基于比例积分控制的电压反馈型Buck 变换器分岔^{*}

杨祎巍 刘佳林 李斌

(华南理工大学电子与信息学院,广州 510640)

(2013年10月17日收到;2013年11月5日收到修改稿)

在分段光滑模型的基础上,推导出基于比例积分 (PI) 控制的电压反馈型 Buck 变换器的光滑模型及离散 迭代模型.证明了功率系统的混沌吸引子在负载线上运动,并受到占空比的控制,模型的流形围绕吸引子运 动并出现1周期、2周期及混沌现象;推导出电压反馈型 PI 控制系统的输出电压与 Buck 变换器的输出电压成 线性关系,在此基础上指出 PI 控制中的比例因子起主导作用;分析了系统的倍周期分岔、边界碰撞和混沌现 象,并展示了变换器状态的转移过程.实验结果表明了理论建模分析和仿真的正确性.

关键词: PI控制, 电压反馈型, Buck 变换器, 分岔 PACS: 05.45.-a

DOI: 10.7498/aps.63.040502

1引言

开关电源 DC-DC 变换器是一种典型的非线性 动力系统,开关的导通和关断造成了变换器拓扑结 构的循环变化,进而促使其行为发生变化. DC-DC 变换器循环变化中的每种电路拓扑结构均可用线 性光滑系统描述,因此,DC-DC变换器是分段光滑 的动力系统,具有丰富的动力学行为,如倍周期分 岔、边界碰撞、混沌等^[1-8]. DC-DC变换器存在两 种工作模式: 连续导电模式 (CCM) 和断续导电模 式 (DCM): 在 CCM 模式下, 变换器可用两段光滑 系统描述;在DCM模式下,变换器可用三段光滑 系统描述. 当变换器参数发生变化时, 每一光滑系 统范围内会出现分岔现象,如Hopf分岔等^[9];不同 光滑系统之间切换时会导致变换器工作模式的变 化,也会发生分岔现象,如边界碰撞等^[6,7,10,11].传 统的线性分析方法只能近似描述变换器行为,对于 其非线性行为较难预测和处理.因此,从动力系统 的角度研究变换器的行为,对于变换器的设计具有

重要的意义.

近年来,国内外研究人员对分段光滑电路,尤 其是DC-DC变换器基础结构(Buck, Boost, Buck-Boost)进行了深入的研究^[6-16].带有补偿的电流 反馈型Buck-Boost变换器在DCM模式下具有明 显的阵发现象和较弱的混沌现象[10]:并发现带有 补偿的峰值电流模式和谷值电流模式的DC-DC 变换器具有对称动态特性[11]. 电流反馈二次型 Boost变换器在不同的参数变化时有着不同的分 岔路由,存在工作模式转移现象^[12].电流反馈型 Buck-Boost 变换器在输入电压和负载电阻等电路 参数宽范围变化时存在周期分岔、边界碰撞分岔、 鲁棒混沌和阵发混沌等复杂动力学行为^[13]. 电 流反馈型变换器由于电流的近似线性而容易分 析,研究较为深入^[9-13];电压反馈型变换器由于电 压波形较为复杂,较电流反馈型变换器研究难度 大^[14-16].双电压控制下的Buck变换器在参数变 化时会发生CCM和DCM的模式转换,具有倍周 期分岔和边界碰撞分岔行为^[15].电压反馈型DCM 模式下的Boost变换器在反馈系数处于一定范围

^{*} 中央高校基本科研业务费 (批准号: 2013ZM0015) 资助的课题.

[†]通讯作者. E-mail: yangyiwei@scut.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

时,会发生切分岔和阵发混沌现象^[16].以上研究均 在比例(P)控制下展开,而实际工程中常用比例积 分(PI)控制作为DC-DC变换器的补偿环路,由于 PI控制比P控制多出一个状态量,使得系统多出一 个维度,因而系统更为复杂.此外,基于PI控制的 电压反馈型DC-DC 变换器目前研究较少,尤其是 PI因子对其行为的影响需要进一步研究.

