

Institute of Physics, CAS

多步旋涂过程中CsPbBr₃无机钙钛矿成膜机理

马书鹏 林飞宇 罗媛 朱刘 郭学益 杨英

Formation mechanism of CsPbBr₃ in multi-step spin-coating process Ma Shu-Peng Lin Fei-Yu Luo Yuan Zhu Liu Guo Xue-Yi Yang Ying 引用信息 Citation: Acta Physica Sinica, 71, 158101 (2022) DOI: 10.7498/aps.71.20220171 在线阅读 View online: https://doi.org/10.7498/aps.71.20220171 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池

Efficient and stable carbon–based CsPbBr_3 solar cells added with PEABr additive

物理学报. 2022, 71(2): 028101 https://doi.org/10.7498/aps.71.20211344

形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究

Preparation of CsPbBr₃ perovskite nanocrystals with controllable morphology and *in-situ* photoluminescence of formation kinetics 物理学报. 2022, 71(9): 096802 https://doi.org/10.7498/aps.71.20212228

单个CsPbBr₃钙钛矿量子点的荧光闪烁特性

Photoluminescence blinking properties of single CsPbBr₃ perovskite quantum dots

物理学报. 2021, 70(20): 207802 https://doi.org/10.7498/aps.70.20210908

金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展

Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping 物理学报. 2020, 69(18): 187801 https://doi.org/10.7498/aps.69.20200795

强电负性配体诱导CsPbBr3纳米晶蓝光出射

Ligand with strong electronegativity induced blue emitting of CsPbBr₃ nanocrystals

物理学报. 2020, 69(15): 158102 https://doi.org/10.7498/aps.69.20200261

超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究

Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots

物理学报. 2022, 71(4): 047401 https://doi.org/10.7498/aps.71.20211895

多步旋涂过程中 CsPbBr₃ 无机钙钛矿成膜机理*

马书鹏1)2)3) 林飞宇1)2)3) 罗媛1)2)3) 朱刘4)5) 郭学益1)2)3) 杨英1)2)3)

1) (中南大学冶金与环境学院, 长沙 410083)

2) (中南大学,有色金属资源循环利用湖南省重点实验室,长沙 410083)
3) (有色金属资源循环利用湖南省工程研究中心,长沙 410083)
4) (广东省高性能薄膜太阳能材料企业重点实验室,清远 511517)
5) (清远先导材料有限公司,清远 511517)
(2022 年 1 月 24 日收到; 2022 年 2 月 28 日收到修改稿)

在无机钙钛矿太阳能电池的研究中,薄膜制备工艺是影响钙钛矿太阳能电池光电转换效率 (PCE) 的重要因素之一. CsPbBr₃ 钙钛矿作为稳定性极好的无机钙钛矿之一,因其前驱体盐 (PbBr₂, CsBr) 溶解度差异过大,通常采用多步法进行制备.而由于对成膜机理的认识不充分,导致制备的薄膜存在薄膜形貌差、前驱体反应不完全等问题.本文通过旋涂不同次数的 CsBr 溶液,探究了 CsPbBr₃ 钙钛矿的成膜机理.成膜过程中CsBr 扩散进入预先沉积的 PbBr₂ 薄膜完成反应,短暂反应时间使薄膜深层反应不充分而薄膜表面过度反应,CsPb₂Br₅和 Cs₄PbBr₆等相伴随 CsPbBr₃ 钙钛矿出现,反复退火形成的薄膜阻挡 CsBr 扩散加剧了这一现象.适当地延长前驱体的反应时间,能为 CsBr 扩散及反应提供更充分的空间.基于优化反应时间,CsPbBr₃ 钙钛 矿薄膜形貌得到改善、其晶粒尺寸得到提升,钙钛矿薄膜中的晶界减少,从而抑制了载流子复合.在4次旋涂和 30 s反应时间的条件下,组装的 CsPbBr₃ 钙钛矿薄膜中的晶界减少,基于以上研究,为多步旋涂法制备 CsPbBr₃ 钙钛矿薄膜和电池提供了理论借鉴.

关键词:无机钙钛矿, CsPbBr₃, 多步旋涂法,反应机理,反应时间
 PACS: 81.05.-t, 81.15.-z, 84.60.Jt
 DOI: 10.7498/aps.71.20220171

