$SrSnO_3$ 作为透明导电氧化物的第一性原理研究^{*}

丁莉洁1)2) 张笑天1)2) 郭欣宜1)2) 薛阳1)2) 林常青1)2) 黄丹1)2)†

1) (广西大学物理科学与工程技术学院,南宁 530004)

2) (广西大学, 广西高校新能源材料及相关技术重点实验室, 南宁 530004)

(2022年7月29日收到; 2022年9月15日收到修改稿)

 $SrSnO_3$ 是一种钙钛矿结构的宽带隙半导体,透明性高、无毒且价格低廉,是一种有前景的透明导电氧化物的候选者.本文通过第一性原理计算,获得了 $SrSnO_3$ 的电子结构,着重讨论了 $SrSnO_3$ 的本征缺陷、外界元素掺杂的缺陷形成能及过渡能级,筛选出适宜的掺杂元素并指出了对应的实验制备环境,进一步根据带边能量位置对其电导性能机制进行了探讨.计算结果表明, $SrSnO_3$ 是一种基础带隙为 3.55 eV、光学带隙为 4.10 eV 的间接带隙半导体,具有良好的透明性,电子的有效质量轻,利于 n 型电导.在富金属贫氧条件下,As,Sb 掺杂 $SrSnO_3$ 可以提升 n 型电导率; $SrSnO_3$ 的价带顶位于-7.5 eV 处,导带底位于-4.0 eV 处,其价带顶和导带底的能量位置均相对较低,解释了其易于 n 型掺杂而难于 p 型掺杂,符合宽带隙半导体材料的掺杂规律.最后,Sb 掺杂 $SrSnO_3$ 被提出为有前景的廉价 n 型透明导电材料.

关键词:第一性原理计算,n型透明导电氧化物 SrSnO₃,缺陷形成能,带边能量位置 **PACS:** 31.15.A-, 61.82.Fk, 61.72.J-, 61.72.-y **DOI:** 10.7498/aps.72.20221544

1 引 言

透明导电氧化物 (transparent conductive oxides, TCO) 同时具有类似玻璃的透明性和类似金 属的导电性^[1],其性能要求为可见光的透射率大于 80%,电阻率低于 10⁻⁴ Ω·cm^[2],通常以宽带隙半导 体 (光学带隙 >3.1 eV) 作为母体材料,后进行掺 杂实现高载流子浓度及电导率.它在发光二极管^[3,4]、 气体传感器^[5-7]、光电探测器^[8]、太阳能电池^[9]等 诸多电子器件中都具有广泛的应用.根据导电类型 不同,TCO可分为 n 型和 p 型两大类,Badeker^[10] 在 1907 年首先发现了 n 型透明导电氧化物材料, 其采用 CdO 薄膜制作而成,但 Cd 具有毒性,使其 应用受到限制.目前,以 Sn-In₂O₃(ITO)^[11,12],Al-ZnO(AZO)^[13–15]以及 F-SnO₂(FTO)^[16]这三种为 代表的 n型 TCO 材料已经形成一定的商业化应 用, 而 p 型 TCO 材料由于掺杂困难、电导率低等 限制因素,其性能还未达到商业化应用要求[17-19]. 在n型TCO材料中,ITO的光电性能最为优异^[20,21], 但其主要原材料铟是一种稀有金属,在地球中含量 较低,且相对分散,随着工业需求增大,铟的价格愈 加昂贵,对透明导电材料的应用形成了一定的限制[22]; 相比而言, AZO和FTO的原材料价格低廉, 透明 性良好,但这两者的电导率却不及 ITO. 因此,寻 找价格低廉、性能优异的 TCO 材料依旧是透明导 电材料重点关注的研究方向^[23,24].近年来,属于钙 钛矿结构的 SrSnO3 半导体由于带隙宽、价格低 廉、载流子迁移率高以及光学性能优异[25-28],引起 了人们的关注.实验上可以通过脉冲激光沉积、磁 控溅射等方法制备 SrSnO3 薄膜^[29-32]. 实验研究发 现,在SrSnO3中,La元素取代部分Sr元素可以

* 国家自然科学基金 (批准号: 61964002) 和广东省基础与应用基础研究基金粤桂联合基金 (批准号: 2020A1515410008) 资助的课题.

[†] 通信作者. E-mail: danhuang@gxu.edu.cn

^{© 2023} 中国物理学会 Chinese Physical Society

促进 n 型电导率, 掺杂后利用紫外可见光吸收光谱 法测量出光学带隙为 3.87—3.97 eV, 表现出良好 的透明性^[33]. 通过脉冲激光沉积, 在氧化镁衬底上 生长的 Ta 掺杂 SrSnO₃ 薄膜透光率可达 90% 以 上, 在不同的 Ta 掺杂浓度下, 样品光学带隙为 4.45— 4.63 eV, 其载流子迁移率也得到了一定的提升^[28].

