqrt{\frac{(\varepsilon_p^c - \varepsilon_p^a)}{4}} + (4E_{xx})^2 , \quad (6)$$

其中 $E_{xx} = \frac{1}{3} V_{pp\sigma} + \frac{1}{3} V_{pp\pi} \epsilon_{p}^{c} \pi \epsilon_{p}^{a}$ 为阳离子 c 与阴 离子 a 的 p 轨道价电子能量 E_{xx} 由紧束缚参量计 算.如果将第 i 个原子的 sp^{3} 杂化能为 $\epsilon_{n}^{i} = (\epsilon_{s} + 3\epsilon_{p})/4$ 半导体原胞中的 A 和 B 原子 sp^{3} 杂化能的 平均值即为

$$\overline{\varepsilon_{\rm h}} = \left(\varepsilon_{\rm h}^{A} + \varepsilon_{\rm h}^{B}\right)/2 , \qquad (7)$$

与 Tersoff 电中性能级方法类似 ,Harrison 也假定半导体界面处的费米能级 $E_{\rm F}$ " 钉扎 "于 $\overline{\epsilon_{\rm h}}$,由 $\phi_{\rm Bp} = \overline{\epsilon_{\rm h}} - E_{\rm v}$ 计算接触势垒高度.对于不同半导体接触势垒高度的计算结果列于表 1.

Cardona 和 Christensen^[7]在能带阶计算中采用计 入自旋-轨道作用的 LMTO 能带计算方法计算半导 体的能带结构,然后计算布里渊区的一个特殊 k 点 ($k_{\rm B} = (2\pi a_0) 0.622 0.295 0$)的价带 $E_{s}(k_{\rm B})$ 和导带 $E_{s}(k_{\rm B})$ 的能量平均值

$$E_{\rm D} = \frac{E_{\rm v}(k_{\rm B}) + E_{\rm c}(k_{\rm B})}{2}, \qquad (8)$$

 $E_{\rm D}$ 为介电函数隙中能级.他们认为 $E_{\rm D}$ 相当于 Tersoff 的电中性能级 ,根据费米能级 $E_{\rm F}$ " 钉扎 "于 $E_{\rm D}$, 由 $\phi_{\rm Bp} = E_{\rm D} - E_{\rm v}$ 接触势垒高度.对于不同半导体接 触势垒高度的计算结果列于表 1.

我们在异质结能带阶计算中曾采用所谓的平均 键能 E_m 作为参考能级^[9].平均键能 E_m 是根据半导 体能带本征值 E_n (k)的计算结果,采用特殊 k 点方 法^[10]由下式计算得到:

$$E_{m} = \frac{1}{2} \left\{ \sum_{k \in BZ} \alpha(k) \left(\frac{1}{4} \sum_{n=1}^{4} E_{n}(k) + \frac{1}{5} \sum_{n=5}^{9} E_{n}(k) \right) \right\},$$
(9)

其中 $k \in BZ$ 指在简约布里渊区中选取的特殊 $k \leq 1$, $\alpha(k)$ 为特殊 $k \leq 0$ 的权重 $E_n(k)$ 为半导体晶体的能 带本征值.我们着重探讨了平均键能的物理内涵^[8], 发现采用(9)式计算平均键能 E_m 时,由自由电子能 带本征值得到的 E_m 值与其费米能级 E_F 值极其接 近,由金属的能带本征值得到的 E_m 值也和金属的 E_F 值非常接近.对于 Schottky 势垒高度的计算,我 们先计算半导体的能带本征值 $E_n(k)$ 然后根据(9) 式计算半导体的平均键能 E_m ,最后由(4)式计算 Schottky 势垒高度.

3. 平均键能方法对 Schottky 势垒高度 的计算结果

对于在金刚石和闪锌矿结构的 Si ,Ge ,GaP ,InP , AlAs GaAs JnAs AlSb GaSb 和 InSb 等面心立方半导 体 采用第一性原理赝势能带计算方法111,计算它 们的能带结构 E_n(k)值.计算中用到的晶格常数如 表 2 所示,采用"Ceperley-Alder"交换-关联势,模守 恒赝势直接由 Bachelet 等人的 BHS 表^{12]}得到;对于 平面波最高截断能量 E_{cat}值,除 AlSb ,GaSb 和 InSb 三种晶体取 20.5 Ryd 外,其他晶体都取 22.5 Ryd,该 取值确保所计算的能带很好收敛.因为在我们采用 的能带计算程序尚未计及自旋-轨道分裂作用 应该 进一步考虑自旋-轨道分裂的影响,自旋-轨道的价 带分裂将使价带顶 E_x 上移 Δ_0/\mathfrak{X} Δ_0 为自旋-轨道裂 距 取值见表 2).表 2(LDA 栏)列出根据能带计算得 到的价带顶 $E_{i}(\Gamma_{15})$,并计入自旋-轨道价带分裂作 用所得到的直接带隙 E_{g dir}、间接带隙 E_{g ind}的计算结 果.表2实验值栏中同时列出直接带隙 E_{s dir}、间接 带隙 $E_{g,ind}$ 值.