1 引 言

近年来钙钛矿太阳能电池引起了极大的研究热度,其具有载流子迁移率高、载流子长扩散、带隙小、吸光系数高等特点,光电转换效率 (PCE) 从 3.8% 提升至 25.5%^[1,2].水、氧气导致的电池衰退限制了钙钛矿的应用,因此大量研究工作集中在改善有机 无机杂化钙钛矿太阳能电池稳定性的研究方面^[3-7]. Yang 等^[8] 通过引入琼脂糖,未封装器件能在空气 湿度条件下维持 90% 以上效率超过 1392 h. Gu-SCN (硫氰酸胍, guanidinium thiocyanate) 作为 添加剂也用于稳定 MAPbI₃(CH₃NH₃PbI₃), SCN-与 CH₃NH₃+反应在晶界处产生 PbI₂将提升钙钛 矿薄膜的结晶、晶粒大小及稳定性^[9]. 另一方面, 通 过 Cs+替换有机官能团后形成的无机钙钛矿稳定 性得到改善^[10,11]. Bai 等^[12] 制备的基于 CsPbI₂Br 电池 PCE 可达 14.81%, 器件在 25%—35% 湿度 的空气气氛中维持效率不衰减. Lin 等^[13] 对 CsPb I₂Br 钙钛矿开展了研究, 在无手套箱的条件下制备

© 2022 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 61774169)、清远市创新创业团队项目 (批准号: 2018001)、广东省科技计划 (批准号: 2018B030323010) 和中南大学研究生自主探索创新项目 (批准号: 2021zzts0612) 资助的课题.

[†] 通信作者. E-mail: muyicaoyang@csu.edu.cn

了可稳定存在 144 h 的 CsPbI₂Br 钙钛矿.

相比于 CsPbI₃和 CsPbI_xBr_{3-x}, CsPbBr₃钙钛 矿具有更大的带隙 (2.3 eV), 大的带隙能够为电池 提供超高的开路电压 (理论值 1.98 V), 为 CsPbBr3 钙钛矿在光电方面的应用带来了巨大的优势. Cs PbBr₃钙钛矿薄膜质量是影响电池 PCE 的重要因 素之一, 探究其成膜机理将为制备高质量薄膜提供 便利. 由于 CsBr 和 PbBr,溶解度差异大, Kulbak 等^[14]提出分步法制备 CsPbBr₃钙钛矿薄膜,简单 的旋涂薄膜中存在许多缺陷,电池 PCE 仅 5.98%. 分步法过程中两前驱体盐浓度差会影响钙钛矿形 成, CsBr不足时薄膜中存在 CsPb₂Br₅, 过多的 CsBr 又将导致薄膜中形成 Cs₄PbBr₆^[15,16]. 此外, CsBr与PbBr,反应速度极快,沉积到基底上将导 致部分 PbBr₂未完全反应, 退火后形成的钙钛矿 薄膜粗糙^[17]. 限制 CsBr 的沉积速度, 为 PbBr₂提 供足够的时间转变成 CsPbBr3 钙钛矿, 才能够制 备出表面平滑且粒径均匀的钙钛矿薄膜.目前 CsPbBr₃钙钛矿薄膜的研究多集中在工艺方法的 优化上,旋涂、浸泡、气相沉积、脉冲激光沉积[18-20] 都可用于薄膜制备,但对于 CsPbBr₃ 的形成机理 研究仍然较少.

本文以旋涂法为基础,将CsBr溶液反复旋涂 在 PbBr₂ 薄膜上,观察其变化规律以探究 CsPbBr₃ 钙钛矿的形成机理. 研究发现, 钙钛矿薄膜中的相变 过程为 PbBr₂→CsPb₂Br₅→CsPbBr₃→Cs₄PbBr₆. 由于每次旋涂后都进行退火,已形成的钙钛矿薄膜 将阻碍底层未反应的 PbBr₂和 CsPb₂Br₅转变为 CsPbBr₃钙钛矿.而CsBr的溶剂甲醇对钙钛矿膜 有刻蚀作用,可消除钙钛矿膜的阻碍.适当地延长 CsBr 溶液在 PbBr 薄膜表面的反应时间, 可以溶 解阻挡层, 使下层 PbBr₂充分反应. 同时, 低浓度 的 CsBr 溶液不会导致 Cs₄PbBr₆形成. 通过对 CsPbBr₃薄膜的形成机理的深入探究及优化,在旋 涂 4 次及溶液停留 30 s 的条件下, 制备了致密且 粒径均匀的钙钛矿薄膜,制备的结构为 FTO/c-TiO₂/m-TiO₂/CsPbBr₃/Spiro-OMeTAD/Ag 的电 池 PCE 可达 6.30%.

- 2 实验部分
- 2.1 实验材料

刻蚀的 FTO 导电玻璃购自大连七色光太阳

能科技公司. 钛酸四异丙酯 (>99.5%), 18NR-T (TiO₂浆料), PbBr₂(>99.99%), Sprio-OMeTAD (98%), TBP(4-tert-butylpyridine, AR), LITFSI ((三氟甲基磺酰) 亚胺锂), PC₆₁BM(苯基 c61 -丁 酸甲酯, AR) 购自西安宝莱特光电科技公司. CsBr (>99%), DMF(99%), 氯苯 (99%), 乙腈 (99%) 购 自百灵威试剂公司, 甲醇 (AR), 乙醇 (AR), 正丁 醇 (AR) 购自阿拉丁试剂.

