钙钛矿型 CeTaN₂O 的高压制备 及其磁性和电学性质^{*}

陈兆亮¹⁾²⁾ 卢达标²⁾³⁾ 叶旭斌²⁾ 赵浩婷²⁾³⁾ 张杰²⁾³⁾ 潘昭²⁾ 迟振华^{4)†} 崔田¹⁾ 沈瑶^{2)3)‡} 龙有文^{2)3)5)^{††}}

(宁波大学物理科学与技术学院,高压物理科学研究院,宁波 315211)
 (中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190)
 3)(中国科学院大学物理科学学院,北京 100049)
 4)(中国科学院合肥物质科学研究院,等离子体物理研究所,合肥 230031)
 5)(松山湖材料实验室,东莞 523808)
 (2024 年 1 月 5 日收到; 2024 年 1 月 26 日收到修改稿)

最近研究发现, *AB*(N,O)₃型钙钛矿氧氮化物具有优异的介电、铁电、光催化等性能, 在光电子、能源存储和通信等领域展现出广阔的应用前景. 但是, 目前该类型材料的制备工艺耗时较长且产物纯度较低. 本文以氧化物为前驱体、以氨基钠为氮源, 利用六面顶压机设备所提供的高温高压环境成功制备了高纯度的钙钛矿型氧氮化物 CeTaN₂O 块体材料, 并将制备时间缩短至 1 h, 实现了快速合成. 并对其晶体结构以及物理性质进行了系统的研究. X 射线粉末衍射实验和 Rietveld 精修结果表明, 所制备的样品属于正交晶系, 空间群为 *Pnma*. X 射线吸收谱测试确定了样品的电荷组态以及阴离子组合为 Ce³⁺Ta⁵⁺N₂O. 磁性和比热测试表明, 样品属于反铁磁物质, 磁相变温度低于 2 K. 电学输运性能测试表明, 样品的电阻率呈现出典型的半导体行为, 且符合三维变程跳跃模型.

关键词:高压合成,钙钛矿氮化物,反铁磁,半导体 **PACS**: 07.35.+k, 77.84.Bw, 76.50.+g, 72.20.-i

DOI: 10.7498/aps.73.20240025

1 引 言

AB(N,O)₃型钙钛矿氧氮化物是一类具有广泛 应用潜力的材料,具有如超导电性^[1]、高介电常数^[2,3]、 巨磁阻效应^[4,5]、光催化活性^[6]和光致发光^[7]等丰 富的化学和物理性质,使其在光电子、能源存储和 通信等诸多领域展现出卓越的性能和应用前景.此 类化合物主要通过对钙钛矿型氧化物 ABO₃ 进行 氮化,使部分 O 元素位置被 N 元素替代而得到. 其中,A 位通常为碱土或稀土元素,B 位主要是 过渡金属元素.图 1 分别展示了 ABO₃ (以 CaTiO₃ 为例)与 AB(N,O)₃ (以 LaTiN₂O 为例) 钙钛矿的 晶体结构.在理想的 ABO₃ 钙钛矿中,A 位离子与 周围十二个等距离的氧离子形成 AO₁₂ 十四面体 的配位环境,起到支撑钙钛矿晶体结构框架以及维

^{*} 国家重点研发计划 (批准号: 2021YFA1400300)、国家自然科学基金 (批准号: 11934017, 12261131499, 11921004, 12304268)、北 京市自然科学基金 (批准号: Z200007) 和中国科学院战略性先导科技专项 (B类) (批准号: XDB33000000) 资助的课题.

[†] 通信作者. E-mail: zhchi@ipp.ac.cn

[‡] 通信作者. E-mail: yshen@iphy.ac.cn

計通信作者. E-mail: ywlong@iphy.ac.cn

^{© 2024} 中国物理学会 Chinese Physical Society

图 1 ABO_3 (a) 与 $AB(N, O)_3$ (b) 钙钛矿的晶体结构示意图 Fig. 1. Schematic crystal structures for ABO_3 (a) and $AB(N, O)_3$ perovskites (b).