本文以基于PI控制的电压反馈型Buck变换器为例进行研究,建立该变换器的分段光滑模型和 离散迭代模型,通过分析各段光滑模型的不动点, 推导出系统的混沌吸引子,明确系统的动力学行为 特点;研究PI控制的比例因子和积分因子对系统 分岔行为的影响,并分析了系统的倍周期分岔、边 界碰撞分岔和混沌现象.实验结果证明了理论分析 与仿真的正确性.

2 变换器建模

典型的基于PI控制的电压反馈型Buck变换器拓扑结构如图1所示.其中,Vg是输入电压,Vo 是输出电压,*i*L是电感电流,Vref是参考电压,Vri 是三角波;*R*1,*C*1和运算放大器A1组成了PI控制器,其中*R*1与*R*u,*R*d决定了PI控制器中的比例 系数,*C*1与*R*u,*R*d共同决定了积分系数;A2是占 空比生成器,占空比由PI控制器的输出与三角波 比较决定.当开关管S导通时,二极管D关断,电源 *V*g 给负载提供能量,电感电流变大;当开关管S关 断时,电感电流减小,此时有两种情况:若在电感 电流减小为零之前,开关管S再次导通,则称变换 器处于连续电流模式 (CCM);当电感电流减小为 零时,由于二极管D的反向截止作用,电感电流将 一直保持为零,若在此时开关管S再次导通,则称

图1 基于 PI 控制的电压反馈型 Buck 变换器示意图

当开关管S导通时,有

$$\begin{cases} L \frac{\mathrm{d}i_L}{\mathrm{d}t} = V_{\mathrm{g}} - V_{\mathrm{o}}, \\ C \frac{\mathrm{d}V_{\mathrm{o}}}{\mathrm{d}t} = i_L - \frac{V_{\mathrm{o}}}{R}. \end{cases}$$
(1)

当开关管S关断时,有

$$\begin{cases} L \frac{\mathrm{d}i_L}{\mathrm{d}t} = -V_{\mathrm{o}}, \\ C \frac{\mathrm{d}V_{\mathrm{o}}}{\mathrm{d}t} = i_L - \frac{V_{\mathrm{o}}}{R}, \\ i_L \ge 0, \end{cases}$$
(2)

其中, 当变换器进入DCM工作模式时, i_L 是零, 故可加入限制条件 $i_L \ge 0$.因此, (2) 式中包含了C-CM和DCM两种情况. (1) 式和 (2) 式对应的齐次 线性方程的系数矩阵一致, 其特征根及特征向量分别为

$$\lambda_{1,2} = -\alpha \pm j\omega, \quad V_{1,2} = \begin{bmatrix} \alpha C \pm j\omega C \\ 1 \end{bmatrix},$$

其中,

$$\alpha = \frac{1}{2RC}, \quad \omega = \frac{\sqrt{4R^2C/L - 1}}{2RC}.$$

Buck 变换器在这两组光滑动力系统约束下工 作,因而属于分段光滑系统.采用离散迭代法,对每 个周期T的起始时刻进行采样,令 $i_{L,n} = i_L(nT)$, $V_{o,n} = V_o(nT)$, CCM 模式下系统在DT时间内受 (1)式控制,在(1 - D)T时间内受 (2)式控制,令 $i_{L,m} = i_L(nT+DT)$, $V_{o,m} = V_o(nT+DT)$ 为DT时 刻变换器的中间状态.

对于系统(1),有

$$\begin{bmatrix} i_{L,m} \\ V_{0,m} \end{bmatrix} = \mu_1 \left(\begin{bmatrix} i_{L,n} \\ V_{0,n} \end{bmatrix} \right)$$
$$= G_1 X_1 + G_2 X_2 + \begin{bmatrix} V_g/R \\ V_g \end{bmatrix}, \quad (3)$$

其中,

$$\begin{split} G_1 &= V_{\mathrm{o},n} - V_{\mathrm{g}}, \\ G_2 &= [i_{L,n} - V_{\mathrm{g}}/R - (V_{\mathrm{o},n} - V_{\mathrm{g}})\alpha C]/(\omega C), \\ X_1 &= \mathrm{e}^{-\alpha DT} \left[\cos(\omega DT) \begin{bmatrix} \alpha C \\ 1 \end{bmatrix} \right] \\ &- \sin(\omega DT) \begin{bmatrix} \omega C \\ 1 \end{bmatrix} \right], \end{split}$$