在本工作中,通过第一性原理计算,采用杂化 密度泛函 Heyd-Scuseria-Ernzerhof(HSE06) 计算 了 SrSnO₃ 的电子结构 (能带、态密度、光学性质、 载流子有效质量等),本征缺陷(替位: Sr_{Sn}, Sn_{Sr}; 空位: V_{Sr}, V_{Sn}, V_O; 填隙: Sr_i, Sn_i, O_i) 以及外界掺 杂缺陷 (Li, Na, K, Al, Ga, In 取代 Sr 原子; Al, Ga, In, P, As, Sb 取代 Sn 原子; N, F 取代 O 原子) 的缺陷形成能,并对其电导机制进行了一定的探讨. 计算结果表明, SrSnO₃ 是一种基础带隙为 3.55 eV、 光学带隙为 4.10 eV 的间接带隙半导体, 具有良好 的透明性,电子的有效质量轻,有利于实现 n 型电 导; 通过对缺陷形成能的分析, 发现在富金属贫氧 条件下, As, Sb 掺杂 SrSnO3 可以促进 n 型电导率; 通过带边能量位置的计算,发现 SrSnO₃的价带顶 位于-7.5 eV 处,导带底位于-4.0 eV 处,其导带底位置 较低易于n型掺杂.最后综合考虑,Sb掺杂SrSnO3 是一种非常有前景的廉价 n 型透明导电材料.

2 计算细节

本研究工作以密度泛函理论为基础^[34,35],所有 计算均在 VASP 软件中进行^[36].为了使带隙宽度 和缺陷形成能等更加精确,所有计算均使用杂化 HSE06 泛函^[37].

在 HSE06 杂化泛函中, 交换关联能采用 Hatree-Fock 方法与 PBE 交换关联能相混合的方式. 交换能 E_x 被分为了短程与长程两部分, 短程部分 (short range, SR) 采用一定比例的非局域 Hatree-Fock 交换能与 PBE 交换能的短程部分相混合, 而 长程交换能 (long range, LR) 和关联能 E_c 则全部 采用 PBE 泛函. 具体可以公式表示为

$$E_{\rm xc}^{\rm HSE06} = \alpha E_{\rm x}^{\rm HF, SR} (\omega) + (1 - \alpha) E_{\rm x}^{\rm PBE, SR} (\omega) + E_{\rm x}^{\rm PBE, LR} (\omega) + E_{\rm c}^{\rm PBE}, \qquad (1)$$

其中 α 为 Hatree-Fock 方法的混合占比参数, 取为 默认值 25%; ω 为区分长短程相互作用的屏蔽长 度, 取为默认值 0.2 Å⁻¹. 所有计算截断能均设置 为 500 eV. 对单胞模型, k 点取为以 Γ 点为中心的 4×4×3网格, 优化后的晶格常数为 a = 5.70 Å, b = 5.73 Å, c = 8.07 Å, 与实验值 a = 5.709 Å, b =5.703 Å, c = 8.065Å结果一致^[38]. 纯净的 SrSnO₃ 单胞包含 20 个原子, 空间群为 *Pnma*, 晶体结构如 图 1 所示, Sr 原子在八个氧原子的间隙, Sn 在氧 八面体中心, 是一种带有畸变的三维钙钛矿结构. 缺陷形成能的计算均在2×2×1的超晶胞中进行, 超胞中共有约 80 个原子, k 点取为2×2×2的网格.

图 1 SrSnO₃的单胞结构示意图. Fig. 1. The crystal structure of SrSnO₃ unit cell.

光学吸收系数通过(2)式的运算获得

$$\alpha(\omega) = (\sqrt{2}\omega/c) \cdot \left[\sqrt{\varepsilon_1(\omega)^2 + \varepsilon_2(\omega)^2} - \varepsilon_1(\omega)\right]^{1/2}.$$
(2)

这里 ω 为光子频率, c 为光速. 复介电函数虚部 $\varepsilon_2(\omega)$ 可通过在整个布里渊区积分包含跃迁矩阵元 素权重的联合态密度获得. 而其实部 $\varepsilon_1(\omega)$ 则可根 据 $\varepsilon_2(\omega)$ 通过 Kramer-Kronig 关系式获得.

3 结果与讨论

3.1 SrSnO₃的电子结构

图 2(a)—(d) 分别展示了 SrSnO₃ 的总态密度 图以及 Sr 原子、Sn 原子和 O 原子的分波态密度 图. 从图 2 可以看出, Sn-5p 态和 O-2p 态对价带顶 均有一定的贡献, 其中 O-2p 态贡献最多, 导带底 主要源于 Sn-5s 态. 图 3 为 SrSnO₃ 的价带顶 (VBM) 和导带底 (CBM) 在实空间内的电荷密度分布, 结 合图 2 中各原子的分波态密度可以一致的得出, VBM 主要来源于 O-2p 态, Sn-5p 态也有一小部分 贡献, CBM 主要来源于 Sn-5s 态, O-2p 态也有小 部分贡献.

图 2 SrSnO₃的总态密度 (a), Sr 原子 (b), Sn 原子 (c) 以 及 O 原子 (d) 的分波态密度. 体系费米能级设为零

Fig. 2. The total density of states (TDOS) (a), partial density of states (PDOS) of Sr (b), Sn (c) and O (d) in SrSnO₃. The Fermi energy level is set to zero.

图 3 $SrSnO_3$ 中价带顶和导带底的电荷密度实空间分布 Fig. 3. The electronic charge densities of the VBM and CBM in SrSnO₃.

