物理学报 Acta Physica Sinica

多元半导体光伏材料中晶格缺陷的计算预测 袁振坤 许鹏 陈时友 Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials Yuan Zhen-Kun Xu Peng Chen Shi-You

引用信息 Citation: Acta Physica Sinica, 64, 186102 (2015) DOI: 10.7498/aps.64.186102 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.186102 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I18

您可能感兴趣的其他文章 Articles you may be interested in

第一原理研究 Mn 掺杂 $LiNbO_3$ 晶体的磁性和光吸收性质

Study on magnetic and optical properties of Mn-doped LiNbO₃ by using the first principles 物理学报.2015, 64(9): 097102 http://dx.doi.org/10.7498/aps.64.097102

光催化半导体 Ag_2ZnSnS_4 的第一性原理研究 First-principles study of Ag_2ZnSnS_4 as a photocatalyst 物理学报.2014, 63(24): 247101 http://dx.doi.org/10.7498/aps.63.247101

钢动静态强度计算的电子理论模型

Electronic theoretical model of static and dynamic strength of steels 物理学报.2014, 63(12): 126101 http://dx.doi.org/10.7498/aps.63.126101

铀的结构相变及力学性能的第一性原理计算

First principles studies of phase transition and mechanical properties of uranium 物理学报.2013, 62(17): 176104 http://dx.doi.org/10.7498/aps.62.176104

高质量 InGaN 的等离子体辅助分子束外延生长和 In 的反常并入行为

High-quality InGaN epilayers grown by PA-MBE and abnormal incorporation behavior of Indium into InGaN 物理学报.2013, 62(8): 086101 http://dx.doi.org/10.7498/aps.62.086101

专题: 计算物理的近期发展和应用

多元半导体光伏材料中晶格缺陷的计算预测*

袁振坤¹⁾ 许鹏¹⁾ 陈时友^{2)†}

(复旦大学物理系,计算物质科学教育部重点实验室,上海 200433)
 (华东师范大学信息学院,极化材料与器件教育部重点实验室,上海 200241)
 (2015年5月4日收到;2015年6月25日收到修改稿)

半导体光伏材料的发展在过去 60 多年中表现出了清晰的多元化趋势.从 20 世纪 50 年代的一元 Si 太阳能 电池,到 20 世纪 60 年代的 GaAs 和 CdTe 电池、70 年代的 CuInSe₂ 电池、80 年代的 Cu(In, Ga) Se₂、90 年代的 Cu₂ZnSnS₄ 电池,再到最近的 Cu₂ZnSn(S, Se)₄和 CH₃NH₃PbI₃ 电池,组成光伏半导体的元素种类从一元逐 渐增多到五元.元素种类的增多使得半导体物性调控的自由度增多,物性更加丰富,因而能满足光伏等器件 应用的需要.但是,组分元素种类的增多也导致半导体中晶格点缺陷的种类大幅增加,可能对其光学、电学性 质和光伏性能产生显著影响.近 20 年来,第一性原理计算被广泛应用于半导体中晶格点缺陷的理论预测,相 对于间接的实验手段,第一性原理计算具有更加直接的、明确的优势,并且能对各种点缺陷进行快速的研究. 对于缺陷种类众多的多元半导体体系,第一性原理计算能预测各种点缺陷的微观构型、浓度和跃迁(离化)能 级位置,从而揭示其对光电性质的影响,发现影响器件性能的关键缺陷.因而,相关的计算结果对于实验研究 有直接、重要的指导意义.本文将首先介绍半导体点缺陷研究的第一性原理计算模型和计算流程;然后,总结 近5年来两类新型光伏半导体材料,类似闪锌矿结构的Cu₂ZnSn(S, Se)₄半导体和有机-无机杂化的钙钛矿结 构 CH₃NH₃PbI₃ 半导体的点缺陷性质;以这两类体系为例,介绍多元半导体缺陷性质的独特特征及其对太阳 能电池器件性能的影响.

关键词: 多元半导体, 光伏材料, 晶格点缺陷, 第一性原理计算 PACS: 61.72.J-, 61.50.Ah, 71.20.Nr, 71.55.Gs DOI: 10.7498/aps.64.186102

1引言

自1954年Bell实验室Chapin等^[1]报道第一 个效率4.5%的单晶硅太阳能电池至今,半导体 光伏材料的研究引起了广泛关注.特别是近年来能 源紧缺和环境恶化等问题日益严重,发展廉价、高 效、环保的太阳能电池光伏材料成为材料学、物理 学和化学等众多学科共同关注的热点课题.

经过60多年的研究,常见的半导体,如单元素的Si,Ge,二元的III-V族、III-VI族等半导体之中带隙适合作为光伏材料的(带隙在1.0—1.5 eV左右),都已经进行了实验研究,对其光伏性能的好坏

目前已经有较为明确的判断.其中单晶Si电池效率已提升到25.6%,GaAs电池到28.8%,薄膜CdTe电池到21.0%,都成为代表性的光伏半导体材料^[2].然而,这些20世纪50—60年代就开始研究的一元、二元光伏半导体都有着各自的不足.Si是间接带隙半导体,其电池的光吸收层需要上百微米的厚度才能充分吸收太阳光,因而原材料消耗非常大;GaAs的制备成本高,主要应用于卫星等空间设备;CdTe薄膜电池的光吸收层仅需微米量级的厚度,原材料消耗小,近年来制备成本也大幅下降,但是其组成元素Cd有毒性.这些不足限制了Si,GaAs,CdTe

等简单光伏半导体的广泛应用.

© 2015 中国物理学会 Chinese Physical Society

^{*} 国家重点基础研究发展计划(批准号: 2012CB921401)、国家自然科学基金(批准号: 91233121)和上海市青年科技启明星项目(批 准号: 14QA1401500)资助的课题.

[†]通信作者. E-mail: chensy@ee.ecnu.edu.cn

为了扩大光伏半导体的选择范围,自20世 纪70年代开始了三元、四元乃至五元半导体的 研究,包括CuInSe₂,Cu(In,Ga)Se₂,Cu₂ZnSnS₄, Cu₂ZnSnSe₄等.这些半导体可以看作是将二元半 导体ZnSe, ZnS 中 + 2价的Zn 替换为+1价的Cu、 +3价的In或Ga、+4价的Sn 演化而来,因而其晶 体结构、电子能带结构上都保持着类似的特征. 与 将两种半导体混合而成的合金半导体(如(In, Ga) N, Zn(Se, S)等)不同, CuInSe₂, Cu₂ZnSnS₄这些 三元、四元半导体在零温(T = 0 K)下不会相分 离,是稳定的化合物.通过选取不同的组成元素, 三元、四元半导体的数目远远多于一元、二元,其 结构、光学、电学等物性的调控更具弹性, 这为光 伏半导体的选取拓展了巨大的空间. 由于这些优 势, Cu(In, Ga) Se₂, Cu₂ZnSnS₄, Cu₂ZnSnSe₄ 近 年来都成为光伏半导体研究的热点, Cu(In, Ga) Se2 电池的效率已达到 21.7%^[3], 进入了工业生产 阶段; Cu₂ZnSn(S, Se) 4 合金电池的效率也已经达 到 12.6%^[4].

除了这些由ZnSe, ZnS演化而来的多元半导体,另外一类多元光伏半导体自2012年以来也引起了特别关注,即钙钛矿结构的有机-无机复合半导体CH₃NH₃PbI₃及与之同类的CH₃NH₃PbBr₃和CH₃NH₃SnI₃等^[5-15].这类太阳能电池的发展非常迅速,短短几年时间就走过了其他光伏半导体几十年的发展历程,目前效率已增加到20%以上^[12,13].这一有机无机杂化的半导体体系在可见光吸收系数、载流子迁移率和扩散长度等多面物性上都有非常显著的优势,是II-VI, III-V族等常见半导体所不具备的,显示了多元化给半导体物性带来的新特征.

多元化虽然带来了丰富新颖的半导体物性,产 生了一系列新型光伏半导体,但是,多元化也导致 了新的问题,一个重要的问题就是多元半导体中本 征晶格点缺陷的数目大大增加. 传统一元、二元半 导体(如Si, GaAs, ZnO, ZnS等)中,本征缺陷主要 是空位和间隙,替位缺陷往往浓度较低,但是在多 元半导体中,不仅有空位和间隙,而且替位缺陷以 及各种缺陷聚集在一起的缺陷簇也可能具有很高 的浓度^[16–18]. 多种类、高浓度的缺陷可能显著改 变晶体的周期势场,并在半导体带隙中产生一系列 缺陷态能级,对半导体中电子-空穴的产生、分离和 复合等光伏过程产生重要影响,因此,对多元半导 体的缺陷性质开展系统的研究是其在太阳能电池 等器件中应用的基础.