2.2 电池制备

首先 FTO 玻璃经过清洗剂、去离子水、乙醇 超声清洗三次,在烘箱中80℃烘干.随后摩尔浓 度为 0.22 mol/mL 的钛酸四异丙酯溶液和质量比 1:4的18NR-T溶液(18NR-T,乙醇)分别旋涂到 FTO基底上制备电子传输层,旋涂速度分别为 2000 和 4000 r/min, 旋涂时间为 30 s, 旋涂后分别 经过 500 ℃ 烧结使其形成 TiO₂. 随后通过多步旋 涂法制备钙钛矿薄膜:将摩尔浓度为1 mol/mL 的 PbBr₂溶液以旋涂速度 2000 r/min、旋涂时间 30 s 的条件旋涂到 TiO₂ 电子传输层上制备 PbBr₂ 薄膜,在 70 ℃ 加热 30 min 烘干溶剂,然后将质量 浓度为 15 mg/mL 的 CsBr 以 2000 r/min 的转速 旋涂 30 s 与 PbBr, 薄膜反应, 250 ℃ 退火 5 min, 随后多次重复这一过程制备 CsPbBr3 钙钛矿薄膜. 对于空穴传输层,质量浓度为 72.3 mg/mL 的 Spiro-OMeTAD(溶剂氯苯,添加 TBP, LITFSI (520 mg/mL, 溶剂乙腈)) 以旋涂速度 3000 r/min、 旋涂时间 30 s 的条件旋涂到钙钛矿薄膜表面. 最 后通过蒸镀仪 (PD400s, 普迪真空, 中国) 制备 Ag 金属电极, 即完成电池器件的制备.

2.3 表 征

钙钛矿吸光层的晶相结构和表面形貌采用 X射线衍射仪(日本, Rigaku-TTRIII)和场发射扫 描电子显微镜(日本电子公司, JSM-6360LV)表 征.对可见光吸收效率采用紫外-可见光分光光度 计(UV-1800, Hitachi,日本)测试,扫描范围为 400—1100 nm.使用具有466 nm脉冲的FLS1000 测量光致发光光谱(爱丁堡仪器,英国).采用电化 学工作站(PGSTAT302N, Metrom, AUT86802, 瑞士)和氙灯模拟光源(CHF-XM500, Trust-tech, 北京)组合分析钙钛矿太阳能电池的光电性能 (AM1.5G, 100 mW/cm²).电化学阻抗(EIS)通过 电化学工作站在暗态环境下测量,偏压设置为 1 V. 缺陷态密度采用仅有电子传输层的结构 FTO/TiO₂/CsPBbr₃/PC₆₁BM/Ag 通过空间电荷 受限电流 (SCLC) 法在暗态环境下测试. 电池器件 有效面积 0.1657 cm². 所有测试均在湿度低于 40% 的空气中进行.

3 结果与讨论

3.1 旋涂次数对钙钛矿薄膜的影响

图 1(a) 为多步旋涂法制备的 CsPbBr₃ 钙钛矿 薄膜示意图, 钙钛矿薄膜通过两步法进行制备. 首 先沉积 PbBr₂ 到表面覆盖 TiO₂ 的 FTO 玻璃基底 上, 通过多次旋涂, PbBr₂ 薄膜会逐渐转变为黄色, 这意味着钙钛矿在不断形成, 结果如图 1(b) 所示.

对不同旋涂次数制备的钙钛矿薄膜进行 X 射 线衍射 (XRD) 测试,结果如图 2(a) 所示.在 3—7 次 旋涂次数下,薄膜都有位于 15.40°, 21.83°, 30.90°, 34.71°和 44.32°的峰,分别对应 CsPbBr₃ 钙钛矿的 (100), (110), (200), (210) 和 (220) 晶面 (PDF#54-0752). 旋涂次数较少时,峰强度较低.所有薄膜均 存在位于 11.83°, 23.61°, 29.59°, 40.81°的特征峰, 分别对应 CsPb₂Br₅ 的 (002), (210), (213), (310) 晶 面 (PDF#25-0211).结合其他研究,在溶液法制 备 CsPbBr₃ 的过程中, CsPb₂Br₅ 总是存在^[15,16,21]. 随着 CsBr 不断地旋涂到薄膜表面, CsPb₂Br₅ 向 CsPbBr₃转化, XRD 结果中 CsPbBr₃ 位于 15.40°, 21.83°, 30.90°的特征峰增强.但仅增加旋涂次数 难以消除 CsPb₂Br₅ 相,即使 Cs₄PbBr₆ 相出现, Cs Pb₂Br₅仍然存在.