图 4(a) 是 SrSnO₃ 的能带结构, VBM 位于高 对称点 *S*点, CBM 位于高对称点的 *Γ*点, 可以看 出 SrSnO₃ 是一个间接带隙半导体, 通过 HSE06 泛函所计算的基础带隙值为 3.55 eV. 在能带图中, VBM 附近能带非常平缓, 局域性较高, 这与 O-2p 轨道的局域性有关, 而 CBM 附近能带则比较离 散, 原因是其主要来源于离散的 Sn-5s 轨道. 通过 图 4(a) 的能带图可以大致判断, 处在价带顶附近 的空穴载流子有效质量会偏大, 而导带底附近电子 的有效质量较小, 有利于实现 n 型电导. 对于 TCO 材料来说, 载流子的有效质量是衡量材料电导率的 一个重要的参数. 有效质量可以对价带或导带边 的 E(k) 求二阶导数后近似求得, 计算公式为

$$\frac{1}{m^*} = \frac{\partial E^2(k)}{\hbar^2 \partial k^2}.$$
(3)

材料的电导率与载流子迁移率成正比, 而载流 子迁移率与有效质量成反比, 因此, 可以通过有效 质量的计算从而对材料的电导率形成一定的认识. 根据 (1) 式, 计算出中电子和空穴的有效质量如表 1 所列, 计算结果与能带图的判断一致. 电子有效质 量沿各方向均比较小且具有一定的各向同性, 这也 与离散的 Sn-5s 轨道贡献有关, 而空穴有效质量明 显大于电子有效质量且各向异性, 这也与 O-2p 轨 道的局域性、方向性有关. 图 4(b) 是 SrSnO₃ 的光 吸收系数, 彩色区域表示为太阳光谱中的可见光范 围, 计算得出 SrSnO₃ 的光带隙为 4.10 eV, 在可见 光区域不会产生光吸收, 具有良好的透明性, 这也 与实验上报道的 SrSnO₃ 的光学带隙值 4.1 eV^[39,40] 相一致. 根据以上分析, SrSnO₃ 有成为 n 型 TCO 材料的潜能.

表 1 SrSnO₃中电子和空穴的有效质量 (单位: m_0) Table 1. Effective masses of electrons and holes in SrSnO₃ (in: m_0).

有效质量	电子	空穴
m_{001}^{*}	0.36	1.72
m^{*}_{010}	0.32	0.44
m^*_{100}	0.36	0.48

图 4 SrSnO₃的能带结构 (a) 和光吸收系数 (b). 图 (b) 中 彩色区域可见光谱范围, SrSnO₃在可见光谱基本无光吸 收, 说明其具有较好的透明性

Fig. 4. The band structure (a) and the absorption coefficients (b) of $SrSnO_3$. Colorful regions in figure b are the range of visible light spectrum. $SrSnO_3$ cannot absorb light at the range of visible light spectrum, which stands for it has a good transparency.

3.2 缺陷形成能计算方法及 SrSnO₃ 在相 对化学势空间的稳定区域

采用超晶胞模型,根据如下公式可以获得缺陷 形成能^[41]:

$$\Delta H (\alpha, q) = E_{\text{tot}} (\alpha, q) - E_{\text{tot}} (\text{perfect}) + \Sigma_{\alpha} n_{\alpha} (\Delta \mu_{\alpha} + \mu_{\alpha}) + q(E_{\text{v}} + E_{\text{F}} + \Delta V), \qquad (4)$$

其中 $E_{tot}(\alpha,q)$ 为缺陷带有电荷量 q时的超胞总能 量; E_{tot} (perfect)表示相应完整晶体的总能量. n_{α} 代 表缺陷原子的数量, 给超胞中放一个原子时 $n_{\alpha} = -1$, 从超胞中拿走一个原子时 $n_{\alpha} = 1$. μ_{α} 为单质元素的 化学势,可以通过计算单质金属 Sr, Sn 以及氧气 O₂ 的能量获得, $\Delta \mu_{\alpha}$ 表示各元素相对其单质的相 对化学势; E_{v} 和 E_{F} 分别为无缺陷系统的 VBM 值 以及所研究材料的费米能级; ΔV 为完整晶体和缺 陷系统之间的静电势矫正 (ΔV): $\Delta V = V_{0}^{defect} - V_{0}^{perfect}$,同时我们还对带电缺陷考虑了镜像电荷修 正 ^[42]: $\frac{2}{3}n^{2}\frac{Ewald}{\varepsilon_{0}}$ (此处 ε_{0} 取实验中 SrSnO₃ 的静态 介电常数^[43]). Lany 和 Zunger^[42] 曾对带电缺陷的 形成能进行了收敛性测试,他们发现再进行静电势 矫正和镜像电荷修正后,采用 64 个原子左右的晶 格进行缺陷形成能计算已能达到较好收敛标准.

为了使 SrSnO₃ 晶格稳定, 元素的相对化学势 应满足:

 $\Delta \mu_{\text{Sr}} + \Delta \mu_{\text{Sn}} + 3\Delta \mu_{\text{O}} = \Delta H (\text{SrSnO}_3) = -11.63 \text{ eV}.$ (5)
为了避免单质的析出, 元素的相对化学势要小

$$\Delta \mu_{\rm Sr} \leqslant 0, \ \Delta \mu_{\rm Sn} \leqslant 0, \ \Delta \mu_{\rm O} \leqslant 0. \tag{6}$$