持价态平衡的作用; 而 B 位离子则与周围的六个 氧离子形成 BO₆ 八面体的配位环境, 八面体之间 以共顶点的方式连接, 且 B 位的离子通过与氧离 子之间形成相互作用的 B-O-B 通道, 可实现对钙 钛矿材料磁性和输运性质的调控. 在 AB(N,O)₃ 中, 由于氮和氧离子半径的不同 (4 配位下, r(N³⁻): 1.46 Å; r (O²⁻): 1.38 Å)^[8], N 元素的部分替换会导 致 B (N,O)₆ 八面体发生倾斜, 使其结构对称性发生 变化, 进而使其获得许多新的材料特性与功能^[9].

目前, 传统的制备钙钛矿氧氮化物粉末样品的 方法主要是高温条件下采用氨气对氧化物原料或 氧化物前驱体进行氮化^[10-12]. 然而, 这种合成方法 存在操作繁琐, 合成周期长, 能耗大, 产物纯度较 低等一系列问题, 同时该方法还需要排放大量有毒 有害的氨气, 不仅增加了环境污染的风险, 也不利 于进行系统性的研究. 为了克服这些问题, 研究者 们正在积极寻求更为环保、高效的制备方法, 以提 高钙钛矿型氧氮化物的制备效率和纯度, 推动其在 科学研究中的广泛应用.

高温高压合成方法就是一种行之有效的途径. 在高压环境中,原料分子之间的距离缩短,扩散效 率提升,而且压力提供的能量也能成为反应的助 力,打破化学反应的势垒,从而促进反应的发生^[13,14]. 通常情况下,常压中需要几十个小时合成的样品, 采用高压手段可以缩短至1h以内,极大地节约了 合成时间,提高了生产效率.本文利用六面顶压机 设备在高温高压环境中成功制备了 CeTaN₂O材 料,通过 X 射线衍射 (X-ray diffractometer, XRD) 和 Rietveld 精修^[15]技术,确定了其具有空间群为 *Pnma*的晶体结构,通过 X 射线吸收光谱 (X-ray absorption spectroscopy, XAS)分析确定了其电 荷组态并推断出样品阴离子元素含量为 N:O = 2:1. 此外,还对 CeTaN₂O 材料的磁性和电学等性 质进行了深入研究,弥补了先前文献中对其物性 研究方面的空缺.这些研究结果为进一步理解 CeTaN₂O 材料的特殊性质及其在不同领域的潜在 应用提供了重要的实验基础.

2 实 验

2.1 样品制备

在进行高压实验前,首先制备了氧化物前驱 体 CeTaO₄, 并以高纯度 CeO₂ (99.99%) 和 Ta₂O₅ (99.99%) 为原料, 将两者按照 2:1 的摩尔比进行混 合,然后将混合物转移至马弗炉中,在1500 ℃ 下煅 烧 30 h 后淬火处理即可得到纯净的 CeTaO₄^[16,17]. 随后,采用 NaNH₂ (99.0%) 作为氮源,按照 3:1 的摩尔比与 CeTaO4 进行混合并充分研磨, 然后装 入直径 3 mm、高 4 mm 的钼胶囊中. 由于 NaNH2 对空气敏感,因此上述研磨和组装的全过程均在充 满氩气的手套箱中完成.我们使用六面顶压机产 生 6 GPa, 1600 ℃ 的高温高压环境处理 30 min, 之后淬火并缓慢卸压[18-20]. 最后,将得到的块体样 品研磨成粉,使用去离子水对粉末样品进行洗涤, 以去除 NaOH 等杂质副产物, 烘干后即可得到纯 净的 CeTaN₂O 多晶样品.利用高温高压法制备 CeTaN₂O的反应方程式如下:

 $CeTaO_4 + 3NaNH_2 \rightarrow CeTaN_2O + 3NaOH + NH_3.$ (1)

