专题:二维磁性材料

二维磁性材料及多场调控研究进展*

肖寒# 弭孟娟# 王以林†

(山东大学微电子学院, 济南 250100)

(2020年12月24日收到; 2021年1月30日收到修改稿)

二维磁性材料是二维材料家族的新成员,其在单原胞层厚度依然保持长程磁序且易受外场调控,这为二 维极限下的磁性以及其他新奇物理效应的研究提供了理想的平台,又为低功耗自旋电子学/磁存储器件的研 制开辟了新的途径,成为国际上备受关注的前沿热点.本综述首先系统介绍了近年来发现的各类本征二维磁 性材料的晶体结构、磁结构以及磁性能,并讨论了由磁场、电场、静电掺杂、离子插层、堆叠方式、应变、界 面等外场调控二维磁性材料磁性能的研究进展,最后进行总结并展望了二维磁性材料未来发展的研究方向. 深入理解二维磁性材料磁性的起源和机理、研究其磁性能与微观结构之间的关联,为寻找具有更高居里温度 (奈尔温度)的磁性材料、设计多功能的新概念器件具有重要意义.

关键词:二维磁性材料,磁耦合,多场调控 PACS: 75.70.Ak, 75.25.-j, 75.30.-m, 72.80.Ga

DOI: 10.7498/aps.70.20202204

1 引 言

二维磁性材料作为二维材料家族的新成员,其 一经发现,就立即受到国内外的广泛关注.在自旋 电子学中,巨磁阻效应、隧穿磁阻效应、自旋轨道 转矩效应等^[1-3]揭示了可通过控制自旋磁化方向 来调控电子运动.二维磁性材料在单原胞层厚度具 有长程磁序,且层间以弱的范德瓦耳斯作用力结 合,易与其他二维材料堆叠形成异质结^[4].毋庸置 疑,二维磁性材料的发现为制备集高信息存储密 度、超快响应、高集成度以及低能耗于一体的器件 提供了新的契机.实际上,对于磁性材料的研究, 已长达世纪之久.

最先被研究的是具有铁磁性的三维材料,如 EuS, CdCr₂S₄和 CdCr₂Se₄等^[5,6]. 然而,此类材料 的高质量超薄层的制备非常困难,且其晶体结构与 传统的 Si 和 GaAs 不兼容,这无疑增加了半导体 器件在集成过程中的复杂性,阻碍了器件小型化和 轻量化的进程.与之形成鲜明对比的是二维材料, 其单原子层或者几个原子层的厚度及表面无悬挂 键的特性使其可以与任意基板结合;同时,其具有 高度暴露的表面原子,通过元素掺杂、相位工程以 及表面改性等手段,可以有效地调控其性质^[4,7].然 而,根据 Mermin-Wagner 定理,由于增强的热涨 落,长程磁有序将很难在各向同性的二维材料中存 在^[8].为了在二维材料中获得磁性,科研人员通过 引入缺陷、电荷掺杂以及选择性氟化等手段在非磁 性材料中引入了自旋有序^[9–11],但是这种引入的磁 性微弱且敏感,可控性差.因此,寻找设计具有本 征磁性的二维材料仍然是迫切需要的.

科研人员通过理论计算预测了 Cr₂Ge₂(Si₂)Te₆ 和 Fe₃GeTe₂ 等一系列^[12-15] 具有本征磁性的二维 材料. 然而, 受到制备方法和检测手段的限制, 前 期寻找本征二维磁性材料的步伐相对缓慢. 直至 2017 年, 美国华盛顿大学的许晓栋研究组^[16] 和

© 2021 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金重大研究计划 (批准号: 92065206) 和山东省自然科学基金 (批准号: ZR2020MA071) 资助的课题.

[#] 同等贡献作者.

[†] 通信作者. E-mail: yilinwang@email.sdu.edu.cn

美国加州大学伯克利分校的张翔研究组^[17]利用磁 光克尔效应 (MOKE),分别独立地发现在低至单 原胞层厚度的 CrI₃ 晶体以及 Cr₂Ge₂Te₆ 双层中存 在自发磁化,这才真正地打开了二维磁性材料的大 门. 此后,一系列二维磁性材料被发现.

二维磁性材料主要可分为两大类: 二维铁磁 (FM)材料及二维反铁磁 (AFM)材料.具体地,常 见的 FM 材料包括 CrBr₃^[18], CrTe^[19], FeTe (六方 相)^[20], CrSe^[21], 1T-VSe₂^[22,23], Cr₂Ge₂Te₆^[17], Fe₃Ge Te₂^[24,25], Fe₅GeTe₂^[26]等;常见的 AFM 材料包括 CrCl₃^[27,28], NiI₂^[29], FeTe (四方相)^[20], FePS₃^[30], NiPS₃^[31], MnPSe₃^[32], MnBi₂Te₄^[33], FeOCl^[34]等. 通常来说, FM 材料层间均为铁磁耦合 (图 1(a)), 且多以 *c* 轴为易磁化轴;而 AFM 材料的磁序则 较为复杂,可分为层内 FM 和层间 AFM (A-type, 图 1(b)) 以及层内 AFM (AF-zigzag, AF-stripy 和 AF-Néel, 图 1(c)—(e)) 这两大类^[35].

目前发现的大多数磁性材料的磁耦合均可通 过相应的 Heisenberg 模型、Ising 模型及 XY 模型 来描述. Heisenberg 模型以微观的方式描述了自旋 在不同晶格点上的相互作用,是比较简单而又经典 的模型,其哈密顿量 (H)表示为

$$H = -\sum_{ij}' J_{ij} S_i \cdot S_j, \tag{1}$$

其中 i, j表示格点上的原子, 求和项 \sum_{ij}' 表示对所 有原子不重复求和且不计入 i = j的项, J_{ij} 是交换 相互作用参数, S是每个原子的自旋. 为简化哈密 顿量, 可以只考虑最近邻格点间的相互作用, 并认 为晶格各向同性且最近邻格点间的交换相互作用 是一个常数 J, 则哈密顿量简化为

$$H = -\sum_{\langle i,j\rangle} JS_i \cdot S_j, \tag{2}$$

其中 $\sum_{\langle i,j \rangle}$ 表示对所有最近邻的原子求和.当 J > 0时,基态自旋平行排列,表现出铁磁性;当 J < 0时,基态自旋反平行排列,表现出反铁磁性.

Heisenberg 模型的哈密顿量在笛卡尔坐标系 (*x*, *y*, *z*)下可表示为

$$H = -\sum_{\langle i,j \rangle} J_x S_i^x S_j^x + J_y S_i^y S_j^y + J_z S_i^z S_j^z, \quad (3)$$

其中 J_x , J_y , J_z 分别表示在 x, y, z方向的交换相互 作用参数, S_i^x , S_i^y , S_i^z 是 i格点原子自旋 S 的 x, y, z分量. 当 $J_x = J_y = J_z$, 该类型的模型是 XXX Heisenberg 模型; 当 $J_x = J_y \neq J_z$, 该类型的模型是 XXZ 模型; 当 $J_z = 0$, 该类型的模型是 XY 模型; 当 $J_x = J_y = 0$, 该类型的模型是 Ising 模型 ^[31,36].

因此, Heisenberg 模型中, 相邻原子自旋可以 指向三维空间的任何地方, 自旋维数为 3. XY 模 型中, 相邻原子自旋可以指向平面的任何地方, 自 旋维数为 2, 系统具有面内各向异性. Ising 模型中, 相邻原子自旋可以向上或向下, 自旋维数为 1, 系 统具有较强的单轴各向异性^[37].

二维磁性材料具有前所未有的众多优势,且可 通过施加外场(磁场、电场、堆叠方式、静电掺杂、 离子插层、应变和界面等)的方式改变磁性能,从 而实现对磁化方向、居里温度(或奈尔温度)、矫顽 力、磁各向异性以及磁化强度等性质的调控^[38-41], 这将进一步扩大二维磁性材料的应用领域,从而使 其有望成为下一代自旋电子学/磁存储器件的核心 材料.因此,本文重点概述二维磁性材料的晶体结 构、磁结构和磁性能,同时,系统地总结分析了调 控磁性性质的手段以及研究现状.

图 1 不同 FM 和 AFM 自旋磁矩的示意图, 以磁性过渡金属离子为代表进行描述 (自旋向上的磁矩为浅灰色, 自旋向下的磁矩 为深灰色) (a) FM 耦合; (b) 层间 A-type AFM 耦合^[35]; (c) 层内 AF-zigzag 耦合^[35]; (d) 层内 AF-stripy 耦合^[35]; (e) 层内 AF-Néel 耦合^[35]

Fig. 1. Various types of FM and AFM order in layered magnetic materials, represented by magnetic transition metal ions (light grey and dark grey represent spin up and spin down, respectively). From left to right: (a) FM order; (b) interlayer A-type AFM order^[35]; (c) intralayer AF-zigzag order^[35]; (d) intralayer AF-stripy order^[35]; (e) intralayer AF-Néel order^[35].

2 二维磁性材料

二维磁性材料具有丰富的材料集合,涵盖丰富 的磁性性能. 总体而言, 二维磁性材料具体可分为 以下六类: 过渡金属卤化物、过渡金属硫化物、过 渡金属磷硫化合物、过渡金属锗碲化合物、过渡金 属铋碲化合物以及过渡金属氧卤化合物.磁性材料 的磁矩一般来源于过渡金属离子中 3d 电子的自旋 和轨道角动量,过渡金属离子间的交换相互作用驱 动了长程磁序^[16].具体地,在局域自旋磁性材料 (CrX₃, Cr₂Ge₂Te₆, MnBi₂Te₄等)中, 直接交换、 超交换和双交换等相互作用是长程磁序的主要起 源. 直接交换作用是由两个相邻磁性离子轨道波函 数的重叠形成的,在磁性材料中并不常见;相比之 下,超交换相互作用与磁性阳离子和非磁性阴离子 轨道波函数的重叠有关,在磁性材料中普遍存在. 也就是说, 当磁性阳离子之间的距离较远时, 由非 磁性阴离子介导的磁性阳离子之间的超交换作 用对稳定磁序起着重要的作用. 双交换相互作用 常出现在具有不同价态的磁性材料中[35,42]. 对于 Fe₃GeTe₉等巡游磁性材料而言,导电电子介导了 磁性,即流动的电子和局部磁矩将共存并相互作 用. 值得注意的是, 这些不同的交换相互作用之间 的相互影响,加上自旋轨道耦合产生的磁各向异性 的存在,使得在具有相似晶体结构的材料中也能产 生非常丰富的磁态.

