封面文章

超冷原子动量光晶格中的非线性拓扑泵浦*

苑涛1)2)3) 戴汉宁1)2)3)† 陈宇翱1)2)3)

(中国科学技术大学物理学院,合肥微尺度物质科学国家研究中心,合肥 230026)
 (中国科学技术大学,中国科学院量子信息与量子科技创新研究院,上海量子科学研究中心,上海 201315)

3) (合肥国家实验室, 合肥 230088)

(2023年5月6日收到; 2023年6月2日收到修改稿)

在拓扑系统中,探索相互作用引起的新奇的拓扑泵浦现象日益受到人们的关注,其中包括由相互作用诱导的非线性拓扑泵浦.本文提出可以利用超冷原子动量光晶格系统,有效地模拟一维非线性的非对角 Aubry-André-Harper (AAH)模型,研究非线性拓扑泵浦的实验方案.首先,通过数值方法计算了一维非对角 AAH 模型的非线性能带结构随相互作用强度的变化,得到了非线性系统的孤子态解.然后,分析了不同相互作用强度下孤子态的拓扑输运,发现其质心的移动距离具有量子化的输运特征,由所占据能带的陈数决定,并讨论了非线性拓扑泵浦对相互作用符号的依赖性.同时还计算了在不同相互作用强度下,系统最低能带和最高能带对应陈数的分布.最后,基于⁷Li原子的动量光晶格实验系统,提出了一个非线性拓扑泵浦方案.本文构造了一种近似于孤子态分布的初始态并演示了其动力学演化过程,并分析了绝热演化条件对泵浦过程的影响.结果表明,在动量晶格系统中演示非线性拓扑泵浦具有可行性.本文的工作为在超冷原子系统中研究非线性拓扑泵浦提供了一个可行的途径,有助于进一步探测非线性引起的拓扑相变和边界效应.

关键词: 非线性拓扑泵浦, 超冷原子, 动量光晶格, 相互作用 **PACS**: 03.75.Lm, 03.67.Ac, 37.10.Jk

DOI: 10.7498/aps.72.20230740

1 引 言

拓扑泵浦^[1] 是一种在绝热调制的周期性势阱 中的量子化输运现象,在实现粒子的量子化传输^[2]、 纠缠态产生^[3] 和探索高维拓扑系统性质^[4]方面有 重要的应用.因此,人们对其进行了大量的研究^[5-7], 并在超冷原子^[8]、自旋^[0]、光波导^[10] 以及声波波导^[11] 等实验系统中观测到了量子化的拓扑泵浦现象.最 近,在拓扑系统中,探索相互作用引起的新奇的泵 浦现象日益受到人们的关注.例如由相互作用诱导 的非线性拓扑泵浦,其特征为中等强度的非线性支 持孤子态的量子化输运,而强非线性使得孤子态呈 现局域特性. 通过理论研究, 人们提出可以利用液 晶^[12]、超冷原子^[13,14]和光波导^[15]系统具有的非线 性效应, 实现对非线性拓扑泵浦的探索. 到目前为 止, 人们仅在光波导系统中通过引入克尔型吸引非 线性观测到了量子化的整数^[15]和分数拓扑泵浦现 象^[16]. 所以, 在不同的系统中开展进一步的研究工 作仍然是有必要的, 可以更深入地理解非线性拓扑 泵浦现象并探索其应用前景.

在超冷原子系统中,人们可以利用光晶格^[17]和 Feshbach 共振^[18]技术对原子之间的相互作用进行精确的调控,这使其成为研究由相互作用诱导的非线性效应的理想平台.例如人们已经研究了物质波孤子^[19]和非线性局域化^[20]等现象.特别是,

© 2023 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号:12074367)、国家重点研发计划(批准号:2020YFA0309804)、上海市市级科技重大专项(批准号: 2019SHZDZX01)和科技创新 2030—"量子通信与量子计算机"重大项目(批准号:2021ZD0302002)资助的课题.

[†] 通信作者. E-mail: daihan@ustc.edu.cn

随着超冷原子动量晶格技术的发展^[21],可以利用 其具有的晶格参数和系统相互作用可独立精确调 制的特性,来研究非线性动力学和拓扑物理,并在 实验上观测到了相互作用导致的自陷俘效应^[22]以 及对迁移率边的影响^[23].值得注意的是,在超冷原 子系统关于拓扑泵浦的研究中,相对于线性拓扑泵 浦而言,对于非线性拓扑泵浦的研究仍然很少.因 此,本文提出可以利用超冷原子动量晶格系统来演 示非线性拓扑泵浦,为进一步探索非线性拓扑输运 提供了一定的指导.

本文用数值求解方法计算一维非对角 Aubry-André-Harper (AAH) 模型的非线性能带结构随相 互作用强度的变化,并分析了孤子态的非线性拓扑 泵浦具有量子化的输运特征.进一步,基于⁷Li原 子的动量晶格系统,提出了一个演示非线性拓扑泵 浦的方案,并分析了绝热演化条件对泵浦过程的影 响.结果表明,在动量晶格系统中演示非线性拓扑 泵浦具有可行性.本文为在超冷原子系统中研究非 线性拓扑泵浦提供了一个可行的途径,可进一步扩 展对非线性拓扑现象的研究.

