

Institute of Physics, CAS

超小晶粒锡掺杂CsPbBr₃蓝光量子点的合成及其光学性能研究 曾凡菊 谭永前 胡伟 唐孝生 张小梅 尹海峰 Synthesis and optical properties of ultra-small Tin doped CsPbBr₃ blue luminescence quantum dots Zeng Fan-Ju Tan Yong-Qian Hu Wei Tang Xiao-Sheng Zhang Xiao-Mei Yin Hai-Feng 引用信息 Citation: Acta Physica Sinica, 71, 047401 (2022) DOI: 10.7498/aps.71.20211895 在线阅读 View online: https://doi.org/10.7498/aps.71.20211895 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

单个CsPbBr3钙钛矿量子点的荧光闪烁特性

Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots

物理学报. 2021, 70(20): 207802 https://doi.org/10.7498/aps.70.20210908

强电负性配体诱导CsPbBr3纳米晶蓝光出射

Ligand with strong electronegativity induced blue emitting of CsPbBr₂ nanocrystals

物理学报. 2020, 69(15): 158102 https://doi.org/10.7498/aps.69.20200261

采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池

Efficient and stable carbon-based CsPbBr₂ solar cells added with PEABr additive

物理学报. 2022, 71(2): 028101 https://doi.org/10.7498/aps.71.20211344

In掺杂h-LuFeO₃光吸收及极化性能的第一性原理计算

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO₃

物理学报. 2021, 70(3): 037101 https://doi.org/10.7498/aps.70.20201287

Nb⁵⁺掺杂钛酸锶结构与性能的第一性原理研究

First principles study of structure and property of Nb⁵⁺-doped SrTiO₃

物理学报. 2021, 70(22): 227101 https://doi.org/10.7498/aps.70.20211241

边界对石墨烯量子点非线性光学性质的影响

Effect of edge on nonlinear optical property of graphene quantum dots 物理学报. 2021, 70(5): 057801 https://doi.org/10.7498/aps.70.20201643

超小晶粒锡掺杂 CsPbBr₃ 蓝光量子点的 合成及其光学性能研究^{*}

曾凡菊^{1)2)†} 谭永前¹⁾ 胡伟^{2)‡} 唐孝生^{2)3)††} 张小梅¹⁾ 尹海峰¹⁾

(凯里学院大数据工程学院,凯里 556011)
 (重庆大学光电工程学院,重庆 400044)
 (重庆邮电大学光电学院,重庆 400065)
 (2021 年 10 月 12 日收到; 2021 年 10 月 26 日收到修改稿)

近年来, 铅卤钙钛矿 CsPbX₃ (X = Cl, Br 或 I) 因其具有荧光波段可调、荧光量子产率高 (Photoluminescence quantum yield, PLQY) 以及荧光半峰宽窄等优点而被广泛应用于光电器件领域.然而,与 PLQY 接近于 100% 的绿光和红光相比, 蓝光卤素钙钛矿的 PLQY 仍比较低.在此,采用过饱和结晶的方法在室温下合成了粒径 低于 4 nm 的超小晶粒锡 (Sn) 掺杂 CsPbBr₃量子点,并对其结构特性和光学特性进行了研究.结果表明:随着 SnBr₂ 添加量的增大,量子点晶粒的粒径略微减小,荧光发射峰发生蓝移,粒径由 3.33 nm (SnBr₂ 为 0.03 mmol) 减小到 2.23 nm(SnBr₂ 为 0.06 mmol 时), 对应的荧光发射峰由 490 nm 蓝移至 472 nm.当 SnBr₂ 添加量为 0.05 mmol 时合成的超小晶粒锡掺杂 CsPbBr₃量子点显示出最优的光学性能,其粒径约为 2.91 nm,对应的 XRD 各晶面 衍射峰强度最强,荧光发射峰位于 472 nm 处, PLQY 最高,达到了 53.4%,在空气中存放 15 d 后,其荧光发射 峰位置不发生明显改变,荧光 PLQY 仍保留最初的 80%,为 42.7%.证明适量添加 SnBr₂对 CsPbBr₃进行锡掺杂可有效提高超小晶粒量子点的结晶性能和光学性能.