2.1 过渡金属卤化物

在 CrX₃中, Cr³⁺磁性阳离子形成类石墨烯型 的蜂窝状晶格, 单层 CrX₃ 的晶格结构如图 2(a) 所 示^[43]. 具体地, 单层 CrX₃ 表现为边共享的八面体 配位, 层与层之间依靠范德瓦耳斯力结合. 值得注 意的是,在不同温度下,它们的晶体结构不同.在 高温下,晶体表现为空间群为 C2/m 的单斜相;在 低温下,转变为空间群为R3的菱方相^[44].在CrX₃ 的相转变过程中,各层相对于另一层的位移发生了 变化, 层内的几何形状 (如 Cr-Cr 和 Cr-X间的 键长) 仅发生了微小的变化. 对于具有菱方相的 CrX_3 而言, Cr 层在垂直于 ab 面的方向上几乎按 ABC 的方式堆叠,且 Cr 原子直接位于两个相邻蜂 窝层的中心位置;而在单斜结构中,每个后堆叠层 均沿 a方向发生移动, 而第1层几乎但不完全被 第4层遮盖^[45]. 此外,相转变温度与卤素元素的种 类有关,体相的 CrCl₃^[28], CrBr₃^[45] 以及 CrI₃^[45] 的 相转变温度分别为 240 K, 420 K 及 210-220 K.

就磁性结构而言,如图 2(b)所示^[44],单层 CrCl₃为易磁化轴在 *ab* 平面内的 FM,面内具有小 的各向异性;在石墨烯/6H-SiC(0001)上生长的单 层 CrCl₃在 10 K以下表现出稳定的长程铁磁 序^[46].体相的 CrCl₃表现为 A-type AFM,奈尔温 度(*T*_N,反铁磁材料由反铁磁性转变为顺磁性的 温度)为 17 K,可用弱 XY 模型进行描述.由于 CrCl₃的层间作用力很小,少层和体相 CrCl₃的

图 2 (a) 单层 CrX₃ 的俯视图 (左), Cr³⁺ (紫色) 和 X⁻ (金色) 组成的八面体笼 (右)^[43]; (b) 在低温菱方相的坐标系中 CrX₃ 的磁结构. 目前研究只报道 CrCl₃ 的磁矩在 *ab* 平面上, 在这里沿 [110] 和 [110] 方向画出; 在 CrBr₃ 和 CrI₃ 中, 磁矩沿 *c* 轴 ^[44]

Fig. 2. (a) Top view of a $\operatorname{Cr} X_3$ monolayer along with an illustration of the coordination (left), and Cr^{3+} (purple) and X^- (gold) in an octahedral cage (right)^[43]; (b) magnetic structures of $\operatorname{Cr} X_3$ in the coordinate system of the low temperature rhombohedral structure. The moments in CrCl_3 are drawn along the [110] and [$\overline{110}$] directions here, but are only known to be in the *ab* plane. Moments in ferromagnetic CrBr_3 and CrI_3 are along the *c* axis^[44].

 T_N 接近一致,如双层 CrCl₃的 T_N 为 16 K^[47].不同于 CrCl₃,单层 CrI₃和 CrBr₃均为易磁化轴为 *c*轴的 FM,所对应的居里温度 (T_c ,铁磁材料由铁 磁性转变为顺磁性的温度)分别为 45 和 27 K^[47]. 体相的 CrI₃^[48]和体相 CrBr₃^[45]均表现为 FM,所对 应的 T_c 分别为 61 和 37 K. 特别地, CrI₃ 的磁性结 构会受到层数的影响——少层 CrI₃ 的磁性结 构为单斜相.目前研究表明约 20 层以下的 CrI₃ 的 层间耦合均为 AFM^[49–51].通过外力扰动、压力等 可使少层 CrI₃ 的堆叠方式由单斜相转变为菱方相, 从而实现由 AFM 向 FM 的转变^[41,52,53].此外,相 比于其他两种材料, CrI₃ 具有最大的磁各向异性. 这主要是由于 Cr 离子之间由碘离子介导的超交换 而引起了较大的交换各向异性.

此外,通过化学气相传输技术,可以用 Br 替 代蜂窝层中的 Cl,制备出体相 CrCl_{3-x}Br_x^[54].随着 Br 含量的增大, Cr³⁺周围的局部环境将逐渐变化, CrCl_{3-x}Br_x的易磁化轴也从面内连续变化到面外, 且其磁转变温度和能隙均随 x发生线性变化. 然而,该线性相关性并不能推广到所有混合卤化 物体系.

相应地,其他过渡金属的二卤化物 (TM X_2 , TM = Fe, Co, Ni; X = Cl, Br, I等)也具有磁 性^[42,55,56]. NiI₂是新发现的一类反铁磁半导体材 料^[29],其晶体结构如图 3 所示,每个 Ni 连接到 6 个 I 形成一个八面体结构.与 Cr X_3 类似, NiI₂中 也存在结构相变:在温度低于 59.5 K时,层间 Ni 原子将发生位移,晶体结构从三方结构转变 成单斜结构. NiI₂具有层内 FM 和层间 AFM,如 图 3(b) 所示,各层具有非共线性的螺旋磁性结构, Ni²⁺的磁矩位于与 c 轴成 55°的平面内. 此外, 其磁 转变温度具有较大的厚度依赖性, 体相 NiI₂ 的 T_N 为 75 K; 当其厚度从 38 nm 减小到 2 nm 时, T_N 从 55 K 减小到 35 K.

体相 FeX₂ (X = Cl, Br, I) 均为易磁轴为 c 轴 的 AFM 材料. 其中, 体相 FeCl₂ 和体相 FeBr₂ 均 具有 A-type AFM 磁序, T_N 分别为 24 和 14 K; 体相 FeI₂ 具有 AF-stripy 磁序, T_N 为 9 K^[44]. 理论 预言单层 1T-FeX₂ (X = Cl, Br, I) 均为 FM 材料, 并且具有面外磁各向异性, T_c 分别为 109, 81 和 42 K^[55], 然而, 单层 1T-FeX₂ 的磁性尚需实验验 证. Co 基卤化物——体相 CoCl₂ ($T_N = 25$ K) 和 体相 CoBr₂ ($T_N = 19$ K) 为易磁化轴在面内的 AFM 材料^[44]. 与单层 1T-FeX₂ 类似, 理论预言单 层 1T-CoCl₂ 和 1T-CoBr₂ 均为 FM 材料, T_c 分别 为 85 和 23 K. 然而, 另一 Co 基多铁性材料 CoI₂ (体相), 理论计算其单层 1T-CoI₂ 为 AFM 材料^[55].

2.2 过渡金属硫化物

大多数的过渡金属硫化物磁性材料均具有非 层状结构. 以铬基硫化物为例, 具有六方相结构的 CrTe, Cr₂Te₃和 CrSe 等^[19,21,57,58]材料中的近邻原 子均通过较强的化学键 (Cr-Cr 金属键及 Cr-X 离子键)相结合, 因此难以通过机械剥离的方法获 得它们的单层材料.

华中科技大学韩俊波研究组^[19]利用化学气相 沉积 (CVD) 法制备了 FM 材料 CrTe.该材料具 有 NiAs 的六方型结构,隶属 *P*6₃/*mmc* 空间群,晶 体结构如图 4(a) 所示.CrTe 的易磁化轴为 *c*轴, 具有较强的垂直各向异性;当厚度从 45 nm 减小 到 11 nm 时, *T_c*从 205 K 减小到 140 K. 武汉大学

图 3 NiI₂单斜晶体结构的俯视图 (a)、侧视图 (b) 和晶胞结构 (c)^[29] Fig. 3. Top view (a), side view(b) and unit cell structure (c) of NiI₂ monoclinic structure^[29].

图 4 (a) CrTe 晶体结构的俯视图 (左) 和侧视图 (右)^[19]; (b) Cr₂Te₃ 晶体结构的俯视图 (左) 和侧视图 (右)^[57] Fig. 4. (a) Top view (left) and side view (right) of CrTe crystal structure^[19]; (b) top view (left) and side view (right) of Cr₂Te₃ crystal structure^[57].

何军研究组^[57] 通过 CVD 法制备了具有相似构 型的 FM 材料 Cr₂Te₃, 晶体结构如图 4(b) 所示. Cr₂Te₃ 的易磁化轴为 *c*轴, 具有强的垂直各向异 性. 当 Cr₂Te₃ 的厚度减小时, 由于重构现象的出 现, *T*_c 随厚度的变化出现了反常的现象, 即 *T*_c 随 厚度的减小而增大: 厚度为 5 nm 的 Cr₂Te₃ 的 *T*_c 接近室温 (280 K); 而当其厚度增大为 40.3 nm 时, *T*_c 减小为 170 K.

此外,北京大学张艳锋研究组^[59]利用 CVD 法制备了具有菱方相结构 (不可剥离)的 FM 材料 Cr₂S₃.该材料的 T_c 与厚度成正相关的关系:当其 厚度为 45 nm 时, T_c > 300 K,即在室温下也具有 铁磁性;当厚度减小到 15 nm 时, T_c 降低为 120 K. 新加坡南洋理工大学 Liu 研究组^[20]也利用 CVD 法,通过控制生长温度,制备了非层状六方相 FeTe (高温)和层状四方相 FeTe (低温).四方相 FeTe 具有 AF-Néel 磁结构, T_N 随厚度的减小而 减小 (T_N (5—38 nm) = 45—70 K). 然而,六方 FeTe 则表现为 Heisenberg 模型所描述的 FM, T_c 与厚度成正相关的关系 (T_c (4—30 nm) = 170—220 K).

值得注意的是,尽管体相 VSe₂具有顺磁性, 而理论预言单层 VSe₂具有本征铁磁性. 单层 1T-VSe₂由一个中心 V 原子和位于八面体顶点的 6 个 Se 原子组成,体相 VSe₂可以看作单层 VSe₂沿 *c* 轴方向以 A-A 的顺序叠加而成,晶体结构如图 5 所示^[60]. 2018年,南佛罗里达大学 Batzill 研究 组^[22]以高定向热解石墨和 MoS₂ 为衬底,利用分 子束外延 (MBE) 技术, 首次生长出了单层 1T-VSe₂, 并发现其在室温下依然保持铁磁性. 新加坡 国立大学 Loh 研究组^[60] 利用电化学剥离的方法, 以有机阳离子 (四丙基氯化铵) 作为插层分子, 获 得了单层 1T-VSe₂ 薄片. 同时, 硫醇被引入到 VSe₂ 表面, 提高了其在空气中的稳定性. 单层 1T-VSe₂ 表现出易磁化轴在面内的铁磁性, 且钝化后的 VSe₂ 磁性更强, 饱和磁化强度以及磁矩均增大, *T*c 提升至 470 K. 然而, 单层 VSe₂ 的本征铁磁性 仍存在争议, 其磁性可能来源于缺陷、边界态或界 面作用.