040502-2

$$X_{2} = e^{-\alpha DT} \begin{bmatrix} \sin(\omega DT) & \alpha C \\ 1 \end{bmatrix} \\ + \cos(\omega DT) \begin{bmatrix} \omega C \\ 1 \end{bmatrix} \end{bmatrix}.$$

$$\forall \neq S$$

$$M$$

$$\begin{bmatrix} i_{L,n+1} \\ V_{o,n+1} \end{bmatrix} = \mu_{2} \left(\begin{bmatrix} i_{L,m} \\ V_{o,m} \end{bmatrix} \right) \\ = G_{3}X_{3} + G_{4}X_{4},$$
(4)

其中,

$$G_{3} = V_{o,m},$$

$$G_{4} = [i_{L,m} - V_{o,m}\alpha C]/(\omega C),$$

$$X_{3} = e^{-\alpha(1-D)T} \left[\cos(\omega(1-D)T) \begin{bmatrix} \alpha C \\ 1 \end{bmatrix} \right],$$

$$-\sin(\omega(1-D)T) \begin{bmatrix} \omega C \\ 1 \end{bmatrix} \right],$$

$$X_{4} = e^{-\alpha(1-D)T} \left[\sin(\omega(1-D)T) \begin{bmatrix} \alpha C \\ 1 \end{bmatrix} \right],$$

$$+\cos(\omega(1-D)T) \begin{bmatrix} \omega C \\ 1 \end{bmatrix} \right].$$
DCM 状态时,在 CCM 基础上,增加下式

$$\begin{bmatrix} i_{L,n+1}^{\text{DCM}} \\ V_{o,n+1}^{\text{DCM}} \end{bmatrix} = \mu_3 \left(\begin{bmatrix} i_{L,n+1} \\ V_{o,n+1} \end{bmatrix} \right)$$
$$= \begin{bmatrix} 0 \\ V_{o,n+1} e^{-t_3/(RC)} \end{bmatrix}, \quad (5)$$

其中, t3表示电流 iL 为零的持续时间.

$$\begin{cases} \operatorname{CCM} : \begin{bmatrix} i_{L,n+1} \\ V_{o,n+1} \end{bmatrix} \\ = \mu_2 \left(\mu_1 \left(\begin{bmatrix} i_{L,n} \\ V_{o,n} \end{bmatrix} \right) \right), \\ \operatorname{DCM} : \begin{bmatrix} i_{L,n+1} \\ V_{o,n+1} \end{bmatrix} \\ = \mu_3 \left(\mu_2 \left(\mu_1 \left(\begin{bmatrix} i_{L,n} \\ V_{o,n} \end{bmatrix} \right) \right) \right). \end{cases}$$
(6)

根据 (3)—(5)式可以得到离散迭代模型,如 (6)式所示,其中 $\mu_1(\cdot)$ 的输出是 $\mu_2(\cdot)$ 的输入,在 DCM模式下, $\mu_2(\cdot)$ 的输出是 $\mu_3(\cdot)$ 的输入.根据离 散迭代模型表达式可知,变换器状态量存在固有的 谐振频率 ω ,开关周期T及占空比D的变化同样会 影响状态量的频率.