图 2(b) 和图 2(c) 为不同旋涂次数钙钛矿薄膜 的紫外吸收光谱及相应的 Tauc 图. 在紫外光区域, 所有旋涂次数制备的薄膜都具有较高的吸收值,其 中旋涂 4—5次的薄膜吸收值要高于其他旋涂次 数. 4-5 次旋涂使 PbBr₂与 CsBr 反应更充分, 钙 钛矿薄膜结晶更好. 不同旋涂次数的薄膜吸收峰都 位于 535 nm, 且没有发生偏移. 通过计算可以发 现,所有薄膜的带隙都处于 2.33—2.34 eV 之间. 图 2(d) 为不同旋涂次数下钙钛矿薄膜的光致发光 (PL)光谱,薄膜在 TiO2 表面制备,具有电子传输 层后,载流子可以进行分离.PL光谱有两个明显 的发射峰, 其中左侧 440 nm 为 PbBr₂/TiO₂ 薄膜 的发射峰 (与图 2(d) 插图 PbBr2 的发射峰位置相 同), 而 530 nm 发射峰为 CsPbBr₃ 钙钛矿发射峰^[16]. 可以发现, 旋涂 4 次的钙钛矿薄膜具有最低的发射 峰强度,这表明钙钛矿具有更好的电荷分离效果.

图 3 为不同旋涂次数下钙钛矿薄膜的扫描电 子显微镜 (SEM) 表面及截面图.不同旋涂次数下 的薄膜形貌均较差,薄膜晶粒较小覆盖不完整且有 孔洞.随着旋涂次数的增加,薄膜晶粒增大但仍不 能完整覆盖表面.结晶差及过多的 CsPb₂Br₅将导 致晶粒较小^[22].在薄膜未覆盖的区域,能够观察到 一些未反应的 PbBr₂颗粒.图 3(f) 为旋涂 4 次时 薄膜的截面 SEM 图,细小的颗粒堆积在一起印证 了薄膜形貌和结晶差.同时说明钙钛矿薄膜表面和 底层形貌存在巨大差异,这导致表面 CsPbBr₃完 全形成,而底层的 PbBr₂未发生反应, CsPb₂Br₅ 始终存在于薄膜中.

Fig. 1. (a) Schematic of multi-step spinning method; (b) photographs of perovskite films with different times of spin coating.

图 2 不同旋涂次数 CsPbBr₃ 钙钛矿薄膜的 (a) XRD 图、(b) 紫外吸收光谱图、(c) Tauc 图和 (d) PL 光谱 Fig. 2. (a) XRD patterns, (b) UV-vis absorption spectra, (c) Tauc plots of (*ahv*)² vs. the photo energy, and (d) PL spectra of CsPbBr₃ perovskite films with different spin-coating times.

图 3 不同旋涂次数制备的 CsPbBr₃钙钛矿薄膜 SEM 图 (a) 旋涂 3 次; (b) 旋涂 4 次; (c) 旋涂 5 次; (d) 旋涂 6 次; (e) 旋涂 7 次; (f) 旋涂 4 次时薄膜的截面

Fig. 3. The SEM images $CsPbBr_3$ perovskite films with different spin coating times: (a) 3 times; (b) 4 times; (c) 5 times; (d) 6 times; (e) 7 times; (f) cross-section image of the film with 4 times.

3.2 CsPbBr₃的成膜机理

结合薄膜照片, XRD, SEM 和其他研究^[15,18,23],

多步旋涂过程中 CsPbBr₃ 的形成机理可概况为以下 3 个反应:

$$\begin{split} PbBr_2 + CsBr &\rightarrow CsPb_2Br_5,\\ CsPb_2Br_5 + CsBr &\rightarrow CsPbBr_3,\\ CsPbBr_3 + CsBr &\rightarrow Cs_4PbBr_6. \end{split}$$

图 4 展示了多步旋涂过程中 CsPbBr₃ 薄膜的 形成机理.在预先沉积的 PbBr₂ 薄膜表面旋涂较 少的 CsBr 溶液时, CsPb₂Br₅形成占主导地位,已 形成的 CsPb₂Br₅将向下沉积.随着反复的旋涂 CsBr 溶液,薄膜中发生相的融合分离,已形成的 CsPb₂Br₅转化为 CsPbBr₃,同时底层未反应的 PbBr₂转变为 CsPb₂Br₅.通过退火钙钛矿晶粒长 大,形成紧密的钙钛矿薄膜覆盖在表面.当旋涂 CsBr 过量后,Cs₄PbBr₆相出现.薄膜相变过程按 照 PbBr₂→CsPb₂Br₅→CsPbBr₃→Cs₄PbBr₆路线 进行,这一结果在 XRD 中得到了验证.但滴加 CsBr 溶液后直接进行旋涂,已形成的钙钛矿薄膜 将阻挡 CsBr,使 CsBr 难以进入到薄膜底层进行 反应,这就导致薄膜中 Cs₄PbBr₆出现时 CsPb₂Br₅ 仍然存在.

图 4 CsPbBr₃钙钛矿薄膜的形成机理图 Fig. 4. Formation mechanism of CsPbBr₃ in multi-step spin-coating.