图 5 1T-VSe₂ 晶体结构的俯视图 (左) 和侧视图 (右) (a = b = 3.35 Å, c = 6.1 Å)^[60]

Fig. 5. Top view (left) and side view (right) of the atomic structure of layered 1T-VSe₂ crystal (a = b = 3.35 Å, c = 6.1 Å)^[60].

相比于其他二维磁性材料, 过渡金属硫化物具 有相对较高的磁转变温度, 例如 Cr_2S_3 的 T_c 接近 室温^[50], 单层 $MnSe_x$ ^[61] 和 VSe_2 ^[60] 的 T_c 甚至超过 室温, 这使其更容易被应用到自旋电子学器件中. 实验及理论研究表明 $MnSe_x$ 的室温铁磁性来源于 1T-MnSe₂, 然而该范德瓦耳斯相仅在薄层中存在, 可利用 MBE 技术制备;随厚度增大, MnSe_x则更 倾向结晶为 NaCl 或六方 NiAs 结构,体相表现出 反铁磁性^[62].单层 1T-VSe₂ 表现出较强的室温铁 磁性,但与大多数二维铁磁性材料不同,随层数增 加其铁磁性迅速减弱.此外,过渡金属硫化物磁性 材料还具有多种新颖的物理特性.随厚度的增大, Cr₂S₃ 由 p 型半导体变为双极型半导体,并最终转 变为 n 型半导体^[59].单层 1T-VSe₂ 具有电荷密度 波 (CDW),且 CDW 相转变温度高达 220 K,是体 相的 2 倍^[63].

2.3 过渡金属磷硫化合物

TMPS₃具有相同的晶体结构——隶属点群 C_{2h} (C2/m空间群)的单斜晶体结构,且均为具有 强范德瓦耳斯特性的 AFM 材料^[64-66].在每一层 中,过渡金属原子形成一个类似石墨烯的蜂窝状晶 格,且该晶格被阴离子 (P₂S₆)⁴⁻包围起来.同时, S 原子与过渡金属原子平面上下的两个 P 原子相 连,呈哑铃状. 图 6(a) 以 FePS₃ 为例,给出具体的 晶体结构示意图^[30].

在 TMPS₃ 中, NiPS₃, MnPS₃ 及 FePS₃ 的研 究更为广泛^[31,67-70]. 它们的磁结构具有非常丰富 的类型, 如图 6(b)—(e) 所示^[65], 需用不同的模型 进行描述. NiPS₃ 的磁结构可用 XY 模型进行描述 (也有研究表明 XXZ 模型为更准确地描述)^[31]: 其磁矩在 *ab* 平面内 (沿 *a* 轴方向)并以 AF-zigzag 型的方式排列, 层间为 FM 耦合^[67]. MnPS₃ 的磁 结构可用各向同性的 Heisenberg 模型进行描述: 其磁矩垂直于 ab 面, 并在 ab 平面上以 AF-Néel 型 的方式排列, 层间为 FM 耦合^[64,71]. 不同于 NiPS₃ 和 MnPS₃ 的层间 FM 耦合, FePS₃ 层间为 AFM 耦合,其磁结构可用 Ising 模型进行描述: 磁矩 垂直于 ab 平面,并在 ab 平面内以 AF-zigzag 型的 方式排列^[72]. 此外,这 3 种材料的磁转变温度也存 在着差异. NiPS₃ 的 T_N 随厚度的降低而减小,体 相 NiPS₃ 的 T_N 接近于 150 K, 双层 NiPS₃ 的 T_N 为 130 K, 然而单层 NiPS₃ 的反铁磁序被抑制^[31]. FePS₃ 的磁转变温度与厚度的关系不大,体相和薄 层材料的 T_N 均在 118 K 左右^[30]. 体相 MnPS₃ 的 T_N 为 78 K^[68].

 $CoPS_3 (T_N \sim 120 \text{ K})^{[66]}, MnPSe_3 (T_N \sim 70 \text{ K})^{[32]}$ 与 NiPS₃ 具有相同的磁结构,都可用 XY 模型进 行描述. FePSe₃ ($T_N \sim 119 \text{ K}$) 具有沿 c 轴的易磁 化轴,其磁结构可用 Ising 模型进行描述,层内具 有与 FePS₃ 相同的 AF-zigzag 型磁序^[73,74]. 因为 Co 化合物在制备上存在一定的困难,关于 Co 化 合物的研究相对较少.

CrPS₄ 是 A-type AFM 材料 ($T_N \sim 36$ K), 具 有磁晶各向异性^[75], 易磁化轴为 c轴 (在 a轴方向 具有小的磁矩分量), 其晶体结构和磁结构如图 7 所示^[76]. CrPS₄的每个单层都可以看作是由 CrS₆ 八面体沿着 b轴相互连接形成的准一维链, 即晶体 偏好沿平面内 b轴方向生长. 此外, CrPS₄中的硫 原子为终端原子, 层与层之间具有明显的范德瓦耳 斯间隙. 北京大学杨金波研究组^[76]利用化学气相 传输的方法生长了 CrPS₄单晶, 并和浙江大学郑

图 6 (a) FePS₃ 晶体结构的俯视图和侧视图^[30]; (b) FePS₃ 的原胞结构; (c)—(e) 分别为 FePS₃, MnPS₃ 以及 NiPS₃ 的磁结构示 意图^[65]

Fig. 6. (a) Top and side views of atomic structure of FePS_3 crystal^[30]; (b) unit-cell structure of FePS_3 ; (c)–(e) magnetic structures of FePS_3 , MnPS_3 and NiPS_3 , respectively^[65].

图 7 (a) CrPS₄的晶体结构和磁结构,黑色和红色的箭头指向磁矩的方向; (b) CrPS₄ 单层的 ab 平面图^[76]

Fig. 7. (a) Crystal structure and magnetic structure of $CrPS_4$, the black and red arrows point to the directions of magnetic moments; (b) *ab* plane of $CrPS_4$ monolayer^[76].

图 8 Cr₂Ge(Si)₂Te₆ 晶体结构的俯视图 (左) 和侧视图 (右), 单位原胞用黑线表示^[80]

Fig. 8. Schematic illustration of the crystalline structure of $Cr_2Ge(Si)_2Te_6$ from the top view (left) and the side view (right), a unit cell is indicated by a black line^[80].

毅研究组合作, 研究了 $CrPS_4$ 的变磁行为: 在施加 垂直磁场时, 沿 c 轴且反铁磁耦合的磁矩转向了面 内 (仍为反铁磁耦合), 同时磁矩与磁场方向有一定 的夹角; 随着磁场的进一步升高, 磁矩则完全转到 外磁场方向, $CrPS_4$ 变成类铁磁态. 尽管理论预测 单层 $CrPS_4$ 的 T_c 为 50 K^[77], 且单层 $CrPS_4$ 可采 用机械剥离的方法获得, 实验上仍未在单层 $CrPS_4$ 中观测到铁磁性.

2.4 过渡金属锗碲化合物

锗碲化合物 Cr₂Ge₂Te₆ 是最早被研究的二维 磁性材料之一^[17,78-80],其晶体结构如图 8 所示^[80]. 具体地, Cr 原子在 *ab* 平面内形成一个蜂窝状晶 格, Ge 原子占据六边形的中心,同时 Cr 原子又被 Te 原子形成的八面体包围.值得注意的是,由于 Cr-Te₆ 的八面体结构发生了轻微形变,加上 Cr 离 子的自旋轨道耦合,导致 Cr₂Ge₂Te₆具有各向同 性.即 Cr₂Ge₂Te₆ 的自旋磁矩之间的能量差很小, 可以朝向所有方向.由此,单层 Cr₂Ge₂Te₆ 可用具 有小磁各向异性的二维 Heisenberg 模型进行描述. 尽管如此, $Cr_2Ge_2Te_6$ 仍保持了较强的铁磁性, 且 以 c 轴为易磁化轴, T_c 随层数的减少而逐渐降低, 体相 $Cr_2Ge_2Te_6$ 的 T_c 为 61 K, 双层 $Cr_2Ge_2Te_6$ 的 T_c 为 28 K^[17]. 另一种铬基半导体材料 $Cr_2Si_2Te_6$ 也表现出铁磁性, 可用 Ising 模型进行描述^[81]. 相 比于 $Cr_2Ge_2Te_6$, 其磁转变温度比较低, 体相的 $Cr_2Si_2Te_6$ 的 T_c 仅为 31 K 左右.

Fe₃GeTe₂ 也是具有层状六方晶体结构的铁磁 性材料,隶属空间群 $P6_3/mmc^{[38,82]}$,其中 Fe₃Ge平 面夹在两层 Te 层之间,两个相邻的 Te 层依靠范 德瓦耳斯力结合,如图 9(a)所示^[38].在沿基底平面 和垂直基底平面的方向上,铁离子的结晶环境是不 对称的,这导致 Fe₃GeTe₂ 具有相当大的磁晶各向 异性.Fe₃GeTe₂ 是具有金属性的 Ising 型铁磁材 料,其磁性可通过导电电子介导.体相 Fe₃GeTe₂ 的 T_c 在 220—230 K之间,具有迷宫畴;然而,薄 层 Fe₃GeTe₂ 具有单一的磁畴,且 T_c 表现出较强 的厚度依赖性^[82].Fe₃GeTe₂ 的层内原子键合强度

图 9 (a) 单层 Fe₃GeTe₂的晶体结构示意图, 左边为俯视图 (沿着 [001]), 右边为侧视图 (沿着 [010])^[33]; (b) Fe_{2.76}Ge_{0.94}Te₂的磁结构^[83] Fig. 9. (a) Atomic structure of monolayer Fe₃GeTe₂. The left panel shows the view along [001], and the right panel shows the view along [010]^[38]. (b) The magnetic structure of Fe_{2.76}Ge_{0.94}Te₂^[83].