元素相对化学势同时受到竞争化合物的限制, 为了避免杂质相的形成, SrSnO₃中的各元素相对 化学势还要满足以下条件:

$$\Delta\mu_{\rm Sr} + \Delta\mu_{\rm O} \leqslant \Delta H \,({\rm SrO}) = -5.53 \,\,{\rm eV},\qquad(7)$$

$$\Delta \mu_{Sn} + \Delta \mu_{O} \leqslant \Delta H (SnO) = -2.56 \text{ eV}, \quad (8)$$

$$\Delta\mu_{\rm Sr} + 2\Delta\mu_{\rm O} \leqslant \Delta H \left({\rm SrO}_2 \right) = -5.77 \text{ eV}, \quad (9)$$

$$\Delta\mu_{\rm Sn} + 2\Delta\mu_{\rm O} \leqslant \Delta H \left({\rm SnO}_2 \right) = -5.29 \text{ eV}, \quad (10)$$

$$\Delta\mu_{\rm Sr} + \Delta\mu_{\rm Sn} \leqslant \Delta H \,({\rm SrSn}) = -1.38 \text{ eV}, \qquad (11)$$

$$\Delta\mu_{\rm Sr} + 3\Delta\mu_{\rm Sn} \leqslant \Delta H \left({\rm SrSn}_3 \right) = -1.23 \text{ eV}, \quad (12)$$

$$2\Delta\mu_{\rm Sr} + \Delta\mu_{\rm Sn} \leqslant \Delta H \left({\rm Sr}_2 {\rm Sn} \right) = -11.71 \ {\rm eV}, \quad (13)$$

$$3\Delta\mu_{\mathrm{Sr}} + 5\Delta\mu_{\mathrm{Sn}} \leqslant \Delta H \left(\mathrm{Sr}_3\mathrm{Sn}_5\right) = -4.47 \text{ eV}, \quad (14)$$

$$\begin{split} & 5\Delta\mu_{\mathrm{Sr}} + 3\Delta\mu_{\mathrm{Sn}} \leqslant \Delta H \left(\mathrm{Sr}_{5}\mathrm{Sn}_{3}\right) = -5.24 \ \mathrm{eV}, \quad (15) \\ & 2\Delta\mu_{\mathrm{Sr}} + \Delta\mu_{\mathrm{Sn}} + 4\Delta\mu_{\mathrm{O}} \leqslant \Delta H \left(\mathrm{Sr}_{2}\mathrm{SnO}_{3}\right) = -17.34 \ \mathrm{eV}, \\ & (16) \end{split}$$

 $3\Delta\mu_{\rm Sr} + \Delta\mu_{\rm Sn} + \Delta\mu_{\rm O} \leqslant \Delta H \left({\rm Sr}_3{\rm SnO}\right) = -7.66 \ {\rm eV}. \eqno(17)$

通过上述竞争条件的限制,可以得到 SrSnO₃ 稳定生长的各元素相对化学势范围,如图 5 中的淡 黄色区域所示. A, B, C, D 四个点代表相对化学势 能取到的四个极限条件,与不同样品制备环境相对 应. A 和 B 为富氧贫金属状态, C 和 D 表示贫氧条 件. 之后在计算本征缺陷和外界掺杂的缺陷形成能 时,都基于这四个极限条件下各元素的相对化学势.

图 5 形成稳定 SrSnO₃ 允许的相对化学势范围 (图中淡 黄色区域). *A*—*D*点分别代表四个不同的相对化学势极限 条件

Fig. 5. Allowed relative chemical potential region (faint yellow area) for a stable $SrSnO_3$. Points A - D represent four different chemical potential limit conditions.

3.3 本征缺陷形成能的计算

为了预估 SrSnO₃ 的电导类型并探讨其相应电导的来源,首先对其本征缺陷形成能进行了计算. 图 6 表示 SrSnO₃ 中各本征缺陷 (Sr_{Sn}, Sn_{Sr}, V_{Sr}, V_{Sn}, V_O, Sr_i, Sn_i, O_i) 的缺陷形成能, *A*, *B*两点表示富氧条件 ($\Delta\mu_0 = 0$), *C*, *D*两点代表 Sr 和 Sn 两种金属比较充足但贫氧条件.

整体而言,如图 6 所示,在贫氧条件下 (*C*, *D* 点), 最低 n 型缺陷的缺陷形成能相对最低 p 型缺陷的 缺陷形成能低,材料整体的费米能级会钉扎在最 低 n 型缺陷与最低 p 型缺陷的缺陷形成能曲线的 交点附近,所以此时材料的费米能级会在禁带中央 的上方,材料具有 n 型电导.氧空位 (V_o)和 Sn 替 代 Sr(Sn_{Sr}) 为其电导的主要来源,但它们的过渡能

图 6 SrSnO₃ 中本征缺陷的缺陷形成能, A - D 点分别代表不同的相对化学势极限条件, 对应不同的实验制备环境 Fig. 6. Defect formation energies of intrinsic defects in SrSnO₃. Points A - D represent different chemical potential limit conditions, which is corresponding to the different preparation environments for experiments.

级都相对较深, 难以有效地电离形成高浓度的电子 密度. 这也与实验观测到 SrSnO₃ 薄膜中一定浓度 的氧空位相一致^[44], 计算得到的 Sn_{Sr} 深过渡能级 也与其他计算研究结果相一致^[45]. 另外两种 n 型 缺陷 Sn 填隙 (Sn_i) 及 Sr 填隙 (Sr_i) 虽过渡能级较 浅, 但其缺陷形成能却很高, 也难产生高浓度的缺 陷从而对 n 型电导产生较大的贡献, 由此可知, 在 贫氧态下, 样品能获得 n 型电导, 但其电导性能应 该很低. 在富氧条件下 (*A*, *B* 点), 最低 n 型缺陷的 缺陷形成能与最低 p 型缺陷的缺陷形成能基本相 当, 它们形成的交点靠近禁带中央, 材料难以产生 具有一定性能的电导, 将具有较高的电阻. 因此, 本征的 SrSnO₃ 半导体虽具有良好的透光性, 但电 导率却很低, 需要进一步通过外界掺杂来提升它的 电导率.

