物理学报 Acta Physica Sinica

阳离子空位磁矩起因探讨

潘凤春 林雪玲 陈焕铭

Study on magnetic moment of cation-vacancy

Pan Feng-Chun Lin Xue-Ling Chen Huan-Ming

引用信息 Citation: Acta Physica Sinica, 64, 176101 (2015) DOI: 10.7498/aps.64.176101 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.176101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I17

您可能感兴趣的其他文章 Articles you may be interested in

He离子辐照6H-SiC引入缺陷的光谱研究

Spectra study of He-irradiation induced defects in 6H-SiC 物理学报.2014, 63(21): 216101 http://dx.doi.org/10.7498/aps.63.216101

沉淀剂对 ZnO 压敏陶瓷缺陷结构和电气性能的影响

The effects of precipitant on the defect structures and properties of ZnO varistor ceramics 物理学报.2013, 62(22): 226103 http://dx.doi.org/10.7498/aps.62.226103

Er³⁺在KPb₂Br₅晶体中的选择替位对上转换发光光谱的影响 Influence of site-selective doping of Er³⁺ on the upconversion spectra in KPb₂Br₅ 物理学报.2013, 62(21): 216101 http://dx.doi.org/10.7498/aps.62.216101

氮掺杂的金刚石磁性研究

The magnetism study of N-doped diamond 物理学报.2013, 62(16): 166102 http://dx.doi.org/10.7498/aps.62.166102

氘化及氦离子注入对钪膜的表面形貌和相结构的影响

The influence of deuteration and helium-implantation on the surface morphology and phase structure of scandium thick film

物理学报.2012, 61(17): 176106 http://dx.doi.org/10.7498/aps.61.176106

阳离子空位磁矩起因探讨*

潘凤春 林雪玲† 陈焕铭

(宁夏大学物理电气信息学院,银川 750021)

(2015年3月17日收到;2015年4月14日收到修改稿)

运用群论和分子轨道理论的方法,系统地研究了非掺杂磁性半导体中阳离子空位产生磁矩的原因,并用 海森堡模型阐明了磁矩之间的交换耦合机理.研究发现:阳离子空位磁矩的大小与占据缺陷能级轨道的未配 对电子数有关,而缺陷能级的分布与空位的晶场对称性密切相关;通过体系的反铁磁状态和铁磁状态下的能 量差估算交换耦合系数 J₀,交换耦合系数 J₀的正负可以用来预测磁矩之间的耦合是否为铁磁耦合:J₀ > 0, 则表明磁矩之间的耦合为铁磁耦合,反之为反铁磁耦合.最后指出空位的几何构型发生畸变(John-Teller 效 应)的原因:缺陷能级轨道简并度的降低与占据缺陷能级轨道的电子的数目有直接的关系.

关键词:阳离子空位,磁矩,电子结构,对称性 PACS: 61.72.-y, 71.15.Pd, 71.20.-b, 71.22.+i

DOI: 10.7498/aps.64.176101

1引言

将电子的电荷属性和自旋属性结合起来,同时 具有铁磁性材料的特性和半导体材料的输运性质 的稀磁半导体是自旋电子学领域的关键材料,作为 具有重要应用前景和丰富物理内涵的一种新型电 子材料,由于其广阔的应用前景,稀磁半导体受到 了广泛的关注^[1].到目前为止,磁性半导体材料分 为以下三类:

1) 天然的磁性半导体 (magnetic semiconductor) 材料, 例如铕氧化物和半导体的尖晶石类材 料^[2]. 这类材料具有周期排列的磁性元素, 然而, 这类材料的晶体结构和传统的半导体材料有很大 的不同, 而且这类晶体的生长非常困难从而不能成 为理想的磁性半导体材料.