半导体点缺陷的直接实验研究目前还存在挑 战. 点缺陷浓度往往较低,如10¹⁶ cm⁻³,这意味着 在数百万个晶格原子中才有一个点缺陷,要想通过 实验手段直接锁定某个缺陷从而研究其性质存在 很大困难. 深能级瞬态谱、正电子湮没技术、光致发 光谱等实验手段虽然能测量出某种缺陷的浓度、能 级等信息,但是,对于该缺陷的来源(微观构型是空 位、间隙还是替位),只能依靠猜测,无法明确指认 特定缺陷. 对于存在多种高浓度缺陷的多元体系, 这些实验手段的局限更加明显,由于多种缺陷的能 级可能较为接近甚至简并,更加难以猜测实验观察 到的能级来源于何种缺陷.

通过第一性原理计算进行预测是点缺陷研究 的直接、高效的方法.近30年来,基于密度泛函理 论的第一性原理计算方法和程序已发展成熟,能 够较为准确地预测一系列半导体的晶体结构、电 子能带结构和能量[19-23].基于电子本征能级和 总能的第一性原理计算, Zhang和Northrup等^[24] 在1991年发展了点缺陷计算的超原胞模型.利用 这一模型,可以计算点缺陷的形成能和离化能级. 由于超原胞大小限制、常见密度泛函计算中交换 关联势近似带来的带隙低估、缺陷结构构型优化 不充分等问题,上述超原胞模型的计算结果可能 存在较大误差,引起了ZnO, TiO2等体系缺陷性 质计算长达10年的争议[25-28].因此,发展了一 系列的误差修正方法,同时,对计算模型和流程也 做了改进^[28-31]. 这一模型和方法最近被成功用于 CuInSe₂, Cu₂ZnSnS₄, CH₃NH₃PbI₃等多种新型光 伏半导体缺陷性质的计算预测上, 计算结果为相关 实验表征和器件性能的改善提供了不可或缺的指
<u></u>
[^{32,33}].

本文以Cu₂ZnSnS₄, CH₃NH₃PbI₃ 这两类体 系为例,介绍应用第一性原理计算进行多元半导体 光伏材料中晶格点缺陷性质预测的计算模型、流 程和误差修正方法;基于近年来文献报道的计算结 果,介绍缺陷形成能、离化能级、杂相共存等计算 结果的分析方法及其与相关实验测量的联系,总结 这两类多元体系在缺陷性质上的新特征.主要内容 分为三个部分,分别是半导体缺陷的第一性原理计 算模型和计算流程、Cu₂ZnSnS₄ 类四元半导体的缺 陷性质、CH₃NH₃PbI₃类钙钛矿结构半导体的缺陷 性质.

2 半导体缺陷的第一性原理计算模型 和计算流程

为了模拟半导体中点缺陷的形成,目前广泛应 用的是超原胞(supercell)模型.缺陷(或缺陷簇)放 置在一个大的超原胞(如图1)中间,由于周期性边 界条件,两个缺陷之间存在一定相互作用,因此,需 要足够大的超原胞,以使近邻胞中镜像缺陷相互作 用可以忽略(原则上要数百万原子乃至更多).实际 计算中限制于计算能力和方法,往往超原胞仅包含 数百个原子,因而会带来一些误差,后面将会提到.

图 1 计算 Cu₂ZnSnS₄ 缺陷性质所用的超原胞模型,其中红圈表示缺陷所在位置

Fig. 1. Supercell used to calculate the defect properties of Cu_2ZnSnS_4 , where the red circle denotes the location of the defect.

在确定超原胞后,可以在当中产生缺陷,以 α 表示缺陷.例如,将图1红圈中的Cu原子移出,就 形成了Cu空位缺陷(V_{Cu}).Cu空位缺陷可能离化, 产生一个自由的空穴载流子,此时Cu空位就变成 了带q = -1电荷.为模拟带电的离化缺陷,可以 改变超原胞的电子数,这在大多数的第一性原理程 序中可以直接设置.由于电子数和原子核的质子数 不平衡,超原胞整体上将带电,会导致周期性体系 的静电Coulomb相互作用发散,因此,大多数的平 面波赝势第一性原理程序会自动加上一个均匀的 背景电荷以保持超原胞电中性^[30].在构建缺陷后, 可以固定超原胞的形状,优化超原胞中所有原子的 位置,使之弛豫到所受的Hellman-Feynman力可以 忽略.

计算超原胞的能带结构和总能采用第一性原 理密度泛函理论结合局域密度近似(LDA)^[34]或广 义梯度近似(GGA)^[21].在所有计算中,当缺陷带 电时,需要加上一个均匀的背景电荷以保持超原胞 电中性^[30].

为计算缺陷 α 带电为 q 时的形成能 $\Delta H_{f}(\alpha, q)$ 和跃迁 (离化) 能级 $\varepsilon_{\alpha}(q/q')$, 需要计算有缺陷超原 胞的总能 $E(\alpha, q)$, 和无缺陷的超原胞 (host) 的总能 E(host). 此外, 还需要计算缺陷产生时所涉及元素 的单质相 (最低能的固相或气相) 的总能 ^[35]. 有了 以上数值, 就可以计算出缺陷形成能 $\Delta H_{f}(\alpha, q)$, 即

$$\Delta H_{\rm f}(\alpha, q) = \Delta E(\alpha, q) + \sum n_i \mu_i + q E_{\rm F}, \quad (1)$$

其中, $\Delta E(\alpha, q) = E(\alpha, q) - E(\text{host}) + \sum_{i} n_i E(i) + q \varepsilon_{\text{VBM}}(\text{host})$. 从(1)式可以看出,缺陷形成能依赖于元素的化学势 μ_i 和电子费米能级 E_F .费米能级 E_F .费米能级 E_F ,以host的价带顶(VBM)为参考,对于非简并半导体, E_F 的有效值可从VBM变化到导带底(CBM),即从0到带隙值; μ_i 是元素i的化学势,以元素i的单质相(固相或气相)每个原子的总能E(i)为参考; n_i 是形成缺陷时与外界环境交换的原子数,q是与外界电子库交换的电子数.例如,对于电荷态为-1的替位缺陷A_B(A替换B),则 $n_A = -1$, $n_B = 1, q = -1$.

缺陷跃迁能级 $\varepsilon_{\alpha}(q/q')$ (transition energy level,也称为转变能级或离化能级)指缺陷从带 电为q的离化态转变为带电为q'的离化态时对应 的费米能级,此时两种价态的缺陷的形成能相等, 即 $\Delta H_{f}(\alpha,q) = \Delta H_{f}(\alpha,q')$ 时的费米能级 E_{F} .从方 程(1),可得到相对于VBM的跃迁能级

$$\varepsilon_{\alpha}\left(\frac{q}{q'}\right) = \frac{\Delta E(\alpha, q) - \Delta E(\alpha, q')}{(q' - q)} - E_{\text{VBM}}(\text{host}).$$
(2)

用有限大小的超原胞计算电荷密度和总能时, 需要对布里渊区的k点进行积分,此时往往包含一 系列高对称k点(如 Γ)和非高对称k点.这种方法 得到的电荷密度和总能收敛性好.但是,当有缺陷 产生时,多k点的计算会导致缺陷态能级占据数的 错误,例如,电子占据数本应为0的缺陷态能级的 占据数不为0,而电子占据数本应为2的价带能级 的占据数出现部分占据,这是由于有限大小的超 原胞中缺陷之间相互作用导致缺陷态能级展宽导 致的.此时计算结果对k点取样很敏感.为了避 免这个问题,可只用一个k点(Γ 点)来计算总能和 缺陷能级.这时,缺陷态能级的占据数可以得到正 确描述.然而,对于小的超原胞,单 Γ 点方法给出 的总能可能收敛不好.为了克服多k点或单 Γ 点方 法的缺点,Wei等^[36]发展了计算缺陷跃迁能级的 杂化方法,结合了特殊k点或单 Γ 点方法各自的优 势,在 Γ 点(CBM和VBM所在的点)计算缺陷态能 级,可以确保缺陷态能级与带边能级之间的差正 确;而在其他特殊k点计算总能,这些特殊k点远 离CBM和VBM,因而电子占据数可以确保正确. 对于受主缺陷,其跃迁能级相对于VBM的差可以 按下式计算:

$$\varepsilon_{\alpha}(0/q) = \varepsilon_{\mathrm{D}}^{\Gamma}(0) - \varepsilon_{\mathrm{VBM}}^{\Gamma}(\mathrm{host}) + [E(\alpha, q) - (E(\alpha, 0) - q\varepsilon_{\mathrm{D}}^{k}(0))]/(-q).$$
(3)