3.4 SrSnO₃的外界元素掺杂及电导性能 机制的探讨

在本征缺陷的基础上,进一步探讨了通过外界 元素掺杂增强 SrSnO₃ 电导率的可能性.分别考虑 了对 Sr, Sn, O 这三种元素进行替代掺杂计算,包 括施主型掺杂 (Al_{Sr}, Ga_{Sr}, In_{Sr}, P_{Sn}, As_{Sn}, Sb_{Sn}, F_O) 和受主型掺杂(Li_{Sr}, Na_{Sr}, K_{Sr}, Al_{Sn}, Ga_{Sn}, In_{Sn}, N_O). 在考虑这些外界元素掺杂时,它们的相对化学势尽 可能的取为最大值,以保证掺杂源的充分,但掺杂 元素的相对化学势也受到析出竞争相的限制,如以 下不等式所示:

$$2\Delta\mu_{\rm Li} + \Delta\mu_{\rm O} \leqslant \Delta H \,({\rm Li}_2{\rm O}) = -5.51 \text{ eV},\qquad(18)$$

$$2\Delta\mu_{\rm Na} + \Delta\mu_{\rm O} \leqslant \Delta H \,({\rm Na_2O}) = -3.79 \text{ eV}, \quad (19)$$

$$2\Delta\mu_{\rm K} + \Delta\mu_{\rm O} \leqslant \Delta H \left({\rm K}_2{\rm O}\right) = -2.86 \text{ eV},\qquad(20)$$

$$2\Delta\mu_{\rm Al} + 3\Delta\mu_{\rm O} \leqslant \Delta H \left({\rm Al}_2 {\rm O}_3 \right) = -15.90 \text{ eV}, \quad (21)$$

$$2\Delta\mu_{\rm Ga} + 3\Delta\mu_{\rm O} \leqslant \Delta H \left({\rm Ga_2O_3}\right) = -9.99 \text{ eV}, \quad (22)$$

$$2\Delta\mu_{\rm In} + 3\Delta\mu_{\rm O} \leqslant \Delta H \left({\rm In_2O_3}\right) = -8.21 \ {\rm eV}, \quad (23)$$

$$2\Delta\mu_{\rm P} + 5\Delta\mu_{\rm O} \leqslant \Delta H \left(\mathsf{P}_2 \mathsf{O}_5 \right) = -14.78 \text{ eV}, \quad (24)$$

$$2\Delta\mu_{\rm As} + 3\Delta\mu_{\rm O} \leqslant \Delta H \left(\rm As_2O_3 \right) = -6.20 \text{ eV}, \quad (25)$$

$$\Delta \mu_{\rm Sb} + 2\Delta \mu_{\rm O} \leqslant \Delta H \,({\rm SbO}_2) = -4.22 \text{ eV}, \quad (26)$$

$$3\Delta\mu_{\mathrm{Sn}} + 4\Delta\mu_{\mathrm{N}} \leqslant \Delta H \left(\mathrm{Sn}_{3}\mathrm{N}_{4}\right) = -8.61 \text{ eV}, \quad (27)$$

$$\Delta \mu_{\rm Sr} + 2\Delta \mu_{\rm F} \leqslant \Delta H \left({\rm SrF_2} \right) = -12.27 \text{ eV}.$$
 (28)

图 7 为在 A—D 点不同相对化学势极限条件 下, 计算得到的施主掺杂的缺陷形成能. 从图 7 可 以发现, 所有的 n 型外界元素掺杂缺陷均有较浅的

图 7 在不同相对化学势条件下,各外界掺杂施主型缺陷的缺陷形成能.灰色的线条表示为可能产生补偿作用的 p 型本征缺陷的缺陷形成能

Fig. 7. The defect formation energies of external donor defects under different relative chemical potential conditions. The grey lines represent the defect formation energies of p-type intrinsic defects which may lead to a carrier compensation effect.

过渡能级, 但是 Al, Ga, In 掺杂 Sr 位 (Al_{Sr}, Ga_{Sr}, In_{Sr}), P 掺杂 Sn 位 (P_{Sn}), F 掺杂 O 位 (F_O) 的形 成能比较高, p 型本征缺陷 V_{Sr} , V_{Sn} , Sr_{Sn} 会对电 子载流子浓度产生补偿作用, 对 n 型电导率增大形 成一定限制. 在富金属贫氧 ($C \approx D \leq 1$) 条件下, As 和 Sb 取代 Sn 元素 (As_{Sn} , Sb_{Sn}), 具有较低的形成 能, 此时起到补偿效应的 p 型缺陷主要是 Sr_{Sn} 及 V_{Sr} , 这也其他计算结果展示的贫氧态下 p 型补偿 缺陷相一致^[45]. 但由于 p 型本征缺陷的形成能在 贫氧态下对比 As_{Sn} , Sb_{Sn} 还相对较高, 对它们的补 偿作用也有限, 它们能够形成高浓度的掺杂并有效 的电离出载流子, 形成高的电子浓度及 n 型电导, 从而成为 n 型透明导电材料. 考虑到 As 的毒性, Sb 掺杂 $SrSnO_3$ 更具研究前景, 可视为有前景的 n 型透明导电氧化物研究体系.

