使用PTB7作为阳极修饰层提高有机 发光二极管的性能^{*}

黄迪¹⁾²⁾ 徐征^{1)2)†} 赵谡玲¹⁾²⁾

1)(北京交通大学,发光与光信息技术教育部重点实验室,北京 100044)
 2)(北京交通大学光电子技术研究所,北京 100044)
 (2013年9月3日收到;2013年10月11日收到修改稿)

采用 poly[[4,8-bis](2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7)作为有机发光二极管器件的阳极修饰层,制备了结构为 indium tin oxide (ITO)/PTB7(不同浓度)/N, N'-Bis(naphthalen-1-yl)-N, N'-bis(phenyl)benzidine (NPB, 40 nm)/8-hydroxyquinoline (Alq3, 60 nm)/LiF (1 nm)/Al的系列器件,同时研究了不同浓度的PTB7对器件性能的影响. PTB7 的最佳浓度为 0.25 mg/mL,器件性能得到明显的改善,起亮电压为 4.3 V. 当驱动电压为 14.6 V时,最大亮度为 45800 cd/m²,最大电流效率为 9.1 cd/A. 与没有 PTB7 修饰的器件相比,其起亮电压降低了 1.9 V,最高亮度提升了 78.5%.器件性能提高归因于 PTB7 的插入使得空穴注入和传输能力大大改善.

关键词:有机发光二极管, PTB7, 阳极修饰层, 空穴注入 PACS: 73.21.Ac, 73.61.Ph, 78.60.Fi

DOI: 10.7498/aps.63.027301

1引言

有机发光二极管 (organic light emitting diode, OLED) 具有自发光、视角广、发光效率高、色域广、 面板薄等特性^[1],成为继液晶之后最具发展前景的 显示技术.为了减少OLED界面电荷的堆积,改善 界面的载流子注入性能,广泛利用了界面修饰及改 造的方法.在金属阴极/有机层界面,薄的无机修 饰层 MnO^[2],LiF^[3],Al₂O₃^[4]和SiO₂^[5]等的加入 可以有效地提高载流子注入,从而提高器件的亮度 和效率.在氧化铟锡 (ITO)/有机界面,改善ITO 性能普遍采用的修饰层包括PEDOT:PSS^[6]、 F4-TCNQ^[7]等也可以有效地改善空穴注入, 从而改善器件的性能.然而本文中首次将 poly[[4,8-bis](2-ethylhexyl)oxy]benzo[1,2-b:4,5b'] dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7)应用 于有机发光二极管器件,作为ITO阳极的界面修 饰层.

目前PTB7材料被广泛应用于有机太阳能电 池中,是一种非常高效的给体材料^[8]. C₆₀, PCBM ([6,6]-phenyl-c61-butyricacidmethylester), P3HT (聚-3已基噻吩)等有机太阳能材料在OLED中 的应用已有不少报道^[9–15]. C₆₀和PCBM是有 机太阳能电池中的受体材料,P3HT和PTB7都 是有机太阳能电池领域中常用的给体材料^[8,16]. 在之前的报道中^[11],也有利用C₆₀薄层修饰 臭氧处理过的ITO电极,进一步提高了ITO 的 功函数,降低了空穴从ITO向NPB层的注入势 垒.P3HT掺杂BEHP-PPV (poly[2-(2',5'-b:s(2"ethylhexyl)oxy]phenyl)-1,4-phenylenev: nelene] 混 合薄膜的发光性质也已有报道^[15],而PTB7 在 OLED器件中使用还未见报道.本文使用PTB7作

* 国家重点基础研究发展计划(批准号: 2010CB327704)、国家自然科学基金(批准号: 51272022)、教育部新世纪优秀人才支持计划 (批准号: NCET-10-0220)和中央高校基本科研业务费专项资金(批准号: 2012JBZ001)资助的课题.

†通讯作者. E-mail: zhengxu@bjtu.edu.cn

© 2014 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

为OLED器件的阳极修饰层,用来增加空穴的注入能力,并研究其不同浓度对器件光电性能的影响.