较小,传统的胶带剥离方法难以获得大面积的少层 材料,通常利用 Al₂O₃ 或 Au 与 Fe₃GeTe₂ 之间较 强的作用力进行辅助机械剥离[38,82],获得大面积的 单层 Fe₃GeTe₂. 特别地,在 Al₂O₃和 Au 上的单层 Fe₃GeTe₂的 T_c差异巨大:采用反常霍尔效应测 得 Al₂O₃ 衬底上的单层 Fe₃GeTe₂ 的 T_c 为 20 K^[38]; 采用磁圆二色性 (MCD) 测得 Au 衬底上的单层 Fe₃GeTe₂的 T_c为 130 K^[82]. 这可能是由于 Fe₃Ge Te2与Au界面处的电荷转移增大了Fe3GeTe2中 的电子浓度,进而Au衬底上的单层Fe3GeTe9的 居里温度较高[38]. 事实上, 实验中很难得到化学计 量严格配比的 Fe₃GeTe₂, 以 Fe_{2.76}Ge_{0.94}Te₂ 为例 给出了 Fe₃GeTe₂ 磁结构图, 如图 9(b) 所示^[83]. 此 外, Fe₅GeTe₂ 具有类似铁锗结构^[26], 表现出铁磁 性, 易磁化轴为 c轴. 体相 Fe₅GeTe₂的 T_c 高于室 温 (310 K 左右), 薄层 Fe₅GeTe₂的 T_c在 270-300 K之间.

2.5 过渡金属铋碲化合物

MnBi₂Te₄ 是发现的第一个具有内禀磁性的拓 扑绝缘体^[33,84,85]. MnBi₂Te₄ 体系为实现量子反常 霍尔态、轴子绝缘体态、Weyl 半金属等拓扑量子 态提供了理想的研究平台^[86–88]. MnBi₂Te₄ 的晶体 结构和磁结构如图 10 所示^[89], 隶属空间群 $R\bar{3}m$, 一个单位原胞包含 7个原子层 (septuple-layer, SL),每个 SL 层的原子按照 Te-Bi-Te-Mn-Te-Bi-Te 的顺序沿 c 轴叠加. 换而言之,每个 SL 层可以 认为是由一个 MnTe 双原子层插入到 Bi₂Te₃ 五原 子层中形成的. MnBi₂Te₄ 的 SL 是铁磁的,其磁性 来源于 Mn 原子,易磁化轴为 c 轴;相邻 SL 之间 为反铁磁耦合,由此 MnBi₂Te₄ 具有 A-type AFM 磁序,其体相的 T_N 为 25 K. 此外,将 Bi₂Te₃ 插 层至 MnBi₂Te₄ 中得到的 MnBi₄Te₇ (图 10(d)) 和 MnBi₆Te₁₀ 也具有 A-type AFM 磁结构,体相的 T_N 分别为 13 和 11 K^[89]. 清华大学徐勇、段文晖和 何珂研究组^[90] 通过理论计算,预测了其他 AFM 型过渡金属铋碲化合物,如 VBi₂Te₄, NiBi₂Te₄ 和 EuBi₂Te₄. 这些材料具有与 MnBi₂Te₄ 相同的构 型, 且具有 A-type AFM 磁结构, 然而它们的易磁 化轴均在面内.

图 10 (a) Bi_2Te_3 的五原子单元层; (b) $MnBi_2Te_4$ 的七原 子单元层; (c) $MnBi_2Te_4$ 的晶体结构和磁结构; (d) $MnBi_4Te_7$ 的晶体结构和磁结构^[89]

Fig. 10. (a) Quintuple layer of Bi_2Te_3 ; (b) septuple layer of $MnBi_2Te_4$; (c) crystal structure and magnetic structure of $MnBi_2Te_4$; (d) crystal structure and magnetic structure of $MnBi_4Te_7^{[89]}$.

2.6 过渡金属氧卤化物

过渡金属氧卤化合物 (*MOX*, *M* = Fe 和 Cr 等; *O* = S 和 O; *X* = Cl, Br 和 I) 为具有层状结构的 范德瓦耳斯材料^[34,91-93], 它们具有相同的晶体结 构, 如图 11 所示^[91]. 具体地, *MOX* 具有正交斜对 称的结构, 隶属 *Pmmn* 空间群. 这些材料由矩形子 晶格在 *ab* 平面上构成二维网络, 4 个氧和 2 个卤 化物离子配位过渡金属离子形成强扭曲八面体结 构, 并相互连接. 与铁锗碲结构类似, 两个卤素原 子层夹着 *XO* 原子层构成三明治结构.

图 11 (a) 过渡金属卤化物的俯视图; (b) 4 个氧和 2 个卤 化物离子配位过渡金属离子形成强扭曲八面体结构图 (顶 部) 和过渡金属卤化物的侧视图 (底部)^[91]

Fig. 11. (a) Top view of transition-metal oxyhalides; (b) a strongly distorted octahedron formed by one metal ion coordinated by 4 oxygen and 2 halide ions (top), the side view of transition-metal oxyhalides (bottom)^[91].

体相 FeOCl 的磁性早有研究, 其表现出反铁

磁性, $T_N \sim 84-92 \text{ K}^{[94,95]}$. 尽管其薄层材料早被制备, 而薄层 FeOCl 的磁性一直未被研究. 2020年, 美国普林斯顿大学 Schoop 研究组^[34] 采用液相剥离法制备了厚度为 2.0—2.4 nm 的薄层 FeOCl, 其表现出反铁磁性, $T_N \sim 14$ K. 体相 CrOCl 也表现为反铁磁性, $T_N \sim 13.5 \text{ K}^{[96]}$. 理论计算表明, 单层CrOCl 是 FM 材料, 在 160 K 以下沿 c 轴表现出磁有序^[91]. 单层铬基硫卤化物 CrSX (X = Cl, Br和 I) 也被预言为具有大自旋极化、大磁矩和高居里温度的本征 FM 材料. 东南大学王金兰研究组^[93]基于二维 Heisenberg 模型预测单层 CrSCl, CrSBr和 CrSI 的居里温度分别为 150, 160 和 170 K.

本节概述了以上 6 类材料的晶体结构、磁结构 和磁性能,常见的磁性材料及磁性质如表 1所列.

表 1 常见的磁性材料及其磁性质

		51 0		0 1 1		
材料类别	材料	磁耦合	磁转变温度 $T_{\rm N}/T_{\rm c}$	描述模型	带隙/eV	参考文献
过渡金属	${\rm CrCl}_3$	A-type AFM	$\begin{array}{c} 1 {\rm L:} \ 10 \ {\rm K}/{T_{\rm c}} \\ 2 {\rm L:} \ 16 \ {\rm K}/{T_{\rm N}} \\ {\rm Bulk:} \ 17 \ {\rm K}/{T_{\rm N}} \end{array}$	//XY	3.0	[44,46,47]
	CrBr_3	FM	$\begin{array}{c} 1 {\rm L:} \; 27 {\rm K}/{T_{\rm c}} \\ 2 {\rm L:} \; 36 {\rm K}/{T_{\rm c}} \\ {\rm Bulk:} \; 37 {\rm K}/{T_{\rm c}} \end{array}$	⊥between Isingand Heisenberg	2.2	[44,45,47]
	CrI ₃	A-type AFM/Few L	1L: 45 K/ $T_{\rm c}$ 2L: 45 K/ $T_{\rm N}$ Few L: 46 K/ $T_{\rm N}$	\perp Ising	1.2	[44, 45, 47, 48]
		FM/Bulk	Bulk: 61 K/ $T_{\rm c}$			
	$1 \mathrm{T} ext{-}\mathrm{FeCl}_2$	A-type AFM/Bulk	Bulk: 24 ${\rm K}/T_{\rm N}$	L		[44]
		FM/1L	1L: 109 K/ $T_{\rm c}$	$\perp \mathrm{Heisenberg}$	Semimetal	[55]
	$1 \mathrm{T} ext{-}\mathrm{FeBr}_2$	A-type AFM/Bulk	Bulk: 14 ${\rm K}/T_{\rm N}$	L .		[44]
		FM/1L	1L: 81 K/ $T_{\rm c}$	$\perp \mathrm{Heisenberg}$	Semimetal	[55]
	$1 \mathrm{T-FeI}_2$	Intralayer AF-stripy/Bulk	Bulk: 9 K/ $T_{\rm N}$	Ţ		[44]
		FM/1L	1L: 42 K/ $T_{\rm c}$	$\perp \mathrm{Heisenberg}$	Semimetal	[55]
	1T-CoCl ₂	AFM/Bulk	Bulk: 25 K/ $T_{\rm N}$	//		[44]
		FM/1L	1L: 85 K/ $T_{\rm c}$	Heisenberg		[55]
	$1 \mathrm{T-CoBr}_2$	A-type AFM/Bulk	Bulk: 19 ${\rm K}/T_{\rm N}$	//		[44]
		FM/1L	1L: 23 K/ $T_{\rm c}$	Heisenberg		[55]
	$1\mathrm{T}\text{-}\mathrm{CoI}_2$	AFM	Bulk: 11 K/ $T_{\rm N}$			[44]
	NiI_2	A-type AFM	2.0 nm: 35 K/ $T_{\rm N}$ Bulk: 75 K/ $T_{\rm N}$		1.11/1L 1.23/Bulk	[29]
过渡金属 硫化物	$\mathrm{CrSe}^{\#}$	FM	Bulk: 280 K/ $T_{\rm c}$			[21]
	${\rm CrTe_2}^{\#}$	${ m FM}$	Bulk: 310 K/ $T_{\rm c}$		0	[97]
	CrTe	FM	11 nm: 140 K/ $T_{\rm c}$ 45 nm: 205 K/ $T_{\rm c}$	\perp	0	[19]
	$\mathrm{Cr}_{2}\mathrm{Te}_{3}$	FM	5 nm: 280 K/ $T_{\rm c}$ 40.3 nm: 170 K/ $T_{\rm c}$	Ţ	0	[57]
	FeTe (hexagonal)	FM	4 nm: 170 K/ $T_{\rm c}$ Bulk: 220 K/ $T_{\rm c}$	Heisenberg		[20]