p型外界掺杂缺陷,分别包括 Li, Na, K 掺杂 Sr 位 (Li_{Sr}, Na_{Sr}, K_{Sr}), Al, Ga, In 掺杂在 Sn 位 (Al_{Sn}, Ga_{Sn}, In_{Sn})及 N 掺杂 O 位 (N_O). 图 8 表示 受主缺陷在不同相对化学势条件下的缺陷形成能, 同时,可能形成补偿作用的 n 型本征缺陷形成能也 在图中用灰色线条表示. 从图 8 中可以看出, K_{Sr} 的形成能在这些 p 型缺陷中是相对最低的, 而氧空 位对 p 型掺杂起到补偿作用. 特别是在富金属贫 氧 (*C*和 *D*点)条件下,氧空位缺陷形成能与外界 掺杂 p 型缺陷的形成能所形成的交点接近禁带中 央,材料的费米能级也会钉扎在此附近,难以形成 有效的电导. 而在富氧条件下 (*A*, *B*点),氧空位的 形成能上升,其与 p 型缺陷形成的交点也会向 VBM 方向移动,而最靠近 VBM 的交点为 K_{Sr}与 V_o在 VBM 上方的 0.5 eV 左右形成交点,这也是最有 效 p 型掺杂缺陷能够使费米能级最为靠近 VBM 的位置,此时材料能够形成一定的 p 型电导,但由 于费米能级距离 VBM 位置还相对较远,形成的 p 型电导性能相对较低.因此,在 SrSnO₃中难以产 生高性能的 p 型电导.

从以上讨论可以看出, SrSnO₃可以通过 As 及 Sb 掺杂获得优异的 n 型电导, 而难以获得较好的 p 型电导.为了进一步探究 SrSnO₃ 中掺杂不对称性的原因, 我们根据元素的电负性可得材料的电离势^[46],随后代入其带隙值可得 SrSnO₃ 的带边能量位置,并与已知的 n 型 (SnO₂, In₂O₃) 和 p 型 (CuI, Cu₂O) 宽禁带半导体材料相对比^[45-47].图 9 表示SnO₂, In₂O₃, SrSnO₃, CuI 及 Cu₂O 宽禁带半导体的带边能量位置, 其带隙值分别为 3.52 eV, 3.73 eV,

图 8 在不同相对化学势条件下,各外界掺杂受主型缺陷的缺陷形成能.灰色的线条表示为可能产生补偿作用的n型本征缺陷的缺陷形成能

Fig. 8. The defect formation energies of external acceptor defects under different relative chemical potential conditions. The grey lines represent the defect formation energies of n-type intrinsic defects which may lead to a carrier compensation effect.

3.55 eV, 3.10 eV 以及 2.02 eV^[47-49]. 图 9 中可以 看出, n型 TCO 材料的 CBM 都比 p型低, SnO₂ 的导带底能量约为-4.6 eV, In₂O₃ 的导带底位于 -4.8 eV, SrSnO₃ 的导带底为-4.0 eV. 而 p型宽禁 带半导体材料价带顶的能量位置与 n型 TCO 材 料相比都比较高, CuI 和 Cu₂O 的价带顶能量位置

图 9 一系列宽禁带半导体材料 SnO₂, In₂O₃, SrSnO₃, Cul 和 Cu₂O 的带边能量位置对比,带隙宽度分别为 3.52 eV, 3.73 eV, 3.55 eV, 3.1 eV 以及 2.02 eV

Fig. 9. The band-edge energy positions among a series of wide band gap semiconductors: SnO_2 , In_2O_3 , $SrSnO_3$, CuI and Cu_2O . The band gaps of them are 3.52 eV, 3.73 eV, 3.55 eV, 3.1 eV and 2.02 eV, respectively.

分别为-5.20 eV 和-5.26 eV, 而 SrSnO₃ 的价带顶 所在能量位置为-7.5 eV, 明显低于两种 p 型的铜 基化合物.事实上, 大量的研究表明^[50,51] 低 CBM 的半导体化合物容易实现 n 型掺杂, 高 VBM 的半 导体化合物中容易实现 p 型掺杂. 对于宽带隙半导 体而言, 由于具有较宽的禁带宽度, 难以同时具有 高的 VBM 和较低的 CBM, 这也意味着宽禁带半 导体难以同时实现高性能的 n 型和 p 型的掺杂, 符合掺杂限度规则的规律^[52]. 而 SrSnO₃ 同时具有 较低的 VBM 及 CBM, 这也解释了其难于 p 型掺 杂而能具有良好 n 型电导的原因.

4 总 结

通过第一性原理的计算,得出 SrSnO₃ 是钙钛 矿结构的间接带隙半导体,基础带隙宽度为 3.55 eV,光学带隙为 4.10 eV,价带顶主要来源于 比较局域的 O-2p 态,导带底主要由 Sn-5s 态贡献, 电子的有效质量轻,有利于实现 n 型电导.光学性 质的计算表明 SrSnO₃ 具有良好的透明性.通过对 缺陷形成能的计算,发现本征的 SrSnO₃ 很难产生 高效的 n 型或 p 型电导;通过对 Sr, Sn 和 O 三个 位置的外界元素掺杂计算,发现在贫氧的条件下, As和Sb掺杂SrSnO3中的Sn位可以产生浅的过渡 能级,并具有较低的缺陷形成能,能提高了SrSnO3 的n型电导,而高性能的p型电导难以通过外界 掺杂获得.通过对SrSnO3和其他n型TCO材料、 p型宽禁带半导体材料的带边能量位置的对比,发 现SrSnO3的价带顶和导带底均较低,这是SrSnO3 可以实现n型掺杂而难以实现p型掺杂的原因. 综合考虑后,Sb掺杂SrSnO3更加研究前景,可以 视为一种有前景的n型廉价透明导电材料.