全文结构安排如下: 第2节对一维非对角 AAH 模型的非线性能带和孤子态进行分析; 第3节对不 同相互作用系统中非线性泵浦过程进行了分析; 第4节基于⁷Li原子的动量晶格系统, 提出了一个 具体的非线性拓扑泵浦方案. 第5节是对非线性拓 扑泵浦的总结与展望.

2 理论模型

本方案研究的是一维非对角 AAH 模型^[24-26]的非线性拓扑泵浦. 如图 1(a) 所示,在一维非对角 AAH 模型中,每个原胞包含 3 个格点 (分别表示为 A, B 和 C),最近邻格点之间的耦合强度分别为 J_{ab}(t), J_{bc}(t)和 J_{ca}(t),且每个格点上的能量均为零.在紧束缚近似下,一维非对角 AAH模型的有效哈密顿量表示为

$$H(t) = \sum_{n=-\infty}^{+\infty} J_{ab}(t)\hat{a}_{n}^{\dagger}\hat{b}_{n} + J_{bc}(t)\hat{b}_{n}^{\dagger}\hat{c}_{n} + J_{ca}(t)\hat{c}_{n}^{\dagger}\hat{a}_{n+1} + \text{h.c.}, \qquad (1)$$

其中, $\hat{a}_n^{\dagger}(\hat{a}_n), \hat{b}_n^{\dagger}(\hat{b}_n), \hat{c}_n^{\dagger}(\hat{c}_n)$ 分别表示第 n个原胞中 格点 A, B和 C上的产生 (湮灭) 算符. 这里设定耦 合强度项的周期性调制函数表示为

$$J(t) = J_{\max}\left[J + K\cos\left(\frac{2\pi j}{3} + \Omega t + \frac{2\pi}{6}\right)\right], \quad (2)$$

其中, j = 0, 1, 2分别对应的是 $J_{ab}(t)$, $J_{bc}(t)$ 和 $J_{ca}(t)$ 耦合项; J_{max} 表示系统的最大耦合跃迁强度, 设定 $J_{max} = 1$ 作为能量单位; Ω 为耦合强度的调制频率, 要求调制频率尽可能低, 以满足绝热演化条件. 在 一个调制周期内 ($\Omega t = 2\pi$), 耦合强度的调制曲线 如图 1(b) 所示. 同时, 根据不同的J/K比值, 一维 非对角 AAH 模型具有不同的拓扑特征^[27]. 本文选 择J = 0.55和K = 0.45, 那么系统 3 个能带的陈数 分别为 $C = \{-1, 2, -1\}$.

图 1 (a) 一维非对角 AAH 模型示意图, 每个晶格原胞有 3 个格点 (*A*, *B*, *C*), 最近邻格点之间的耦合强度 (J_{ab} , J_{bc} , J_{ca}) 随时 间变化, 每个格点上的能量设置为零; (b) 在一个泵浦周期内, 耦合强度的周期性调制函数 (由 (2) 式定义); (c) 在 $\Omega t = 0$ 时刻, 非 对角 AAH 模型非线性能带结构在不同相互作用强度 g=0,1.5,2.0下的分布. 图中的物理量均以 J_{max} 为单位, 耦合强度值 $J_{ab} = 0.77$, $J_{bc} = 0.10 和 J_{ca} = 0.77$

Fig. 1. (a) Schematic illustration of 1D off-diagonal AAH model with three sites (A, B, C) per unit cell and time-dependent couplings (J_{ab}, J_{bc}, J_{ca}) between neighbouring sites; (b) variation of the couplings during one pumping cycle defined by Eq. (2); (c) energy bands of nonlinear off-diagonal AAH model vs. interaction strength g. All quantities shown in the pictures are given in units of J_{max} , with coupling strength values $J_{ab} = 0.77$, $J_{bc} = 0.10$ and $J_{ca} = 0.77$.

进一步,在一维非对角 AAH 模型的基础上, 考虑到平均场相互作用带来的格点上的非线性项, 那么,第 *n*个原胞中 *A*, *B*和 *C*格点的波函数演 化将由一组离散的非线性薛定谔方程决定,具体 如下:

$$\begin{cases}
i\hbar \frac{\partial \varphi_{n,a}(t)}{\partial t} = J_{ab}(t)\varphi_{n,b}(t) + J_{ca}\varphi_{n-1,c}(t) \\
-g |\varphi_{n,a}(t)|^{2}\varphi_{n,a}(t), \\
i\hbar \frac{\partial \varphi_{n,b}(t)}{\partial t} = J_{ab}(t)\varphi_{n,a}(t) + J_{bc}\varphi_{n,c}(t) \\
-g |\varphi_{n,b}(t)|^{2}\varphi_{n,b}(t), \\
i\hbar \frac{\partial \varphi_{n,c}(t)}{\partial t} = J_{bc}(t)\varphi_{n,b}(t) + J_{ca}\varphi_{n+1,a}(t) \\
-g |\varphi_{n,c}(t)|^{2}\varphi_{n,c}(t),
\end{cases}$$
(3)

其中, $\varphi_{n,a}(t), \varphi_{n,b}(t), \varphi_{n,c}(t)$ 分别表示在 *t* 时刻原 胞 *n* 中 3 个格点上的波函数振幅; g > 0 (或g < 0) 表示相互作用强度.