材料类别	1 able 1 (col	minued). A list of typica 磁耦合	磁動 magnetic materials and th 	Hen magnetic prop 	erties. 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	参考文献
	MnSe _x *		$\frac{11}{2} > 200 K/T$	加速快至	V 0 \200 th	
		FM/IL	1L: $> 300 \text{ K/} I_{c}$	\perp	3.39	[61]
	1T-VSe_2^*	FM/1L	$1L: > 300 \text{ K} (470 \text{ K}) / T_c$	//	0	[22.60]
	2H-VSe ₂	A-type AFM		//	Semimetal	[98]
	2	FM/3.2 nm	3.2 nm: 2 K/ $T_{\rm c}$, ,		
	V_5S_8	AFM/Bulk	Bulk: 32 K/ $T_{\rm N}$	Ť	0	[99]
	FeTe (tetragonal)	AFM-Néel	5 nm: 45 K/ $T_{ m N}$ Bulk: 70 K/ $T_{ m N}$	Heisenberg		[20]
	$\mathrm{Cr}_2\mathrm{S}_3$	FM	$\begin{array}{c} 15 \text{ nm: } 120 \text{ K}/T_{\mathrm{c}} \\ 45 \text{ nm: } 300 \text{ K}/T_{\mathrm{c}} \end{array}$			[59]
	$Cr_2O_3^{\#}$	AFM	Bulk: 307 K/ $T_{\rm N}$	T	3.5	[100,101]
过渡金属磷 化合物	${\rm FePS}_3$	Intralayer AF-zigzag, interlayer FM	1L: 118 K/ $T_{\rm N}$ Bulk: 118 K/ $T_{\rm N}$	⊥ Ising	1.5	$[30,\!65,\!72]$
	NiPS_3	Intralayer AF-zigzag, interlayer FM	2L: 130 K/ $T_{\rm N}$ Bulk: 150 K/ $T_{\rm N}$	// XY	1.6	$[31,\!65,\!67]$
	$\rm MnPS_3$	Intralayer AF-Néel, interlayer FM	Bulk: 78 K/ $T_{\rm N}$	// Heisenberg	2.4	[65, 68, 71]
	CoPS_3	Intralayer AF-zigzag, interlayer FM	Bulk: 120 K/ $T_{\rm N}$	// XY		[66]
	MnPSe_3	Intralayer AF-zigzag, interlayer FM	5L: 70 K/ $T_{ m N}$ Bulk: 70 K/ $T_{ m N}$	// XY	2.3	[32]
	$\mathrm{FePSe_3}^{\#}$	Intralayer AF-zigzag, interlayer FM	Bulk: 119 ${\rm K}/T_{\rm N}$	\perp Ising	1.3	[73,74]
	CrPS_4	A-type AFM	Bulk: 36 K/ $T_{\rm N}$	T	1.3	[75, 76, 102]
		$\mathrm{FM}/\mathrm{1L}$	1L: 50 K/ $T_{\rm c}$	T	2.28	[77]
过渡金属锗 碲化合物	$\mathrm{Cr}_2\mathrm{Si}_2\mathrm{Te}_6$	FM	1L: 80 K/ $T_{\rm c}$ Bulk: 31 K/ $T_{\rm c}$	\perp Ising	1.2	[80, 81, 103]
	$\mathrm{Cr}_{2}\mathrm{Ge}_{2}\mathrm{Te}_{6}$	FM	2L: 28 K/ $T_{\rm c}$ 3L: 35 K/ $T_{\rm c}$ Bulk: 61 K/ $T_{\rm c}$	⊥ Heisenberg	0.45	[17,80]
	${\rm Fe_3GeTe_2}$	FM	$\begin{array}{c} 1{\rm L~(onAl_2O_3):~20~K/T_c} \\ 1{\rm L~(on~Au):~130~K/T_c} \\ {\rm Bulk:~220{}230~K/T_c} \end{array}$	\perp Ising	0	[38,82]
	$\rm Fe_5 GeTe_2$	FM	12 nm: 270—300 K/ $T_{\rm c}$ Bulk: 310 K/ $T_{\rm c}$	T	0	[26]
过渡金属铋 碲化合物	$\rm MnBi_2Te_4$	A-type AFM	3SL: 18 K/ $T_{\rm N}$ 4SL: 21 K/ $T_{\rm N}$ Bulk: 25 K/ $T_{\rm N}$	⊥ Heisenberg		[84,85]
	$\rm MnBi_4Te_7$	A-type AFM	Bulk: 13 K/ $T_{\rm N}$	T		[89]
	${\rm MnBi}_{6}{\rm Te}_{10}$	A-type AFM	Bulk: 11 K/ $T_{\rm N}$	T		[89]
	$\rm VBi_2Te_4$	A-type AFM		//		[90, 104]
	$\rm NiBi_2Te_4$	A-type AFM		//		[90]
	$\rm EuBi_{2}Te_{4}$	A-type AFM		//		[90]
过渡金属氧 卤化物	FeOCl	AFM	2.0—2.4 nm: 14 K/ $T_{\rm N}$ Bulk: 84—92 K/ $T_{\rm N}$			[34]
	CrOCl	FM/1L	1L: 160 K/ $T_{\rm c}$	\perp Ising	2.38	[91]
		AFM	Bulk: 13.5 K/ $T_{\rm N}$	T	2.31	[96]
	CrSBr	$\mathrm{FM}/\mathrm{1L}$	1L: 160 K/ $T_{\rm c}$	// Heisenberg	0.757	[93]
	CrSCl	$\mathrm{FM}/\mathrm{1L}$	1L: 150 K/ $T_{\rm c}$	// Heisenberg	0.856	[93]
	CrSI	FM/1L	1L: 170 K/T _c	// Heisenberg	0.473	[93]

表1(续) 常见的磁性材料及其磁性质

Table 1 (continued). A list of typical magnetic materials and their magnetic properties.

注:绿色背底表示为实验中发现的铁磁材料,橙色背底表示为实验中发现的反铁磁材料,灰色背底表示为理论预测的铁磁或反铁磁 材料;上标#为体相材料,其单层磁性在实验中还未发现;上标*为磁性是否为本征磁性尚未确定的磁性材料;⊥表示易磁化轴垂直于 平面(*ab*), //表示易磁化轴平行于平面(*ab*).

3 二维磁性材料的多场调控

二维磁性材料在单原胞厚度保持自发磁化,且 层间以弱的范德瓦耳斯作用力结合,这便于利用多 种手段(磁场、电场、掺杂、堆叠方式、应变、界面 等)对其磁性进行调控,改变磁状态,以实现在自 旋电子学和磁存储器件等方面的应用.

3.1 静场 (磁场和电场) 调控

原子磁矩在外磁场的作用下,取向会发生改 变. 少层 CrI₃ 表现出 A-type AFM 耦合,在零磁场 下总磁矩几乎为零;在 0.6—0.8 T^[16,40,105,106]的面 外磁场作用下,与磁场方向反平行的磁矩会发生翻 转,实现 AFM 到 FM 的转变,如图 12(a) 所示:在 \pm 0.65 T之间 MCD 信号为零,表明层间 AFM 耦 合;增大的 MCD 信号表明发生 AFM 到 FM 的转 变^[16]. MnBi₂Te₄ 也表现出 A-type AFM 耦合,在 3.5 T 的面外磁场作用下,同样也发生 AFM 到 FM 的转变 (图 12(b))^[84]. 将 Bi₂Te₃ 插层到 MnBi₂Te₄ (MnBi₄Te₇)^[107]中,由于 Mn 原子层间距离增大, 层间的 AFM 耦合减弱,在 0.15 T 的面外磁场下,即可发生 AFM 到 FM 的转变,并在 0.22 T 的磁 场下达到饱和 (图 12(d)).

电控磁或磁控电 (磁电耦合效应, $M_i = \alpha_{ij}E_j$ 或 $P_i = \alpha_{ij}H_j$, α_{ij} 是线性磁电系数张量^[108]), 为推 动新一代信息存储技术的发展具有重要意义. 磁电 耦合效应需要打破时间反演对称性和空间反演对 称性,常见于多铁性材料^[109,110](铁电性 (空间反演 对称性破缺)、铁磁性 (时间反演对称性破缺) 共 存). 美国康奈尔大学 Mak 和 Shan 研究组^[40] 首次 在二维磁性材料双层反铁磁 CrI₃ 中观察到线性磁 电效应,结果见图 12(c). 在零磁场下 (AFM 相), 磁化强度的变化随着外加电场的增加而线性增加; 且受界面影响,在相反方向磁场下进行磁化,所得 到的不同反铁磁构型的 CrI₃ 磁化强度的变化符号

图 12 (a) 双层反铁磁 CrI₃ 中 MCD 信号随磁场的变化^[16]; (b) 在 H / / (0001) 和 H_{\perp} (0001) 方向 MnBi₂Te₄ 依赖磁场的磁化曲线 ($H_{\rm SF}$ 为自旋-翻转磁场)^[84]; (c) 双层反铁磁 CrI₃ 的线性磁电效应^[40]: 在一个固定的磁场下磁化的样品的磁化强度的相对和绝对变 化 (分别为 $\Delta M/M_0$ 和 ΔM) 随施加电场的变化; (d) H / / c 方向、不同温度下 MnBi₄Te₇ 等温磁化的磁滞回线, $H_{\rm f}$, 一级自旋翻转场^[107] Fig. 12. (a) MCD signal in AFM bilayer CrI₃ as a function of magnetic field^[16]; (b) field-dependent magnetization curves of MnBi₂Te₄ for H / / (0001) and H_{\perp} (0001), where $H_{\rm SF}$ is spin-flop magnetic field^[84]; (c) linear magnetoelectric effect in AFM bilayer CrI₃^[40]: relative and absolute changes in the sheet magnetization ($\Delta M/M_0$ and ΔM , respectively) as a function of applied electric field measured under a fixed magnetic field; (d) full magnetic hysteresis loop of isothermal magnetization of MnBi₄Te₇ taken at various temperatures for H / / c, $H_{\rm f}$, first-order spin-flip transition field^[107].

也相反;在1T磁场下(FM相),磁化强度的变化 随外加电场的增大,表现出非线性的增大(外加电 场较小时,磁化强度几乎不变).AFM相的双层 CrI₃(磁晶格和结构晶格)同时打破时间反演和空 间反演对称性;而FM相的双层CrI₃仅打破时间 反演对称性,其空间反演对称性保持.目前,双层 反铁磁CrI₃中磁电耦合的机制尚不清晰,可能是 由于施加电场后,具有不同自旋取向的上下两层 CrI₃的电子浓度不均衡产生的.

3.2 载流子浓度调控

在二维磁性材料中,载流子浓度的变化将会引 起磁性离子占用率(轨道)、交换相互作用和磁各向 异性等的改变,从而引起材料磁性状态的变化^[62]. 载流子浓度调控的主要方式包括:静电掺杂、离子 液体、离子插层等.