参考文献

- [1] Bitla Y, Chu Y H 2020 Nanoscale 12 18523
- [2] Stadler A 2012 Materials 5 661
- [3] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo Jin H, Sadhanala A, Myoung N, Yoo S, Im Sang H, Friend Richard H, Lee T W 2015 *Science* **350** 1222
- [4] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
- [5] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
- [6] Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z L 2002 Appl. Phys. Lett. 81 1869
- [7] Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47
- [8] Dou L, Yang Y, You J, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404
- [9] Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J 2012 Science 338 643
- [10] Baedeker K 1907 Ann. Phys. 327 749
- [11] Minami T 2008 Thin Solid Films 516 1314
- [12] Minami T 2008 Thin Solid Films 516 5822
- [13] Chen M J, Yang J R, Shiojiri M 2012 Semicond. Sci. Technol. 27 074005
- [14] Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625
- [15] Wang Y F, Xie X C, Liu X J, Han B, Wu H H, Lian N N, Yang F, Song Q G, Pei H L, Li J J 2020 Acta. Phys. Sin. 69 197801 (in Chinese) [王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连 宁宁, 杨富, 宋庆功, 裴海林, 李俊杰 2020 物理学报 69 197801]
- [16] Wu F, Tong X, Zhao Z, Gao J, Zhou Y, Kelly P 2017 J. Alloys Compd. 695 765
- [17] Fleischer K, Norton E, Mullarkey D, Caffrey D, Shvets I V 2017 Materials 10 1019
- [18] Zhang K H L, Xi K, Blamire M G, Egdell R G 2016 J. Phys. Condens. Mater. 28 383002
- [19] Cao R, Deng H X, Luo J W 2019 ACS Appl. Mater. Interfaces 11 24837
- [20] Dixon S C, Scanlon D O, Carmalt C J, Parkin I P 2016 J. Mater. Chem. C 4 6946
- [21] Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631

- [22] Selopal G S, Milan R, Ortolani L, Morandi V, Rizzoli R, Sberveglieri G, Veronese G P, Vomiero A, Concina I 2015 Sol. Energy Mater. Sol. Cells 135 99
- [23] Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802 (in Chinese) [王 延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802]
- [24] Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802 (in Chinese) [王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭 兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802]
- [25] Ong K P, Fan X, Subedi A, Sullivan M B, Singh D J 2015 APL Mater. 3 062505
- [26] Riza M A, Ibrahim M A, Ahamefula U C, Mat Teridi M A, Ahmad Ludin N, Sepeai S, Sopian K 2016 Sol. Energy 137 371
- [27] Liu Q, Dai J, Zhang X, Zhu G, Liu Z, Ding G 2011 Thin Solid Films 519 6059
- [28]~ Liu Q, Jin F, Gao G, Wang W 2017 J. Alloys Compd. 71762
- [29] Kumar Y, Kumar R, Asokan K, Choudhary R J, Phase D M, Singh A P 2021 J. Mater. Sci. -Mater. Electron. 32 11835
- [30] Wei M, Sanchela A V, Feng B, Ikuhara Y, Cho H J, Ohta H 2020 Appl. Phys. Lett. 116 022103
- [31] Liu Y, Zhou Y, Jia D, Zhao J, Wang B, Cui Y, Li Q, Liu B 2020 J. Mater. Sci. Technol. 42 212
- [32] Rahman A B A, Sarjadi M S, Alias A, Ibrahim M A 2019 J. Phys: Conf. Ser. 1358 012043
- [33] Kumar Y, Kumar R, Choudhary R J, Thakur A, Singh A P 2020 Ceram. Int. 46 17569
- [34] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
- [35] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
- [36] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
- [37] Heyd J, Scuseria G E 2004 J. Chem. Phys. 121 1187
- [38] Green M A, Prassides K, Day P, Neumann D A 2000 J. Inorg. Mater. 2 35
- [39] Schumann T, Raghavan S, Ahadi K, Kim H, Stemmer S 2016 J. Vac. Sci. Technol., A 34 050601
- [40] Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667
- [41] Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205
- [42] Lany S, Zunger A 2008 Phys. Rev. B 78 235104
- [43] Singh M K, Hong J W, Karan N K, Jang H M, Katiyar R S, Redfern S A T, Scott J F 2010 J. Phys. Condens. Matter. 22 095901
- [44] Gao Q, Chen H, Li K, Liu Q 2018 ACS Appl. Mater. Interfaces 10 27503
- [45] KC S, Rowberg A J E, Weston L, Van de Walle C G 2019 J. Appl. Phys. 126 195701
- [46] Putz M V, Russo N, Sicilia E 2005 Theor. Chem. Acc. 114 38
- [47] Huang D, Xu J P, Jiang J W, Zhao Y J, Peng B L, Zhou W Z, Guo J 2017 Phys. Lett. A 381 2743
- [48] Hu S, Xia B, Yan Y, Xiao Z 2020 Phys. Rev. Mater. 4 115201
- [49] Schein F L, von Wenckstern H, Grundmann M 2013 Appl. Phys. Lett. 102 092109
- [50] Arai T, Iimura S, Kim J, Toda Y, Ueda S, Hosono H 2017 J. Am. Chem. Soc. 139 17175
- [51] Zhang Z, Guo Y, Robertson J 2022 Chem. Mater. 34 643
- [52] Yan Y, Wei S H 2008 Phys. Status Solidi B 245 641