考虑到 PI 控制器中引入积分电容 C_1 ,因此,系 统状态量除了电感电流 i_L ,输出电压 V_0 之外,还多 出了电容 C_1 的电压 V_{C1} .根据电路结构,电压 V_{C1} 的变化通过 V_{con} 转化为占空比 D 的变化,可得

$$V_{\rm con} = \frac{R1 + r}{r} V_{\rm ref} + V_{C1} + \frac{R1}{r} K V_{\rm o}, \qquad (7)$$

dD 1 dV_{con} 1 [V_{ref} R₁K.

$$\frac{dt}{dt} = \frac{1}{V_{\rm M}} \frac{dt}{dt} = \frac{1}{V_{\rm M}} \left[\frac{R_{\rm I}}{rC_{\rm I}} - \frac{1}{rC} i_L + \left(\frac{R_{\rm I}}{RC} - \frac{1}{C_{\rm I}} \right) \frac{K}{r} V_{\rm o} \right], \qquad (8)$$

其中, V_{con} 是PI控制器的输出, V_{M} 是三角波 V_{tri} 的峰值电压, $r = R_{\text{u}}//R_{\text{d}}$, $K = R_{\text{d}}/(R_{\text{u}} + R_{\text{d}})$, $D = V_{\text{con}}/V_{\text{M}}$.

由于开关的导通和关断导致了变换器拓扑结构的变化,描述电路行为的动力系统是分段光滑的,进而会具有边界碰撞等复杂的动态特性.本 文通过使用sigmoid函数,将该两个分段光滑的系 统近似成为单一的光滑系统,用统一的方程组描述.sigmoid函数表达式如(9)式所示,不同参数*B* 对应的图形如图2 所示; 当参数*B*趋向于无穷时, sigmoid函数趋向于阶跃函数.

sigmoid =
$$1/(1 + \exp(B(t - T_{\text{threshold}})))).$$
 (9)

将系统的状态量设为 $X = [i_L, V_o, D, \tau]$,其动

040502-3

力学方程可写为如下形式:

$$\begin{cases} \frac{\mathrm{d}i_L}{\mathrm{d}t} = \frac{1}{L} \left(\frac{1}{1 + \exp B(\tau - DT)} V_{\mathrm{g}} \\ -V_{\mathrm{o}} \right) & (i_L \ge 0), \\ \frac{\mathrm{d}V_{\mathrm{o}}}{\mathrm{d}t} = \frac{1}{C} \left(i_L - \frac{V_{\mathrm{o}}}{R} \right), \\ \frac{\mathrm{d}D}{\mathrm{d}t} = \frac{1}{V_{\mathrm{M}}} \left[\frac{V_{\mathrm{ref}}}{rC_1} - \frac{R_1 K}{rC} i_L \\ + \left(\frac{R_1}{RC} - \frac{1}{C_1} \right) \frac{K}{r} V_{\mathrm{o}} \right], \\ \frac{\mathrm{d}\tau}{\mathrm{d}t} = 1 \ (\mathrm{mod}T), \end{cases}$$
(10)

其中, 引入 τ 将非自制系统转化为自治系统, T是 三角波的周期; B是参数, 当B趋于正无穷时, (10) 式退化为 (1) 和 (2) 式. (10) 式是高维非线性微分 方程组, 包含了 CCM 和 DCM 两种模式, 且将两个 分段光滑的子系统统一成一个系统. 该系统中, 状 态量 D实际是离散变化的值, 每一个周期内仅有一 个对应的值, 控制系统通过改变 D来改变 Buck 变 换器工作在开关管导通和关断的时间.

至此,本文中共使用了三种模型描述图1变换器,它们分别是(1)式,(2)式和(8)式(模型I);(6)式(模型II)以及(10)式(模型III).其中,模型I描述了变换器的连续时间域中的行为,是分段光滑模型;模型II是在模型I的基础上离散后的迭代模型,用于本文的仿真计算;模型III将分段光滑的模型I近似统一为光滑连续系统,可以从更加全局的角度

描述系统的行为,当模型III中的参数B趋于无穷时,模型III退化为模型I.由于目前的动力系统学 难以完全了解模型III的行为,本文使用模型III得 出系统吸引子的基本性质.