静电掺杂实现了对单层和双层 CrI₃ 的磁性控 制^[39,105],揭示了一种依赖于掺杂的层间交换耦合. 典型的静电掺杂器件结构示意图如图 13(a)所示, 利用场效应施加栅压可以改变样品的载流子浓度. 单层 CrI₃ 的饱和磁化强度、矫顽力和居里温度,随 着空穴/电子的浓度变化呈现出线性的增强/减弱 (图 13(b)). 在零磁场下, 2.5 × 10¹³ cm⁻² 的电子掺 杂可实现双层 CrI₃ 从 AFM 基态到 FM 基态的转 变 (图 13(c)). 此外,静电掺杂还实现了对少层 Cr₂ Ge₂Te₆ 中载流子和自旋双重特性的双极调控^[111].

相比于静电掺杂,离子液体在固体-液体界面

处形成一个厚度为纳米量级的介电层, 是一种更为 有效的调控材料载流子浓度的手段, 可使材料载流 子浓度大于 10^{14} cm⁻². 新加坡国立大学 Eda 研究 组^[79]利用离子液体 (DEME-TFSI) 调控 Cr₂Ge₂Te₆ 的磁性, 当载流子浓度达到 4 × 10^{14} cm⁻² 时, T_c 由 61 K 升至 200 K, 且易磁化轴由面外转向面内.

离子插层也是调控材料中载流子浓度的有效 手段.中国科技大学陈仙辉研究组^[112]利用电化学 方法将有机阳离子四丁基铵根离子 (TBA⁺) 插层 到 Cr₂Ge₂Te₆ 层间 (图 14(a)), 在层间距增大的同 时,电子浓度增至 10¹⁴ cm⁻² 以上,且其 *T*_c 从 65 K 大幅提升至大于 200 K, 磁各向异性由面外转向面 内 (图 14(b)), 进一步证实了 *T*_c、磁各向异性与载 流子浓度的依赖关系.

与磁性半导体 CrI₃和 Cr₂Ge₂Te₆相比, Fe₃Ge Te₂的铁磁性是通过导电电子介导的. 部分填充的 Fe d 轨道主导了费米能级附近的能带结构, 从而 在 Fe₃GeTe₂中产生了巡游铁磁性. 由此, 通过 控制内部载流子浓度, 可以更有效地调节居里温 度. 复旦大学张远波研究组^[38]利用锂离子插层 (LiClO₄-PEO, 图 14(c))的方法, 引起每层大约 10¹⁴ cm⁻² 量级的电子掺杂, 从而改变了费米能级 处的态密度. 这使得 3 层 Fe₃GeTe₂的铁磁转变温 度 T_c 随栅极电压的变化而变化, 且在栅压约等于 1.75 V 时, T_c 超过了室温 (图 14(d)). 此外, 其矫 顽力的变化趋势与 T_c 的变化趋势是一致的.

图 13 (a) 双栅控双层 CrI₃ 器件结构示意图^[39]; (b), (c) 静电掺杂控制单层 (b) 和双层 (c) CrI₃ 的磁性^[105], 其中 (b) 是以零栅压下 相应值归一化的矫顽场 (洋红色)、饱和场 (紫色)、居里温度 (橙色) 与栅压 (底轴) 及掺杂浓度 (顶轴) 的关系, 正 (负) 值分别代表 电子 (空穴) 浓度, (c) 4 K 下掺杂浓度-磁场决定的双层 CrI₃ 相图

Fig. 13. (a) Schematic of a dual-gated bilayer CrI_3 device^[39]. (b), (c) Controlling magnetism in monolayer (b) and bilayer CrI_3 (c) by electrostatic doping^[105]: (b) Coercive force (magenta), saturation magnetization (purple) (both at 4 K) and Curie temperature (orange) normalized by their values at zero gate voltage as a function of gate voltage (bottom axis) and induced doping density (top axis) with positive (negative) value for electron (hole) density; (c) doping density-magnetic field phase diagram of bilayer CrI_3 at 4 K.

图 14 离子插层实验结果 (a), (b) $Cr_2Ge_2Te_6$ 有机阳离子插层的实验结果^[112], 其中 (a) $Cr_2Ge_2Te_6$ 和 (TBA) $Cr_2Ge_2Te_6$ 晶体结构示意图; (b) 纯 $Cr_2Ge_2Te_6$ 和 (TBA) $Cr_2Ge_2Te_6$ 在 H // ab 方向磁化强度随温度 (左) 及 (TBA) $Cr_2Ge_2Te_6$ 在 H // ab 方向磁化强度随磁场 (右) 的变化; (c), (d) Fe_3GeTe_2 锂离子插层的实验结果^[38], 其中 (c) Fe_3GeTe_2 器件结构示意图, 电解质 (LiClO₄ 溶解在 聚氧乙烯中) 覆盖 Fe_3GeTe_2 薄片和侧栅; (d) 3 层 Fe_3GeTe_2 的居里温度随栅极电压的变化

Fig. 14. Experimental results of ion intercalation. (a), (b) Results of the organic cation intercalation for $Cr_2Ge_2Te_6^{[112]}$: (a) Schematic diagrams of crystal structures of $Cr_2Ge_2Te_6$ and (TBA) $Cr_2Ge_2Te_6$; (b) temperature-dependent magnetization (*M*-*T*) of pristine $Cr_2Ge_2Te_6$ and (TBA) $Cr_2Ge_2Te_6$ for *H*//*ab* (left) and magnetic field-dependent magnetization (*M*-*H*) of (TBA) $Cr_2Ge_2Te_6$ for *H*//*ab* (right). (c), (d) Results of the Li⁺ intercalation for $Fe_3GeTe_2^{[38]}$: (c) Schematic of the Fe_3GeTe_2 device structure, the electrolyte (LiClO₄ dissolved in polyethylene oxide) covers both Fe_3GeTe_2 flake and side gate; (d) Curie temperature of the tri-layer Fe_3GeTe_2 as a function of the gate voltage.

3.3 层间堆叠方式调控

控制层间堆叠排列可以实现磁耦合特性的调 控.体相 CrI3 在 220 K 左右发生结构相变,由高温 单斜相转变为低温菱方相,如图 15(a) 所示.两个 相的区别在于层间平移, 单斜相的 CrI₃ AFM 耦 合, 菱方相的 Crl₃ FM 耦合^[52]. 少层的 Crl₃ 在低 温下仍为单斜相,因此表现出 AFM 耦合.瑞士 巴塞尔大学 Maletinsky 研究组^[53]利用金刚石探针 轻轻刺破 CrI₃, 改变了其堆叠方式, 实现了 AFM 到 FM 的转变. 美国康奈尔大学 Mak 和 Shan 研 究组[41] 和美国华盛顿大学的许晓栋研究组[52] 则 分别通过施加静水压力 (图 15(b)), 改变薄层 CrI3 的堆叠方式,实现了双层 CrI₃从 AFM 到 FM 的 转变 (图 15(c)). 中山大学王猛研究组^[113] 实验发 现 Cr₂Si₂Te₆在 7.5 GPa 压力下发生结构相变,并 伴随着铁磁到顺磁的转变. 中国科学院固体物理研 究所王贤龙研究组^[114]预言 MnPS₃在 40 GPa 的 压力下将发生单斜相到菱方相的转变,并伴随着反 铁磁到铁磁的转变.

相似的现象在 CrBr3 中也被观察到. 复旦大学

高春雷研究组^[115]利用 MBE 技术制备双层 CrBr₃ 薄膜,并利用自旋极化扫描隧道显微镜 (SP-STM) (图 16(c)),研究了层间堆叠与磁耦合之间的关联. 双层 CrBr₃ 薄膜具有两种不同的堆叠结构 (H型 和 R型): H型堆叠结构中,顶层与底层中由 3 个 Br 原子组成的三角团簇反平行交错排列 (图 16(a)); R型堆叠结构中,顶层与底层中的 3 个 Br 原子组 成的三角团簇同向平行排列 (图 16(b)).在 H型堆 叠的 CrBr₃中观察到一个方形的矫顽场~45 mT 的磁滞回线 (图 16(d)),表明层间 FM 耦合;在 R 型堆叠的 CrBr₃中观察到 4 个平台 (图 16(e)),表 明层间 AFM 耦合,其反铁磁基态形成了两个不同 的层间反铁磁构型.这些结果进一步证实了堆叠方 式与磁耦合特性间的直接关联.

3.4 拉伸应变调控

二维磁性材料的一些物理参数,如居里温度、 矫顽场等对应变引入的晶格形变非常敏感.这是由 于长程磁序主要起源于交换相互作用,其与离子间 轨道波函数的重叠有关,由相邻磁性离子之间的

图 15 CrI₃ 压力调控的实验结果^[52] (a) CrI₃ 的菱方相和单斜相的俯视图 (左) 和侧视图 (右), 其中绿 (紫) 色原子分别代表顶层 (底层) 的 Cr 原子, 棕色原子代表 I 原子; (b) 高压实验装置示意图; (c) 在不同静水压力下, 隧穿电流 I₄ 随磁场的变化关系

Fig. 15. Experimental results of CrI_3 under hydrostatic pressure^[52]: (a) Schematic of rhombohedral stacking and monoclinic stacking with top (left) and side (right) view, the green (purple) atoms represent the Cr atoms in the top (bottom) layer while the brown ones represent the I atoms; (b) schematic of high-pressure experimental set-up; (c) tunneling current, I_t , versus magnetic field, H, at different pressures.

图 16 CrBr₃ 自旋极化 STM 的实验结果^[115],其中 (a), (b) 分别为 H 型堆叠 (a) 和 R 型堆叠 (b) 的单层 (1L) 和双层 (2L) 区域的 STM 图以及高分辨的原子图像; (c) SP-STM 测量示意图; (d), (e) 利用 Cr 针尖测得的 H 型堆叠 (d) 和 R 型堆叠 (e) 双层 CrBr₃ 的 自旋-极化隧穿与磁场的关系,黑色 (红色)曲线对应面外磁场正向 (反向) 扫描的结果

Fig. 16. Experimental results of spin-polarized STM for $CrBr_3^{[115]}$. (a), (b) STM images of H-type stacked (a) and R-type stacked (b) $CrBr_3$ films with both a monolayer (1L) region and a bilayer (2L) island. Magnified, atomically resolved images of the bilayer island and its extended bottom region of the H-type stacked and R-type stacked $CrBr_3$ films are resolved. (c) Schematic of SP-STM measurement. (d), (e) Spin-polarized tunneling on the H-type stacked (d) and R-type stacked (e) $CrBr_3$ bilayer as a function of magnetic field with a Cr tip. The out-of-plane magnetic field was swept upward (black curve) and downward (red curve).