关键词:超小晶粒,锡掺杂 CsPbBr₃量子点,光学性能,荧光稳定
 PACS: 74.25.Gz, 78.20.Ci, 42.25.-p, 42.50.Ct
 DOI: 10.7498/aps.71.20211895

1 引 言

全无机铅卤钙钛矿 CsPbX₃ (X = Cl, Br, I)因其具有合成工艺简单、带隙可调、荧光量子产 率 (Photoluminescence quantum yield, PLQY) 高 以及荧光发射峰窄等优点在发光二极管、光电响应 和 微 激 光 等 光 电 领 域 引 起 了 广 泛 关 注 ^[1-6]. PLQY 是荧光材料发射光子数与吸收光子数的比 值,主要用来定量表征荧光材料的发光能力^[7]. 荧 光材料的晶体结构、表面缺陷或晶格畸变等均会影 响荧光材料的 PLQY. 与 PLQY 接近于 100% 的 绿光 (CsPbBr₃)与红光 (CsPbI₃) 量子点比较,作 为提高色域关键颜色的蓝光 (CsPbCl₃) PLQY 较 低 (10%),且结构极不稳定,严重阻碍了钙钛矿发 光二极管在全彩显示中的应用^[8–11]. 铅卤钙钛矿 CsPbCl₃ 的 PLQY较低主要是由于其化学键为离 子型且具有较大的表面能,导致其对极性溶剂如

^{*} 贵州省科技计划项目 (批准号: ZK[2021]245)、国家自然科学基金 (批准号: 61975023, 61875211, 51602033, 61520106012)、凯里 学院博士专项课题 (批准号: BS202004, BS201301)、凯里学院学术新苗培养及创新探索专项课题 (批准号: 黔科合平台人才 [2019]01-4) 和贵州省教育厅创新群体重大研究项目 (批准号: 黔教合 KY 字 [2018]035) 资助的课题.

[†] 通信作者. E-mail: zengfanju@cqu.edu.cn

[‡] 通信作者. E-mail: weihu@cqu.edu.cn

計通信作者. E-mail: xstang@cqu.edu.cn

^{© 2022} 中国物理学会 Chinese Physical Society

水、乙醇和丙酮敏感,对其光学性能产生了负面影响^[2].因此,如何提高蓝光铅卤钙钛矿量子点的光 学性能仍存在挑战.

为了提高蓝光铅卤钙钛矿量子点的光学性能, 目前报道的方法主要有:减小 CsPbBr3 量子点粒 径,使量子点光学蓝移,不足的是由于量子局域效 应,其蓝光很不稳定,空气中易发生红移,变成绿 光发射[12,13]. 其次,采用卤素离子交换的方法合成 蓝光 CsPbBr_xCl_{1-x}量子点, 但由于晶格的不匹配 导致其晶体结构不稳定[14]. 最近几年, 报道了引入 离子半径小的二价或三价金属离子 M^{2+/3+}对铅卤 钙钛矿中的铅 Pb2+离子进行部分替代,该方法可 有效提高钙钛矿量子点的激子结合能,合成具有优 异光学性能的蓝光钙钛矿量子点.例如,对 CsPbX3 晶体结构进行 Cu²⁺, Mn²⁺, Sn²⁺, Cd²⁺, Zn²⁺, 和 Al³⁺ 等离子掺杂后,均不同程度地降低了铅卤钙钛矿缺 陷密度, 钝化了量子点晶界, 提高了量子点的光学 性能^[15-20]. 其中, van der Stam 等^[17] 采用金属离 子交换法合成了 PLQY 高达 62% 的 Sn²⁺离子掺 杂 CsPb1-rSnrBr3 蓝光量子点 (479 nm), 证明锡掺 杂 CsPbBr3 量子点可有效提高蓝光量子点的光学 性能.不足的是,该方法需要在高温加热且氮气保 护条件下,先采用热注入法合成未掺杂的 CsPbBr₃ 量子点,而后在常温下采用离子交换法合成 CsPb_{1-r} Sn_xBr₃蓝光量子点,合成工艺复杂且成本高^[21].最 近两年, Zhang 等^[22] 在常温条件合成了超小纳米 颗粒 (约 2 nm)Sb3+离子掺杂 CsPbBr3 量子点,成功 降低了量子点表面缺陷能,提高了晶格形成能和荧 光性能,为提高量子点光学性能提供了新的思路.