First-principles study of $SrSnO_3$ as transparent conductive oxide^{*}

1) (School of Physical Science and Technology, Guangxi University, Nanning 530004, China)

2) (Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, Guangxi University, Nanning 530004, China)

(Received 29 July 2022; revised manuscript received 15 September 2022)

Abstract

As a wide band gap semiconductor with perovskite structure, $SnSnO_3$ is regarded as a promising candidate of transparent conductive oxides due to its superior properties like high transparency, non-toxicity and low price. In this work, the electronic structure of $SrSnO_3$ is obtained through first-principles calculations based on HSE06 hybrid functional. Especially, we investigate the defect formation energy and transition levels of the intrinsic and external defects in $SrSnO_3$. The intrinsic defects including the anti-site defects (Sr_{Sn} and Sn_{Sr}), the vacancy defects $(V_{Sr}, V_{Sn}, and V_O)$, and the interstitial defects $(Sr_i, Sn_i and O_i)$ are considered while the external doping defects are taken into account, including the substitution of Li, Na, K, Al, Ga, In for Sr site, Al, Ga, In, P, As, Sb for Sn site, and N, P at O site. Subsequently, the suitable doping elements and the corresponding experimental preparation environments are pointed out. Furthermore, we discuss the mechanism of its conductance according to the energy positions of the band edges. Our calculation results demonstrate that SrSnO₃ is an indirect-type semiconductor with a fundamental band gap of 3.55 eV and an optical band gap of 4.10 eV and then has a good visible light transmittance. Its valence band maximum (VBM) comes from O-2p state while its conduction band minimum (CBM) mainly originates from Sn-5s state. In consistent with the delocalized Sn-5s state at CBM, the electron effective mass is light and isotropic, which is beneficial to n-type conductance. The n-type intrinsic defects Sn_{Sr} and V_o have lower defect formation energy than the p-type intrinsic defects under O-poor condition while the n-type and p-type defects with low defect formation energy are almost equal under O-rich condition. Moreover, the transition levels of Sn_{Sr} and V_O are both deep. Therefore, $SrSnO_3$ cannot have a good conductance without external doping. Our calculations also demonstrate that it is hard to produce an efficient p-type external doping due to the compensation effect by V_0 . On the other hand, substitution of As or Sb for Sn site can result in an effective n-type external doping due to their low defect formation energy and shallow transition levels. According to the low energy positions of VBM (-7.5 eV) and CBM (-4.0 eV) of SrSnO₃, we explain the reason why it is easy to realize an n-type conductance but hard to produce a high-performance p-type conductance, which follows the doping rules for wide band gap semiconductors. Finally, Sb-doped $SrSnO_3$ is proposed as a promising candidate for n-type transparent conductive materials.

Keywords: first-principles calculations, n-type transparent conductive oxide $SrSnO_3$, defect formation energy, band-edge energy position

PACS: 31.15.A-, 61.82.Fk, 61.72.J-, 61.72.-y

DOI: 10.7498/aps.72.20221544

† Corresponding author. E-mail: danhuang@gxu.edu.cn

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61964002), and the Joint Fund Project of Guangdong and Guangxi, China (Grant No. 2020A1515410008).

Institute of Physics, CAS

SrSn0₃作为透明导电氧化物的第一性原理研究

丁莉洁 张笑天 郭欣宜 薛阳 林常青 黄丹

First-principles study of SrSnO₃ as transparent conductive oxide

Ding Li-Jie Zhang Xiao-Tian Guo Xin-Yi Xue Yang Lin Chang-Qing Huang Dan

引用信息 Citation: Acta Physica Sinica, 72, 013101 (2023) DOI: 10.7498/aps.72.20221544

在线阅读 View online: https://doi.org/10.7498/aps.72.20221544

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

Er³⁺掺杂TiO₂的局域结构及电子性质的第一性原理研究

First-principles calculations of local structure and electronic properties of Er³⁺-doped TiO₂

物理学报. 2022, 71(24): 246102 https://doi.org/10.7498/aps.71.20221847

三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究

First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides 物理学报. 2020, 69(11): 116201 https://doi.org/10.7498/aps.69.20200234

蓝宝石冲击消光晶向效应的第一性原理

Crystal-orientation effects of the optical extinction in shocked Al₂O₃: a first-principles investigation

物理学报. 2020, 69(4): 046201 https://doi.org/10.7498/aps.69.20190955

W-In体系溶质晶界偏聚行为的第一性原理计算

First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries 物理学报. 2019, 68(7): 077101 https://doi.org/10.7498/aps.68.20190056

MoO₃/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究

First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO₃/Si interface

物理学报. 2019, 68(10): 103101 https://doi.org/10.7498/aps.68.20190067

稀土掺杂对LiFePO4性能影响的第一性原理研究

First-principles study of properties of rare–earth–doped ${\rm LiFePO}_4$

物理学报. 2021, 70(15): 158203 https://doi.org/10.7498/aps.70.20210227