首先, 通过数值方法计算一维非线性的非对 角 AAH 模型的能带结构. 在周期性边界条件下, 原胞 $n \oplus 3$ 个格点上的波函数 $\Psi_n = (\varphi_{n,a}, \varphi_{n,b}, \varphi_{n,c})^{T}$ 的布洛赫解可定义为 $\varphi_{n,a} = \phi_a e^{ikn}, \varphi_{n,b} = \phi_b e^{ikn}, \varphi_{n,c} = \phi_c e^{ikn}, 对应的动量空间波函数表示$ $为<math>\Phi(k) = (\phi_a, \phi_b, \phi_c)^{T}$. 那么, 系统在动量空间的哈 密顿量可以表示为

$$H(k,\Phi(k)) = \begin{pmatrix} -g|\phi_a|^2 & J_{ab} & J_{ca}e^{-ik} \\ J_{ab} & -g|\phi_b|^2 & J_{bc} \\ J_{ca}e^{ik} & J_{bc} & -g|\phi_c|^2 \end{pmatrix}.$$
(4)

之后,通过求解定态薛定谔方程 $H(k, \Phi(k))\Phi(k) = E\Phi(k)$,就可以得到非线性系统的本征值 (*E*)和本 征态 ($\Phi(k)$). 具体而言,采用的求解过程如下所示. 将定态薛定谔方程 $H(k, \Phi(k))\Phi(k) = E\Phi(k)$ 展开后,可以得到:

$$\begin{cases} -g|\phi_{a}|^{2}\phi_{a} + J_{ab}\phi_{b} + J_{ca}e^{-ik}\phi_{c} = E\phi_{a}, \\ J_{ab}\phi_{a} - g|\phi_{b}|^{2}\phi_{b} + J_{bc}\phi_{c} = E\phi_{b}, \\ J_{ca}e^{ik}\phi_{a} + J_{bc}\phi_{b} - g|\phi_{c}|^{2}\phi_{c} = E\phi_{c}, \end{cases}$$
(5)

 $令 \phi_a = a, \phi_b = be^{iu}, \phi_c = ce^{iv}, 满足(a, b, c, u, v) \in \mathbb{R},$ 代入(5)式,结合归—化条件 $|\phi_a|^2 + |\phi_b|^2 + |\phi_c|^2 = 1,$ 对(5)式进行适当的推导和化简,得到关于*E*, *a*, *b*, *c*, *u*, *v*这6个变量的方程组:

$$\begin{cases} F_0 = (-a^2 + b^2 + c^2)E + (-a^4 + b^4 + c^4)g \\ - 2bcJ_{bc}\cos(u - v), \\ F_1 = (a^2 - b^2 + c^2)E + (a^4 - b^4 + c^4)g \\ - 2acJ_{ca}\cos(k - v), \\ F_2 = (a^2 + b^2 - c^2)E + (a^4 + b^4 - c^4)g \\ - 2abJ_{ab}\cos(u), \\ F_3 = bJ_{ab}\sin(u) - cJ_{ca}\sin(k - v), \\ F_4 = aJ_{ab}\sin(u) + cJ_{bc}\sin(u - v), \\ F_5 = a^2 + b^2 + c^2 - 1. \end{cases}$$
(6)

该方程组是一个 6 元目标函数 $F(X) = (F_0, F_1, F_2, F_3, F_4, F_5)^T$,其中 X = (E, a, b, c, u, v)为变量.对每 个方程均求一阶偏导数后,可以得到目标函数 F(X)的雅可比矩阵 J(X).之后,通过牛顿迭代法, 利用泰勒展开式对目标函数进行局部近似,并通过 求解近似函数的根来逐步逼近方程的真实解,得到 E, a, b, c, u, v这 6 个变量的解,从而得到能量 E和 波函数 $\Phi(k) = (\phi_a, \phi_b, \phi_c)^T$.

利用上述数值计算方法,计算了在相互作用强 度 g > 0的情况下,非对角 AAH 模型的非线性能 带结构,结果如图 1(c)所示.这里设定的是 $\Omega t = 0$ 时刻的耦合强度值,即 $J_{ab} = 0.77$, $J_{bc} = 0.10$ 和 $J_{ca} = 0.77$.从图中可以看出,能带结构因相互作用 的存在产生了改变.随着 g强度的增加,第二能带 和最高能带的能量发生了偏移,但其能带的色散关 系没有发生变化.相比之下,最低能带除了发生了 能量偏移,其能带色散关系也出现了调制,从具有 色散特征的能带逐渐变成了平带结构.对于一个无 色散的平带系统而言,系统的群速度为零,波包可 以作为一个整体在晶格中进行演化,表现为物质波 孤子态^[28].