2.2 结构及物性测试

利用德国 Huber 公司生产的 X 射线粉末衍射 仪对样品进行 XRD 测试,并利用 GSAS 软件对 获得的 XRD 数据进行 Rietveld 精修,以确定样品 的晶体结构.在中国台湾的同步辐射研究中心对 CeTaN₂O 样品进行了 XAS 测试,其中 Ce 元素 *M*_{4,5} 边的测试是在 BL11A 线站上完成的,Ta 元 素 *L*₃ 边的测试则是在 BL07A 线站上完成的.样品 的磁性测试在美国 Quantum Design 公司生产的 新型磁学测量系统 (magnetic property measurement system, MPMS) 上完成,并采用该公司生产 的综合物性测量系统 (physical properties measurement system, PPMS) 测量了样品的比热数据和电 阻率数据.

3 结果与讨论

3.1 CeTaN₂O 的纯度和晶体结构

室温下, CeTaN₂O 的 XRD 结果显示除主相 外, 无明显杂相的存在, 表明采用高温高压法制备 的 CeTaN₂O 样品纯度较高, 具有良好的单相性. 图 2 所示为采用 Rietveld 方法对 XRD 数据进行 结构精修的结果, 可以明显地看到, 样品所有的衍

图 2 室温下 CeTaN₂O 的 XRD 图谱和结构精修结果, 插 图给出了晶体结构示意图

Fig. 2. XRD pattern and structure refinement results of CeTaN₂O obtained at room temperature. The inset shows a schematic diagram of the crystal structure.

射峰都可以很好地被正交的空间群 *Pnma* 拟合, 且 较小的品质因子 ($R_{wp} = 3.28\%$, $R_p = 2.30\%$, $\chi^2 = 2.71$)表明精修结果的可靠性. 得到的晶胞参数 a = 5.69575(9) Å, b = 8.03326(8) Å, c = 5.70427(8) Å. 图 2 右上角插图部分展示了其晶体结构示意图, 其中阴离子无序分布,每个阴离子位置上占据 2/3 个 N 元素和 1/3 个 O 元素. Ta(N,O)₆ 八面体按 照 $a^- b^0 a^-$ 模式倾斜,这也是导致其具有 *Pnma* 正 交结构的主要原因^[10]. CeTaN₂O 结构精修得到的 具体晶胞参数详见表 1.

3.2 CeTaN₂O的电荷组态

为了确定 CeTaN₂O 中离子的价态, 对其进行 了 X 射线吸收谱测试. 图 3(a) 所示为 CeTaN₂O 样品、Ce4+的参照样品 CeO2 以及 Ce3+的参照样 品 Ce_2O_3 的 $Ce-M_{4,5}$ 边的吸收谱结果. 可以发现, CeTaN₂O与Ce₂O₃在Ce-M_{4.5}吸收边的能量位置 以及谱线形状都高度相似; 与 CeO₂ 相比, 能量位 置则向低能量方向移动,且峰形也有很大差别.这 表明 CeTaN₂O 和 Ce₂O₃中的 Ce具有相同的价 态, 即+3 价. 同样, 采用 Ta₂O₅ 作为 Ta⁺⁵ 的参照 样品与 CeTaN₂O 进行了 Ta 元素的 XAS 测试. 图 3(b) 所示为两者在 Ta-L3 边的吸收谱结果, 两 者相同的能量位置和谱线形状表明 CeTaN₂O 中 的 Ta 具有+5 价. 因此, CeTaN₂O 样品中阳离子 总价态为+8价,根据电荷守恒原理,可以确定样 品中阴离子部分应为-8价,与2个N和1个O的 组合方式相吻合(化合物中N通常显-3价,O通 常显-2价).结合以上分析结果可以确定,该材料 的电荷组态为 Ce³⁺Ta⁵⁺N₂O.

表 1 CeTaN₂O 的精修结构参数 Table 1. Refined structure parameters of CeTaN₂O.