3 模型动力系统行为分析

将描述该变换器的方程分为功率和控制两个 系统进行研究:功率系统部分由(1)和(2)式描述 的系统组成;控制系统部分包括描述PI控制器及 脉冲宽度调制(PWM)生成器的方程,主要状态 量包括描述稳态误差的电压 V_{C1} ,PI控制器的输 出 V_{con} 和体现最终控制结果的占空比D.两个光 滑的系统(1)和(2)在控制环路的作用下交替工 作,构成了分段光滑的动力系统,塑造了Buck变 换器的动力系统行为.本文各参数取值情况如下: $V_{g} = 20$ V, L = 1 mH, C = 47 μF, R = 10 Ω, $R_{u} = 90$ kΩ, $R_{d} = 10$ kΩ, $V_{ref} = 0.8$ V, V_{tri} 的最 大值是1 V,最小值0 V,频率F = 5 kHz; $R_{1} = C_{1}$ 是PI控制器的参数,若无说明, $C_{1} = 1$ μF,本文重 点研究这两个参数对Buck变换器行为的影响.

3.1 功率系统分析

考察功率系统的行为特点:开关导通时((1) 式)的不动点是(Vg/R,Vg),开关关断时((2)式) 的不动点是(0,0).这两个光滑系统的方向场如 图3所示,均为全局收敛,从任意点出发的流形最 终均收敛于各自的不动点.

$$\begin{cases} \int_{\mathrm{T}} \left(\frac{1}{1 + \exp B(\tau - DT)} V_{\mathrm{g}} - V_{\mathrm{o}} \right) \mathrm{d}\tau = 0 \\ i_{L} - \frac{V_{\mathrm{o}}}{R} = 0 \end{cases} \Rightarrow \begin{cases} i_{L \mathrm{stable}} = \frac{D \cdot V_{\mathrm{g}}}{R} \\ V_{\mathrm{ostable}} = D \cdot V_{\mathrm{g}} \end{cases}$$
(11)

系统达到稳态时是1周期,根据(10)式,周期 内 i_L 和 V_o 的定点的平均值如(11)式使所示,进而 可得稳态时的系统状态($i_{Lstable}$, $V_{ostable}$),通过其 表达式可知,点($i_{Lstable}$, $V_{ostable}$)位于 $V_o = i_L \cdot R$ 的负载线上,受到占空比D的控制.此时的系统 流形环绕着点($i_{Lstable}$, $V_{ostable}$)做1周期运动.占 空比的变化会引起系统稳态点($i_{Lstable}$, $V_{ostable}$)的变化,从而影响系统的行为,产生分岔及混沌 现象.

图4是(1)和(2)式合并后的相图,其中实线和

虚线分别表示 (1)和(2)式流形的方向,"*"点即为 ($i_{Lstable}$, $V_{ostable}$)点,其所在直线是负载线.负载 线将第一象限分为A,B两部分,仅负载线上的电 压变化率为零,系统性质如表1所示,当流形环绕 点 ($i_{Lstable}$, $V_{ostable}$)运动时,根据状态量导数的 正负性质分为四个状态:A-On,A-Off,B-On,B-Off,其中 $\angle - 90^{\circ}$ —0°表示A-On相应状态下流形 前进方向的角度.根据以上讨论可知,流形围绕 点 ($i_{Lstable}$, $V_{ostable}$) 在有限的区域内发生周期、分 岔、混沌等现象,不会趋于无穷,并且点 ($i_{Lstable}$,

图 3 (a) (1) 式动力系统所对应的方向场; (b) (2) 式动 力系统所对应的方向场

图 4 Buck 变换器的方向场, 其中实线表示 (1) 式的方 向场, 虚线表示 (2) 式的方向场

3.2 控制系统分析

考察控制环路, PI控制器中电容 C_1 上的电压 V_{C1} 表示输出电压 V_o 与由 V_{ref} 设定的额定值之间 的稳态误差,可近似为一个常数,如图 5 所示,在给 定 R_1 的情况下 V_{C1} 基本保持恒定.根据 (7)式所 示的 PI 控制器输出电压 V_{con} 与功率部分输出电压 V_o 的关系,可知 V_{con} 与 V_o 呈线性关系,如图 6 所示.可以看出,当 $R_1 = 10$ kΩ时,电压波动幅值较小,使得占空比在合理的范围内变化;当 $R_1 = 40$ kΩ 时,电压波动幅值较大,超出了三角波的幅值范围,此时功率系统发生了 2 周期的分岔.