3.3 CsBr 溶液反应时间对钙钛矿薄膜的 影响

基于对旋涂次数因素的探索,薄膜在 4 次旋涂 时具有较好的形貌及光学性能.在此基础上探索 CsBr 与 PbBr₂ 两前驱体反应时间对 CsPbBr₃ 钙 钛矿薄膜形成及电池性能的影响.图 5(a)为 CsBr 溶液被滴加到 PbBr₂ 薄膜表面后,两前驱体反应 时间对薄膜颜色的影响.60 s 反应时间制备的样品 黄色薄膜颜色最明亮,其他样品则随着反应时间减 少不断变淡.为深入探究反应时间对薄膜的影响, 对不同反应时间下退火与未退火的薄膜表面形貌 进行 SEM 测试,结果如图 5(b)—(o)所示.图 5(b)— (h)为未退火的薄膜 SEM 图,薄膜覆盖度随反应 时间的延长不断下降,这表明已形成的 CsPbBr₃ 薄膜被甲醇溶剂刻蚀加剧.甲醇对 CsPbBr₃的刻 蚀作用在 Ryu 等^[24]的研究中也得到验证.图 5(i)— (o)为退火后的薄膜,薄膜经过退火覆盖度明显上 升.反应时间为 0 时,薄膜覆盖度较好但晶粒较小, 这是由于薄膜中存在大量 CsPb₂Br₅.随着反应时 间增加,钙钛矿晶粒明显增大,但当反应时间超过 30 s 时,薄膜表面开始出现孔洞.延长反应时间能够 加剧甲醇对已形成薄膜的刻蚀作用,使 CsPb₂Br₅和 PbBr₂能够充分得到反应转化为 CsPbBr₃钙钛矿.

对不同反应时间下形成的 CsPbBr₃钙钛矿薄 膜进行 XRD 测试, 结果如图 6(a) 所示. 在所有反 应时间下,薄膜都存在位于15.18°,21.58°,30.69°, 34.46°, 44.29°的峰, 分别对应 CsPbBr₃钙钛矿的 (100), (110), (200), (210), (220) 晶面. 各个反应时 间下,峰位没有发生偏移,同时这些峰的强度也随 着反应时间的延长不断增强, 60 s 时达到最大, 表 明延长反应时间有利于薄膜形成更多的 CsPbBr3 钙钛矿. 但在所有反应时间下, 位于 11.7°, 29.38° 的峰一直存在,这两个峰分别对应 CsPb₂Br₅相的 (002), (213) 晶面 (PDF#25-0211). 当反应时间到 达 60 s 时, CsPb₂Br₅ 峰强度最小, 表明更长地反 应时间能够有效地消除 CsPb₂Br₅相. 但由于薄膜 表面和底层与 CsBr 前驱体反应不完全均一, 因此 旋涂过程中 CsPb₂Br₅ 难以完全消除,在 3.1 节旋 涂次数的实验中薄膜出现 Cs₄PbBr₆ 时 CsPb₂Br₅ 仍然存在,这和本节实验互相印证.同时少量的 CsPb₂Br₅对于钙钛矿薄膜不完全有害,其掺在钙 钛矿薄膜中能钝化 CsPbBr₃表面,降低 CsPbBr₃ 表面固有的 Br 空位 (VBr), 提高载流子寿命^[25]. 当 反应时间超过 40 s 时,在 12.89°处出现了 Cs₄PbBr₆ 的峰位^[26],这表明反应时间大于 30 s 后, CsBr 与 PbBr₂薄膜反应过度,导致 CsPbBr₃钙钛矿转变 为其他相[15].

图 6(b) 和图 6(c) 为薄膜的紫外吸收光谱和相 应的 Tauc 图, 薄膜的吸收值随着反应时间的延长 呈现先增强后减弱的趋势, 在反应时间为 30 s 时 薄膜吸收值最大. 同时所有反应时间下薄膜的吸收 峰都位于 535 nm, 未发生偏移. 30 s 具有较高吸收 值说明 PbBr₂ 与 CsBr 反应更充分, 钙钛矿薄膜中

图 5 (a) 不同反应时间下 CsPbBr₃ 钙钛矿薄膜照片; (b)—(h) 未退火的薄膜 SEM 图; (i)—(o) 退火后的薄膜 SEM 图. 标尺 1 µm Fig. 5. (a) Images of as-prepared films with varied CsBr solution reaction time; (b)–(h) SEM images of unannealed films; (i)–(o) SEM images of annealed films. All films spin-coating four times. Scale bar: 1 µm.

图 6 不同反应时间下 CsPbBr₃ 钙钛矿薄膜的 (a) XRD 图、(b) 紫外吸收光谱、(c) Tauc 图和 (d) PL 光谱 Fig. 6. (a) XRD patterns, (b) UV-vis absorption spectra, (c) Tauc plots of (*αhν*)² vs. the photo energy, and (d) steady-state PL of the cesium lead bromide films deposited on FTO substrates with varied CsBr solution reaction time.