距离或磁性离子与配体原子之间的距离(键角)所 决定^[15,116,117],且磁各向异性起源于配位场、自旋-轨道耦合和轨道磁矩,与晶格密切关联^[118].理论 预测: 应变可以诱导 CrI₃ 铁磁与反铁磁的磁态转 变^[116], 并使得矫顽场发生巨大变化^[119]; 5% 的拉 伸应变可使单层 Cr₂Ge₂Te₆ 的 *T*_c 从 57.2 K 提升

至 108.9 K^[15]; 双轴应变可大幅增强单层 Fe₃GeTe₂的铁磁性^[117].南京大学缪峰研究组^[120]利用面内单轴应力调控 Fe₃GeTe₂的磁性 (图 17(a)),并通过反常霍尔效应原位测量样品的磁矩变化.研究发现 Fe₃GeTe₂的矫顽场 (*H*_c)随着应力增大呈现出先增大后降低的趋势,最大增加了 150% 以上(图 17(b));同时,其 *T*_c随着应力的增大几乎呈线性增大,由 180 K升至 210 K (图 17(c)).这些结果进一步证实应变工程可以作为调控二维磁性材料磁性的有效方法.

3.5 界面工程调控

两种不同性质的材料所组成的界面处会衍生 出丰富的物理现象,界面磁近邻效应是调控磁性材 料磁性能的有效方法.华中科技大学韩俊波研究 组^[121]构筑了 Fe₃GeTe₂/FePS₃ 异质结 (图 18(a)), 与纯 Fe₃GeTe₂ 相比,由于界面近邻耦合效应,Fe₃ GeTe₂/FePS₃ 的磁滞回线更加复杂,由单一磁畴 转变为多磁畴态;同时,表现出交换偏置现象,*T*_c 由 150 K 升高至 180 K (图 18(b)), *H*_c 增大一倍以

图 17 Fe₃GeTe₂的应力调控^[120] (a) 应变实验装置示意图; (b) 1.5 K下矫顽场随应力的变化关系; (c) 剩余反常霍尔电阻 R_{xy}^{r} (由 165 K的值归一化) 在不同压力下随温度的变化关系

Fig. 17. Straining regulation of $\text{Fe}_3\text{GeTe}_2^{[120]}$: (a) Schematic diagram of device in the strain experimental set-up; (b) coercive field as a function of strain at 1.5 K; (c) remnant anomalous Hall resistance R_{xy}^r normalized by the values at 165 K as a function of temperature with varying strain.

图 18 (a), (b) FePS₃/Fe₃GeTe₂ 异质结的实验结果^[121], 其中 (a) 为 FePS₃, Fe₃GeTe₂ 薄片中的磁序; (b) Fe₃GeTe₂ (红线), FePS₃/Fe₃GeTe₂ (蓝线) 的 Kerr 角度随温度的变化; (c), (d) Bi₂Te₃/Fe₃GeTe₂ 异质结的实验结果^[122], 其中 (c) Bi₂Te₃和 Fe₃GeTe₂ 晶体结构 示意图; (d) Bi₂Te₃(8)/Fe₃GeTe₂(4) 异质结在不同温度下的反常霍尔电阻, 数字表示样品的厚度; (e), (f) 纯 Cr₂Ge₂Te₆ (e) 及沉积 50 nm NiO 后的 Cr₂Ge₂Te₆/NiO (f) MOKE 信号随温度的变化曲线^[123]

Fig. 18. (a), (b) Experimental results of $FePS_3/Fe_3GeTe_2^{[121]}$: (a) Magnetic ordering in vdW Fe_3GeTe_2 and $FePS_3$ thin flakes; (b) extracted Kerr rotations as a function of the temperature for Fe_3GeTe_2 (red curve) and $FePS_3/Fe_3GeTe_2$ (blue curve), respectively. (c), (d) Experimental results of $Bi_2Te_3/Fe_3GeTe_2^{[122]}$: (c) Schematic structures of Bi_2Te_3 and Fe_3GeTe_2 ; (d) anomalous Hall resistances of the $Bi_2Te_3(8)/Fe_3GeTe_2(4)$ heterostructure at different temperatures, respectively, the number represents the thickness of the sample. (e), (f) Temperature dependence of MOKE signals of the $Cr_2Ge_2Te_6$ without (e) and with (f) NiO capping layer^[123].

上. 北京航空航天大学聂天晓、赵巍胜研究组^[122] 利用 MBE 技术在拓扑绝缘体 Bi₂Te₃上生长 Fe₃ GeTe₂构建异质界面 (图 18(c)): 当 Fe₃GeTe₂的 厚度为4nm 时, T_c 由 230 K 升至 400 K (图 18(d)), 这主要是由于界面处与拓扑绝缘体固有特性相关 的界面交换耦合导致的. 日本东北大学的 Hiroshi Idzuchi 研究组^[123]构建了 Cr₂Ge₂Te₆/NiO 异质结, 当 Cr₂Ge₂Te₆ 的厚度为 5—200 nm 时, 沉积 NiO 后 T_c 均有明显的提升, 当 NiO 的厚度增至 50 nm, T_c 最高可达 115 K (图 18(e) 和图 18(f)), 为纯的 Cr₂Ge₂Te₆ 的 2 倍. 美国宾州州立大学常翠祖研究 组^[124]在反铁磁绝缘体 Cr₂O₃ ($T_N = 307$ K)上制 备薄层磁性拓扑绝缘体薄膜 Cr_xSb_{2-x}Te₃, 由于界 面处的近邻耦合作用, T_c 由~39 K 升高至~50 K.

4 总结与展望

综上所述,二维磁性领域正处于高速发展的阶段,在过去短短三年的时间里,就已经取得了一系列开创性的突破.与传统三维材料相比,二维磁性材料的大比表面积、表面无悬挂键以及弱层间耦合等优势,使其成为新一代自旋电子学和磁存储器件的最佳候选人.基于二维磁性材料的自旋场效应管、自旋过滤隧道结以及自旋阀等器件已经出现,并表现出优异的性能.此外,二维磁性材料可与其他多种类型的二维材料构成异质结构,为研究新奇的拓扑量子态(磁性/拓扑异质结)、拓扑超导(磁性/超导异质结)、自旋/谷极化(磁性/半导体过渡金属硫化物异质结)等提供了理想的平台.

二维磁性材料及器件的研究不断取得新的 进展,具有广阔的发展前景,同时也充满着挑战. 1)目前的磁性材料大都为基于八面体对称的过渡 金属元素系统,材料体系相对单一,且居里温度 (或奈尔温度)远低于室温.这需要设计发现新的具 有更大的各向异性和更强的交换相互作用的磁性 材料,进一步扩大磁性材料家族.与此同时,实现 在空气中稳定的二维磁性材料也是今后器件应用 领域的一大挑战.2)磁性的起源及机理仍有待深 人研究,一方面需要采用多种调控手段,定量地调 控材料中的载流子浓度、层间距、堆叠方式、应变 等,并研究其与交换相互作用、磁各向异性等的关 联;另一方面需要发展更先进的探测技术,如自旋 极化 STM 等,在微观尺度 (空间分辨率几十纳米 以下)研究二维磁性材料(尤其是面内反铁磁材料)的磁性,并分析其与宏观磁性的关联,从而揭示其中的物理机制.3)构建基于二维磁性材料的新型异质结构,探索体系中的新奇量子效应,并开发多功能新概念器件,仍是今后十分重要的研究方向.

参考文献

- Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 *Phys. Rev. B* 39 4828(R)
- [2] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273
- [3] Berger L 1996 *Phys. Rev. B* **54** 9353
- [4] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
- [5] Mauger A, Godart C 1986 Phys. Rep. 141 51
- [6] Martin G W, Kellogg A T, White R L, White R M, Pinch H 1969 J. Appl. Phys. 40 1015
- [7] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451
- [8] Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133
- [9] Slota M, Keerthi A, Myers W K, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert C J, Narita A, Mullen K, Bogani L 2018 *Nature* 557 691
- [10] Tuček J, Blonski P, Ugolotti J, Swain A K, Enoki T, Zboril R 2018 Chem. Soc. Rev. 47 3899
- [11] Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K, Tiwary C S 2019 Mater. Today 27 107
- [12] Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863
- [13] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D, Thompson J D 2016 *Phys. Rev. B* 93 144404
- [14] Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407
- [15] Li X X, Yang J L 2014 J. Mater. Chem. C 2 7071
- [16] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270
- [17] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
- [18] Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138
- [19] Wang M S, Kang L X, Su J W, Zhang L M, Dai H W, Cheng X T, Han C, Zhai T Y, Liu Z, Han J B 2020 Nanoscale 12 16427
- [20] Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Renshaw Wang X, Liu Z 2020 Nat. Commun. 11 3729

- [21] Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056
- [22] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289
- [23] Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359
- [24] Zhang Y, Lu H Y, Zhu X G, Tan S Y, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J, Lai X C 2018 Sci. Adv. 4 6791
- [25] Yi J, Zhuang H, Zou Q, Wu Z, Cao G, Tang S, Calder S A, Kent P R C, Mandrus D, Gai Z 2016 2D Mater. 4 011005
- [26] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436
- [27] Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993
- [28] McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, J r., Cooper V R, Xu X, Sales B C 2017 Phys. Rev. Mater. 1 014001
- [29] Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544
- [30] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433
- [31] Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345
- [32] Liu P, Xu Z L, Huang H L, Li J, Feng C, Huang M, Zhu M, Wang Z P, Zhang Z M, Hou D Z, Lu Y L, Xiang B 2020 J. Alloys Compd. 828 154432
- [33] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Yu Vyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082
- [34] Ferrenti A M, Klemenz S, Lei S, Song X, Ganter P, Lotsch B V, Schoop L M 2020 Inorg. Chem. 59 1176
- [35] Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646
- [36] Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408
- [37] Bagga V, Kaur D 2020 Mater. Today: Proc. 28 1938
- [38] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94
- [39] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544
- [40] Jiang S W, Shan J, Mak K F 2018 Nat. Mater. 17 406
- [41] Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303
- [42] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 Info. Mat. 2 639
- [43] Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P, Xu X D 2020 Nat. Mater. 19 1276
- [44] McGuire M 2017 Crystals 7 121
- [45] McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612
- [46] Bedoya-Pinto A, Ji J R, Pandeya A, Gargiani P, Valvidares