表 2 晶格常数 $a_0(\mu m)$ 和自旋-轨道裂距 Δ_0 的实验值(eV);直 接带隙 $E_{g,dix}$ 间接带隙 $E_{g,ind}$ 的实验值和本文(计及自旋-轨道 分裂作用)的计算值(LDA)(单位 eV)

半导体	晶格常数	自旋-轨道	直 直接带	直接带隙 E _{g.dir}		间接带隙 E _{g,ind}	
	a_0	裂距 Δ_0	(计算值)实验值*	(计算值)实验值*	
Si	0.543	0.04	2.51		0.63	1.12 ^{a)}	
Ge	0.565	0.29	- 0.02		0.09	0.66 ^{a)}	
GaP	0.545	0.08	1.95		1.63	2.27 ^a)	
InP	0.587	0.11	0.80	1.34 ^{b)}	1.54	2.03 ^a)	
AlAs	0.565	0.28	1.94		1.29	2.15 ^{a)}	
GaAs	0.565	0.34	0.50	1.43 ^{b)}	0.94	1.71 ^{a)}	
InAs	0.606	0.39	-0.17	0.36 ^{b)}	0.93	1.52 ^{a)}	
AlSb	0.614	0.70	1.36		0.96	1.63 ^{b)}	
GaSb	0.608	0.75	0.03	0.70^{b}	0.26	0.80^{b}	
InSb	0.648	0.98	-0.33	0.18 ^{b)}	0.34	0.62^{b}	

a)为文献 13] b)为转引自文献 14 引用的实验值.

从表 2 可以看到,半导体直接带隙 $E_{g,dir}$ 及间接 带隙 $E_{g,ind}$ 的计算值(LDA)比实验值小得多.这是能 带计算中采用局域密度泛函交换-关联势(LDA)的 必然结果.Tersoff⁵¹在计算 E_{B} 值时,考虑到能带计 算中采用局域密度泛函交换-关联势(LDA)所得到 带隙 $E_{g,dir}$, $E_{g,ind}$ 偏小, 先对导带本征值 $E_n(k)$ 的计 算值进行修正(称带隙修正),然后计算其电中性能 级 E_B. 他在对比采用直接带隙 E_{a dir}实验值与间接 带隙 Egind 实验值进行带隙修正的研究中还发现^{15]}, 对于直接带隙的半导体(如 GaAs),采用间接带隙 $E_{x,ind}$ 实验值对 E_{B} 值的修正将使接触势垒高度 E_{B} $-E_{x}$ 计算值更加接近实验值.根据 Tersoff 的这个研 究结果 对于本文所研究的半导体材料 均采用间接 带隙的修正方法,即根据表2间接带隙 E_{s and}中计算 值(LDA) 与实验值之间的差值,将第一性原理赝势 能带计算得到的 $E_{a}(k)$ 中 5 个导带的本征值刚性上 移 使其带隙等于实验值 ,然后再采用(9)式计算平 均键能 E. 值.上述能带自洽计算和平均键能计算 均采用 60 个 k 点.表 1" 本文 PM "栏中给出平均键 能方法的接触势垒高度 $E_m - E_v$ 的计算结果 ,其中 E_v 值即为上面直接带隙 $E_{g,dir}$ 和间接带隙 $E_{g,ind}$ 计算 中计及自旋-轨道的价带分裂作用后得到的 E_x 值, 所以表 1 的接触势垒高度 $E_m - E_v$ 值是考虑自旋-轨道作用的计算结果.