图 2(a) 是在相互作用 g > 0情况下,最低能带的孤子态分布.该孤子态主要分布在单个原胞 3 个格点上,且 $\varphi_{n,a}$, $\varphi_{n,c}$ 和 $\varphi_{n,b}$ 之间存在着 π 相位.如图 2(b)所示,将这种孤子态作为初始注入态,在g > 0的非线性系统中进行淬火动力学演化,可以发现孤子态表现出局域化效应.采用同样的方法,也可以计算出相互作用 g < 0非线性的非对角AAH 模型的能带结构随 g的变化,如图 2(d)所示.可以看出,g < 0的相互作用主要是对最高能带的结构产生调制,使其从具有色散特征的能带逐渐变

图 2 (a), (b) 在 g>0的系统中, 计算得到的最低能带的孤子态的波函数分布, 在淬火动力学演化过程中是严格局域化的; (c), (d) 在 g < 0的系统中, 最高能带的孤子态波函数分布和能带结构的分布

Fig. 2. (a), (b) In the system of g>0, the wave function distribution of soliton state for the lowest energy band is strictly localized in the process of the quench dynamics; (c), (d) in the system of g<0, the wave function distribution of soliton state for the highest band and the energy band structure.

为平带结构.如图 2(c) 所示,其本征态同样具有孤 子态的分布特征,且3个格点上的波函数是同相位 的.这些结果为进一步探索非线性系统中的拓扑泵 浦现象提供了基础.

3 结果分析

接下来, 对非线性系统中的孤子态的拓扑泵浦 过程进行了分析. 分别在 $g > 0 \pi g < 0$ 区间选取了 一个典型的相互作用强度值, 对孤子态的演化过程 进行了数值求解. 图 3(a) 给出的是在无相互作用 系统中的线性拓扑泵浦过程. 这里选择的初始态为 占据最低能带 ($C_0 = -1$)的瓦尼尔态, 且耦合强度 的调制频率为 $\Omega/J_{max} = 0.02$, 满足绝热演化条件. 在这种情况下, 物质波包的衍射效应呈主要作用, 波包在演化过程中存在着明显的色散. 在一个泵浦 周期内, 波包质心向左移动了 3 个晶格格点的距 离, 具有量子化泵浦的特征, 受所占据能带的陈数 决定. 随着相互作用的增强, 系统会产生稳定的 非线性拓扑孤子态,波包作为整体在晶格中进 行移动,此时相互作用起到了将波包局域化的效果. 图 3(b)给出的是g = 1.5情况下的非线性拓扑泵浦. 选择的初始态和图 2(a)所示的波函数分布形式一 致,是处在最低能带上的孤子态分布,耦合强度的 调制频率为 $\Omega/J_{max} = 0.01$,满足绝热演化条件.在 每个泵浦周期内,质心仍遵循向左移动3个晶格格 点的距离,仍由最低能带的陈数决定.利用同样的 方法,计算了在g = -1.5的系统中,对于占据最高 能带的孤子态 (图 2(c)),同样表现为具有量子化的 非线性拓扑泵浦过程,结果如图 3(c)所示.

通过对非线性拓扑泵浦过程的数值分析可以 得到,在较弱的相互作用强度条件下,系统存在的 孤子态的演化过程满足量子化的输运特征.同时, 利用本文提到的数值求解方法对系统的能带结构 进行求解 $H(k) | \Phi_n(k) \rangle = E_n(k) | \Phi_n(k) \rangle$,得到了能 带和波函数.那么第n个能带对应的陈数为^[29]

$$C_n = \frac{1}{2\pi i} \int_{-\pi}^{\pi} dk \int_0^{2\pi} dt \mathcal{F}_n(k, t),$$
(7)

图 3 非线性拓扑泵浦 (a) g = 0系统中, 最低能带上分布的瓦尼尔态的线性泵浦演化; (b) g = 1.5系统中, 最低能带的孤子态的非线性演化; (c) g = -1.5系统中, 最高能带的孤子态的非线性演化; (d) 在两个泵浦周期内, 系统的质心位移结果. 上述结果 均是对 (3) 式进行数值求解所得, 所用参数: (a) 耦合强度 $J_{max} = 1$, 调制频率 $\Omega/J_{max} = 0.02$, 原胞数 $N_c = 101$; (b), (c) 耦合强度 $J_{max} = 1$, 调制频率 $\Omega/J_{max} = 0.02$, 原胞数 $N_c = 101$; (b), (c) 耦合强度 $J_{max} = 1$, 调制频率 $\Omega/J_{max} = 0.01$, 原胞数 $N_c = 21$

Fig. 3. Interaction induced nonlinear propagation in topological pumps: (a) At g = 0, the linear pump evolution of uniformly distributed Wanier states at the lowest band; (b) at g = 1.5, the nonlinear evolution of the soliton state for the lowest occupancy band; (c) at the g = -1.5, the nonlinear evolution of the soliton state for the highest occupancy band; (d) displacement of the centre of mass for the cases shown in a to c. The results are obtained by numerically solving Eq. (3) with parameters: (a) $J_{\text{max}} = 1$, $\Omega/J_{\text{max}} = 0.02$, $N_c = 101$; (b), (c) $J_{\text{max}} = 1$, $\Omega/J_{\text{max}} = 0.01$, $N_c = 21$.