而对于施主缺陷,跃迁能级通常相对于 CBM,则上 式写为

$$\varepsilon_{g}^{\Gamma}(\text{host}) - \varepsilon_{\alpha}(0/q)$$

= $\varepsilon_{\text{CBM}}^{\Gamma}(\text{host}) - \varepsilon_{\text{D}}^{\Gamma}(0) + [E(\alpha, q) - (E(\alpha, 0) - q\varepsilon_{\text{D}}^{k}(0))]/q,$ (4)

其中, $\varepsilon_{\rm D}^{k}(0)$ 和 $\varepsilon_{\rm D}^{\Gamma}(0)$ 分别是在特殊 k 点(按权 重求和)和 Γ 点的缺陷能级; $\varepsilon_{\rm VBM}^{\Gamma}({\rm host})$ 和 $\varepsilon_{\rm CBM}^{\Gamma}({\rm host})$ 分别是 host 在 Γ 点的 VBM 和 CBM 能 量. $\varepsilon_{\rm g}^{\Gamma}({\rm host})$ 是在 Γ 点的带隙.得到跃迁能级后,则 带电为 q 的缺陷形成能可以表示为中性缺陷的形成 能、跃迁能级和费米能级的函数,

$$\Delta H_{\rm f}(\alpha,q) = \Delta H_{\rm f}(\alpha,0) - q\varepsilon_{\alpha}(0/q) + qE_{\rm F}, \quad (5)$$

其中 $\Delta H_{\rm f}(\alpha,0)$ 是中性缺陷的形成能. 用这种杂
化方法已成功地研究了各种半导体体系的缺陷性
质^[37-44].

需要注意的是, 在周期性超原胞的计算中, 势 能零点不能明确定义, 导致不同超原胞计算的本征 值不能直接比较. 但在方程(1)—(4)中, 涉及不同 超原胞的本征值的直接比较, 这需要用一个共同的 参考能级来对齐势能零点. 通常用远离缺陷中心的 原子的芯能级或该区域的平均静电势作为参考.

由于超原胞方法采用了周期性边界条件,不同超原胞中的带电缺陷和起保持电中性作用的背景电荷间存在Coulomb相互作用,需要做Makov-Payne修正^[45].但是直接应用Makov-Payne修正通常会高估这种相互作用能.一般认为,对于浅的低电荷态缺陷,Makov-Payne修正可以忽略^[30],而当缺陷能级很深时这个修正项有较大贡献.

在基于密度泛函理论的第一性原理计算方法 中,需要对交换关联势进行近似,常见的LDA和 GGA往往低估半导体的带隙,计算的VBM能级 位置往往偏高,而CBM能级位置往往偏低.缺陷 的形成一般会在VBM或CBM附近产生缺陷态能 级,这些缺陷态能级也和VBM,CBM一样,可能 会在LDA和GGA计算中被高估或低估,从而导致 计算的缺陷形成能和离化能级出现误差.目前,已 经发展了一系列方法来修正这些误差,包括采用 LDA+U^[46]、杂化交换关联势近似计算^[27,28,47-50] 等.其中杂化关联势近似的计算对多个半导体体系 很好地克服了LDA或GGA计算的带隙低估等问 题,特别是对产生局域电子态的深能级缺陷能较为 准确地预测其转变能级,但是,对浅能级缺陷,杂化 交换关联势的计算中长程的交换相互作用也导致 浅能级变深、浅能级缺陷变稳定等问题^[51].

除了上述带边位置、带隙大小、带电缺陷相互 作用等导致的误差,有限的超原胞大小和交换关联 势的近似还带来其他众多误差,都需要进行相应的 修正.更多的细节见参考文献 [28—31].

3 Cu₂ZnSnS₄类四元半导体的缺 陷性质

Cu₂ZnSnS₄因其1.5 eV的直接带隙、优良的 光吸收性质及组分元素廉价且无毒等优点受到 广泛关注^[52-62],具有非常好的应用前景.目前, Cu_2ZnSnS_4 太阳能电池的效率达已达到8.5%^[2]. 通过硒化可进一步提高效率,以Cu₂ZnSn(S, Se)₄ 为吸收层的电池效率已刷新到12.6%^[4].当前的 问题是, Cu₂ZnSnS₄ 太阳能电池效率难以进一 步提高,其中一个重要的原因是这种电池的开 路电压 (V_{oc}) 远低于带隙值 [63,64]. 根据 Shockley-Queisser理论^[65],单结太阳能电池的理论最大开 路电压(Voc-max)约为材料本征带隙减去0.25 eV. Voc/Voc-max 值可以反映这种材料作为太阳能电 池吸收层的性能. 从表1可以看到, 三元半导 体CuInSe₂具有较高的Voc/Voc-max;而Cu₂ZnSnS₄ 的 $V_{\rm oc}$ 则远低于 $E_{\rm g}$ – 0.25 eV, 导致其 $V_{\rm oc}/V_{\rm oc-max}$ 之比不到60%, 远低于CuInSe2. 可见, 相对于高效 的CuInSe2电池, Voc 严重损失是阻碍Cu2ZnSnS4 电池效率提升的一个关键原因. 从表1中还可以看 到, Cu₂ZnSnS₄ 电池的填充因子在所列的5 种光伏 电池也是最低的.

表1 GaAs, CIGS, CdTe, CZTSS 和 CH₃NH3PbI₃ 基太阳能电池的室温带隙 (E_g), 开路电压 (V_{oc}), 短路电流 (J_{sc}), 填充因子 (*FF*) 和效率 (η). 表中分别列出了目前实验实现的和根据 Shockley-Queisser 理论得到的最大值, 以便比较 (引自参考文献 [66])

Table 1. The room temperature bandgaps (E_g) , open-circuit voltage (V_{oc}) , short-circuit current (J_{sc}) , fill factor (FF) and efficiency (η) of GaAs-, CIGS-, CdTe-, CZTSSe-, and CH₃NH3PbI₃-based solar cells. Both the experimentally achieved and theoretical maximum values by the Shockley-Queisser limit are shown for comparison. Reprinted with permission from Ref. [66].

	$E_{\rm g}/{\rm eV}$		$V_{\rm oc}/{ m V}$	$V_{\rm oc}/V_{\rm oc-max}$	$J_{\rm sc}/{\rm mA}{\cdot}{\rm cm}^{-2}$	$J_{\rm sc}/J_{\rm sc-max}$	FF/%	$FF/FF_{\rm max}$	$\eta/\%$
GaAs	1.43	Exp	1.12	95.7%	29.68	94.0%	86.5	96.6%	28.8
		SQ-limit	1.17		31.56		89.5		33.0
CIGS	1.14	Exp	0.752	83.9%	35.3	82.5%	77.2	88.5%	20.5
		SQ-limit	0.896		42.81		87.2		33.5
CdTe	1.44	Exp	0.872	73.9%	29.47	94.6%	79.5	88.7%	20.4
		SQ-limit	1.18		31.16		89.6		32.8
CZTSS	1.13	Exp	0.513	57.8%	35.2	81.3%	69.8	80.1%	12.6
		SQ-limit	0.887		43.3		87.1		33.4
$\mathrm{CH}_3\mathrm{NH}_3$	1.55	Exp	1.13	88.3%	22.75	83.6%	75.0	83.2%	15.4
$PbI_{3-x}Cl_x$		SQ-limit	1.28		27.20		90.2		31.4

如前所述,虽然多元半导体的性质更加丰富, 但是其生长合成也更加困难.合成的样品中包含 的本征晶格缺陷往往较多,这是影响其研究应用 的重要因素.对于Cu₂ZnSnS₄,杂相和本征缺陷显 著地影响了其光伏性能,是电池V_{oc}损失的关键原 因.下面介绍如何通过第一性原理计算模拟来研 究本征缺陷性质、分析各种缺陷对于光伏性能的 影响.

3.1 四元半导体的生长条件及元素化学势 范围的确定

Cu₂ZnSnS₄包含4种元素,在合成Cu₂ZnSnS₄ 样品时除了可能形成元素的单质,还可能残留组 分元素形成的多种二元、三元乃至四元杂相,例如 CuS, Cu₂S, ZnS, SnS 和Cu₂SnS₃等.为了生长单 相的Cu₂ZnSnS₄样品,需要对生长条件中的化学 气氛进行控制,在计算模拟中,这可以通过各种组 成元素的化学势来定量描述.某种元素的化学势 越高,则该元素的浓度(或气体的偏压)越高;当浓 度高到可以形成该元素的单质时,我们将此时的元 素化学势定义为0,因此,元素化学势一般是一个 负值.