本文采用过饱和结晶的方法在室温下合成了 粒径超小的锡掺杂 CsPbBr₃量子点(低于 4 nm), 并对其结构特性和光学性能进行了研究.结果显 示:随着 SnBr₂添加量的增大,合成量子点粒径减 小,由3.33 nm (SnBr₂为0.03 mmol)减小到2.23 nm (SnBr₂为0.06 mmol),合成量子点荧光峰发生明显蓝 移,由 490 nm (SnBr₂为0.03 mmol) 蓝移至 472 nm (SnBr₂为0.06 mmol). 当 SnBr₂为0.05 mmol 时, 合成的蓝光(472 nm)量子点 PLQY 最高,为53.4%, 荧光发射具有良好的稳定性,在空气中存放 15 d 后,其荧光发射峰不发生明显改变,仍位于 472 nm 处,属于蓝光发射,PLQY 仍保持最初的 80%,为42.7%.该方法合成了蓝光 PLQY 高、空 气中荧光稳定的超小晶粒蓝光量子点,为合成光学 性能优异的蓝光量子点提供了参考.

2 实 验

2.1 实验材料

溴化铅 (PbBr₂, 99.9%) 和溴化铯 (CsBr, 99.9%) 购于西安宝莱特光电科技有限公司; 溴化铝 (AlBr₃, 98%)、油酸 (C₁₈H₃₄O₂, OA, 80%)、油胺 (CH₃(CH₂)₇ CH, OAm, 97%) 和甲苯 (C₇H₈, 99%) 购于上海阿 拉丁生化科技股份有限公司; 二甲基乙酰胺 (C₃H₇ NO, DMF, 99.8%)、正己烷 (C₆H₁₄, 97%)、乙酸甲 酯 (C₄H₆O₂, 95%) 购买于默克 Sigma-Aldrich 公司.

2.2 超小晶粒锡掺杂 CsPbBr₃ 量子点的制备

称取 0.4 mmol(146.8 mg)PbBr₂和 0.4 mmol (85.1 mg)CsBr 混于 20 mL 容积的 A 试剂瓶, 取 10 mL DFM 加入试剂瓶, 加入磁力搅拌子, 置于 磁力搅拌台进行搅拌,直至溶质完全溶解.加入 1 mL 油酸和 0.5 mL 油胺作为稳定剂, 常温下搅 拌 0.5 h 后待用. 称量 1 mmol (278.5 mg)SnBr2于 5 mL 容积的 B 试剂瓶, 加入 1 mL DMF 溶剂及 磁力搅拌子 (手套箱), 密封置于磁力搅拌器进行搅 拌 (大气氛围), 直至 SnBr₂ 完全溶解. 取出 4个 20 mL 容积的试剂瓶, 分别加入 10 mL 甲苯 (取出 前于5°C冰箱恒温保存)及磁力搅拌子,并置于磁 力搅拌台快速搅拌.采用移液枪于A试剂瓶取出 1 mL CsPbBr₃前驱体溶液 (PbBr₂约为 0.034 mmol),同时从B试剂瓶取出不同量的SnBr₂溶 液,迅速加入甲苯溶剂,剧烈搅拌 2 min,即获得 Sn²⁺离子掺杂 CsPbBr₃ 量子点胶体.其中,添加不 同的 SnBr₃ 溶液分别为 30 µL(0.03 mmol 的 SnBr₃)、 40 µL (0.04 mmol 的 SnBr₃)、50 µL (0.05 mmol 的 SnBr₃) 或 60 µL (0.06 mmol 的 SnBr₃). 最后, 采用乙酸甲酯和正己烷 (体积比为 3:1) 对所合量 子点胶体中的剩余反应物及有机物进行洗涤,重 复3次,将沉淀分散于正己烷,即可获得4种不同 添加量 SnBr₂ 的锡掺杂 CsPbBr₃ 量子点.

2.3 样品表征与光谱测试

所合成量子点的晶体结构采用 X 射线衍射仪进 行表征 (X-ray diffraction, XRD, Cu K_{α} irradiation, $\lambda = 0.15406$ nm). 量子点晶体形貌、晶格间距和元素 电子能谱图 (Energy dispersive spectrometer, EDS) 均采用透射电子显微镜 (Transmission electron microscope, TEM) 进行表征. 吸收光谱、荧光光谱以及 PLQY 分别采用紫外-可见分光光度计 (UV-2100) 和爱丁堡荧光光谱仪 (Edinburgh fluorescence spectrometer FS5) 进行表征. 量子点荧光衰减寿命采用荧光寿命测量系统 (QM TM NIR, PTI) 进行表征. 所有光学性能测试均在大气氛围进行.