其中, $\mathcal{F}_n = \langle \partial_t \Phi_n | \partial_k \Phi_n \rangle - \langle \partial_k \Phi_n | \partial_t \Phi_n \rangle$ 为贝里曲 率. 这里, 采用数值方法^[30] 对能带陈数进行计算, 具体结果如图 4 所示, 在g > 0的弱相互作用区间, 最低能带的陈数保持为 $C_0 = -1$; 在g < 0的弱相 互作用区间, 最高能带的陈数保持为 $C_2 = -1$. 同 样, Jürgensen 等^[15] 通过一种自定义的间接方法, 在弱相互作用区间对最低能带的陈数进行了计算, 陈数也为 $C_0 = -1$.

图 4 在 g>0和 g<0的弱相互作用系统中,分别计算最低能带的陈数 C₀和最高能带的陈数 C₂

Fig. 4. Chern number associated with the energy band are calculated for g > 0 and g < 0 in the regime of weak interaction strengths, respectively.

4 实验方案

本节基于玻色子⁷Li原子的动量晶格系统,提 出了一个演示非线性拓扑泵浦的实验方案.图 5(a) 简要描述了动量晶格的实现原理^[21].将一对对射 晶格光(波长为 λ)照射到 BEC 原子团上,其中向 右传播的晶格光包含单一频率 ($E^+ \cos(kx - \omega^+ + \phi^+)$),而向左传播的晶格光中包含多个频率成分 ($\sum_l E_l^- \cos(-kx - \omega_l^- + \phi_l^-)$).通过双光子布拉格 跃迁,每对光场 ($\omega^+ \pi \omega_l^-$)都会对相邻的动量态 ($|n\rangle \pi|n+1\rangle$)之间的耦合跃迁产生影响.这里,晶格光的波长为 $\lambda = 1064$ nm,远失谐于⁷Li原子的能级跃迁线 (671 nm).同时,对于处在基态原子团 的色散关系可以近似处理为自由粒子的色散关系,那么相邻动量态 $|n\rangle \pi | n+1\rangle$ 之间的能级差为 $\Delta E = 4E_r(2n+1),$ 其中,原子的反冲能量 $E_r = \hbar^2 k^2/(2M)$ (M是原子质量),对于 $\lambda = 1064$ nm 的 晶格光, $E_r = 2\pi \times 25$ kHz.并且,每对光场 ($\omega^+ \pi \omega_l^-$)之间的频率差满足 $4E_r(2l+1)/\hbar$,相位差满足 $\phi^+ - \phi_l^- = 0$.那么,描述动量晶格系统的哈密顿量 可以表示为

$$H_{0} = \sum_{n} \sum_{l} J_{l} e^{-i8(n-l)E_{r}t/\hbar} e^{i(\phi^{+}-\phi_{l}^{-})} \hat{c}_{n+1}^{\dagger} \hat{c}_{n} + h.c. + \sum_{n} 4n^{2}E_{r} \hat{c}_{n}^{\dagger} \hat{c}_{n}, \qquad (8)$$

其中, $\hat{c}_n^{\dagger}(\hat{c}_n)$ 分别表示动量态 $|n\rangle$ 格点上的产生 (湮 灭) 算符; J_i 表示耦合强度项,按照 (2) 式进行调制; 对于动量态 $|n\rangle$ 和 $|n+1\rangle$ 之间的跃迁, l=n成分是 共振光项, 而 $l \neq n$ 的成分是非共振光项.为了尽可 能地减少非共振光项带来的影响,要求系统演化过 程中的最大耦合强度满足 $J_{max} \ll 8E_r$.这样,在进 行旋波近似处理后,系统只需考虑共振光项的作 用,更加接近理想的哈密顿量模型.

图 5 利用动量晶格系统演示非线性拓扑泵浦方案 (a) 动量晶格示意图; (b) 初态制备过程; (c) 在两个泵浦周期内, 调制频率 为 $\Omega/J_{max} = 0.5$ 时孤子态的动力学演化; (d) 在两个泵浦周期内质心移动的晶格距离 (红线为动量晶格的实际哈密顿量计算的结果, 蓝线为理想哈密顿量计算的结果); (e) 绝热演化条件分析, 不同 Ω/J_{max} 对应的每个泵浦周期质心位置的移动距离. 设置参数 为: $J_{max} = 2\pi \times 10.0$ kHz, $U/J_{max} = 1.5$, $N_c = 21$

Fig. 5. Implementatial proposal of nonlinear topological pumping based on the momentum lattice: (a) Schematic diagram of the momentum lattice; (b) preparation of initial state; (c) dynamics evolution of soliton state in two pumping periods, with modulation frequency of $\Omega/J_{max} = 0.5$; (d) lattice displacement of the center-of-mass during two pumping periods (The red line is the result calculated from actual Hamiltonian of the momentum lattice, and the blue line is the result of the ideal Hamiltonian); (e) analysis of adiabatic evolution conditions. The shift of center-of-mass for each pumping period corresponding to different values of Ω/J_{max} . Parameters are: $J_{max} = 2\pi \times 10.0$ kHz, $U/J_{max} = 1.5$, $N_c = 21$.