在一定的化学势条件下, Cu₂ZnSnS₄可以稳定 而各种杂相不会形成, 该条件为单相Cu₂ZnSnS₄ 的生长条件. 图2中的黑色区域给出了 μ_{Cu} = -0.2 eV 平面内 Cu₂ZnSnS₄ 化学势稳定区. 可以 看到,由于杂相的竞争,单相Cu₂ZnSnS₄的化学势 稳定区非常窄,这表明在合成的 $Cu_2 Zn Sn S_4$ 样品 中很容易残留着杂相. 尤其是沿着μ_{Zn}轴, Zn的 化学势被限制在一个相当窄的范围内且一直低于 -1.2 eV. 这是因为Zn和S很容易结合生成ZnS. 在 富Zn生长环境中, ZnS很容易形成; 而在贫Zn生长 环境中, Cu₂SnS₃很容易形成. 这表明Cu₂ZnSnS₄ 容易发生相分离生成ZnS和Cu₂SnS₃^[67].计算和 实验都表明,发生Cu₂ZnSnS₄→ZnS+Cu₂SnS₃这 种相分离所需能量很低,为0.08 eV^[68],这是限制 该四元半导体生长条件的关键因素. 一些杂相 如Cu₂SnS₃和ZnS的晶体结构与Cu₂ZnSnS₄的结 构相似,常用的X射线衍射难以判别它们是否存 在^[69,70], 需要用进一步的实验手段来区分, 如拉曼 光谱^[71].

残留的杂相将严重影响Cu₂ZnSnS₄太阳能电 池的效率.实验表明,Cu₂ZnSnS₄样品中ZnS杂相 的含量与器件性能降低密切相关^[72].要防止杂 相共存,需要在生长合成时严格地控制各组分元 素的偏压.为了获得高效的Cu₂ZnSnS₄电池,实 验上通常采用极端贫Cu,贫Sn和富Zn的生长条 件^[52,54,55].然而,在这种生长条件下,样品中残留 着杂相的可能性很高.因而,选择合适的样品合成 方法,并细致分析样品组分的均匀性及其与器件性 能的关系,对提高 Cu_2ZnSnS_4 的电池效率是十分 必要的.

图 2 计算的 Cu₂ZnSnS₄ 在元素化学势空间 (μ_{Cu} , μ_{Zn} , μ_{Sn})的稳定区 (黑色区域),图中给出的是在 $\mu_{Cu} = -0.2$ eV平面内的截面 (μ_{Zn} , μ_{Sn})(引自参考 文献 [18])

Fig. 2. The calculated stable chemical potential region (black area) of Cu₂ZnSnS₄ in (μ_{Zn} , μ_{Sn}) planes with $\mu_{Cu} = -0.2$ eV in the (μ_{Cu} , μ_{Zn} , μ_{Sn}) chemical potential spaces. Reprinted with permission from Ref. [18].

元素化学势范围的确定不仅对于分析样品中 可能存在的杂相、寻找最优的生长条件有直接指 导意义,而且是进一步研究Cu₂ZnSnS₄中缺陷的 基础.因为根据(1)式,缺陷形成能依赖于化学 势,只有先确定了化学势稳定区,才能计算缺陷 的形成能.这种依赖关系也是实验事实的反映, 不同的生长条件生长出来的样品,缺陷当然会很 不一样.

3.2 缺陷的形成和离化及其对光伏性能 的影响

作为四元化合物半导体, Cu₂ZnSnS₄ 中本征晶 格缺陷种类繁多.近年来, 借助第一性原理计算方 法, 多个研究组对其点缺陷性质进行了系统的研 究^[18,40,47,73-75].图3—图5 依次列出了采用第2 节介绍的计算模型和流程计算得到的不同缺陷的 形成能随费米能级位置和元素化学势条件的变化 及各缺陷在带隙中产生的施主、受主能级.其与二 元和三元半导体不同的特征概括如下.

图 3 在化学势空间的 P 点 (见图 2), 计算的 Cu₂ZnSnS₄ 低能本征缺陷形成能随费米能级位置的变化.对于同一费 米能级仅给出了最稳定的电荷态,其中变化的转折点 (空 心代表受主,实心代表施主)表示缺陷跃迁能级 (引自参考 文献 [18])

Fig. 3. The change of the defect formation energy in Cu_2ZnSnS_4 as a function of the Fermi energy at the chemical potential point P (from Figure 2). For the same Fermi energy, only the most stable charge state is plotted, and the charge state changes at the circles (open for acceptors and filled for donors), which show the transition energy levels. Reprinted with permission from Ref. [18].

首先,四元半导体中主要本征缺陷不再是一 元、二元和三元中的空位或间隙缺陷, 替位缺陷 成为主要缺陷,决定着半导体的导电性.在三元 CuInSe₂中,决定p型导电性的受主缺陷是Cu空位 (V_{Cu}) ,其形成能约为1.0 eV,离化能级 $\varepsilon(-/0)$ 非 常浅. 但是, 在四元Cu₂ZnSnS₄中, 决定p型导电 性的受主缺陷不是 V_{Cu} ,而是替位缺陷 Cu_{Zn} .从 图 3 和图 4 可以看到, $Cu_2 Zn Sn S_4 + V_{Cu}$ 的形成能 以及离化能级与 $CuInSe_2$ 中 V_{Cu} 的非常接近;但是, Cuzn 受主缺陷的形成能更低, 是众多缺陷中最低 的,表明在化学配比的Cu₂ZnSnS₄样品中,Cu_{Zn} 具有很高的浓度. Cuzn 容易形成, 主要是由于Cu 和Zn具有相当接近的离子半径和化学价,同时, ZnS 容易形成要求 Zn 的化学势必须足够低来避免 这种杂相残留, 根据(1)式, 这也将降低Cuzn 形成 能. 无论如何改变生长条件(元素化学势), 只要合 成的Cu₂ZnSnS₄样品仍然是单相的(无杂相),那么 Cuzn的形成能始终是所有施主和受主缺陷中最低 的,这可以在图4中清晰地看到.

图 4 Cu_2ZnSnS_4 中低能缺陷形成能随元素化学势 (生长条件) 的变化,部分元素化学势 (*APQMNPG*) 选自 图 2 中的点. 计算中假设费米能级位置置于价带顶 (p型条件),这时施主缺陷全部电离 (引自参考文献 [18]) Fig. 4. The formation energy of low-energy defects in Cu_2ZnSnS_4 as a function of the chemical potential (growth conditions) along *APQMNPG* lines surrounding the stable region as partly shown in Figure 2. The Fermi energy is assumed at the top of the valence band (p-type conditions), and thus the donor defects are fully ionized. Reprinted with permission from Ref. [18].

图 5 计算得到的 Cu₂ZnSnS₄ 本征点缺陷的受主能级或施主能级 (相对带边位置), 红条代表受主缺陷, 蓝条代表 施主缺陷 (引自参考文献 [18])

Fig. 5. The calculated ionization levels (relative to band edges) of intrinsic defects in the band gaps of Cu_2ZnSnS_4 . The red bars show the acceptor levels and the blue bars show the donor levels. Reprinted with permission from Ref. [18].

其次,四元Cu₂ZnSnS₄中存在高浓度的由替 位缺陷组成的受主-施主缺陷簇,这在二元、三元半 导体中是鲜见的,但是,在多元半导体中却是常见 的,对电池性能有重要影响.由于Cu_{Zn}十分容易形 成,与Cu_{Zn}相关的一些受主-施主相互补偿的缺陷 簇也很容易形成,如[Cu_{Zn}+Zn_{Cu}],[2Cu_{Zn}+Sn_{Zn}] 和[Cu_{Zn}+Cu_i].其中,[Cu_{Zn}+Zn_{Cu}]的形成能最 低,约为0.20 eV,而且不受生长条件(化学势)影响. 这导致Cu₂ZnSnS₄晶格中可能出现严重的Cu 和 Zn的部分无序化现象并得到了中子衍射实验的证实^[76].