3 结果讨论

3.1 结构特性

图 1 为所合成不同锡掺杂 CsPbBr₃ 量子点的 XRD 谱. 除 SnBr₂ 添加量为 0.06 mmol 时,锡掺 杂 CsPbBr₃ 量子点仅在 (200) 晶面形成衍射峰,其 余锡掺杂 CsPbB₃ 量子点均在 (100), (110) 和 (200) 晶面出现了明显衍射峰,与 PDF#18-0364 号卡片 对应的 CsPbBr₃ 钙钛矿晶格参数相吻合^[14].说明 锡掺杂没有改变 CsPbBr₃ 量子点的晶体结构.值 得注意的是,当 SnBr₂ 添加量为 0.05 mmol 时,所 合成的锡掺杂 CsPbBr₃ 量子点各晶面衍射峰对应 的强度都最强,但 SnBr₂ 添加量为 0.06 mmol 时, 各衍射峰强度都最弱,说明适量的锡掺杂可提高量

图 1 锡掺杂 CsPbBr3 量子点的 XRD 谱

Fig. 1. XRD patterns of tin doped CsPbBr_3 quantum dots.

子点的结晶性能, 过量的锡掺杂则会对量子点的结晶产生负面影响. 主要是由于 $Sn^{2+}(1.12 \text{ Å})(1 \text{ Å} = 0.1 \text{ nm})$ 的离子半径小于 Pb²⁺的离子半径 $(1.19 \text{ Å})^{[23]}$, 当小粒径的 Sn^{2+} 离子占据更多的 Pb²⁺离子位置 时, 使得锡掺杂 CsPbBr₃ 钙钛矿晶体的容忍因子 变小, 钙钛矿晶体结构的对称性受到破坏, 导致其 结构稳定性降低 [^{24]}.

图 2(a)—(c) 所示分别为添加 0.03 mmol, 0.05 mmol 和 0.06 mmol 的 SnBr₂ 所合成的锡掺 杂 CsPbBr3 量子点的 TEM 照片. 可以看出, 锡掺 杂 CsPbBr3 量子点的平均粒径分别为 3.33 nm, 2.91 nm 和 2.23 nm. 随着 SnBr₂ 添加量的增大, 超小量子点粒径略微减小,这主要是由于 Sn²⁺离 子的半径 (1.12 Å) 小于 Pb²⁺离子半径 (1.19 Å). 从 插图中的高分辨透射电镜 (High-resolution transmissionelectron microscopy, HRTEM) 图谱可知, 所合成超小晶粒锡掺杂量子点均在 (200) 晶面具 有晶格间距约为 0.28 nm 的清晰晶格条纹. 证明所 合成的锡掺杂 CsPbBr3 量子点具有与 CsPbBr3 相 同的晶体结构. 图 3 所示为添加 0.05 mmol 的 SnBr₂所合成量子点的Cs, Pb, Br和Sn元素的元 素映射图像.结果显示, Cs, Pb, Br 和 Sn 元素均 匀分布于锡掺杂 CsPbBr3 量子点表面. 进一步对 其进行电子能谱图 (EDS) 分析, 如图 4 所示, 添 加 SnBr₂为 0.05 mmol 时所合成量子点的 Cs, Pb, Br和 Sn元素的原子比分别为 20.31%, 18.68%, 56.38% 和 4.63%, 质量比分别为 23.22%, 33.30%, 38.75% 和 4.73%, Cs: (Pb+Sn): Br 原子比约为 1:1:3,与 CsPbBr3 晶体结构中的 Cs:Pb:Br 原子 比1:1:3相吻合^[25].结合图3和图4可以说明,添 加 SnBr₂ 可实现锡离子部分替代 CsPbBr₃ 量子点 中的铅离子,合成锡掺杂 CsPbBr₃ 量子点.

图 2 锡掺杂 CsPbBr₃ 量子点的 TEM 图谱 (标尺为 20 nm) (a) SnBr₂为 0.03 mmol; (b) SnBr₂为 0.05 mmol; (c) SnBr₂为 0.06 mmol. (a) (b) 中插图为对应 TEM 图量子点的 HRTEM 图谱 (标尺为 2 nm)

Fig. 2. TEM images of tin doped $CsPbBr_3$ quantum dots (scale bars represent 20 nm): (a) $SnBr_2$ is 0.03 mmol; (b) $SnBr_2$ is 0.05 mmol; (c) $SnBr_2$ is 0.06 mmol. Inset pictures show the HRTEM of corresponding quantum dots (scale bars represent 2 nm).