其他相更少且结晶更好. 通过带隙计算, 所有反应 时间下的样品带隙都在 2.3 eV 左右. 图 6(d) 为 PbBr₂薄膜和不同反应时间钙钛矿薄膜的 PL 光 谱 (样品直接沉积在玻璃基底上). 反应时间小于 30 s 时, PL 光谱中存在两个明显的发射峰, 其中左 例 440 nm 处的发射峰为 PbBr₂, 右侧位于 534 nm 的峰则为 CsPbBr₃钙钛矿发射峰. 反应时间从 0 到 60 s 过程中, 左侧 PbBr₂发射峰强度不断下 降, 右侧钙钛矿发射峰强度不断上升. 这说明延长 反应时间能够有效地消除薄膜中的 PbBr₂促进钙 钛矿形成.

基于以上研究制备 CsPbBr₃ 钙钛矿薄膜后, 组装太阳能电池,结构为 FTO/c-TiO₂/m-TiO₂/ CsPbBr₃/Spiro/Ag. 在AM1.5G (100 mW/cm²)下 测试的器件的 J-V参数如表 1 所列, 包括 J_{sc} , V_{oc} , FF, PCE. 图 7 为不同反应时间下器件的 J-V曲 线,随着反应时间从 0 增加到 30 s, 电池 PCE 从 5.32% 增加到 6.3%, 此时 $J_{sc} = 8.40 \text{ mA/cm}^2$, V_{oc} = 1.28 V, FF = 59%. 进一步增加反应时间到 60 s, 器件 PCE 下降到 2.09%. 反应时间从 0 延长 到 30 s, 器件开路电压 V_{oc} 提升至 1.28 V. 钙钛矿 薄膜晶粒不断增大,从而有效地减少了晶界.钙钛 矿薄膜的晶界会在其相关电荷陷阱态引起电荷复 合,减少晶界将有利于器件获得更高的开路电压 (V_{oc})和短路电流 (J_{sc})^[26]. 同时,在 30 s 反应时间 下,钙钛矿薄膜具有最强的 PL 发射峰,表明在这 一条件下,钙钛矿结晶性能更好[17],从而为相应的 器件提供了更高的性能参数.

表 1 不同反应时间下 CsPbBr₃ 钙钛矿薄膜的电池器 件 *LV* 参数

Table 1. \$J\$-V parameters of ${\rm CsPbBr}_3$ perovskite for solar cell with different reaction time.

反应时间/s	$J_{ m sc}/({ m mA}{\cdot}{ m cm}^{-2})$	$V_{\rm oc}/{\rm V}$	FF	PCE/%
0	8.78	1.17	0.52	5.32
10	8.51	1.22	0.56	5.86
20	7.95	1.20	0.58	5.55
30	8.40	1.28	0.59	6.30
40	7.94	1.03	0.52	4.22
50	6.28	1.08	0.59	4.02
60	4.19	1.03	0.48	2.09

EIS测试用于探索延长反应时间前后电池的 电荷传输过程,对未延长反应时间0和最佳时间 30 s进行测试,结果如图7(b)所示.等效电路图如 图 7(b) 插图所示, R_s和 R_{rec}分别串联电阻和电荷 复合电阻,数据也在图 7(b)中给出.延长反应时间 至 30 s 后, R_s从 27.39 Ω降低至 7.88 Ω,这表明电 池的导电性能得到提升,对应着 FF的提升.相比 于反应时间为 0, R_{rec}值从 156.5 Ω 增大至 1144 Ω, 表明延长反应时间至 30 s 载流子复合得到有效抑 制,这有利于电荷的快速提取、分离,从而提高光

图 7 (a) 不同反应时间下的 CsPbBr₃ 钙钛矿薄膜器件 *J*-V 曲线; (b) CsPbBr₃电池 Nyquist 图, 插图为等效电路图及 相关参数; (c) 暗态下结构为 FTO/TiO₂/CsPbBr₃/PC₆₁BM/ Ag 的器件的 *J*-V曲线

Fig. 7. (a) J - V curves of CsPbBr₃ perovskite solar cell based on different reaction time; (b) Nyquist plots of CsPbBr₃ PSCs under 1 sun illumination, the inset provides the equivalent circuit and relevant parameter; (c) J - V curves of the device with an architecture of FTO/TiO₂/CsPbBr₃/PC₆₁BM/ Ag under dark conditions. 伏性能^[27,28].为进一步探索延长反应时间前后 CsPbBr₃薄膜的缺陷态密度,采用 SCLC 测试记 录的电池在暗态环境下的 *J-V*曲线如图 7(c) 所示, 器件结构为 FTO/TiO₂/CsPbBr₃/PC₆₁BM/Ag. 缺 陷态密度 n_{trap} 可由以下公式计算^[29]:

$n_{\rm trap} = 2\varepsilon\varepsilon_0 V_{\rm TFL}/(qL^2),$

其中 ε_0 是真空介电常数 (8.85×10⁻¹² F/m), ε 代表 CsPbBr₃的相对介电常数 (≈ 22)³⁰, V_{TFL} 代表缺 陷填充的限制电压, L 为钙钛矿薄膜的厚度 (约 350 nm). 在其他参数相同的条件下, V_{TFL} 越小钙 钛矿薄膜的缺陷态密度越低. 相比于未延长时间 的 CsPbBr₃ 钙钛矿薄膜, 反应时间延长至 30 s 后, V_{TFL} 值从 0.6494 V 下降 0.6340 V, 表明延长反应 时间有利于减少钙钛矿薄膜中的缺陷态密度. 通过 一系列的探索分析, 延长反应时间至 30 s 是一种 有效的提升钙钛矿薄膜质量, 增强电池光电性能的 有效手段.

4 结 论

本文通过不同旋涂次数,探究了 CsPbBr₃ 钙钛 矿薄膜的成膜机理,以及旋涂过程中 CsBr 和 PbBr₂ 薄膜反应时间对钙钛矿薄膜和太阳能电池器件的 影响.随着旋涂次数增加,钙钛矿薄膜的质量显著 提升, 旋涂过程中薄膜物相沿 PbBr2→CsPb2Br5 →CsPbBr₃→Cs₄PbBr₆变化. 已形成的钙钛矿薄膜 会阻碍后续旋涂的 CsBr 与 PbBr2, CsPb2Br5 充分 反应,导致薄膜中同时存在 CsPb₂Br₅ 和 Cs₄PbBr₆. 通过甲醇溶剂对 CsPbBr₃ 薄膜的刻蚀作用, 延长 CsBr 和 PbBr₂反应时间,能够使前驱体充分反应 而不产生 Cs₄PbBr₆. 随着反应时间从 0 延长到 60 s, 钙钛矿薄膜晶粒尺寸不断提升, 但当反应时 间过长时,致密的钙钛矿薄膜表面开始出现孔洞. 综合以上因素,在 30 s 反应时间下制备的电池器 件具有最高的 PCE. 适当地延长反应时间后, CsBr 和 PbBr2 两种前驱体充分接触、反应,从而 使其在薄膜中形成更多更好的形成 CsPbBr₃ 钙钛 矿相,充分反应有利于减少 CsPb₂Br₅ 相使薄膜形 成更大的晶粒,减少晶界和缺陷态密度,抑制载流 子的复合从而提升器件效率,经过优化最终制备 \vec{J} PCE = 6.30%, J_{sc} = 8.40 mA/cm², V_{oc} = 1.28 V, FF = 59%的基于 CsPbBr₃ 钙钛矿的太阳能电池 器件.

参考文献

- National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2022-01-24]
- [2] Min H, Lee D Y, Kim J, et al. 2021 $\it Nature~598~444$
- [3] Colsmann A, RöhmA H 2020 Energy Technol. 8 2000912
- [4] Abdulrahim S M, Ahmad Z, Bhadra J, Al-Thani N J 2020 Molecules. 25 5794
- [5] Wei J W, Huang F R, Wang S N, et al. 2018 Mater. Res. Bull. 106 35
- [6] Yu S S, Liu H L, Wang S R, Zhu H W, Dong X F, Li X G 2021 Chem. Eng. J. 403 125724
- [7] Zhu C, Yang Y, Lin F, Luo Y, Ma S, Zhu L, Guo X 2021 *Rare Met.* 40 2402
- [8] Yang Y, Chen T, Pan D, Gao J, Zhu C, Lin F, Zhou C, Tai Q, Xiao S, Yuan Y, Dai Q, Han Y, Xie H, Guo X 2020 Nano Energy 67 104246
- [9] Cheng N, Li W, Zhang M, Wu H, Sun S, Zhao Z, Xiao Z, Sun Z, Zi W, Fang L 2019 Curr. Appl. Phys. 19 25
- [10] Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219
- [11] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246
- [12] Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, Liu S 2018 Nano Energy 52 408
- [13] Lin F, Yang Y, Zhu C, Chen T, Ma S, Luo Y, Zhu L, Guo X 2020 Acta Phys. Chim. Sin. 37 2005007
- [14] Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452
- [15] Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 57 3787
- [16] Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184
- [17] Teng P, Han X, Li J, Xu Y, Kang L, Wang Y, Yang Y, Yu T 2018 ACS Appl. Mater. Interfaces 10 9541
- [18] Lan H, Xiao H, Zhao J, Chen X, Fan P, Liang G 2021 Mater. Sci. Semicond. Process. 132 105869
- [19] Lei J, Gao F, Wang H, Li J, Jiang J, Wu X, Gao R, Yang Z, Liu S 2018 Sol. Energy Mater. Sol. Cells 187 1
- [20] Wang H, Wu Y, Ma M, Dong S, Li Q, Du J, Zhang H, Xu Q 2019 ACS Appl. Energy Mater. 2 2305
- [21] Yang X, Li M, Jiang J, Ma L, Tang W, Xu C, Cai H L, Zhang F M, Wu X S 2021 J. Phys. D 54 154001
- [22] Li H, Tong G, Chen T, Zhu H, Li G, Chang Y, Wang L, Jiang Y 2018 J. Mater. Chem. A 6 14255
- [23] Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F Bakr O M 2016 ACS Energy Lett. 1 840
- [24] Ryu J, Yoon S, Lee S, Lee D, Parida B, Kwak H W, Kang D W 2021 Electrochim. Acta 368 137539
- [25] Zhang X, Jin Z, Zhang J, Bai D, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 ACS Appl. Mater. Interfaces. 10 7145
- [26] Jiang Y, Juarez-Perez E J, Ge Q, Wang S, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 *Mater. Horiz.* 3 548
- [27] Ding Y, He B, Zhu J, Zhang W, Su G, Duan J, Zhao Y, Chen H, Tang Q 2019 ACS Sustainable Chem. Eng. 7 19286
- [28] Zhou F, Liu H, Wang X, Shen W 2017 Adv. Funct. Mater. 27 1606156
- [29] Li H, Guo L, Li C N, Wang C, Wang G, Wen S, Wu J, Dong W, Li Z J, Ruan S 2019 ACS Sustainable Chem. Eng. 7 8579
- [30] Saidaminov M I, Haque M A, Almutlaq J, Sarmah S, Miao X H, Begum R, Zhumekenov A A, Dursun I, Cho N, Murali B 2017 Adv. Opt. Mater. 5 1600704