表1 Buck 变换器单位周期内相图性质

变换器拓扑结构	- 导数 $(di_L/dt, dV_o/dt)$ 正负极性及流形方向		
	$i_L = 0$, DCM	A区域	B区域
(1)式,开关管导通		(+, –); A-On, $\angle -90^{\circ} {-\!\!-} 0^{\circ}$	(+,+); B-On, $\angle 0^{\circ}$ —90°
(2)式,开关管关断	(0, –); A-Off, $\angle -90^{\circ}$	(–, –); A-Off, $\angle -90^\circ180^\circ$	(−,+); B-Off, ∠90°—180°

图 5 PI 控制器中 C1 电压 VC1 与电阻 R1 的关系

3.3 分岔分析

PWM 发生器产生占空比 *D*, 其与 V_{con} 的关系 如 (8) 式所示, 其中 V_M 是三角波的峰值.因此, *D* 的变化反映了输出电压 V_0 的波动, 从而起到了负 反馈的作用, 稳定输出电压.当变换器中其他参数 不变, 仅将 R_1 变大, 即 PI 控制中的比例因子变大, 根据 (7) 式, V_{con} 的直流部分将变大; 为了保持占 空比不变, V_{con} 只能增大波动, 以此抵消变大的直 流分量, 从而将引起分岔、混沌等现象.因此, 分 岔将随着 R_1 的变大而出现, 分岔图如图 7 (a) 所示, 当 $R_1 = 36.93$ kΩ 时, 系统发生倍周期分岔, 输出电 压 V_o由1周期变为2周期.当电感电流出现零时, 变换器由CCM模式进入DCM模式,从图7(b)可 以看出,当 R_1 = 44.92 kΩ时,电感电流出现零,即 系统发生边界碰撞, Buck变换器从CCM模式进入 DCM模式.

图 6 PI 控制器输出电压 V_{con} 与功率级输出电压 V_o 成 近似线性关系

9.5

9.0

8.5

8.0

7.5

7.0

0

 \sim

(a)

当变换器中其他参数不变, 仅将C1变小, 即

5

 $R_1/10^4 \Omega$

10

PI 控制中的积分因子变大,此时输出电压可迅速 收敛,但过大的积分因子易产生分岔现象,因此分 岔将随着 C₁ 的减小而出现.比较 PI 参数 R₁ 和 C₁ 对变换器分岔的影响可知,当 R₁ 使得变换器发生 分岔时, C₁ 无法将分岔消除,故 R₁ 起主导作用,如 图 8 所示.

图 9 (a) 是1周期下电感电流 i_L 和输出电压 V_o 的相图,此时 $R_1 = 10$ k Ω , $C_1 = 1$ µF,图中点 M和点 N的切线是水平的,表明 M和N 点处的电压变化率为零,从另一个角度看,点M和点N在负载线上.图中 PN 段对应于 A-On 状态, NQ 段对应于 B-On 状态, QM 段对应于 B-Of 状态, MP 段 对应于 A-Off 状态.图 9 (b)是1周期下 PI 控制器输出电压 V_{con} 与三角波 V_{tri} 的相图,图中的直线表示 V_{con} 等于 V_{tri} ,即该线与相图的交点表明 PWM 发生器的输出发生反转.从图中可以看出, V_{con} 与 V_{tri} 的相图与直线有两个交点,电路处于1周期状态.图 9 (c)中虚线框内表示的是单位周期内变换器状态转换的路径,可以看出此时是1周期下的变换器状态转换路径.