图 3 锡掺杂 CsPbBr₃ 量子点的 Cs, Pb, Br 和 Sn 元素的元素映射图像 (SnBr₂ 为 0.05 mmol), 标尺为 50 nm

Fig. 3. Cs, Pb, Br, and Sn element mapping images of tin doped $CsPbBr_3$ quantum dots (SnBr₂ is 0.05 mmol). The scale bars represent 50 nm.

图 4 锡掺杂 CsPbBr₃ 量子点的 EDS(SnBr₂ 为 0.05 mmol) Fig. 4. EDS of tin doped CsPbBr₃ quantum dots (SnBr₂ 0.05 mmol).

3.2 光学特性

3.2.1 吸收与荧光性能

图 5 为 Sn²⁺离子掺杂量子点的吸收光谱和荧 光光谱图. 从图 5(a) 可以看出, 锡掺杂后量子点的 吸收峰均在 475 nm 附近. 随着 SnBr₂ 添加量的增 大, 量子点荧光发生蓝移 (激发波长为 365 nm), SnBr₂ 添加量为 0.03 mmol, 0.04 mmol, 0.05 mmol 和 0.06 mmol 时分别对应 490 nm, 482 nm, 472 nm

和 472 nm 的荧光发射峰. 其中, 添加 SnBr₂为 0.05 mmol 时所合成量子点在 472 nm 处的发射峰 最强,属于蓝光发射.进一步对合成超小粒径量子 点的 PLQY 采用积分球进行测量, 对应测试仪器 为爱丁堡 FS 5 荧光光谱仪, 激发波长为 365 nm, 通过光学积分球可以测量单位时间内激发光子数、 被吸收后剩余的激发光子数、以及荧光光子数, PLQY 可直接由荧光光子数除以吸收光子数计算 得出. 结果如图 5(c) 所示, 添加不同量 SnBr₂所合 成 Sn²⁺离子掺杂 CsPbBr₃量子点的 PLQY分 别为 43.4% (0.03 mmol), 32.3% (0.04 mmol), 53.4% (0.05 mmol) 和 21.7% (0.06 mmol). 同样添加 SnBr₂ 为 0.05 mmol 时合成的蓝光量子点 PLQY 最高. 说明添加 SnBr,为 0.05 mmol 时合成的蓝光量子点 的光学性能最优异. 当添加 $SnBr_2$ 的量为 0.06 mmol 时,量子点荧发射峰虽仍位于 472 nm, 与添加 0.05 mmol 的 SnBr₂ 时相同, 但其 PLQY 迅速下 降,降至了 21.7%,比添加 0.05 mmol 的 SnBr,时 降低了 31.7%. 证明添加适量 SnBr₂ 合成的超小晶 粒量子点具有更好的结晶性和更优异的蓝光发射, 若 SnBr₂ 添加量过大,则会导致超小晶粒量子点结 晶性变差,致使其蓝光发射变弱.

图 6 为锡掺杂 CsPbBr₃ 量子点的荧光衰减曲 线. 所有锡掺杂量子点均可采用 (1) 式进行三指数 拟合^[26], 平均荧光寿命 τ_{avg} 、辐射复合寿命 τ_{r} 、非 辐射复合 τ_{nr} 、辐射复合衰减率 κ_{r} 和非辐射复合衰 减率 κ_{nr} 分别可采用 (2)—(6) 式进行计算^[27]:

$$f(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3), \qquad (1)$$

$$\tau_{\rm avg} = \sum \left(A_i \tau_i^2\right) \Big/ \sum A_i \tau_i,\tag{2}$$

$$\tau_{\rm r} = \frac{\tau_{\rm avg}}{\rm PLQY}, \qquad (3)$$

$$\tau_{\rm nr} = \frac{\tau_{\rm avg}}{1 - \rm PLQY},\tag{4}$$

$$\kappa_{\rm r} = 1/\tau_{\rm r},\tag{5}$$

$$\kappa_{\rm nr} = 1/\tau_{\rm nr},\tag{6}$$

Fig. 6. Time-resolved PL decays of tin doped $\rm CsPbBr_3$ quantum dots.