Space	e group				Pnma	
a/Å	5.69575(9)				$R_{ m wp}/\%$	3.28
$b/{ m \AA}$	8.03326(8)				$R_{\rm p}/\%$	2.30
$c/\text{\AA}$	5.70427(8)				χ^2	2.71
Atomic	position(s)					
atom	site	x	y	z	occ	$U_{\rm iso}/{\rm \AA}^2$
Ce	4c	0.01792(8)	0.25	0.99101(2)	1	0.0086(5)
Ta	4b	0.5	0	0	1	0.0055(9)
N/O	4c	0.49062(2)	0.25	0.14377(9)	0.67/0.33	0.01
N/O	8d	0.26950(2)	0.03833(9)	0.76871(6)	0.67/0.33	0.01

图 3 (a) Ce-*M*_{4,5}; (b) Ta-*L*₃ 的 XAS. 图中给出了相关的 参考样品作为对比

Fig. 3. XAS at (a) Ce- $M_{4,5}$ edges and (b) Ta- L_3 edges. The XAS of related references are also shown for comparison.

3.3 CeTaN₂O的磁性和比热测试

接下来,用 MPMS 对 CeTaN₂O 材料的磁学 性质进行细致测量. 图 4(a) 为样品在零场冷 (zero field cooling, ZFC) 和场冷 (field cooling, FC) 两 种模式下的磁化率随温度的变化曲线 (M-T曲线), 所施加的外磁场大小为 0.1 T, 测试温区为 5-300 K. 从 M-T曲线上可以观察到, ZFC 模式和 FC模式下磁化率曲线完美重合,整个测试温区内 没有出现长程磁有序的迹象.并且,100 K 以上高 温区的磁化率倒数随温度的变化曲线符合局域顺 磁居里外斯定律的线性行为,可以采用修正后的居 里-外斯公式 $\chi = \chi_0 + C/(T - \theta)$ 很好地拟合, 其 中 χ_0 为与温度无关的磁化率,包含 Van Vleck 顺磁 和原子核的抗磁性, C代表居里常数, θ 代表外斯温 度. 拟合得到的参数 $\chi_0 = 2.1 \times 10^{-3} \text{ emu·mol}^{-1} \cdot \text{Oe}^{-1}$, 而拟合得到的外斯温度为 $\theta = -26$ K, 负的温度值 代表在 CeTaN₂O 样品中反铁磁相互作用占主导 地位,这在后续的比热测试中也有所表现.根据得 到的居里常数 C = 0.6 emu·K·mol⁻¹·Oe⁻¹,可以算 出样品的有效磁矩为 $\mu_{\text{eff}} = (8C)^{1/2} = 2.19\mu_{\text{B}}/\text{f.u.}$ 理论上, 电荷组态为 Ce3+Ta5+N2O 的样品中, 只有

A 位 Ce³⁺离子存在磁性贡献, 其理论有效磁矩为 2.54μ_B/f.u.. 实验与理论得到的有效磁矩的数值比 较接近, 也证明了通过 XAS 测试所确定的样品电 荷组态的正确性.

图 4 (a) 0.1 T 磁场下磁化率和磁化率倒数随温度的变化 关系,其中蓝线代表100 K 以上的居里-外斯拟合结果; (b) 不 同温度下磁化强度随磁场的变化关系

Fig. 4. (a) Temperature dependence of magnetic susceptibility and the inverse susceptibility at 0.1 T. The blue line shows the Curie-Weiss fitting above 100 K; (b) field dependent magnetization measured at different temperatures.

图 4(b)为 CeTaN₂O 样品在 300 和 2 K 温度 下,磁化强度随磁场的变化曲线 (*M*-*H*曲线),测试 所采用的磁场范围是-7-7 T. 在 300 K 时, *M*-*H* 曲线呈现出线性行为,标志着样品的高温顺磁性状 态;而在 2 K 时, *M*-*H*曲线出现了偏离线性的情 况,表现出自旋关联.