在平均场近似和 Hartree-Fock 近似处理下, 每个动量态波函数的动力学演化均由 Gross-Pitaevskii (GP) 方程决定,其表达式与(3)式类似,即

$$i\hbar \frac{\partial \varphi_n(t)}{\partial t} = \left[H_0 - U(2 - |\varphi_n(t)|^2) \right] \varphi_n(t), \quad (9)$$

其中,相互作用强度项为 $U = 4\pi\hbar^2 a_{\rm s}\rho_N/M$ (ρ_N 是 BEC 原子团密度, $a_{\rm s}$ 是 s波散射长度).通过 Feshbach 共振^[18]技术调节原子间的散射长度 $a_{\rm s}$, 可实现对相互作用的精确调节.同时,在不同演化 时刻下,系统波函数的分布均需满足归一化条件, 即 $\sum_{n} |\varphi_n(t)|^2 = 1$.

在动量晶格系统中演示非线性拓扑泵浦方案, 表征原子团输运特征的观测量可以定义为在一个 泵浦周期内原子团的平均动量的变化量,即

$$\langle p_{\mathbf{c}}(t) \rangle = \sum_{-N}^{+N} n \left| \varphi_n(t) \right|^2, \qquad (10)$$

其中, n 为动量态 $|n\rangle$ 对应的晶格格点坐标; $|\varphi_n(t)|^2$ 表示原子分布在动量态 $|n\rangle$ 的概率; 动量态质心移 动的距离单位是 $2\hbar k$. 实验中可以通过时间飞行测 量来探测所有动量态的原子团的密度分布, 从而得 到不同演化时刻下的所有动量态分布情况,即 $|\varphi_n(t)|^2$.通过 (10) 式可计算出原子团的平均动量 移动的距离.

下面对演示方案进行具体描述. 由文献 [31, 32] 可得, 对于|F = 1, $m_F = 1$)内态的⁷Li原子系统, 可 以利用 Feshbach 共振技术精确调控原子间的相互 作用. 当囚禁 BEC 原子团的势阱频率为 (ω_x, ω_y , ω_z) = $2\pi \times (70, 800, 800)$ Hz, 并在偏置磁场强度调 节到 710 G 左右, 即散射长度达到约 200 a_0 (a_0 表 示玻尔半径)时, 可以得到原子数为 $N = 3.0 \times 10^5$ 的 BEC 原子团. 在动量晶格中, 设定最大耦合强 度为 $J_{\text{max}} = 2\pi \times 10$ kHz, 且满足 $J_{\text{max}} \ll 8E_r$ 的条 件. 同时设定偏置磁场为 B = 731.548 G左右, 使 得 s 波散射长度为 $a_s \approx 1000a_0$, 可调控相互作用强 度为 $U/J_{\text{max}} = 1.5$.

为了在动量晶格系统上更方便地制备初态并 演示非线性拓扑泵浦过程,将初态构造成近似满足 孤子态的形式,即将波函数全部分布在中间原胞的 格点上,而其他原胞格点上的分布忽略不计.图 5(b) 是初态制备的示意图.这里选择将|-1),|0),|+1) 3 个动量态组成初态所占据的原胞. 在 *t* = 0 时刻, 系统处在零动量的 BEC 状态,此时波函数为 $\Psi_0 = (0,1,0)^{T}$. 之后,同时打开|-1〉, $|0\rangle$ 和|0〉,|+1〉 动量态之间的耦合跃迁项,分别设置为 $Je^{-i\theta}$ 和 $Je^{i\theta}$,原子会在 3 个动量态格点之间进行拉比振荡. 经过时间 *t* 的演化,得到的目标初始态为 $\Psi_{ini} = (-\frac{\sqrt{2}}{2}ie^{-i\theta}\sin(\sqrt{2}Jt), \cos(\sqrt{2}Jt), -\frac{\sqrt{2}}{2}ie^{-i\theta}\sin(\sqrt{2}Jt))^{T}$. 这样,通过选择合适的耦合项参数 J,θ 和时间 *t*, 就可以制备所需要的初始态.如当选择参数 $J = 2\pi \times 4.0 \text{ kHz}, \theta = \pi/2 \pi t = 18.1 \ \mu s t theorem , 初始$ $态分布为<math>\Psi_{ini} = (-0.424, 0.800, -0.424)^{T}$,满足相互 作用为 $U/J_{max} = 1.5$ 的系统对孤子态分布的要求.

图 5(c) 给出了在相互作用强度为 $U/J_{max} = 1.5$ 的系统中,上文所示初始态的非线性泵浦过程.这里,相邻动量态之间的耦合强度按照(2)式进行调制,设定的最大耦合强度为 $J_{max} = 2\pi \times 10.0$ kHz,调制频率为 $\Omega/J_{max} = 0.5$,系统原胞数为 $N_c = 21$.从图 5(d) 所示的质心位移结果可以发现,计算得到的质心位移值基本上体现出了量子化的输运特征,但其与理想值 $\langle p_c \rangle = -3.0$ 之间仍有一定偏离,主要是受到实际动量晶格中的非共振的多频率光带来的能级失谐和系统绝热演化条件等因素的影响.