式中, A_1 , A_2 和 A_3 为常数, τ_1 , τ_2 和 τ_3 分别短寿 命、中等寿命和长寿命的衰减时间. 拟合结果如表 1 所示. 从表 1 可以得出, 添加不同量 SnBr₂ 合成的 锡掺杂 CsPbBr₃量子点的平均寿命 τ_{avg} 分别为 16.09 ns(0.03 mmol), 15.81 ns(0.04 mmol), 17.73 ns (0.05 mmol)和 14.78 ns(0.06 mmol). 添加 SnBr₂ 为 0.05 mmol 时所合成量子点对应的荧光寿命最 长. 为了研究锡掺杂后量子点的荧光机制, 进一步 对 τ_r , τ_{nr} , κ_r 和 κ_{nr} 进行计算, 结果如表 2 所示. 结 果表明, 添加 SnBr₂为 0.05 mmol 时所合成量子 点对应的 κ_r 最高, κ_{nr} 最低, 说明 SnBr₂添加量为 0.05 mmol 时, 可有效降低超小晶粒蓝光锡掺杂量 子点的非辐射复合缺陷密度. 证明适量的 SnBr₂ 可 有效降低超小晶粒锡掺杂 CsPbBr₃量子点的非辐 射复合率, 提高超小晶粒蓝光量子点的 PLQY^[27,28].

3.2.2 荧光稳定性

最后,为了使蓝光量子点更好地应用于光电器 件领域,对添加 SnBr₂为 0.05 mmol 所合成的超 小晶粒量子点的荧光稳定性进行研究.将其存放于 大气氛围 15 d(重庆,湿度>60%),分别对存放第 1,2,3,5,7,10 和 15 d 的荧光光谱进行测试 (激 发波长 365 nm),并对存放第 1,10 和 15 d 后量子 点的 PLQY 进行测试,结果如图 7 所示.量子点在 空气中存放 15 d 后,其荧光发射峰几乎没有明显 改变,存放第 1,10 和 15 d 蓝光量子点的 PLQY 依次为 53.4%,48.6% 和 42.7%,即存放 15 d 后, Sn²⁺ 离子掺杂 CsPbBr₃量子点仍具有 472 nm 的蓝光 发射,与存放第 1 天的超小晶粒量子点的 PLQY

	表 1	锡掺杂 CsPbBr3 量子点的衰减曲线拟合参数
Table 1.	Fitting results fitted	by time-resolved PL decays curve of tin doped CsPbBr ₃ quantum dots

$SnBr_2/mmol$	$A_1/\%$	τ_1/ns	$A_2/\%$	τ_2/ns	$A_3/\%$	τ_3/ns	$\tau_{\rm avg}/{\rm ns}$
0.03	12.36	3.60	69.05	9.33	18.59	26.17	16.09
0.04	4.52	1.83	69.01	9.16	26.48	22.92	15.81
0.05	7.43	2.09	63.97	8.96	28.60	25.07	17.73
0.06	4.42	1.65	69.56	8.10	26.03	21.64	14.78

表 2 $\tau_{\rm r}, \tau_{\rm nr}, \kappa_{\rm r}$ 和 $\kappa_{\rm nr}$ 计算结果

Table 2.	Calculate	results	of $\tau_{\rm r}$,	$\tau_{\rm nr}$,	$\kappa_{\rm r}$ 和	$\kappa_{ m nr}$.
			± /	/	*	

${ m SnBr_2/mmol}$	$\tau_{\rm avg}/{\rm ns}$	PLQY/%	$\tau_{\rm r}/{\rm ns}$	$\tau_{\rm nr}/{\rm ns}$	$\kappa_{ m r} imes 10^7/{ m s}^{-1}$	$\kappa_{nr}{\times}10^7/s^{-1}$
0.03	16.09	43.4	37.07	28.43	2.70	3.52
0.04	15.81	32.3	48.95	23.35	2.04	4.28
0.05	17.73	53.4	33.20	38.05	3.01	2.63
0.06	14.78	21.7	68.11	18.88	1.47	5.30

相比, 仅降低了 10.7%, 仍保持第 1 天测试 PLQY 的 80%. 说明添加 SnBr₂ 为 0.05 mmol 时合成的 超小晶粒锡掺杂 CsPbBr₃ 量子点在空气中具有良好的荧光稳定性, 可应用于蓝光光电器件领域.

图 7 锡离子掺杂 CsPbBr₃量子点大气氛围存放 1— 15 d 的荧光峰位置及 PLQY 变化

Fig. 7. PL peak and PLQY of tin doped $\rm CsPbBr_3$ quantum dots from 1 to 15 days.