图 7 (a) 输出电压 V_0 关于参数 R_1 的分岔图; (b) 电感电流 i_L 关于参数 R_1 的分岔图

图 8 在不同 R_1 条件下输出电压 V_0 关于参数 C_1 的分岔图 (a) $R_1 = 10 \text{ k}\Omega$; (b) $R_1 = 40 \text{ k}\Omega$

图 10 (a) 是 2 周期下电感电流 i_L 和输出电压 V_o 的相图,此时 $R_1 = 40$ k Ω , $C_1 = 1$ µF,图中 点 K, L, M, N处的切线是水平的,表明这些点 处的电压变化率为零,即点 K, L, M, N在负载 线上.图中 PK 段对应于 A-On 状态, KQ 对应于 B-On 状态, QN 对应于 B-Off 状态, NS 对应于 A-Off 状态, SL 对应于 A-On 状态, LT 对应于 B-On 状态, TM 对应于 B-Off 状态, MP 对应于 A-Off 状 态.图 10 (b) 是 2 周期下 PI 控制器输出电压 V_{con} 与三角波 V_{tri} 的相图,可以看出 V_{tri} 有两次突变,因 此是 2 周期循环;图中表示 V_{con}与 V_{tri} 相等的直线 与相图有四个交点,再次表明每两个周期为一个 循环.图 10 (c) 是 2 周期下变换器状态的转换路径, 可以看出最小状态循环的路径与 1 周期相同.

图 11 (a) 是 $R_1 = 50$ k Ω , $C_1 = 1$ µF 时的相 图, 对比图 10 所示相图可知, 此时变换器处于 D- CM模式下,其中,*MN*所在直线是负载线,*PN* 对应A-On,*NQ*对应B-On,*QS*对应B-Off,*ST*对 应B-On,*TM*对应B-Off,MO对应A-Off,OP对应 A-Off.在图11(b)PI控制器输出电压*V*_{con}与三角 波*V*_{tri}的相图中,*V*_{tri}有两次突变,因此是2周期循 环.图11(c)是2周期下变换器状态的转换路径,此 时电路从CCM模式进入DCM模式,可以看出当 发生边界碰撞后,单位周期内最小状态循环的路径 发生了变化.

图 12 所示是 $R_1 = 10$, 40, 60 kΩ 时输出电压 的功率谱密度,可以看出,在 $R_1 = 10$ kΩ 时,仅有 5 kHz 的频率;在 $R_1 = 40$ kΩ 时,1 周期的5 kHz 的频率分为2.5 kHz 的2 周期,此时出现了分岔;在 $R_1 = 60$ kΩ 时,输出电压 V_0 进入混沌状态,其功 率谱密度已没有明显的频率 峰值.

图 9 CCM 模式 1 周期状态下的相图 (a) i_L 与 V_o 的相图; (b) V_{con} 与 V_{tri} 的相图; (c) 变换器状态转换路径

图 11 DCM 模式 2 周期下的相图 (a) i_L 与 V_o 的相图; (b) V_{con} 与 V_{tri} 的相图; (c) 电路状态转换路径

4 实验结果与讨论

实验电路原理图如图 13 所示. 各主要参数取 值情况如下: $V_{\rm g} = 20$ V, L = 1 mH, C = 47 μF, R = 10 Ω, $R_{\rm u} = 90$ kΩ, $R_{\rm d} = 10$ kΩ, $V_{\rm ref} = 0.8$ V (LM358 的 3 脚), $V_{\rm tri}$ 的最大值是 1 V, 最小值 0 V, 频率 F = 5 kHz, $C_1 = 1$ μF, R_1 可调. 图 14 是 R_1 取不同值时的测量结果,其中,当 $R_1 = 10$ kΩ时的测量结果如图 14 中 (a) 组所示, 与图 9 一致,此时变换器处于1周期CCM模式; 当 $R_1 = 40$ kΩ时的测量结果如图 14 (b) 组所示, 与图 10 一致,此时变换器处于2周期CCM模式; 当 $R_1 = 50$ kΩ的测量结果如图 14 (c) 组所示,与 图 11 一致,此时变换器处于2周期DCM模式.实验结果验证了文中的理论分析与仿真结果.