为了进一步探究这一现象,又对 CeTaN₂O 样 品进行了比热测试.图 5 展示了 CeTaN₂O 样品在 0 T 磁场条件下,2—100 K 温区范围的比热测试 结果.随着温度的降低,比热逐渐下降,并在 10 K 附近达到最低值,随后比热随着温度的降低 出现上升现象,且一直持续到测试的最低温度 2 K,说明 10 K 以下 Ce 离子之间开始产生自旋关 联,并很有可能在 2 K 以下形成磁有序.为了探究 这一比热异常,分别施加了 0.5 和 1.0 T 磁场重新 测试了低温区的比热数据.如图 5 中插图所示,在 不同的磁场下,该比热上翘依然存在,且对应的磁 性比热往高温移动,与反铁磁体中的塞曼劈裂行为 相一致,也与 CePtGe₂, Ce₂Pt₂Pb 等大部分 Ce 基 化合物具有较低的反铁磁相变温度相吻合^[21-25].

图 5 CeTaN₂O 比热随温度的变化曲线, 插图是各个磁场 下的低温比热

Fig. 5. Plot of specific heat vs. temperature. The inset shows the specific heat under various magnetic fields.

为了探究 CeTaN₂O 材料的电输运性质,采用 四线法在 PPMS 上完成了 CeTaN₂O 的电阻率测 试. 图 6 是该样品在 100—300 K 温区范围内电阻 率随温度的变化曲线 (*R-T*曲线). 由图 6 可以观察 到,随着温度的降低,电阻率从 300 K 的 2563 Ω·cm 显著升高至 100 K 的 1.4 MΩ·cm,这是半导体的 典型特征,表明了 CeTaN₂O 是一种半导体材料. 此 外,整个测试温区的电阻率可以采用三维变程跳

图 6 CeTaN₂O 电阻率随温度的变化曲线. 插图是将 100— 300 K 的电阻率用三维变程跳跃模型拟合得到的结果

Fig. 6. Temperature-dependent resistivity of $CeTaN_2O$. The inset shows the fitting result using the 3D variable-range hopping model.

跃模型 (three dimensional variable range hopping, 3D VRH) 完美拟合:

$$\rho(T) = \rho_0 \exp(T_o/T)^{1/4},$$
(2)

其中 T₀是费米能级上态密度的常数^[26]. 拟合结果以插图形式展示在图 6中,这一拟合结果表明 CeTaN₂O 中电输运性质由局域载流子的跳跃行为 主导.

4 结 论

本研究通过六面顶压机设备利用高温高压方 法短时间内成功制备了钙钛矿型氧氮化物 CeTaN₂O 的高纯度块体样品, 解决了长制备周期难题.此外, 还对样品进行了系统表征.研究结果表明, CeTaN₂O 具有 Ce³⁺Ta⁵⁺N₂O 的电荷组态, 其中阴离子无序 占位, 对应元素比例为 N:O = 2:1; 同时 B(N,O)₆ 八面体按照 *a b⁰ a* 模式发生倾斜,导致其具有空 间群为 *Pnma* 的正交晶体结构. CeTaN₂O 表现出 半导体的电输运性质, 并在 10 K 以下呈现明显的 自旋关联, 反铁磁相变温度在 2 K 以下.本工作的 详尽表征有助于深入探索 CeTaN₂O 材料的物理 性质, 并为挖掘其潜在应用价值提供了有力支持.