4 结 论

本文采用过饱和结晶的方法在室温下合成了 粒径低于 4 nm 的超小晶粒锡 (Sn) 掺杂 CsPbBr₃ 量子点. 通过调节 SnBr₃ 的添加量, 合成了不同锡 掺杂 CsPbBr₃ 量子点, 对其结构特性和光学特性 进行研究.研究表明,超小晶粒量子点的粒径随 SnBr₂添加量的增大而略微减小,但晶格间距几乎 不变,均为0.28 nm. 光吸收位置基本一致,荧光发 射光谱则随 SnBr₂ 添加量的增大出现了蓝移. 当 SnBr₂的添加量为 0.05 mmol 时所合成的约 2.91 nm 的超小晶粒 CsPbBr3 量子点 XRD 各晶面显示出 最强衍射峰, 蓝光 (472 nm)PLQY 最高, 达到 53.4%, 空气中存放 15 d 后, 荧光峰不发生明显变化, 仍是 蓝光发射,其PLQY为42.7%,为合成量子点第1天 测试的 80%, 证明该量子点具有良好的发光稳定 性. 当 SnBr₂ 添加量为 0.06 mmol 时, 合成的量子 点仍为蓝光发射,但其 PLQY 仅为 21.7%,比添加 SnBr₂为 0.05 mmol 时降低了 31.7%, XRD 各晶 面衍射峰变弱. 证明添加适量的 SnBr₂ 对 CsPbBr₃ 量子点进行锡掺杂,可有效提高量子点的结晶性能 和荧光性能, 过量添加 SnBr₂则会对量子点的结晶 产生负面影响,致使其荧光性能降低.该方法合成 的添加 SnBr₂ 为 0.05 mmol 的具有超小晶粒、荧光 稳定且 PLQY 高的锡掺杂 CsPbBr₃ 蓝光量子点, 为合成荧光量子产率高的蓝光量子点提供了参考.

参考文献

- Li C L, Han C, Zhang Y B, Zang Z G, Wang M, Tang X S, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341
- [2] Li C L, Zang Z G, Han C, Hu Z P, Tang X S, Du J, Leng Y X, Sun K 2017 Nano Energy 40 195
- [3] Song J Z, Tao F, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409
- [4] Tang X S, Hu Z P, Chen W W, Xing X, Zang Z G, Hu W, Qiu J, Du J, Leng Y X, Jiang X F, Mai L Q 2016 Nano Energy 28 462
- [5] Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C, Rogach A L 2016 Nano Lett. 16 1415
- [6] Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504 (in Chinese) [瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504]
- [7] Shirasaki Y, Supran G J, Bawendi M G, Bulović V 2012 Nat. Photon. 7 13
- [8] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 *Nano Lett.* **15** 3692
- [9] Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373
- [10] Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68
 158503 (in Chinese) [段聪聪, 程露, 殷垚, 朱琳 2019 物理学报
 68 158503]
- [11] Shi W Q, Tian H, Lu Y X, Zhu H, Li F, Wang X X, Liu Y W 2021 Acta Phys. Sin. 70 087303 (in Chinese) [石文奇, 田宏, 陆 玉新, 朱虹, 李芬, 王小霞, 刘燕文 2021 物理学报 70 087303]
- [12] Chen W W, Xin X, Zang Z G, Tang X S, Li C L, Hu W, Zhou M, Du J 2017 J. Solid State Chem. 255 115
- [13] Guner T, Demir M M 2018 Phys. Status Solidi A 215 1800120
- [14] Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435
- [15] Bi C H, Wang S X, Li Q, Kershaw S V, Tian J J, Rogach A L 2019 J. Phys. Chem. Lett. 10 943
- [16] Liu H W, Wu Z N, Shao J R, Yao D, Gao H, Liu Y, Yu W L, Zhang H, Yang B 2017 ACS Nano 11 2239
- [17] van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C 2017 J. Am. Chem. Soc. 139 4087
- [18] Liu M, Zhong G H, Yin Y M, Miao J S, Li K, Wang C Q, Xu X R, Shen C, Meng H 2017 Adv. Sci. 4 1700335
- [19] Li M, Zhang X, Matras-Postolek K, Chen H S, Yang P 2018 J. Mater. Chem. C 6 5506
- [20] Pradeep K R, Chakraborty S, Viswanatha R 2019 Mater. Res. Express 6 114004
- [21] Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Edit. 56 13650
- [22] Zhang X T, Wang H, Hu Y, Pei Y X, Wang S X, Shi Z F, Colvin V L, Wang S N, Zhang Y, Yu W W 2019 J. Phys. Chem. Lett. 10 1750
- [23] Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511
- [24] Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804