2) 通过在传统的半导体材料中掺杂Fe, Co, Ni, Mn等磁性或者C, N等非磁性元素, 这也是至 今获得稀磁半导体 (diluted magnetic semiconductor) 材料的重要途径. Munekata 等^[3]于1989年首 次成功在 Mn 组份 $x \leq 0.18$ 的 In_{1-x}Mn_xAs 的材料

体系中发现有部分磁有序,继而Ohno等^[4]发现了 其居里温度为75 K的铁磁性材料(Ga, Mn) As. 随 着低温分子束外延技术的发展,人们已成功解决 了磁性离子在III-V族半导体中溶解度的难题.如 果与传统的半导体工艺相结合考虑,基于Si,Ge的 IV 族磁性半导体无疑是最佳的候选材料. Park 研 究组^[5] 第一次报道了 $Mn_x Ge_{1-x}$ 的研究情况, 通过 外加电压可以控制样品的磁性;而Li研究组^[6]将 Park的研究成果解释为场致效应的结果,这方面的 工作不再一一赘述^[7-10]. 基于 II-VI 族的磁性半导 体特别是氧化物磁性半导体也一直是研究的热点. 这要归功于Dietl等^[11]的研究贡献,他们用Zener 模型预言了在掺杂过渡族金属元素p型的ZnO中 居里温度将高于室温. 理论研究表明, 在ZnO中掺 入Fe, Co, Ni, N等元素可以得到磁有序的半导体 材料[12-14], 这方面的工作, 也得到了实验上的印 证^[15-18].谢等^[19]采用脉冲激光沉积(PLD)的方 法制备了Cr: ZnO样品,表明其中的铁磁性与锌空 位密切相关. 王等^[20]采用固相反应烧结法制备了 Co: ZnO 样品,发现样品在室温下表现为顺磁性.

3) 通过离子注入技术或者控制晶体生长的

* 国家自然科学基金(批准号: 11447160)和宁夏高等学校科学研究项目(批准号: NGY2014048)资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: 13995116713@163.com

条件在半导体材料中产生缺陷也可以诱发磁性, 即非掺杂的磁性半导体 (defects induced magnetic Semiconductor). 实验上非掺杂的室温铁磁性材 料是 Venkatesan 等^[21]首先在 HfO₂ 薄膜中发现的, 其中的磁性改变了人们对稀磁半导体材料中磁性 产生的传统认知,从而了引发了全世界对此类磁性 半导体研究的热潮. Liu 等^[22] 第一次在中子辐射 的SiC单晶中观测到了磁性,并认为其中的磁性与 双空位有关. Song 等^[23] 在 Al 掺杂的 4 H-SiC 中观 测到了铁磁性,并认为其中的铁磁性是sp²/sp³与 结构缺陷的共同效应. 随后的一些实验及理论计算 表明铁磁性的起源与晶体里面的缺陷,特别是阳离 子空位有关. 对于阳离子空位产生磁矩的原因大多 为晶体缺陷能级的劈裂,其真实的原因在于悬挂键 电子占据轨道的不对称产生, 而缺陷能级又和晶场 的对称性密切相关,这也是本文讨论的重点.

2 讨论与结果

结构的对称性越高,其能级简并度也愈高,系 统状态以波函数来描述,按群的不等价不可约表示 变换的任意两个本征函数一定有不同的本征值,因 为同属于群不等价表示的两个基函数是不能通过 某种对称操作将两者联系起来的,简单的说就是分 子的波函数可以作为分子结构所属点群的不可约 表示的基.本文用群论和分子轨道理论的方法,系 统地研究了非掺杂磁性半导体中阳离子空位磁矩 产生的根源,并用海森堡模型阐明了磁矩之间的交 换耦合机理.下面我们将从空位结构的对称性来分 类阐述阳离子空位的磁矩.

2.1 具有T_d对称性的空位结构

以3C-SiC为例, 一个Si空位周围近邻的4个C 原子具有正四面体结构, 属于T_d群, 是正四面体完 全对称性点群, 其24个真转动群元可以分为5类, 所以共有5个不等价的不可约表示, 其特征标表见 表1.

为了便于描述,我们将空位周围的四个C原子 分别标识为C₁, C₂, C₃和C₄,令此四面体的中心 位于坐标原点,而C₄原子位于z轴上,如图1所示. 而四个C原子的悬挂键轨道(sp³轨道)分别用S₁, S₂, S₃和S₄表示,然后从群的各类操作中任取一个 对称操作作用到这些轨道S上. 1) 恒等操作 E, 这个四个杂化轨道均不改变位
 置, 因此对特征标贡献为4, X(E) = 4.