参考文献

- Tobías G, Oró-Solé J, Beltrán-Porter D, Fuertes A 2001 Inorg. Chem. 40 6867
- [2] Marchand R, Pors F, Laurent Y, Regreny O, Lostec J, Haussonne J M 1986 J. Phys. Colloques 47 C1
- [3] Kim Y I, Woodward P M, Baba-Kishi K Z, Tai C W 2004 Chem. Mater. 16 1267
- [4] Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P, Fuertes A 2008 J. Am. Chem. Soc. 130 12572
- [5] Yang M, Oró-Solé J, Kusmartseva A, Fuertes A, Attfield J P 2010 J. Am. Chem. Soc. 132 4822
- [6] Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851
- [7] Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242
- [8] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751
- [9] Ye S Y, Li D, Li J S, Zeng L, F C 2021 J. Synth. Cryst. 50
 187 (in Chinese) [叶施亚, 李端, 李俊生, 曾良, 曹峰 2021 人工 晶体学报 50 187]
- [10] Porter S H, Huang Z, Woodward P M 2014 Cryst. Growth Des. 14 117
- [11] Porter S H, Huang Z, Cheng Z, Avdeev M, Chen Z, Dou S, Woodward P M 2015 J. Solid State Chem. 226 279
- [12] Page K, Stoltzfus M W, Kim Y I, Proffen T, Woodward P M, Cheetham A K, Seshadri R 2007 Chem. Mater. 19 4037
- [13] Badding J V 1998 Annu. Rev. Mater. Sci. 28 631
- [14] Brazhkin V V 2007 High Pressure Res. 27 333

- [15] Rietveld H M 1969 J. Appl. Crystallogr. 2 65
- [16] Roth R S, Negas T, Parker H S, Minor D B, Jones C 1977 Mater. Res. Bull. 12 1173
- [17] Santoro A, Marezio M, Roth R S, Minor D 1980 J. Solid State Chem. 35 167
- [18] Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201 (in Chinese) [殷云宇, 王潇, 邓 宏芟, 周龙, 戴建洪, 龙有文 2017 物理学报 66 030201]
- [19] Deminami S, Kawamura Y, Chen Y Q, Kanazawa M, Hayashi J, Kuzuya T, Takeda K, Matsuda M, Sekine C 2017 J. Phys. Conf. Ser. 950 042032
- [20] Sekine C, Sai U, Hayashi J, Kawamura Y, Bauer E 2017 J. Phys. Conf. Ser. 950 042028

- [21] Kabeya N, Takahara S, Satoh N, Nakamura S, Katoh K, Ochiai A 2018 Phys. Rev. B 98 035131
- [22] Nakano T, Onuma S, Takeda N, Uhlířová K, Prokleška J, Sechovský V, Gouchi J, Uwatoko Y 2019 *Phys. Rev. B* 100 035107
- [23] Matin M, Kulkarni R, Thamizhavel A, Dhar S K, Provino A, Manfrinetti P 2017 J. Phys Condens. Matter 29 145601
- [24] Ajeesh M O, Kushwaha S K, Thomas S M, Thompson J D, Chan M K, Harrison N, Tomczak J M, Rosa P F S 2023 *Phys. Rev. B* 108 245125
- [25] Ravot D, Burlet P, Rossat-Mignod J, Tholence J L 1980 J. Phys. 41 1117
- [26] Mott N F 1969 Philos. Mag. 19 835

High-pressure synthesized perovskite-type $CeTaN_2O$ and its magnetic and electrical properties^{*}

 $\begin{array}{cccc} {\rm Chen} \ {\rm Zhao-Liang}^{1)2)} & {\rm Lu} \ {\rm Da-Biao}^{2)3)} & {\rm Ye} \ {\rm Xu-Bin}^{2)} & {\rm Zhao} \ {\rm Hao-Ting}^{2)3)} \\ {\rm Zhang} \ {\rm Jie}^{2)3)} & {\rm Pan} \ {\rm Zhao}^{2)} & {\rm Chi} \ {\rm Zhen-Hua}^{4)\dagger} & {\rm Cui} \ {\rm Tian}^{1)} \\ {\rm Shen} \ {\rm Yao}^{2)3)\ddagger} & {\rm Long} \ {\rm You-Wen}^{2)3)5)^{\dagger\dagger}} \end{array}$

1) (Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China)

2) (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China)

3) (School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

4) (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China)