2 实 验

为了对比不同浓度的PTB7作为阳极修饰层 对OLED的器件性能的研究,制备了如下结构的 器件:

器件A, ITO/NPB (40 nm)/Alq₃ (60 nm)/LiF (1 nm)/Al;

器 件B, ITO/PTB7 (0.25 mg/mL)/NPB (40 nm)/Alq₃ (60 nm)/LiF (1 nm)/Al;

器件C, ITO/ PTB7 (0.5 mg/mL)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al;

器 件 D, ITO/ PTB7 (1 mg/mL)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al; 其中, Alq3(8-hydroxyquinoline) 为电子传输层兼 发光层, NPB (N, N'-bis(naphthalen-1-yl)-N, N'-

bis(phenyl)benzidine)为空穴传输层,PTB7为阳极修饰层,LiF为电子注入层,Al和ITO分别为器件的阴极和阳极.

实验过程如下: ITO 玻璃, 方阻为10 Ω/sq, 依次在中性洗涤剂、丙酮、酒精以及去离子水溶 液中超声波清洗20 min. 随后使用纯度为99.5% 的普通氮气将ITO 表面吹干,再将其放在表面 皿中120°C加热20 min 除去多余的水分. 最后, 进行紫外臭氧处理10 min. PTB7 (其化学结构 式如图1所示)用溶液旋涂法制备,旋涂转速为 1500 r/min,旋涂时间为40 s. 在2×10⁻⁴ Pa真空 度下,通过热蒸镀的方式制备,各有机薄层,蒸 发速率约为0.05 nm/s,金属电极蒸发速率约为 0.1 nm/s,薄膜的厚度通过石英振荡测厚仪实时 得到,电流-电压曲线通过高精度的程控直流电源 Keithley 2400测得并记录,亮度通过PR-650测得, 电致发光光谱由 ACTON150型 CCD 光谱仪测得. 器件的发光面积为3 mm×3 mm 大小的正方形.

图 1 PTB7 的化学结构式^[8]

3 分析与讨论

图2是器件A, B, C, D的电致发光光谱.从 图2可以看出,器件A, B, C和D电致发光光谱的 形状完全一致,其归一化光谱完全重合.所以它们 的发光光谱中只有来源于Alq3位于530 nm的激子 发光,PTB7薄层的插入没有影响器件的发光光谱, 由此可以判断器件的发光复合区位于Alq3 层.

图 3 为器件 A—D 的电流密度与电压的关系 (*J-V*)特性曲线.如图 3 所示,当驱动电压大于某 一值时,电流密度随电压增大而急剧上升,呈现出 典型的二极管特性.另外,还可以看出在相同的驱 动电压下,最优化的器件B相对于其他器件有着更 大的电流密度.

图 2 器件 ITO/PTB7(不同浓度)/NPB(40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al 的归一化电致发光光谱

图 3 器件 ITO/PTB7(不同浓度)/NPB(40 nm)/Alq₃ (60 nm)/LiF(1 nm)/Al 的电流密度 -电压特性曲线

图 4 是器件 A—D 的亮度-电压特性曲线. 从 电压-亮度曲线中可以看出,以器件发光亮度为 1 cd/m² 作为器件的起亮亮度,则器件 A 的起亮电 压为 6.2 V,器件 B, C, D 分别为 4.3, 5.6, 4.6 V,器 件 B, C, D 比器件 A 的起亮电压分别降低了 1.9, 0.6, 1.6 V. 当驱动电压为 14.6 V 时,器件 B 的最高 亮度为45800 cd/m². 在相同的驱动电压下,器件 A,C和D分别为23480,16024和12394 cd/m². 从 图 4 中可见,在同一亮度下,器件B的驱动电压比器 件A,C,D的驱动电压低,当OLED正常工作亮度 为1000 cd/m²时,器件A,B,C,D的工作电压分别 为11.5,10,11.4,10.6 V,器件B的工作电压比器件 A,B,C的电压分别降低了1.5,1.4,0.6 V.