2) 绕轴作定角转动操作 L_3 , 以绕 Z 轴旋转 为例, 除了 S_4 不改变位置对特征标的贡献为1 外, 其余 S_1 , S_2 和 S_3 均会跑到其他位置, 因此 $X(L_3) = 1$.

3) 镜转动操作, $X(L_2) = 0$.

4) 中心反演操作, $X(L_4) = 0$.

5) 镜面反射操作, 以 oxz 为面, S_4 , S_3 位置不变, 对特征标贡献为2, 其余位置均改变, 所以 $X(M_d) = 2$.

表 1 T_d 群特征表 Table 1. The feature table of T_d group.

T_d	E	$8L_3$	$3L_2$	$\overline{6L_4}$	$6M_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	$^{-1}$	-1	1
Г	4	1	0	0	2

图 1 C-SiC 中 Si 空位结构示意图,为具有 T_d 对称的正 四面体结构

Fig. 1. The structure of Si vacancy of 3C-SiC, with regular tetrahedron structure of T_d symmetry.

从 T_d 群的特征标表很容易看出,将表示 A_1 和 表示 T_2 的特征标加起来,就得到所满足的组合,即 $\Gamma = A_1 + T_2$.也就是说,以 S_1, S_2 和 S_3, S_4 这四个 杂化轨道为基生成群的4个对称性轨道将有一个属 于 A_1 单态,其余三个轨道将三度简并 T_2 三态.为 了得到缺陷能级的这四个波函数,我们应用投影算 符 $P_j = \frac{l_j}{h} \sum_R x_j(R)S$ 将四个S杂化轨道组合成一 个属于不可约表示 A_1 ,另外三个属于不可约表示 T_2 的轨道,然后再将波函数归一化,最终得到的结 果如下:

$$\psi_1 (A_1) = \frac{1}{2}(S_1 + S_2 + S_3 + S_4),$$

$$\psi_2(T_2) = \frac{1}{2\sqrt{3}}(3S_1 - S_2 - S_3 - S_4),$$

$$\psi_3(T_2) = \frac{1}{\sqrt{6}}(2S_2 - S_3 - S_4),$$

$$\psi_4(T_2) = \frac{1}{\sqrt{2}}(S_3 - S_4).$$

从上式可以看出,缺陷能级轨道的波函数是空 位周围4个C原子悬挂键电子波函数的线性组合, 每个电子的波函数用*S_i*表示,由于对称性它们具有 相同的能量α.

令 $H_{ij} = \int S_i \tilde{H} S_j d\tau$,其中 \tilde{H} 为体系的哈密顿量,根据简单分子轨道理论假定^[24]并忽略不同 原子轨道之间的重叠积分,有

$$H_{ii} = \int S_i^* \tilde{H} S_i d\tau \approx \alpha, \quad i = 1, 2, 3, 4,$$
$$H_{ij} = \int S_i^* \tilde{H} S_j d\tau = \beta,$$
$$i, j = 1, 2, 3, 4, \quad \nexists \blacksquare \quad i \neq j.$$

这里, α 正是 C 原子杂化轨道中电子的能量, 而 β 是相邻 C 原子上的相互作用能,称为 β 积分, 它表示的是负电子云与正原子核之间的库仑相互 作用,由于电荷异号,所以 β < 0,其物理原因是由 于成键态中电子云密集在两个原子核之间同时受 两个原子核的库仑吸引作用的结果.基于此,这四 个缺陷能级的电子轨道能量可以作如下计算:

$$E(\psi_1) = \int \psi \tilde{H} \psi d\tau$$

$$= \frac{1}{4} \int (S_1 + S_2 + S_3 + S_4)$$

$$\times \tilde{H}(S_1 + S_2 + S_3 + S_4) d\tau$$

$$= \alpha + 3\beta,$$

$$E(\psi_2) = \int \psi \tilde{H} \psi d\tau$$

$$= \frac{1}{6} \int (3S_1 - S_2 - S_3 - S_4)$$

$$\times \tilde{H}(3S_1 - S_2 - S_3 - S_4) d\tau$$

$$= \alpha - \beta,$$

$$E(\psi_3) = \int \psi \tilde{H} \psi d\tau$$

$$= \frac{1}{6} \int (2S_2 - S_3 - S_4) d\tau$$

$$= \alpha - \beta,$$

$$K \tilde{H}(2S_2 - S_3 - S_4) d\tau$$

$$= \alpha - \beta,$$

$$E(\psi_4) = \int \psi \tilde{H} \psi \, \mathrm{d}\tau$$

= $\frac{1}{2} \int (S_3 - S_4) \tilde{H}(S_3 - S_4) \, \mathrm{d}\tau$
= $\alpha - \beta$,

可以看出,属于三重态 T_2 上的三个波函数确实具 有相同的轨道能量,考虑到 $\beta < 0$,所以单态能级上 的电子具有更低的能量.

下面我们以ZnO, SiC, GaN和金刚石^[25-28] 晶体中不同荷电状态下的阳离子空位产生的磁 矩进行分析验证,缺陷能级的电子结构如表2所 示,其中下脚标'+'与'-'分别表示自旋向上与自旋 向下.

表 2 ZnO, SiC, GaN 和金刚石中不同价态的阳离子空 位的电子结构

Table 2. The electron structures of different charged cation vacancies in ZnO, SiC, GaN and diamond.

缺陷类型		所属点群	电子数目	电子结构	磁矩大小µB
ZnO	0	T_d	6	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^1$	2
	-1	T_d	7	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^2$	1
	-2	T_d	8	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^3$	0
SiC	0	C_{2v}	4	a^2b^2	0
	-1	T_d	5	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^0$	3
	-2	T_d	6	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^1$	2
GaN	0	T_d	5	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^0$	3
	-1	T_d	6	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^1$	2
	-2	T_d	7	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^2$	1
金刚石	0	C_{2v}	4	a^2b^2	0
	-1	T_d	5	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^0$	3
	-2	T_d	6	$\mathrm{a}^2\mathrm{t}^3_+\mathrm{t}^1$	2

从表 2 可以看出, 在具有闪锌矿结构的半导体中, 阳离子空位具有 T_d 对称性晶场, 缺陷能级在晶场的作用下劈裂成一个 a 单态和 t 三重态, 因此电子占据的不对称导致磁矩的产生.有一点需要指出, 对 SiC 和金刚石来说, 中性的 Si 空位和 C 空位由于发生 John-Teller 效应而使得对称性降低, 所属点群为C_{2v}, 此时缺陷能级全部为单态, 这就是在中性的 Si 空位和 C 空位中不会产生磁矩的原因. 之所以会发生 John-Teller 效应当然是系统能量最低的要求, 我们也可以认为, 当电子的数目与不需要更高简并度的轨道来容纳时, 电子轨道的简并度就会降低, 这就是 John-Teller 效应发生的条件.

2.2 具有C_{3v}对称性的缺陷结构

当正四面体的一个顶点被压缩或者拉伸时,就 具有了*C*_{3v}点群的对称性,这个被压缩或拉伸的顶 点用*S_N*表示,其余三个顶点用*S*₁,*S*₂和*S*₃表示, 其特征标表见表 3.

表 3 C_{3v} 点群特征标表 Table 3. The feature table of C_{3v} group.