为进一步了解不同能带计算方法 $E_n(k)$ 值计算 结果对接触势垒高度 $E_m - E_v$ 值的影响,我们同时 采用基于局域密度泛函理论的线性 Muffin-Tin 轨道 (LMTO)^{16]}能带计算方法计算表中 10 种不同半导体 的能带结构 $E_n(k)$. LMTO 能带计算中,在四面体键 "开结构 '的半导体原胞中添加两个空球,并将空球 与原子球取相同的体积,原子球的基函数取 s ,p ,d ,f 态,空球取 s ,p ,d 态,以确保能带计算的收敛性.考 虑到采用局域密度泛函交换-关联势的能带计算结 果存在带隙偏小的问题,与上面采用第一性原理赝 势法的能带计算相同,先进行带隙修正,再由(9)式 计算半导体的 E_m 值;能带自洽计算和平均键能计 算都采用 60 个特殊k点.表 1"本文 LMTO"栏中列 出采用 LMTO 能带计算方法得到的接触势垒高度 $E_m - E_v$ 的计算值,其中价带顶 E_v 值也是考虑自旋 -轨道价带分裂的计算结果.

4. 讨 论

表 1 的计算结果表明 本文根据从头算赝势法 和 LMTO 计算的能带本征值最后得到相当接近的接 平均键能方法的 E_m – E_v 计算值影响很小,平均键 能方法可以用于不同的能带计算方法;从表1本文 的接触势垒高度 $E_m - E_v$ 的计算值与实验值 ϕ_{Bh}^{expt} 的 比较中看到,对于"本文 PM "方法的计算值,除 Ge 和 AlSb 计算值与实验值的差别稍大于 0.1eV 外,其他 半导体材料的接触势垒高度计算值与实验值的差别 均小于 0.05eV,计算结果与实验结果符合较好."本 文 LMTO "的 $E_{\rm m} - E_{\rm v}$ 计算值也较接近 $\phi_{\rm Bp}^{\rm expt}$ 实验值; 将本文以及其他三种方法的计算值与实验值 🖉 🔤 行比较可以看到,本文的两组 E_m – E_v 计算值与其 中的电中性能级 $E_{\rm B} - E_{\rm v}$ 计算值较接近 ,它们与实 验值的接近程度明显好于 $\overline{\epsilon_h} - E_v$ 和 $E_D - E_v$ 计算 值.因此平均键能方法与 Tersoff⁵]的电中性能级方 法一样,可能得到较准确的Schottky势垒高度的计 算结果

- Schottky W 1939 Z. Phys. 113 367
 Schottky W 1942 Z. Phys. 118 539
- [2] Bardeen J 1947 Phys. Rev. 71 717
- [3] Cowley A M and Sze S M 1965 J. Appl. Phys. 36 3212
- [4] Tung R T 2000 Phys. Rev. Lett. 84 6078
- [5] Tersoff J 1984 Phys. Rev. Lett. B 52 465
 Tersoff J 1984 Phys. Rev. B 30 4874
- [6] Harrison W A and Tersoff J 1986 J. Vac. Sci. Technol. B 4 1068
- [7] Cardona M and Christensen N E 1988 Phys. Rev. B 35 6182
- [8] Wang R Z, Zheng Y M and Li S P 2001 Acta Phys. Sin. 50 273
 (in Chinese] 王仁智、郑永梅、李书平 2001 物理学报 50 273]
- [9] Wang R Z and Huang M C 1991 Acta Phys. Sin. 40 1683 in Chi-

nese] 王仁智、黄美纯 1991 物理学报 40 1683]

- [10] Chadi D J and Cohen M L 1973 Phys. Rev. B 8 5747
- [11] Hamann D R , Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
- [12] Bachelet G B, Hamann D R and Schlüter M 1982 Phys. Rev. B 26 4199
- [13] Bornstein L 1982 New Series, Group III vol 22 ed by O Madelung (New York Springer)
- [14] Tersoff J 1985 Phys. Rev. B 32 6968
- [15] Tersoff J 1986 Surf. Sci. 168 275
- [16] Andersen O K 1975 Phys. Rev. B 12 3060

Average-bond-energy method in Schottky barrier height calculation

Li Shu-Ping Wang Ren-Zhi

(Department of Physics , Xiamen University , Xiamen 361005 , China)
 (Received 17 April 2002 ; revised manuscript received 15 June 2002)

Abstract

Ten barrier heights of metal-semiconductor contacts are calculated by taking the average-bond-energy as the reference level. The coincidence degree of the calculational values and the experimental values is as good as that of Tersoff 's charge-neutrality point method in theoretical calculation of metal-semiconductor contacts. The calculational results are much better than that of Harrison 's tight-binding method and Cardona 's dielectric midgap energy method.

Keywords : barrier height , average-bond-energy method , Fermi level PACC : 3120A , 7115A , 7125