- [25] Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433
- [26] Huang H, Susha A S, Kershaw S V, Hung T F, Rogach A L 2015 Adv. Sci. 2 1500194
- [27] Pan G C, Bai X, Xu W, Chen X, Zhai Y, Zhu J Y, Shao H,

Synthesis and optical properties of ultra-small Tin doped CsPbBr₃ blue luminescence quantum dots^{*}

Zeng Fan-Ju^{1)2†} Tan Yong-Qian¹⁾

Hu Wei^{2)‡} Tang Xiao-Sheng^{2)3)††}

Zhang Xiao-Mei¹⁾ Yin Hai-Feng¹⁾

1) (School of Big Data Engineering, Kaili University, Kaili 556011, China)

2) (College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China)

3) (College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

(Received 12 October 2021; revised manuscript received 26 October 2021)

Abstract

All-inorganic perovskite CsPbX₃ (X = Cl, Br and I) quantum dots (QDs) have been wildly utilized in optoelectronic devices due to their tunable photoluminescence, high photoluminescence quantum yield (PLQY), and narrow-line width photoluminescence. However, the blue luminescence PLQY of $CsPbX_3$ perovskite quantum dots is still lower than their red and green luminescence counterparts (PLQYs nearly 100%). Here in this work, we present a handy strategy to synthesise the ultra-small blue luminescence Tin-doped CsPbBr₃ perovskite QDs by supersaturated recrystallization synthetic approach at room temperature, and the particle size of as-prepared QDs is lower than 4 nm. The crystal structure and optical property of Tin doped CsPbBr₃ QDs are characterized by XRD, TEM, ultraviolet-visible spectrophotometer, and fluorescence spectrophotometer. The results show that the particle size of as-prepared QDs is slightly shrunk from 3.33 nm (SnBr₂ 0.03 mmol) to 2.23 nm (SnBr₂ 0.06 mmol) as the SnBr₂ adding quantity increases, but there is no obvious change in the lattice spacing of doped QDs. The partial substitution of Pb for Tin leads the optical spectra to blue-shift from 490 nm (SnBr₂ 0.03 mmol) to 472 nm (SnBr₂ 0.06 mmol). The highest PLQY and the strongest XRD diffraction of ultra-small Tin doped CsPbBr₃blue luminescence QDs are obtained by adding $SnBr_2 0.05$ mmol, and the blue luminescence peak is located at 472 nm with the PLQY of 53.4%. There is no any change in PL peak of Tin doped CsPbBr₃ QDs (SnBr₂ 0.05 mmol) by storing it under the ambient atmosphere for 15 days, and the PLQY of Sn^{2+} doped QDs is still 80% of the initial after 15 days. It is concluded that the crystallization and optical property can be effectively improved in Tin doped CsPbBr₃ QDs by partially replacing appropriate quantity of Pb by Tin.

Keywords: ultra-small, tin doped CsPbBr3 quantum dots, optical property, stable luminescencePACS: 74.25.Gz, 78.20.Ci, 42.25.-p, 42.50.CtDOI: 10.7498/aps.71.20211895

Ding N, Xu L, Dong B, Mao Y L, Song H W 2020 ACS Appl. Mater. Interfaces 12 14195

[28] Wang S X, Wang Y, Zhang Y, Zhang X T, Shen X Y, Zhuang X W, Lu P, Yu W W, Kershaw S V, Rogach A L 2019 J. Phys. Chem. Lett. 10 90

^{*} Project supported by Science and Technology Program of Guizhou Province, China (grant No. ZK[2021]245), the National Natural Science Foundation of China (Grant Nos.61975023, 61875211, 51602033, 61520106012), the Doctoral Project of Kaili University (Grant Nos. BS202004, BS201301), the Academic New Seedling Cultivation and Innovation Exploration Special Project of Kaili University (Grant No. Qian Ke He Ping Tai Ren Cai [2019]01-4), and the Major Research Projects of Innovative Groups in Education Department of Guizhou Province of China (Grant No. Qian Jiao He KY[2018]035).

 $[\]dagger$ Corresponding author. E-mail: <code>zengfanju@cqu.edu.cn</code>

 $[\]ddagger$ Corresponding author. E-mail: weihu@cqu.edu.cn

^{††} Corresponding author. E-mail: xstang@cqu.edu.cn