C_{3v}	E	$2L_3$	$3M_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
Γ	3	0	1

可以看出,将表示 A_1 和表示E的特征标加起来,即得到表三最下面一行的特征标, $\Gamma = A_1 + E$. 我们同样利用投影算符将 S_1 , S_2 和 S_3 组合成一个 属于不可约表示 A_1 ,两个属于不可约表示E的轨 道,考虑到 S_N 原子,在该群的任何操作下都保持不 变,属于全对称的 A_1 表示,我们得到的结果如下:

$$\psi_1(A_1) = \frac{1}{\sqrt{3}}(S_1 + S_2 + S_3),$$

$$\psi_2(A_1) = S_N,$$

$$\psi_1(E) = \frac{1}{\sqrt{6}}(2S_3 - S_1 - S_2),$$

$$\psi_2(E) = \frac{1}{\sqrt{2}}(S_1 - S_2).$$

两个单态,一个双态,各轨道相应能量通过计算得 到的结果如下:

$$E\psi_1(A_1) = \alpha + 2\beta,$$

$$E\psi_2(A_1) = \alpha,$$

$$E\psi_1(E) = \alpha - \beta,$$

$$E\psi_2(E) = \alpha - \beta.$$

有计算表明, 当3C-SiC中Si空位周围四个邻近的 C原子中的一个被氮元素替代时 (N-V缺陷), 其 缺陷就具有 C_{3v} 点群的对称性^[29], 文章中以-1价 的N-V缺陷为例, 给出 (N-V)⁻¹缺陷的电子结构为 $a_1^2a_2^2e_+^2e_-^0$, 产生2 μ_B 大小的磁矩.

2.3 具有O_h对称性的缺陷结构

正四面体和正八面体具有相同的对称性.在只考虑纯转动操作时.通常称之为点群O,如果将O

群的24 个真转动再添加反演后, 就构成了最大的 晶体点群O_h点群.在MgO体材料中, Mg 空位周 围的6个氧原子就构成了具有O_h对称的晶场.这6 个氧原子的轨道波函数我们分别标识为S₁, S₂, S₃, S₄, S₅和S₆, 利用相同的方法即可得到这6个波函 数在O_h对称下重新组合成的单电子轨道波函数具 有下面的形式, 其中包含一个单态A, 一个双重态 E和一个三重态T.

$$\begin{split} \psi_1(A) &= \frac{1}{\sqrt{6}} (S_1 + S_2 + S_3 + S_4 + S_5 + S_6), \\ \psi_2(E) &= \frac{1}{2\sqrt{3}} (2S_3 + 2S_6 - S_1 - S_2 - S_4 - S_6), \\ \psi_3(E) &= \frac{1}{2} (S_1 - S_2 + S_4 - S_5), \\ \psi_4(T) &= \frac{1}{\sqrt{2}} (S_1 - S_4), \\ \psi_5(T) &= \frac{1}{\sqrt{2}} (S_2 - S_5), \\ \psi_6(T) &= \frac{1}{\sqrt{2}} (S_3 - S_6). \end{split}$$

如果把不同轨道之间的重叠积分考虑在内,各轨道 能量的大小比较为

$$E(A) = \alpha + 5\beta < E(T) = \alpha - \beta < E(E)$$
$$= \alpha - \beta.$$

因此, 一个中性的 Mg 空位中, 6 个电子占据不同的 缺陷轨道能级并产生 $2\mu_B$ 大小的磁矩, 其电子结 构可以表示为 $a^2t^3_+t^1_-e^0$, 这与先前的报道^[30] 也相 符合.

2.4 阳离子空位产生磁矩之间的耦合机理

稀磁半导体中磁性离子之间的耦合一般分为 两种:直接交换作用和间接交换作用.直接交换作 用其实质是价电子轨道之间的直接交叠,间接交换 作用却需要载流子亦或阴离子作为传递交换作用 的媒介.本文中讨论的阳离子空位产生的磁矩之间 的耦合就属于直接交换作用,用海森堡模型可以很 好的给出解释:每个空位产生为S的微观磁矩,相 邻的磁矩同时向上或向下体系的能量最低,体系的 哈密顿算符可以写成

$$\tilde{H} = -\sum_{i=1}^{N} J_{i,i+1} S_i S_{i+1},$$

*S*_{*i*} 表示第*i* 个磁矩大小,如果所选体系只包含2个 产生磁矩相等的空位缺陷,根据周期性边界条件, $S_{N+1} = S_1$,两种体系下的哈密顿算符可以分别表示为