通过数值分析,评估了演化过程中的绝热条件 对非线性泵浦效果的影响,如图 5(e) 所示. 计算了 在不同的调制频率 Ω/J_{max} 情况下,单个泵浦周期 内原子动量态质心 ((p_c)) 移动的晶格距离. 从图 中可以看出,调制速率越慢,即 Ω/J_{max} 越小, $\langle p_c \rangle$ 越接近理想的移动距离 $\langle p_c \rangle = -3.0$. 随着 Ω/J_{max} 的增加,逐渐破坏演化过程所需要的绝热条件, $\langle p_{\rm c} \rangle$ 会逐渐偏离理想值. 当 $\Omega/J_{\rm max} = 0.5$ 的时候, $\langle p_{\rm c} \rangle \approx 2.8$,基本也能够体现出非线性拓扑泵浦的 主要特征.并且,在此调制频率下,每个调制周期 所需的时间为 $T = 2\pi/\Omega = 0.2$ ms, 这样的参数在 实验上具有一定的可行性.同时,考虑到囚禁 BEC 原子团的外势阱形状对原子团分布和相干演 化时间的影响,动量晶格系统演化的相干时间在 1 ms 以内. 这样, 基本上可以从 3 个调制周期内的 动力学演化结果中得到能带的陈数.

5 结 论

本文使用数值求解方法计算了一维非对角

AAH 模型的非线性能带和孤子态解,并分析了在 g > 0和g < 0的相互作用系统中,存在着处于最低 能带和最高能带的孤子态的量子化的输运现象.此 外,基于⁷Li原子的动量晶格系统,还提出了一个 演示非线性拓扑泵浦的实验方案,并分析了其在动 量晶格实验上的可行性.本文为在超冷原子系统中 实现非线性拓扑泵浦提供了一个新颖且可行的途 径,可进一步用于研究非线性系统的拓扑输运现 象,例如边界态在相互作用系统中的拓扑输运^[33-35].

感谢中国科学技术大学郑炜教授和罗祎帆博士的有益 讨论.

参考文献

- [1] Thouless D J 1983 Phys. Rev. B 27 6083
- [2] Nakajima S, Tomita T, Taie S, Ichinose T, Ozawa H, Wang L, Troyer M, Takahashi Y 2016 Nat. Phys. 12 296
- [3] Hu S, Ke Y G, Lee C H 2020 Phys. Rev. A 101 052323
- [4] Lohse M, Schweizer C, Price H M, Zilberberg O, Bloch I 2018 Nature 553 55
- [5] Citro R, Aidelsburger M 2023 Nat. Rev. Phys. 5 87
- [6] Cerjan A, Wang M, Huang S, Chen K P, Rechtsman M C 2020 Light Sci. Appl. 9 178
- [7] Ke Y G, Qin X Z, Kivshar Y S, Lee C H 2017 Phys. Rev. A 95 063630
- [8] Lohse M, Schweizer C, Zilberberg O, Aidelsburger M, Bloch I 2016 Nat. Phys. 12 350
- [9] Ma W, Zhou L, Zhang Q, Li M, Cheng C, Geng J, Rong X, Shi F, Gong J, Du J 2018 Phys. Rev. Lett. 120 120501
- [10] Zilberberg O, Huang S, Guglielmon J, Wang M, Chen K P, Kraus Y E, Rechtsman M C 2018 *Nature* 553 59
- [11] Cheng W, Prodan E, Prodan C 2020 Phys. Rev. Lett. 125 224301
- [12] Jung P S, Parto M, Pyrialakos G G, et al. 2022 Phys. Rev. A 105 013513
- [13] Fu Q, Wang P, Kartashov Y V, Konotop V V, Ye F 2022 *Phys. Rev. Lett.* **128** 154101
- [14] Mostaan N, Grusdt F, Goldman N 2022 Nat. Commun. 13 5997
- [15] Jürgensen M, Mukherjee S, Rechtsman M C 2021 Nature 596
 63
- [16] Jürgensen M, Mukherjee S, Jörg C, Rechtsman M C 2023 Nat. Phys. 19 420
- [17] Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411
- [18] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225
- [19] Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247
- [20] Kevrekidis P G, Frantzeskakis D J, Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 45) (Berlin: Springer) pp99–130
- [21] Gadway B 2015 Phys. Rev. A 92 043606
- [22] An F A, Sundar B, Hou J, Luo X W, Meier E J, Zhang C, Hazzard K R A, Gadway B 2021 Phys. Rev. Lett. 127 130401

- [23] An F A, Padavicć K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 *Phys. Rev. Lett.* 126 040603
- $[24]\;$ Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 133
- [25] Harper P G 1955 Proc. Phys. Soc. A 68 874
- [26] Cao J, Xing Y, Qi L, Wang D Y, Bai C H, Zhu A D, Zhang S, Wang H F 2018 Laser Phys. Lett. 15 015211
- [27] Martinez Alvarez V M, Coutinho-Filho M D 2019 Phys. Rev. A 99 013833
- [28] Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918
- [29] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
- [30] Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74