图 12 输出电压 V_o 的功率谱密度 (a) $R_1 = 10 \text{ k}\Omega$; (b) $R_1 = 40 \text{ k}\Omega$; (c) $R_1 = 60 \text{ k}\Omega$

图 13 基于 PI 控制的电压反馈型 Buck 变换器原理图

040502-8

图 14 (a) 组图在 $R_1 = 10 \text{ k}\Omega$ 条件下测量; (b) 组图在 $R_1 = 40 \text{ k}\Omega$ 条件下测量; (c) 组图在 $R_1 = 50 \text{ k}\Omega$ 条件下测量; 第一列是 i_L -Vo 相图, 第二列是 V_{con} -V_{tri} 相图, 第三列是 i_L 波形图

5 结 论

本文以基于PI控制的电压反馈型Buck变换器作为研究对象,对Buck变换器中的各种拓扑结构建立线性动力系统模型,这些模型构成的分段光滑动力系统模型描述了Buck变换器的动力学行为;分析每段动力系统模型的方向场,指出Buck变换器的混沌吸引子,其系统状态的流形将围绕该吸引子在有限的区域内运动;推导出PI控制系统的输出控制量与输出电压之间的关系,指出PI控制系统中比例因子与积分因子的作用;分析变换器的倍周期分岔、边界碰撞及混沌等动力学行为,给出了基于PI系数的分岔条件,展示了变换器的状态转移过程. 仿真结果及实验结果验证了理论分析的正确性.本文对DC-DC变换器的设计及稳定性分析具有指导意义.

参考文献

- Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin.
 61 120501 (in Chinese)[沙金, 包伯成, 许建平, 高玉 2012 物理学报 61 120501]
- [2] Huang M, Wong S C, Tse C K, Ruan X B 2013 IEEE Trans. Circ. Syst. I 60 1062
- [3] Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505
- [4] Zhao Y B, Feng J C, Chen Y F 2013 Int. J. Bifucat. Chaos 23 1350113
- [5] Basak B, Parui S 2010 IEEE Trans. Power Electr. 25 1556
- [6] Xie F, Yang R, Zhang B 2011 IEEE Trans. Circ. Syst. I 58 2269
- [7] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503
- [8] Xie F, Zhang B, Yang R 2013 IEEE Tran. Ind. Electron. 60 3145
- [9] Deivasundari P, Uma G, Poovizhi R 2013 IET Power Electr. 6 763
- [10]~Bao B C, Xu J P, Liu Z 2009Chin.~Phys.~B 18 4742
- [11] Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508
- [12] Yang P, Xu J P, He S Z, Bao B C 2013 Acta Phys.
 Sin. 62 160501 (in Chinese)[杨平, 许建平, 何圣仲, 包伯成 2013 物理学报 62 160501]

- [13] Bao B C, Yang P, Ma Z H, Zhang X 2012 Acta Phys. Sin. 61 220502 (in Chinese)[包伯成,杨平,马正华,张希 2012 物理学报 61 220502]
- [14] Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese)[谢玲玲, 龚仁喜, 卓浩泽, 马

献花 2012 物理学报 61 058401]

- [15] He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese)[何圣仲, 周国华, 许建 平, 包伯成, 杨平 2013 物理学报 62 110503]
- [16] Liu F, 2010 Chin. Phys. B 19 080511

Bifurcation of proportion-integration-based voltage-mode Buck converter^{*}

Yang Yi-Wei[†] Liu Jia-Lin Li Bin

(College of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China)

(Received 17 October 2013; revised manuscript received 5 November 2013)

Abstract

Based on the piecewise smooth model, the smooth model and the discrete iterative model of proportion-integration (PI)-based voltage-mode Buck converter are derived. In this paper, it is proved that the chaotic attractor moves on the load line and is controlled by duty cycle, and that the manifold of the model moves around the chaotic attractor accompanied by the occurrences of period 1, period 2 and chaos phenomenon. The linear relationship between output voltage of the PI-controller and output voltage of Buck converter is derived, and then reveals that the proportional factor is a dominant one in PI controller. The period-doubling bifurcation, border collision and chaos are analyzed, and the state transfer process is exhibited. Experimental results verify that the theoretical modeling analysis and the simulation are correct.

Keywords: PI-based, voltage-mode, Buck converter, bifurcation

PACS: 05.45.-a

DOI: 10.7498/aps.63.040502

^{*} Project supported by the Fundamental Research Fund for the Central Universities of China (Grant No. 2013ZM0015).

[†] Corresponding author. E-mail: yangyiwei@scut.edu.cn