$$\tilde{H} = -\sum_{i=1}^{2} J_0 S_i S_{i+1} = 2J_0 S^2,$$

反铁磁态下 S_i 和 $S_{i+1}反向$,

$$\tilde{H} = -\sum_{i=1}^{2} J_0 S_i S_{i+1} = -2J_0 S^2$$

铁磁态下 S_i 和 S_{i+1} 同向,因此公式中的交换耦合 系数 J_0 可以通过体系的反铁磁状态和铁磁状态下 的能量差来进行估算,

$$\Delta E = E_{\rm AFM} - E_{\rm FM} = 4J_0 S^2.$$

交换耦合系数 $J_0 > 0$,则表明磁矩之间的耦合为铁 磁耦合,反之为反铁磁耦合.

3 结 论

实际上晶体缺陷的结构要复杂的多,本文用群 论和分子轨道理论的方法研究了三种常见的对称 结构所给出缺陷能级轨道的表示形式,然后根据电 子的占据情况和电子轨道能级的大小给出了磁矩 产生的原因及其磁矩大小.并指出,磁矩之间的耦 合机理可用海森堡模型来说明, 根据交换耦合系数 的大小和正负来估计是否可以得到室温下的铁磁 性材料. 有一点需要明确的是, 我们并没有考虑到 空位形成能的大小,有可能某种材料的阳离子空位 要比其他缺陷的形成能要高,并不会产生实际的室 温铁磁性,而且有的半导体材料中的阴离子空位也 会产生磁矩. 很多关于阳离子空位能够诱发铁磁性 的报道很多[31-34],其空位产生磁矩的大小都可以 用本文的上述论述来说明.利用本方法也可以预测 很多半导体中阳离子空位产生磁矩的大小. 非掺杂 铁磁性被认为是一种d⁰铁磁性. 大多数的研究者 认为,磁性是由体系中的缺陷引起的,如阴离子空 位,阳离子空位,或是空位团簇,填隙离子等等.但 缺陷也有不同的价态,理论计算也表明,具有低形 成能的缺陷不一定是中性的,磁性也与缺陷的价态 有关. 另外, 压缩应力有时会让带隙变宽, 能带出 现偏移,对半导体材料磁性也会有影响[35],但具体 的相关性还不甚清楚,大都归结为缺陷周围原子的 s电子或者p电子的自旋极化,这只是从能带结构 上给出的说明,并没有给出具体的物理原因. 总之, 关于非掺杂稀磁半导体铁磁性的起因, 需要进一步 的深入研究.

最后,我们指出了空位的几何构型发生畸变 (John-Teller效应)的条件:当占据缺陷能级轨道的 电子的数目与不需要更高简并度的轨道来容纳时, 电子轨道的简并度就会降低.

参考文献

- Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
- [2] Ohno H 1998 Science **281** 951
- [3] Ohno H, Munekata H, von Molnár S, Chang L 1991 J. Appl. Phys. 69 6103
- [4] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363
- [5] Park Y D, Hanbicki A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G, Jonker B T 2002 *Science* 295 651
- [6] Li A P, Wendelken J F, Shen J, Feldman L C, Thompson J R, Weitering H H 2005 *Phys. Rev. B* 72 195205
- [7] Gareev R, Bugoslavsky Yu V, Schreiber R, Paul A, Sperl M, Döppe M 2006 Appl. Phys. Lett. 88 222508
- [8] Tsui F, He L, Ma L, Tkachuk A, Chu Y S, Nakajima K, Chikyow T 2003 Phys. Rev. Lett. 91 177203
- [9] Shuto Y, Tanaka M, Sugahara S 2006 J. Appl. Phys. 99 08D516
- [10] Chen Y X, Yan S S, Fang Y, Tian Y F, Xiao S Q, Liu G L, Liu Y H, Mei L M 2007 Appl. Phys. Lett. 90 052508
- [11] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Nature 287 1019
- [12] Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306
- [13] Sato K, Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555
- [14] Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166
- [15] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B, Gethring G A 2003 Nature Mat. 2 673
- [16] Park J H, Kim M G, Jang H M, Ryu S, Kim Y M 2004 *Appl. Phys. Lett.* 84 1338
- [17] Shim J H, Hwang T, Lee S, Park J H, Han S J, Jeong Y H 2015 Appl. Phys. Lett. 86 082503
- [18] Liu G L, Cao Q, Deng J X, Xing P F, Tian Y F, Chen Y X, Yan S S, Mei L M 2007 Appl. Phys. Lett. 90 052504
- [19] Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲 玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 物理学 报 63 077102]
- [20] Wang F, Wang Y Y, Huang W W, Zhang X T, Li S Y
 2012 Acta Phys. Sin. 61 157503 (in Chinese) [王锋, 王
 月燕, 黄伟伟, 张小婷, 李珊瑜 2012 物理学报 61 157503]
- [21] Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630
- [22] Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X, Song B, Wang B, Chen X 2011 *Phys. Rev. Lett.* **106** 087205
- [23] Song B, Bao H, Li H, Lei M, Peng T, Jian J, Liu J, Wang W, Wang W, Chen X 2009 J. Am. Chem. Soc. 131 1376