另一种形成能很低的缺陷簇是 [2Cu_{Zn}+Sn_{Zn}], 约为0.2—0.6 eV (视不同的化学势而定), 对应的 浓度范围为10¹¹到10¹⁸ cm⁻³. [2Cu_{Zn}+Sn_{Zn}]的出 现虽然不产生载流子,也不产生复合中心能级,但 是会引起导带带边位置的显著下移,使得少数载 流子电子被束缚在该缺陷簇周围,对光生电子-空 穴对的分离是非常不利的,降低了自由少子的浓 度. 另一方面, 孤立的Cu_{Zn}是决定Cu₂ZnSnS₄ p 型导电性的受主缺陷,其离化能级比V_{Cu}的深约 0.12 eV, 如图3所示. 较深的Cuzn 离化能级不利 于自由空穴载流子产生,导致Cu2ZnSnS4电池具 有较大的体电阻从而降低电池的填充因子.为了抑 制[2Cuzn+Snzn]这种缺陷簇的形成,贫Cu,贫Sn 和富Zn的生长条件是十分必要的,在这种生长条 件下,样品中能级较深的CuZn浓度将会降低,而能 级较浅的V_{Cu}浓度将增加,这对电池效率的提高 也是很有利的. 这解释了长期起来实验上得到的 一个经验规律,即极端贫Cu,贫Sn和富Zn的环境 下制作出来的Cu₂ZnSnS₄电池性能更好,效率更 高^[55,69,77-79]. 针对第一性原理计算得到的Cuzn 替位缺陷的跃迁能级,最近有多个实验组开展了 导纳谱测量,测量到的能级与计算预测相符得很 好[80,81]

再次,离化的施主缺陷可能在Cu₂ZnSnS₄带 隙中产生深能级,形成电子-空穴对的复合中心,限 制少子寿命. 根据 Shockley-Read-Hall 模型^[65,82], 光伏材料中最有效的复合中心是那些在带隙中间 产生深能级的缺陷. 从图5中可见, Cu₂ZnSnS₄中 存在多种深能级施主缺陷,其中形成能较低的是 Sn_{Zn}和V_S. 在p型Cu₂ZnSnS₄样品中,这些深能 级施主缺陷将全部电离而带正电,它们将吸引电子 成为电子-空穴对复合中心.为了抑制这些深能级 缺陷的形成, 需要在贫 Sn 和富 Zn 的生长条件下合 成Cu₂ZnSnS₄样品,这种条件能够抑制深能级缺 陷SnZn 的形成. 深能级的存在将导致少子寿命变 短,进而导致低的填充因子和Voc.除非少子寿命 能得到提高,否则 Cu_2ZnSnS_4 电池的 V_{oc} 不会有提 高^[50]. 更为甚者, 即便通过提高净空穴浓度得到了 高的Voc,但如果少子寿命不变的话,电流密度和填 充因子反而会降低,因为光生载流子得不到有效收 集^[83].

有趣的是,根据计算结果,在 $Cu_2ZnSnSe_4$ 中 Sn_{Zn} 和 V_{Se} 的形成能要高一些,其能级也相对变 浅^[75],所以在富Se的气氛中对样品进行退火处 理可以降低这些深能级缺陷的浓度.这与实验 上硒化后 Cu_2ZnSnS_4 电池效率提高的事实是一致 的^[4,63,69].

综上, Cu₂ZnSnS₄的本征点缺陷性质非常复杂, 不仅缺陷种类繁多, 还存在着多种受主-施主相互补偿的缺陷簇, 这给实验上进行缺陷能级的 直接表征造成了很大困难. 另一方面, 目前合成的 Cu₂ZnSnS₄样品质量还很难达到实验表征的要求, 特别是很多样品的表面、界面附近还存在杂相,使 得缺陷的实验表征更加困难.因此,采用第一性原 理计算的缺陷形成能(浓度)和能级等结果可以为 实验研究提供直接的参考,同时,也可以基于这些 结果,分析Cu₂ZnSnS₄类太阳能电池性能的微观 影响机理,这些结果已经在过去5年中被实验研究 广泛采用.

4 CH₃NH₃PbI₃类钙钛矿结构半导体 的缺陷性质

作为另外一种近年来受到特别关注的多元半 导体光伏材料, CH₃NH₃PbI₃ (MAPbI₃) 类太阳能 电池的效率迅速上升,短短三年时间就从不到10% 上升到20%. 其能表现出如此优良的光伏性能, 例 如高的Voc,除了具有最优的带隙1.5 eV之外,必 然还有着其他非常独特的微观特性. 实验研究发 现^[11,84], $MAPbI_3$ 有极好的载流子输运性质, 其 载流子迁移长度可以达到100 nm, 而混合进Cl的 $MAPbI_{1-x}Cl_x$ 的载流子迁移长度甚至可以超过 1 µm. 如此高的迁移长度是该类电池具有很高Voc 的重要原因.载流子迁移长度取决于少子寿命,少 子寿命又取决于电子-空穴对复合中心的浓度,因 此,载流子迁移长度长,表明半导体中电子-空穴对 复合中心的浓度低,这可能是MAPbI3这类半导体 具有优良光伏特性的关键微观原因. 如前所述, 成 为电子-空穴对有效复合中心的通常都是局域在 带隙中间的深缺陷能级,为什么MAPbI3中不产生 深能级缺陷?这似乎与Cu₂ZnSnS₄中存在深能级 缺陷、少子寿命较短的情况很不一样. 为解答这些 疑问,对MAPbI3的缺陷性质开展系统的研究十分 必要.

除此之外, 实验上还发现 $MAPbI_3$ 的本征电 导具有双极性, 既可以表现出 p型也可以表现出 n型^[85], 这与Cu₂ZnSnSe₄, CuInSe₂等光伏半导体 中只能 p型掺杂、而 n型掺杂很困难显著不同. p型 电导由高浓度的受主缺陷导致, n型电导由高浓度 的施主缺陷导致, 而缺陷 α 的浓度由 $n_{\alpha} \propto e^{\frac{-\Delta H \alpha}{kT}}$ 决定^[42], 这里 ΔH_{α} 是缺陷 α 的形成能, k是玻尔 兹曼常数, T 是温度. 如果能准确计算各种缺陷 的形成能, 就能分析出电导类型的来源缺陷, 明确 $MAPbI_3$ 体系具有双极性导电性的微观原因, 这对 于理解和调控其电学性质是非常有帮助的. 综上所述,缺陷性质的分析对于解释 MAPbI₃的优良光伏性能以及如何进一步的优化至关重要. 最近多个研究组开展了理论计算研究,下面分别加以介绍.

4.1 有机-无机杂化半导体的优良缺陷特性

MAPbI3的缺陷性质理论计算最早由Yin 等[66,86] 报道, 他们所研究的晶格结构是立方的 α 相, 分别在不同的化学势条件下计算了可能 的12种本征点缺陷的形成能,其中包括三种空 位缺陷 (V_{MA}, V_{Pb}, V_{I}) , 六种替换缺陷 (MA_{Pb}, V_{I}) Pb_{MA}, MA_I, I_{MA}, Pb_I, I_{Pb})以及三种间隙原子 缺陷 $(MA_i, Pb_i, I_i),$ 如图6.其中图6(a), (b)和 (c)分别对应富I贫Pb,中度和贫I富Pb的化学势 条件,并且在每种化学势条件下,分别展示了形成 能随着费米能级(E_F)变化的函数关系.可以看到, 当化学势条件为富I贫Pb时,形成能最低的缺陷 是受主缺陷VPb, 而施主缺陷的形成能普遍很高, 此时费米能级钉扎在VBM附近,样品表现出很高 的p型电导;当I和Pb的化学势变得中度,受主缺 陷(VPb, Ii)形成能升高,施主缺陷(MAi)形成能降 低,由于缺陷的补偿效应,费米能级此时钉扎在带 隙中间,样品变成本征半导体,电导为中性;当化学 势条件变得贫 I 富 Pb, 受主缺陷 (V_{Pb} , MA_{Pb} , I_i)

的形成能进一步升高,而施主缺陷(*MA_i*, *MA_I*)的 形成能进一步降低,此时费米能级钉扎在CBM附 近,样品表现出n型电导.这些计算结果解释了实 验上^[87-89]既可以合成本征p型,又可以合成本征 n型样品的原因.

缺陷能级是光伏材料性能的重要影响因素, 图7列出了Yin等^[86]计算出来的缺陷转变能级. 对比图6中的形成能可以发现,所有形成能较低的 那些缺陷的能级都很浅.他们认为,V_{Pb}和MA_{Pb} 两种受主缺陷产生浅能级的原因是由于VBM 能级 较高,这源自于它主要是由Pbs态和Ip态杂化形 成的反键态构成的,而MA_i和V_I两种施主缺陷能 级较浅的原因是由于MAPbI₃离子性较强导致的; 另一方面,会产生深能级的那些缺陷的形成能都较 高,这表明在MAPbI₃中,无论在什么化学势条件 下,都不会出现高浓度的电子-空穴对复合中心,这 可能是MAPbI₃样品的载流子迁移长度很长的微 观原因.