器件电流 J_s和亮度 B_{EL} 由以下公式决定^[17]:

$$J_{\rm s} = J_{\rm e} + J_{\rm h}' = J_{\rm h} + J_{\rm e}',$$
 (1)

$$B_{\rm EL} \propto J_{\rm e} - J_{\rm e}' = J_{\rm h} - J_{\rm h}',\tag{2}$$

式中 J_e和 J_h分别是从阴极和阳极注入的电子和 空穴的电流密度, J'_e和 J'_h是未经过复合而迁移到 相反电极的电子和空穴电流密度.根据上述的结 果, 当器件 B 使用 PTB7 作为阳极的修饰层时,电 流密度和亮度都得了改善.由于没有对阴极做任 何处理,器件的电子注入密度 J_e 没有变化.从(2) 式可得器件亮度 B_{EL}增加来源于 J'_e减少.另外从 (1)式可以得到从阳极注入的空穴电流密度 J_h在增 大.这就认证了使用 PTB7 作为阳极改性层增加空 穴注入,漏电流降低.空穴注入的增强通常归因于 阳极/有机界面处形成偶极层^[18,19].

图 4 器件 ITO/PTB7(不同浓度)/NPB(40 nm)/Alq₃ (60 nm)/LiF(1 nm)/Al 的亮度 - 电压特性曲线

图 5 器件 ITO/PTB7(不同浓度)/NPB(40 nm)/Alq3 (60 nm)/LiF(1 nm)/Al 的能级结构示意图

器件的能级结构示意图如图5所示. 从 图5可以看到, PTB7的最高被占据分子轨道(HO-MO)能级为-5.15 $eV^{[8]}$,恰好介于ITO的功函数 (-4.8 eV)和NPB的HOMO能级(-5.5 eV)之间. 所以适当厚度的PTB7插入有利于在ITO/NPB 之间形成阶梯势垒,从而减小器件中空穴注 入的难度,增加了空穴的注入数目,降低了器 件的驱动电压,这从器件的电流密度-电压特 性曲线也可以得到证明. 而且PTB7的空穴迁 移率(5.8 × 10⁻⁴ cm²·V⁻¹·s⁻¹)^[8]与NPB(7.64 × 10⁻⁴ cm²·V⁻¹·s⁻¹)^[20]相当,表明PTB7具有良好 的空穴注入能力.

然而器件C和器件D的性能比器件A的性能 要差.这是由于当浓度为0.25,0.5和1 mg/mL时, 形成的PTB7薄层厚度分别约为1,3和7 nm.随着 PTB7浓度的增加,所形成PTB7 薄层的厚度越大, 器件的空穴注入和传输能力降低,使得器件的电流 减小,亮度也有所下降.所以选择合适的PTB7浓 度,对器件性能的提高十分的重要.

图 6 所示为器件的电流密度-电流效率曲线 图. 从图中可以看出器件的效率随着 PTB7 的浓度 增大有先增大后减小的趋势,但总体上都优于无 PTB7 的标准器件.且器件 B 中电子与空穴处于最 为平衡的状态,因此效率最高.这就说明用 PTB7 作为阳极修饰材料时,合适的浓度能够提高器件的 亮度,但是浓度较高时对器件的效率有影响.这是 因为 PTB7 是一种良好的光吸收材料,器件在工作 时 PTB7 可以吸收部分 Alq3 所发出的光.如图 7 所 示, PTB7 的吸收光谱和 Alq3 的电致发光光谱有很 大的重叠,这就导致 Alq3 发出的光在穿透 PTB7 薄 层时容易被吸收掉一部分,并且随着 PTB7 厚度的 增大,对 Alq3 的吸收增强,因此过厚的 PTB7 薄膜

图 6 器件 ITO/PTB7(不同浓度)/NPB(40 nm)/Alq₃ (60 nm)/LiF(1 nm)/Al 的电流效率 -电流密度特性曲线

不利于提高器件的发光性能, 使器件的效率随着 PTB7 的厚度的增大而下降.

4 结 论

本文首次采用PTB7作为阳极修饰层制备 了新型OLED.当PTB7薄膜的浓度选择适当时, 其性能得到大幅提高. PTB7的最佳浓度为 0.25 mg/mL,其起亮电压为4.3 V,最大亮度为 45800 cd/m²,最大电流效率为9.1 cd/A.器件性 能提高的机理是PTB7的插入不仅能有效降低I-TO阳极与空穴传输层之间的势垒,而且空穴迁移 率与NPB的相当,从而使得器件的空穴注入和传 输能力大大提高.

感谢北京交通大学光电技术研究所孔超博士的讨论.