Formation mechanism of CsPbBr₃ in multi-step spin-coating process^{*}

1) (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

2) (Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Central South University, Changsha 410083, China)

3) (National & Regional Joint Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, China)

4) (Guangdong Provincial Enterprise Key Laboratory of High Performance Thin Film Solar Materials, Qingyuan 511517, China)

5) (First Materials Co., Ltd., Qingyuan 511517, China)

(Received 24 January 2022; revised manuscript received 28 February 2022)

Abstract

The quality of perovskite films plays a crucial role in solar cell, which can affect the stability and power conversion efficiency (PCE). As one of inorganic perovskites with excellent stability, CsPbBr₃ perovskite is usually prepared by multi-step method due to the large difference in solubility between its precursor salts $(PbBr_2 \text{ and } CsBr)$. The main reason is that the formation mechanism of $CsPbBr_3$ film is not thoroughly studied. The incomplete reaction of $PbBr_2$ and emergence of Cs_4PbBr_6 when the CsBr is excessive become problems that need to be solved urgently. In this paper, the phase transition of films during spin coating is observed in detail. In the process of film formation, the CsBr diffuses into the predeposited $PbBr_2$ film to complete the reaction. The short reaction time results in insufficient reactions inside the film but overreaction on the surface of film. The $CsPb_2Br_5$ and Cs_4PbBr_6 appear with $CsPbBr_3$ perovskite, and the film formed by repetitively annealing blocks the diffusion of CsBr. Methanol has an etching effect on the perovskite film which can eliminate the blocking effect. By extending the reaction time of CsBr solution on the film surface, the $PbBr_2$ in the bottom layer is fully reacted, and after being annealed, the perovskite film will recrystallize to form a compact film. With the reaction time controlled appropriately, the $CsPb_2Br_5$ in the film can be effectively reduced and Cs_4PbBr_6 will not appear. The film grain size increases, grain boundary decreases, and the recombination is effectively inhibited, which ensures the improvement of the photoelectric performance of the solar cell. Under the condition of spin-coating four times and reaction time of 30 s, the solar cell has 6.30%PCE, $V_{\rm oc} = 1.28$ V, $J_{\rm sc} = 8.40$ mA/cm², FF = 0.59. Comparing with the solar cells with no extended reaction time, the PCE improves more than 18%. This work will provide an important insight into the growth mechanism of perovskite film toward high crystallinity and less defects.

Keywords: inorganic perovskite, CsPbBr₃, multi-step spin-coating method, formation mechanism, reaction time

PACS: 81.05.-t, 81.15.-z, 84.60.Jt

DOI: 10.7498/aps.71.20220171

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61774169), the Qingyuan Innovation and Entrepreneurship Team Project, China (Grant No. 2018001), the Science and Technology Project of Guangdong Province, China (Grant No. 2018B030323010), and the Fundamental Research Funds for Graduate Students of the Central South University, China(Grant No. 2021zzts0612).

[†] Corresponding author. E-mail: muyicaoyang@csu.edu.cn