由于该体系也存在多种施主和受主缺陷,并且 形成能都很低.如果这些缺陷簇相互结合,将可能 形成电中性的缺陷簇.Walsh等^[17]开展了数种受 主-施主缺陷相互补偿的空位缺陷簇,发现其浓度 很高,*MA*PbI₃ 晶格中存在大量的中性空位簇,这

图 6 正方的 α 相 *MAPbI*₃ 中各种可能本征点缺陷在 (a) 富 I 贫 Pb ($\mu_{MA} = -2.87 \text{ eV}, \mu_{Pb} = -2.39 \text{ eV}, \mu_{I} = 0 \text{ eV}$), (b) 中度 ($\mu_{MA} = -2.41 \text{ eV}, \mu_{Pb} = -1.06 \text{ eV}, \mu_{I} = -0.60 \text{ eV}$), (c) 贫 I 富 Pb ($\mu_{MA} = -1.68 \text{ eV}, \mu_{Pb} = 0 \text{ eV}, \mu_{I} = -1.19 \text{ eV}$) 三种化学势条件下缺陷形成能随着费米能级变化的关系图 (引自参考文献 [86]) Fig. 6. The calculated formation energies of various possible point defects in cubic α phase *MAPbI*₃ as a function of Fermi energy in three different chemical potentials: (a) I rich and Pb poor ($\mu_{MA} = -2.87 \text{ eV}, \mu_{Pb} = -2.39 \text{ eV}, \mu_{I} = 0 \text{ eV}$); (b) moderate ($\mu_{MA} = -2.41 \text{ eV}, \mu_{Pb} = -1.06 \text{ eV}, \mu_{I} = -0.60 \text{ eV}$); (c) I poor and Pb rich ($\mu_{MA} = -1.68 \text{ eV}, \mu_{Pb} = 0 \text{ eV}, \mu_{I} = -1.19 \text{ eV}$). Reprinted with permission from Ref. [86].

图 7 (a) 受主缺陷和 (b) 施主缺陷的转变能级示意图 (引自参考文献 [86]) Fig. 7. The calculated transition energy levels of various (a) acceptor and (b) donor defects. Reprinted with

permission from Ref. [86].

是一些实验样品密度偏低的原因.这些空位簇很容易形成,表明 MAI和PbI₂这样的结构单元非常容易从晶格中被移除,究其原因,则是由于 MAPbI₃的钙钛矿结构结合较为松软,不像一般的钙钛矿结构氧化物中很强的离子键结合.这里I是-1价的,而一般氧化物中O是-2价,对应的阴阳离子间的Coulomb相互作用在 MAPbI₃ 中减弱到氧化物中的四分之一.另外,一般实验合成 MAPbI₃的前驱物都采用 MAI和PbI₂,因此,部分的结构单元没有进入晶格也是可能的.Kim等^[90]对β相 MAPbI₃下的 MAI和PbI₂空位缺陷也进行了研究,通过缺陷体系的电荷态密度分析,发现这些缺陷也同样不产生深能级.

4.2 有机-无机杂化半导体中可能的复合中 心缺陷

β相是 MAPbI₃ 的室温相,其对称性较α相低, 因此必然也会产生不同于α相的结论. Du^[91] 对 该相下的缺陷计算发现,I间隙缺陷(I_i)是惟一能 产生深能级的低形成能缺陷(该深能级的出现与 缺陷离化后发生的显著结构弛豫相关),但如果掺 入Cl 形成合金,减小体系的晶格常数,能够提高 I_i的形成能,进而降低其缺陷浓度,因此他认为这 可能是 MAPbI₂Cl 合金体系比 MAPbI₃ 体系有更 长载流子迁移长度的原因. 这个计算结论和 Duan 等^[92] 的结论一致, Duan 等通过导纳谱的方法对 MAPbI₃ 体系的缺陷能级分布进行分析发现,在 VBM 以上大约 0.16 eV 的位置处存在一个深能级, 经过他们的理论计算分析,证明这个深能级缺陷可 能是由 I_i 缺陷引起的. 这个深能级可形成电子-空 穴对的复合中心, 不利于电池的效率.

Buin 等^[93] 通 过 高 斯 缀 加 平 面 波 方 法 (GAPW)下的第一性原理计算,见图8. 发现与 α 相的缺陷性质计算结果^[86]大体相似,但不同的 是, β 相中存在低形成能的深能级缺陷Pb_I, I_{Pb} 和 Pb_i. 图8中标出了深能级态浓度分别在超过 10¹⁸ cm⁻³和低于10¹⁵ cm⁻³对应的费米能级范围. 可以看出,在富 I 的条件下,样品会产生比较高浓度 的深能级缺陷或者电子-空穴对复合中心,而当条 件变为贫 I,并且在费米能级高于0.9 eV的情况下, 深能级缺陷浓度会被压制到低于10¹⁵ cm⁻³,因此 要提升载流子的迁移长度,样品的合成条件应该尽 可能的贫 I. 值得指出的是, Buin等的计算显示 I 间 隙缺陷 (I_i)是浅能级缺陷^[93,94],而 Du 的计算则表 明其产生深能级^[91],这可能是计算过程中缺陷附 近结构弛豫的程度和计算方法的差别引起的.

最近, Michael等^[94] 对 β 相 MAPbI₃ 中12种 本征缺陷的 $\varepsilon(0/-)$ 和 $\varepsilon(0/+)$ 转变能级进行了计 算,如图9,蓝色代表 $\varepsilon(0/-)$ 转变能级,红色代表 $\varepsilon(0/+)$ 转变能级,粗线特别标出的是深能级.可以 发现,施主缺陷Pb_i和受主缺陷I_{MA}各自都产生了 很深的 $\varepsilon(0/+)$ 和 $\varepsilon(0/-)$ 缺陷能级;除此之外,特别 有趣的是,V_I和Pb_{MA}两种缺陷通常都属于施主缺 陷,其 $\varepsilon(0/+)$ 能级都很浅,但是在MAPbI₃中这两 个缺陷还产生了很深的 $\varepsilon(0/-)$ 能级.一般来说,由 于施主缺陷导带以下都已填满电子,向体系中加入 一个额外的电子应该占据在CBM上,因此 $\varepsilon(0/-)$ 应该位于CBM之上或附近,但V_I和Pb_{MA}两种缺 陷很反常,其 $\varepsilon(0/-)$ 能级明显低于CBM.对

图 8 β相 MAPbI₃ 在不同化学势条件和费米能级下的缺陷形成能, 红色填涂区域是深能级浓度超过 10¹⁸ cm⁻³ 对应的费米能级范围, 绿色区域代表深能级浓度低于 10¹⁵ cm⁻³ 对应的费米能级范围 (引自参考文献 [93])

Fig. 8. The calculated formation energies as function of Fermi energy levels under different chemical potentials in β phase $MAPbI_3$. The red filling area denotes the Fermi energy range with concentration of deep defect levels exceeding 10^{18} cm⁻³, and the green filling area denotes that with concentration of deep defect levels below 10^{15} cm⁻³. Reprinted with permission from Ref. [93].

图 9 β 相 *MA*PbI₃ 中 12 种本征缺陷的 $\varepsilon(0/-)$ 和 $\varepsilon(0/+)$ 转变能级, 蓝色代表 $\varepsilon(0/-)$ 转变能级, 红色代表 $\varepsilon(0/+)$ 转变能级, 粗线特别标出的是深能级 (引自参考文献 [94])

Fig. 9. The $\varepsilon(0/-)$ and $\varepsilon(0/+)$ transition energy levels of 12 kinds of intrinsic defects in β phase $MAPbI_3$. Blue lines denote $\varepsilon(0/-)$ transition energy levels, and red lines denote $\varepsilon(0/+)$ transition energy levels. The deep levels are marked by bold lines. Reprinted with permission from Ref. [94].

于V_I深能级产生的原因,可以先来比较中性和加入一个额外电子之后体系的原子结构,如图10(a). 在V_I缺陷体系中加入一个额外的电子之后,经过 模拟退火算法弛豫,I空位附近出现了较大的晶 格畸变,主要表现为邻近的两个Pb原子相互靠 拢,形成了Pb-Pb二聚化结构,表现出很强的共价 性.图11(a)展示了形成Pb-Pb二聚化结构前后 体系的能带结构,可见在加入一个额外的电子之 后,V_I附近的两个电子占据CBM,形成Pb-Pb二聚 化结构后,两个电子占据在Pb—Pb 键上,拉低该 缺陷能级到带隙中,这就是该深能级出现的原因. Pb_{MA}和Pb_i出现深能级的原因和V_I类似,缺陷引 入的Pb原子和邻近的Pb原子形成二聚化结构(见 图10(b)),使得Pb_i附近的两个电子占据二聚化的 Pb—Pb键, 拉低了本应在 CBM 上的缺陷能级到带 隙中形成深能级. 对于 I_{MA}, 当I 替换 MA之后, 近 邻的三个I 原子相互靠拢形成I-I-I 三聚化结构 (如 图 10 (c)), 使得本应在 VBM 上的空占据的缺陷能 级推高到带隙中形成深能级, 如图 11 (b). 这些缺 陷周围结构弛豫大和重新成键的情况表明, 该体系 中也有着很强的共价性特征.