参考文献

 Liu B Q, Lan L F, Zou J H, Peng J B 2013 Acta Phys. Sin. 62 087302 (in Chinese)[刘佰全, 兰林锋, 邹建华, 彭 俊彪 2013 物理学报 62 087302]

- [2] Luo J X, Xiao L X, Chen Z J, Gong Q H 2008 Appl. Phys. Lett. 93 133301
- [3] Hung L S, Tang C W, Mason M G 1997 Appl. Phys. Lett. 70 152
- [4] Li F, Tang H, Anderegg J, Shinar J 1997 Appl. Phys. Lett. 70 1233
- [5] Kim Y E, Park H, Kim J J 1996 Appl. Phys. Lett. 69 599
- [6] Li J, Liu J C, Gao C J 2011 Acta Phys. Sin. 60 117106
 (in Chinese)[李蛟, 刘俊成, 高从堦 2011 物理学报 60 117106]
- [7] Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 E135
- [8] Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303
- [9] Romero D, Schaer M, Zuppiroli L, Cesar B, Francois B 1995 Appl. Phys. Lett. 67 1659
- [10] Roigé A, Campoy Q M, Ossó J, Alonso M, Vega L, Garriga M 2012 Synth. Met. 161 2570
- [11] Kim S H, Jang J, Lee J Y 2006 Appl. Phys. Lett. 89 253501
- [12] Feng X, Huang C, Liu V, Khangura R, Lu Z 2005 Appl. Phys. Lett. 86 143511
- [13] Lee J Y, Kwon J H 2006 Appl. Phys. Lett. 88 183502
- [14] Lee J Y 2006 Appl. Phys. Lett. 88 07351
- [15] Valadares M, Silvestre I, Calado H D R, Neves B R A, Guimarães P S S, Cury L A 2009 Mater. Sci. Eng. C 29 57
- [16] Li G L, He L J, Li J, Li X S, Liang S, Gao M M, Yuan H W 2013 Acta Phys. Sin. 62 197202 (in Chinese)[李国 龙,何力军,李进,李学生,梁森,高忙忙,袁海雯 2013 物理 学报 62 197202]
- [17] Liu D A, Fina M, Chen Z Y, Chen X B, Liu G, Johnson S, Mao S S 2007 Appl. Phys. Lett. **91** 093514
- [18] Day S R, Hatton R A, Chesters M A, Willis M R 2002 Thin Solid Films 410 159
- [19] Zhang F J, Vollmer A, Zhang J, Xu Z, Rabe J P, Koch N 2007 Org. Electron. 8 606
- [20] Song D D 2011 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [宋丹丹 2011 博士学位 论文 (北京: 北京交通大学)]

Enhanced performance of organic light-emitting diodes by using PTB7 as anode modification layer^{*}

Huang $\operatorname{Di}^{(1)(2)}$ Xu Zheng^{(1)(2)†} Zhao Su-Ling^{(1)(2)†}

1) (Key Laboratory of Luminescence and Optical Information of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China)

2) (Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China)

(Received 3 September 2013; revised manuscript received 11 October 2013)

Abstract

Poly[[4,8-bis](2-ethylhexyl)oxy]benzo[1,2-b : 4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3, 4-b]thiophenediyl]] (PTB7) is used as an anode modification layer to fabricate organic light-emitting diode (OLED) with the configuration of ITO/PTB7 (with different concentrations)/NPB(40 nm)/Alq₃(60 nm)/LiF(1 nm)/Al, and the effect of PTB7 concentration on the performance of device is investigated. The best concentration of PTB7 is 0.25 mg/mL, while the best device turn-on voltage is 4.3 V. For the best device, its maximum luminance is 45800 cd/m² at a driving voltage of 14.6 V, its maximum current efficiency is 9.1 cd/A, its turn-on voltage is reduced by 1.9 V and the maximum luminance is increased by 78.5% compared with that of the device without PTB7. The improvement of its performance is ascribed to the fact that the hole injection and transport ability are improved by the layer of PTB7.

Keywords: organic light-emitting diode, PTB7, anode modification layer, hole injectionPACS: 73.21.Ac, 73.61.Ph, 78.60.FiDOI: 10.7498/aps.63.027301

^{*} Project supported by the National Basic Research Program of China (Grant No. 2010CB327704), the National Natural Science Foundation of China (Grant No. 51272022), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0220) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2012JBZ001).

[†] Corresponding author. E-mail: zhengxu@bjtu.edu.cn