1674

- [31] Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150
- [32] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290
- [33] Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901
- [34] Bongiovanni D, Jukić D, Hu Z, Lunić F, Hu Y, Song D, Morandotti R, Chen Z, Buljan H 2021 Phys. Rev. Lett. 127 184101
- [35] Kartashov Y V, Arkhipova A A, Zhuravitskii S A, Skryabin N N, Dyakonov I V, Kalinkin A A, Kulik S P, Kompanets V O, Chekalin S V, Torner L, Zadkov V N 2022 *Phys. Rev. Lett.* **128** 093901

COVER ARTICLE

Nonlinear topological pumping in momentum space lattice of ultracold atoms^{*}

Yuan Tao¹⁾²⁾³⁾ Dai Han-Ning^{<math>1)2)3)†} Chen Yu-Ao^{<math>1)2)3)}</sup></sup></sup>

 (Hefei National Research Center for Physical Sciences at the Microscale, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China)

2) (Shanghai Research Center for Quantum Science, CAS Center for Excellence in Quantum Information and

Quantum Physics, University of Science and Technology of China, Shanghai 201315, China)

3) (Hefei National Laboratory, Hefei 230088, China)

(Received 6 May 2023; revised manuscript received 2 June 2023)

Abstract

Topological pumping enables the quantized transport of matter waves through an adiabatic evolution of the system, which plays an essential role in the applications of transferring quantum states and exploring the topological properties in higher-dimensional quantum systems. Recently, exploring the interplay between novel topological pumping and interactions has attracted growing attention in topological systems, such as nonlinear topological pumping induced by interactions. So far, the experimental realizations of the nonlinear topological pumps have been realized only in the optical waveguide systems with Kerr nonlinearity. It is still necessary to further explore the phenomenon in different systems. Here, we present an experimental proposal for realizing the nonlinear topological pumping via a one-dimensional (1D) off-diagonal Aubry-André-Harper (AAH) model with mean-field interactions in the momentum space lattice of ultracold atoms. In particular, we develop a numerical method for calculating the energy band of the nonlinear systems. With numerical calculations, we first solve the nonlinear energy band structure and soliton solution of the 1D nonlinear off-diagonal AAH model in the region of weak interaction strengths. The result shows that the lowest or the highest energy band is modulated in the nonlinear system of q > 0 or q < 0, respectively. The eigenstates of the associated energy bands have the features of the soliton solutions. We then show that the topological pumping of solitons exhibits quantized transport characteristics. Moreover, we numerically calculate the Chern number associated with the lowest and highest energy bands at different interaction strengths. The result shows that the quantized transport of solitons is determined by the Chern number of the associated energy band of the system from which solitons emanate. Finally, we propose a nonlinear topological pumping scheme based on a momentum lattice experimental system with 7 Li atoms. We can prepare the initial state, which is approximately the distribution of the soliton state of the lowest energy band, and calculate the dynamical evolution of this initial state in the case of U > 0. Also, we analyze the influence of adiabatic evolution conditions on the pumping process, demonstrating the feasibility of nonlinear topological pumping in the momentum lattice system. Our study provides a feasible route for investigating nonlinear topological pumping in ultracold atom systems, which is helpful for further exploring the topological transport in nonlinear systems, such as topological phase transitions and edge effects induced by nonlinearity.

Keywords: nonlinear topological pumping, ultracold atoms, momentum space lattice, interactionPACS: 03.75.Lm, 03.67.Ac, 37.10.JkDOI: 10.7498/aps.72.20230740

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key R&D Program of China (Grant No. 2020YFA0309804), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302002).

[†] Corresponding author. E-mail: daihan@ustc.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

超冷原子动量光晶格中的非线性拓扑泵浦

苑涛 戴汉宁 陈宇翱

Nonlinear topological pumping in momentum space lattice of ultracold atoms Yuan Tao Dai Han-Ning Chen Yu-Ao

引用信息 Citation: Acta Physica Sinica, 72, 160302 (2023) DOI: 10.7498/aps.72.20230740 在线阅读 View online: https://doi.org/10.7498/aps.72.20230740 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

动力学淬火过程中的不动点及衍生拓扑现象

Fixed points and dynamic topological phenomena in quench dynamics 物理学报. 2019, 68(4): 040303 https://doi.org/10.7498/aps.68.20181928

超冷⁸⁷Rb原子在二维光晶格中Mott绝缘态的实验实现 Experimental realization of Mott insulator of ultracold ⁸⁷Rb atoms in two-dimensional optical lattice 物理学报. 2020, 69(19): 193201 https://doi.org/10.7498/aps.69.20200513

光晶格中超冷原子系统的磁激发

Magnetic excitation of ultra-cold atoms trapped in optical lattice 物理学报. 2019, 68(4): 043703 https://doi.org/10.7498/aps.68.20190153

光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性 Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice 物理学报. 2021, 70(20): 200302 https://doi.org/10.7498/aps.70.20210705

基于量子Fisher信息的量子计量进展

Development on quantum metrology with quantum Fisher information 物理学报. 2019, 68(4): 040601 https://doi.org/10.7498/aps.68.20181965

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice 物理学报. 2022, 71(22): 224202 https://doi.org/10.7498/aps.71.20221286