这四种能引入深能级的缺陷的形成能如 图12所示.箭头指向代表形成Pb-Pb二聚化或 I-I-I三聚化结构前后形成能的变化.由于这些缺陷 能同时表现出受主缺陷和施主缺陷的特征,其行为 与样品的费米能级位置紧密相关(根据(1)式),例 如,对V₁,费米能级位置较低时其作为施主形成能 更低,而当费米能级位置较高时其作为受主形成能 较低,因此仅当费米能级高于图中红线和黑线交叉 点时(图12中红色区域),V_I才是一个能引入深能 级的受主缺陷.可以看到,V_I和I_{MA}的形成能较低, 因此这两种缺陷应该是*MA*PbI₃样品中电子-空穴 对的有效复合中心.依据图12,要避免这些复合中 心的出现,费米能级的范围应该控制在VBM以上 0.29 eV到1.35 eV之间.

对比 Cu₂ZnSnS₄和 CH₃NH₃PbI₃的缺陷性质 可以发现,在 CH₃NH₃PbI₃中可以通过适当调节体 系的载流子浓度(费米能级位置)和生长条件,使得 晶格中完全不存在任何深能级复合中心缺陷,这是 Cu₂ZnSnS₄等其他光伏半导体中难以实现的,也是 实验上观察到 CH₃NH₃PbI₃体系具有非常大的载 流子扩散长度的微观原因.另外,CH₃NH₃PbI₃中 多种空位、间隙和替位缺陷的形成能都不是很高, 表明其成键较弱、晶格较软.特别是 *MA*I和 PbI₂ 这些结构单元能非常容易地被移出晶格(中性缺陷 簇易形成),表明该体系的稳定性存在本征的不足, 这可能是该类光伏材料未来发展的一个瓶颈.如果 将 CH₃NH₃PbI₃中的有机阳离子替换为其他的有 机或无机阳离子,或者将 Pb 替换 Sn, I 替换为其他 的卤族元素,其晶格点缺陷会发生何种变化,目前 这些都还不清楚,值得进一步探讨^[16].

图 10 (a) $V_{\rm I}$ 附近形成 Pb-Pb 二聚化结构的示意图; (b) Pb_i 附近形成 Pb-Pb 二聚化结构的示意图; (c) I_{MA} 附近形成 I-I-I 三聚化结构示意图 (引自参考文献 [94]) Fig. 10. (a) The Pb-Pb dimer structure nearby $V_{\rm I}$; (b) the Pb-Pb dimer structure nearby Pb_i; (c) the I-I-I trimer structure nearby I_{MA} . Reprinted with permission from Ref. [94].

图 11 (a) V_{I}^{-} 和 (b) I_{MA}^{0} 的能带结构, 红线代表缺陷能级, 虚线代表未占据电子的能级, 实线代表被占据的能级. 可以看到, 对于 V_{I}^{-} , 当形成 Pb-Pb 二聚化结构之前, 两个电子占据在 CBM 上, 形成二聚化结构之后, 缺陷能级从 CBM 被拉低到带隙中形成深能级, 并由两个电子占据; 对于 I_{MA}^{0} , 形成 I-I-I 三聚化结构之后, 空占据的缺陷能级从 VBM 附近推高到带隙中形成深能级 (引自参考文献 [94])

Fig. 11. The band structures of (a) $V_{\rm I}^-$ and (b) I_{MA}^0 defect. Red lines denote defect levels. Dash and solid lines denote unoccupied and occupied levels, respectively. For $V_{\rm I}^-$, before Pb-Pb dimer structure forms, two electrons occupy CBM, while after the dimer structure forms, the defect level is pulled downward into the band gap, forming deep defect level occupied by the two electrons. For I_{MA}^0 , after I-I-I trimer structure forms, the unoccupied defect level is pushed from VBM upward into the band gap, forming deep defect level. Reprinted with permission from Ref. [94].

图 12 计算的 V_I, Pb_i, Pb_{MA}和 I_{MA}的缺陷形成能, 红点代表深能级, 绿点代表浅能级, 阴影区代表该缺陷在这一费米能级范围内变为深能级缺陷, 箭头指向代表形成 Pb-Pb 二聚化或 I-I-I 三聚化结构前后形成能的变化趋势 (引自参考文献 [94])

Fig. 12. The calculated formation energies of $V_{\rm I}$, ${\rm Pb}_{IA}$, ${\rm Pb}_{MA}$ and ${\rm I}_{MA}$ defects. Red and green points denote deep and shallow transition levels, respectively. The arrows point to the change trend of formation energies before and after Pb-Pb dimer or I-I-I trimer structure forms. Reprinted with permission from Ref. [94].

5 总 结

本文首先介绍了通过第一性原理计算研究半 导体晶格点缺陷的计算模型和流程,然后依次介绍 了近年来应用这一方法研究两类新型多元半导体 光伏材料Cu2ZnSnS4和CH3NH3PbI3中本征点缺 陷性质的进展. 围绕这两类体系, 本文总结了这类 多元半导体在缺陷性质上与常规一元、二元和三元 半导体的不同之处,如替位缺陷显著增多、受主-施 主相补偿的缺陷簇容易形成、可能通过调控生长条 件和载流子浓度有效避免复合中心缺陷、有机-无 机杂化的钙钛矿结构较为松软和部分结构单元易 于离开晶格等,这些新特征是伴随着元素成分和晶 格自由度的增多而产生的, 是一元、二元和三元半 导体中很罕见但却是影响多元半导体光伏性能的 关键微观因素. 这些新的特征利用现有的实验研究 手段较难直接观察,但是,通过高效的第一性原理 计算预测, 它们在过去几年相继被揭示, 为这两类 新型太阳能电池的发展提供了重要的理论指导,同 时,也为未来研究其他新型多元半导体光伏材料的 点缺陷性质提供了参考.

感谢美国可再生能源国家实验室 (NREL)魏苏淮博士、 尹万健博士、英国 Bath 大学 Aron Walsh 教授及复旦大学 龚新高教授、向红军教授的讨论.

参考文献

- Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676
- [2] Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt.: Res. Appl. 23 1
- [3] Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 *Phys. Status Solidi RRL* 9 28
- [4] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465
- [5] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
- Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao
 P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316
- [7] Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D 2014 Nature Commun. 5 3461
- [8] Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467
- [9] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643
- [10] Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nat. Photon. 8 250
- Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344
- [12] Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

- [13] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G 2013 Nano Lett. 13 2412
- [14] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon.8 506
- [15] Lang L, Yang J H, Liu H R, Xiang H, Gong X 2014 Phys. Lett. A 378 290
- [16] Xu P, Chen S, Xiang H J, Gong X G, Wei S H 2014 Chem. Mater. 26 6068
- [17] Walsh A, Scanlon D O, Chen S, Gong X G, Wei S H 2015 Angew. Chem. Int. Ed. 54 1791
- [18] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater.
 25 1522
- [19] Kresse G, Furthmüller J 1996 Phys. Rev. B ${\bf 54}$ 11169
- [20] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
- [21] Perdew J P, Burke K, Ernzerhof M 1996 *Phys. Rev. Lett.* 77 3865
- [22] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
- [23] Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439
- [24] Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339
- [25] Ágoston P, Albe K, Nieminen R M, Puska M J 2009 *Phys. Rev. Lett.* **103** 245501
- [26] Lany S, Zunger A 2011 Phys. Rev. Lett. 106 069601
- [27] Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202
- [28] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C G 2014 *Rev. Mod. Phys.* 86 253
- [29] Lany S, Zunger A 2008 Phys. Rev. B 78 235104
- [30] Wei S H 2004 Comput. Mater. Sci. 30 337
- [31] van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851
- [32] Jing T, Dai Y, Wei W, Ma X, Huang B 2014 Phys. Chem. Chem. Phys. 16 18596
- [33] Ma X, Dai Y, Huang B 2014 ACS Appl. Mater. Inter. 6 22815
- [34] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
- [35] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
- [36] Wei S H, Yan Y 2011 Advanced Calculations for Defects in Materials: Electronic Structure Methods 2 13
- [37] Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912
- [38] Na-Phattalung S, Smith M F, Kim K, Du M H, Wei S H, Zhang S, Limpijumnong S 2006 Phys. Rev. B 73 125205
- [39] Li X, Keyes B, Asher S, Zhang S, Wei S H, Coutts T J, Limpijumnong S, van de Walle C G 2005 Appl. Phys. Lett. 86 122107
- [40] Chen S, Yang J H, Gong X, Walsh A, Wei S H 2010 *Phys. Rev. B* 81 245204
- [41] Yin W J, Wei S H, Al-Jassim M M, Turner J, Yan Y 2011 Phys. Rev. B 83 155102
- [42] Ma J, Wei S H, Gessert T, Chin K K 2011 Phys. Rev. B 83 245207