S, Sessi P, Radu F, Chang K, Parkin S 2020 arXiv: 2006.07605

- [47] Kim H H, Yang B W, Li S W, Jiang S W, Jin C H, Tao Z, Nichols G, Sfigakis F, Zhong S Z, Li C H, Tian S J, Cory D G, Miao G X, Shan J, Mak K F, Lei H C, Sun K, Zhao L Y, Tsen A W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11131
- [48] Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K C, Xiao D, Yao W, Xu X D 2020 Nat. Nanotechnol. 15 187
- [49] Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J, Xu Y, Taniguchi T, Watanabe K, Wu D, Balandin A, Shi J, Cui Y T 2020 Nano Lett. 20 553
- [50] Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H, Tsen A W 2018 Nano Lett. 18 4885
- [51] Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516
- [52] Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 *Nat. Mater.* 18 1298
- [53] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 *Science* 364 973
- [54] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325
- [55] Kulish V V, Huang W 2017 J. Mater. Chem. C 5 8734
- [56] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A, Hennig R G 2017 Nano Lett. 17 5251
- [57] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Getaye Sendeku M, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130
- [58] Chen W Z, Kawazoe Y, Shi X Q, Pan H 2018 Phys. Chem. Chem. Phys. 20 18348
- [59] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896
- [60] Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. **31** 1903779
- [61] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 *Nano Lett.* 18 3125
- [62] Gong C, Zhang X 2019 Science 363 4450
- [63] Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2018 Phys. Rev. Lett. 121 196402
- [64] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 *Chin. Phys. B* 28 056301
- [65] Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Phys. Condens. Matter. 32 124003
- [66] Wildes A R, Simonet V, Ressouche E, Ballou R, McIntyre G J 2017 J. Phys. Condens. Matter. 29 455801
- [67] Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785
- [68] Vaclavkova D, Delhomme A, Faugeras C, Potemski M,

Bogucki A, Suffczyński J, Kossacki P, Wildes A R, Grémaud B, Saúl A 2020 *2D Mater.* **7** 035030

- [69] Rule K C, McIntyre G J, Kennedy S J, Hicks T J 2007 *Phys. Rev. B* 76 134402
- [70] Kim K, Lim S Y, Kim J, Lee J U, Lee S, Kim P, Park K, Son S, Park C H, Park J G, Cheong H 2019 2D Mater. 6 041001
- [71] Ressouche E, Loire M, Simonet V, Ballou R, Stunault A, Wildes A 2010 Phys. Rev. B 82 100408
- [72] Lançon D, Walker H C, Ressouche E, Ouladdiaf B, Rule K C, McIntyre G J, Hicks T J, Rønnow H M, Wildes A R 2016 *Phys. Rev. B* 94 214407
- [73] Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411
- [74] Zheng Y, Jiang X X, Xue X X, Dai J, Feng Y 2019 Phys. Rev. B 100 174102
- [75] Lee J, Ko T Y, Kim J H, Bark H, Kang B, Jung S G, Park T, Lee Z, Ryu S, Lee C 2017 ACS Nano 11 10935
- [76] Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200
- [77] Chen Q, Ding Q, Wang Y, Xu Y, Wang J 2020 J. Phys. Chem. C 124 12075
- [78] Liu W, Dai Y H, Yang Y E, Fan J Y, Pi L, Zhang L, Zhang Y H 2018 Phys. Rev. B 98 214420
- [79] Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460
- [80] Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127
- [81] Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 060402
- [82] Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 *Nat. Mater.* **17** 778
- [83] May A F, Calder S, Cantoni C, Cao H, McGuire M A 2016 Phys. Rev. B 93 014411
- [84] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416
- [85] Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 *Chin. Phys. Lett.* **36** 076801
- [86] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 *Science* 367 895
- [87] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522
- [88] Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280
- [89] Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202
- [90] Li J H, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 5685

- [91] Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417
- [92] Zhang J, Wölfel A, Li L, van Smaalen S, Williamson H L, Kremer R K 2012 Phys. Rev. B 86 134428
- [93] Guo Y L, Zhang Y H, Yuan S J, Wang B, Wang J L 2018 *Nanoscale* **10** 18036
- [94] Grant R W 1971 J. Appl. Phys. 42 1619
- [95] Kauzlarich S M, Ellena J F, Stupik P D, Rieff W M, Averill B A 1987 J. Am. Chem. Soc. 109 4561
- [96] Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M, Qu Z 2019 ACS Nano 13 11353
- [97] Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J, Núñez-Regueiro M 2015 J. Phys. Condens. Matter 27 176002
- [98] Feng S N, Mi W B 2018 Appl. Surf. Sci. 458 191
- [99] Niu J J, Yan B M, Ji Q Q, Liu Z F, Li M Q, Gao P, Zhang Y F, Yu D P, Wu X S 2017 *Phys. Rev. B* 96 075402
- [100] He X, Wang Y, Wu N, Caruso A N, Vescovo E, Belashchenko K D, Dowben P A, Binek C 2010 Nat. Mater. 9 579
- [101] Fallarino L, Binek C, Berger A 2015 Phys. Rev. B 91 214403
- [102] Budniak A K, Killilea N A, Zelewski S J, Sytnyk M, Kauffmann Y, Amouyal Y, Kudrawiec R, Heiss W, Lifshitz E 2020 Small 16 1905924
- [103] Lin M W, Zhuang H, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315
- [104] Zhu W X, Song C, Liao L Y, Zhou Z Y, Bai H, Zhou Y J, Pan F 2020 Phys. Rev. B 102 085111
- [105] Jiang S G, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549
- [106] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214
- [107] Hu C, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97
- [108] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
- [109] Dong S, Xiang H, Dagotto E 2019 Natl. Sci. Rev. 6 629
- [110] Cheong S W 2019 npj Quantum Mater. 4 53
- [111] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554
- [112] Wang N Z, Tang H B, Shi M Z, Zhang H, Zhuo W Z, Liu D Y, Meng F B, Ma L K, Ying J J, Zou L J, Sun Z, Chen X H 2019 J. Am. Chem. Soc. 141 17166
- [113] Cai W, Sun H, Xia W, Wu C, Liu Y, Liu H, Gong Y, Yao D X, Guo Y, Wang M 2020 Phys. Rev. B 102 144525
- [114] Zhang H, Ni C, Zhang J, Zou L, Zeng Z, Wang X 2021 *Phys. Chem. Chem. Phys.* 23 9679
- [115] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983
- [116] Webster L, Yan J A 2018 Phys. Rev. B 98 144411
- [117] Hu X H, Zhao Y H, Shen X, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367
- [118] van Vleck J H 1937 *Phys. Rev.* **52** 1178

- [119] Sheng P, Wang B M, Li R W 2018 J. Semicond. **39** 011006
- [120] Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533
- [121] Zhang L M, Huang X Y, Dai H W, Wang M S, Cheng H, Tong L, Li Z, Han X T, Wang X, Ye L, Han J B 2020 Adv. Mater. 32 2002032
- [122] Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H,

Pandey C D, Chen D D, Yang Q, Wang H, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045

- [123] Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403
- [124] Wang F, Xiao D, Yuan W, Jiang J, Zhao Y F, Zhang L, Yao Y, Liu W, Zhang Z, Liu C, Shi J, Han W, Chan M H W, Samarth N, Chang C Z 2019 Nano Lett. 19 2945

SPECIAL TOPIC—Two-dimensional magnetic materials

Recent development in two-dimensional magnetic materials and multi-field control of magnetism^{*}

Xiao Han[#] Mi Meng-Juan[#] Wang Yi-Lin[†]

(School of Microelectronics, Shandong University, Jinan 250100, China)
(Received 24 December 2020; revised manuscript received 30 January 2021)

Abstract

The recently discovered two-dimensional magnetic materials have attracted tremendous attention and become a cutting-edge research topic due to their long-range magnetic ordering at a single-unit-cell thickness, which not only provide an ideal platform for studying the magnetism in the two-dimensional limit and other novel physical effects, but also open up a new way to develop low-power spintronics/magnetic storage devices. In this review, first, we introduce the crystal structures, magnetic structures and magnetic properties of various recently discovered intrinsic two-dimensional magnetic materials. Second, we discuss the research progress of controlling the magnetic properties of two-dimensional magnetic materials by magnetic field, electric field, electrostatic doping, ion intercalation, stacking, strain, interface, etc. Finally, we give a perspective of possible research directions of the two-dimensional magnetic materials. We believe that an in-depth understanding of the origin and mechanism of magnetism of the two-dimensional magnetic materials as well as the study of the relationship between magnetic properties and microstructures are of great significance in exploring a magnetic material with a substantially high Curie temperature (Néel temperature), and designing multifunctional new concept devices.

Keywords: two-dimensional magnetic materials, magnetic coupling, multi-field control PACS: 75.70.Ak, 75.25.-j, 75.30.-m, 72.80.Ga DOI: 10.7498/aps.70.20202204

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 92065206) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA071).

 $^{^{\#}\,}$ These authors contributed equally.

[†] Corresponding author. E-mail: yilinwang@email.sdu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

二维磁性材料及多场调控研究进展

肖寒 弭孟娟 王以林

Recent development in two-dimensional magnetic materials and multi-field control of magnetism Xiao Han Mi Meng-Juan Wang Yi-Lin 引用信息 Citation: Acta Physica Sinica, 70, 127503 (2021) DOI: 10.7498/aps.70.20202204 在线阅读 View online: https://doi.org/10.7498/aps.70.20202204

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

磁性斯格明子的多场调控研究

Multi-field control on magnetic skyrmions 物理学报. 2018, 67(13): 137507 https://doi.org/10.7498/aps.67.20180931

二维本征铁电体及其多铁耦合的研究进展

Recent research progress of two-dimensional intrinsic ferroelectrics and their multiferroic coupling 物理学报. 2020, 69(21): 217710 https://doi.org/10.7498/aps.69.20201433

二维材料热传导研究进展

Recent progresses of thermal conduction in two-dimensional materials 物理学报. 2020, 69(19): 196602 https://doi.org/10.7498/aps.69.20200709

磁性材料磁有序的分子场来源

Molecular field origin for magnetic ordering of magnetic materials 物理学报. 2017, 66(6): 067501 https://doi.org/10.7498/aps.66.067501

二维材料中的氢隧穿研究进展

Research progress of hydrogen tunneling in two-dimensional materials 物理学报. 2017, 66(5): 056601 https://doi.org/10.7498/aps.66.056601

二维材料/铁电异质结构的研究进展

Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures 物理学报. 2020, 69(1): 017301 https://doi.org/10.7498/aps.69.20191486