- [24] Wang G X 1986 Atomic Orbital and Molecular Orbital (Higher Education Press) p168 (in Chinese) [王国雄 1986 原子轨道与分子轨道 (高等教育出版社) 第 168 页]
- [25] Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011 Phys. Lett. A 375 678
- [26] Lin X L, Pan F C 2014 Journal of Shandong University (Natural Science) 49 3 (in Chinese) [林雪玲, 潘凤春 2014 山东大学学报 (理学版) 49 3]
- [27] Wang X P, Zhao M W, He T, Wang Z H, Liu X 2013 Appl. Phys. Lett. 102 062411
- [28] Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102 (in Chinese) [林雪玲, 潘凤春 2013 物理学报 62 166102]
- [29] Pan F C, Zhao M W, Mei L M 2010 J. Appl. Phys 108 043917

- [30] Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424
- [31] Rahman G, García-Suárez V M, Hong S C 2008 Phys. Rev. B 78 184404
- [32] Fernandes V, Mossanek R J O, Schio P, Klein J J, de Oliveira A J A, Ortiz W A, Mattoso N, Varalda J, Schreiner W H, Abbate M, Mosca D H 2009 *Phys. Rev.* B 80 035202
- [33] Dev P, Xue Y, Zhang P H 2008 Phys. Rev. Lett. 100 117204
- [34] Kim D, Yang J, Hong J 2009 J. Appl. Phys 106 013908
- [35] Lin X L, Pan F C, Chen H M, Wang X M 2014 J. Supercond. Nov. Magn. 27 2397

Study on magnetic moment of cation-vacancy^{*}

Pan Feng-Chun Lin Xue-Ling[†] Chen Huan-Ming

(School of Physics and Electric Information Engineering, Ningxia University, Yinchuan 750021, China)

(Received 17 March 2015; revised manuscript received 14 April 2015)

Abstract

We use the group theory and molecular orbital theory to systematically study the origin of magnetic moment of cation-vacancy in un-doped magnetic semiconductors, and illustrate the mechanism of exchange-coupling between magnetic moments by Heisenberg model. It is found that the magnetic moment is related to the number of unpaired electrons, and the distribution of defects energy level is correlated closely with the symmetry of vacancy crystal field. The exchange-coupling coefficients J_0 is estimated by the energy difference between antiferromagnetic and ferromagnetic states. And J_0 can be used to predict the magnetic coupling. Positive J_0 means the ferromagnetic coupling between magnetic moments, otherwise the coupling is antiferromagnetic. Moreover, we indicate that reduction of degeneracy of defect energy-level bears a direct relationship to the electron number occupied in the defect energy-level orbital, and therefore results in the structure distortion (John-Teller effect) of a cation-vacancy.

 Keywords:
 cation-vacancy, magnetic moment, electronic structure, symmetry

 PACS:
 61.72.-y, 71.15.Pd, 71.20.-b, 71.22.+i
 DOI:
 10.7498/aps.64.176101

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11447160), and the Higher School Science Research Project of Ningxia, China (Grant No. NGY2014048).

[†] Corresponding author. E-mail: 13995116713@163.com