- [43] Li J, Wei S H, Li S S, Xia J B 2008 Phys. Rev. B 77 113304
- [44] Walsh A, Da Silva J L, Wei S H, Körber C, Klein A, Piper L, DeMasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402
- [45] Makov G, Payne M 1995 Phys. Rev. B 51 4014
- [46] Lany S, Zunger A 2005 Phys. Rev. B 72 035215
- [47] Han D, Sun Y, Bang J, Zhang Y, Sun H B, Li X B, Zhang S 2013 Phys. Rev. B 87 155206
- [48] Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 *Phys. Rev. B* 81 153203
- [49] Lyons J L, Janotti A, van de Walle C G 2009 Appl. Phys. Lett. 95 252105
- [50] Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 *Phys. Rev. Lett.* **111** 067402
- [51] Bang J, Sun Y Y, Abtew T A, Samanta A, Zhang P, Zhang S B 2013 Phys. Rev. B 88 035134
- [52] Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energy Mater. Sol. Cells 93 583
- [53] Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H-W 2009 Appl. Phys. Lett. 95 041904
- [54] Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384
- [55] Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 *Thin Solid Films* **517** 2455
- [56] Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201
- [57] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi b 245 1772
- [58] Cui H T, Liu X L, Liu F Y, Hao X J, Song N, Yan C 2014 Appl. Phys. Lett. 104 041115
- [59] Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126
- [60] Liu J, Choy K L, Placidi M, López-García J, Saucedo E, Colombara D, Robert E 2015 *Phys. Status Solidi a* 212 135
- [61] Lin X, Ennaoui A, Levcenko S, Dittrich T, Kavalakkatt J, Kretzschmar S, Unold T, Lux-Steiner M C 2015 Appl. Phys. Lett. 106 013903
- [62] Ford G M, Guo Q, Agrawal R, Hillhouse H W 2011 Chem. Mater. 23 2626
- [63] Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S 2014 Adv. Mater. 26 7427
- [64] Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506
- [65] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510
- [66] Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A 3 8926
- [67] Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W 2011 Prog. Photovolt.: Res. Appl. 19 93

- [68] Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411
- [69] Todorov T K, Reuter K B, Mitzi D B 2010 Adv. Mater.
 22 E156
- [70] Redinger A, Siebentritt S 2010 Appl. Phys. Lett. 97 092111
- [71] Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante J, Berg D, Dale P, Siebentritt S 2011 Appl. Phys. Lett. 98 181905
- [72] Just J, Lützenkirchen-Hecht D, Frahm R, Schorr S, Unold T 2011 Appl. Phys. Lett. 99 262105
- [73] Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202
- [74] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902
- [75] Chen S, Wang L W, Walsh A, Gong X G, Wei S H 2012 Appl. Phys. Lett. 101 223901
- [76] Schorr S, Hoebler H J, Tovar M 2007 Eur. J. Mineral. 19 65
- [77] Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508
- [78] Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt.: Res. Appl. 21 72
- [79] Collord A D, Hillhouse H W 2015 Chem. Mater. 27 1855
- [80] Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Yoshino K 2013 Appl. Phys. Lett. 103 112107

- [81] Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T 2012 Phys. Rev. B 86 045206
- [82] Shockley W, Read Jr W 1952 Phys. Rev. 87 835
- [83] Sites J, Pan J 2007 Thin Solid Films 515 6099
- [84] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
- [85] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508
- [86] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903
- [87] Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249
- [88] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396
- [89] You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674
- [90] Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312
- [91] Du M H 2014 J. Mater. Chem. A 2 9091
- [92] Duan H S, Zhou H, Chen Q, Sun P, Luo S, Song T B, Bob B, Yang Y 2015 Phys. Chem. Chem. Phys. 17 112
- [93] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281
- [94] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570

SPECIAL ISSUE—Recent developments and applications of computational physics

Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials^{*}

Yuan Zhen-Kun¹⁾ Xu Peng¹⁾ Chen Shi-You^{2)†}

1) (Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai 200433, China)

2) (Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China)

(Received 4 May 2015; revised manuscript received 25 June 2015)

Abstract

In the past 60 years' development of photovoltaic semiconductors, the number of component elements has increased steadily, i.e., from silicon in the 1950s, to GaAs and CdTe in the 1960s, to CuInSe₂ in the 1970s, to Cu(In, Ga) Se₂ in the 1980s, to Cu_2ZnSnS_4 in the 1990s, and to recent $Cu_2ZnSn(S, Se)_4$ and $CH_3NH_3PbI_3$. Whereas the material properties become more flexible as a result of the increased number of elements, and multinary compound semiconductors feature a dramatic increase of possible point defects in the lattice, which can significantly influence the optical and electrical properties and ultimately the photovoltaic performance. It is challenging to characterize the various point defects and defect pairs experimentally. During the last 20 years, first-principles calculations based on density functional theory (DFT) have offered an alternative method of overcoming the difficulties in experimental study, and widely used in predicting the defect properties of semiconductors. Compared with the available experimental methods, the first-principles calculations are fast, direct and exact since all possible defects can be investigated one by one. This advantage is especially crucial in the study of multinary compound semiconductors which have a large number of possible defects. Through calculating the formation energies, concentration and transition (ionization) energy levels of various possible defects, we can study their influences on the device performance and then identify the dominant defects that are critical for the further optimization of the performance. In this paper, we introduce the first-principles calculation model and procedure for studying the point defects in materials. We focus on the hybrid scheme which combines the advantages of both special k-points and Γ -point-only approaches. The shortcomings of the presentcalculation model are discussed, with the possible solutions proposed. And then, we review the recent progress in the study of the point defects in two types of multinary photovoltaic semiconductors, Cu₂ZnSn(S,Se)₄ and H₃NH₃PbI₃.

The result of the increased number of component elements involves various competing secondary phases, limiting the formation of single-phase multinary compound semiconductors. Unlike ternary CuInSe₂, the dominant defect that determines the p-type conductivity in Cu₂ZnSnS₄ is Cu-on-Zn antisite (CuZn) defect rather than the copper vacancy (V_{Cu}) . However, the ionization level of CuZn is deeper than that of VCu. The self-compensated defect pairs such as [2CuZn+SnZn] are easy to form in Cu₂ZnSnS₄, which causes band gap fluctuations and limits the V_{oc} of Cu₂ZnSnS₄ cells. Additionally the formation energies of deep level defects, SnZn and V_S , are not sufficiently high in Cu₂ZnSnS₄, leading to poor lifetime of minority carriers and hence low V_{oc} . In order to enhance the formation of V_{Cu} and suppress the formation of CuZn as well as deep level defects, a Cu-poor/Zn-rich growth condition is required. Compared with

^{*} Project supported by Basic Research Program of China (Grant No. 2012CB921401), the National Natural Science Foundation of China (Grant No. 91233121), and the Shanghai Rising-Star Program, China (Grant No. 14QA1401500).

[†] Corresponding author. E-mail: chensy@ee.ecnu.edu.cn

 Cu_2ZnSnS_4 , the concentration of deep level defects is predicted to be low in $Cu_2ZnSnSe_4$, therefore, the devices fabricated based on the Se-rich $Cu_2ZnSn(S,Se)_4$ alloys exhibit better performances.

Unlike Cu_2ZnSnS_4 cells, the $CH_3NH_3PbI_3$ cells exhibit rather high V_{oc} and long minority-carrier life time. The unusually benign defect physics of $CH_3NH_3PbI_3$ is responsible for the remarkable performance of $CH_3NH_3PbI_3$ cells. First, $CH_3NH_3PbI_3$ shows that flexible conductivity is dependent on growth condition. This behavior is distinguished from common p-type photovoltaic semiconductor, in which the n-type doping is generally difficult. Second, in $CH_3NH_3PbI_3$, defects with low formation energies create only shallow levels. Through controlling the carrier concentration (Fermi level) and growth condition, the formation of deep-level defect can be suppressed in $CH_3NH_3PbI_3$. We conclude that the predicted results from the first-principles calculations are very useful for guiding the experimental study.

Keywords: multinary compound semiconductors, photovoltaic materials, lattice defects, first-principles calculation

PACS: 61.72.J-, 61.50.Ah, 71.20.Nr, 71.55.Gs

DOI: 10.7498/aps.64.186102