5) (Songshan Lake Materials Laboratory, Dongguan 523808, China)

(Received 5 January 2024; revised manuscript received 26 January 2024)

Abstract

Recently, it has been discovered that the $AB(N,O)_3$ -type perovskite oxynitrides exhibit excellent dielectric, ferroelectric, and photocatalytic properties, promising for applications in the fields of optoelectronics, energy storage, and communication. Due to the differences in charge, ionic radius, and covalent bonding between N^3 ion and O^{2-} ion, the N substitution for O enhances the $B(N,O)_6$ octahedron tilting, giving rise to exotic properties and functionalities. However, the current fabrication process for this type of material is rather timeconsuming, leading to products with an appreciable quantity of impurities. In this study, using oxide precursors and sodium amide as the nitrogen source, high-purity perovskite-type oxynitride CeTaN₂O bulk materials are successfully synthesized under high-temperature and high-pressure conditions provided by a cubic-anvil press. The synthesis time decreases to 1 h, achieving rapid production. The lattice structure and physical properties of the obtained samples are comprehensively investigated. X-ray powder diffraction experiments and subsequent Rietveld refinement indicate that the title material shows an orthorhombic crystal structure with the space group of Pnma. The X-ray absorption spectra confirm the charge configuration and the anion composition as Ce^{3+} $Ta^{5+}N_2O$. Magnetization and specific heat measurements reveal that the exchange interactions are mainly antiferromagnetic, with a potential magnetic transition below 2 K. The electrical transport data demonstrate typical semiconductor behaviors, which can be further explained by a three-dimensional variable-range hopping model. Our study paves the way for putting this exotic perovskite oxynitride into practical applications.

Keywords: high-pressure synthesis, perovskite-type nitride, antiferromagnetic, semiconductor

PACS: 07.35.+k, 77.84.Bw, 76.50.+g, 72.20.-i

DOI: 10.7498/aps.73.20240025

^{*} Project supported by the National Key R&D Program of China (Grant No. 2021YFA1400300), the National Natural Science Foundation of China (Grant Nos. 11934017, 12261131499, 11921004, 12304268), the Natural Science Foundation of Beijing, China (Grant No. Z200007), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33000000).

[†] Corresponding author. E-mail: zhchi@ipp.ac.cn

[‡] Corresponding author. E-mail: yshen@iphy.ac.cn

^{††} Corresponding author. E-mail: ywlong@iphy.ac.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

钙钛矿型CeTaN₂0的高压制备及其磁性和电学性质

陈兆亮 卢达标 叶旭斌 赵浩婷 张杰 潘昭 迟振华 崔田 沈瑶 龙有文

High-pressure synthesized perovskite-type CeTaN20 and its magnetic and electrical properties

Chen Zhao-Liang Lu Da-Biao Ye Xu-Bin Zhao Hao-Ting Zhang Jie Pan Zhao Chi Zhen-Hua Cui Tian Shen Yao Long You-Wen

引用信息 Citation: Acta Physica Sinica, 73, 080702 (2024) DOI: 10.7498/aps.73.20240025 在线阅读 View online: https://doi.org/10.7498/aps.73.20240025 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

多阶有序钙钛矿多铁性材料的高压制备与物性

High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure 物理学报. 2018, 67(15): 157505 https://doi.org/10.7498/aps.67.20180878

双二次交换作用和各向异性对反铁磁体相变温度的影响

Effect of biquadratic exchange and anisotropy on the critical temperature of antiferromagnet 物理学报. 2020, 69(10): 107501 https://doi.org/10.7498/aps.69.20200077

钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用

Control of surface structures and functionalities in perovskite-type ferroelectric oxides and their potential applications 物理学报. 2020, 69(21): 217709 https://doi.org/10.7498/aps.69.20200884

高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质

Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure

物理学报. 2020, 69(21): 218801 https://doi.org/10.7498/aps.69.20200988

新型层状Bi2Se2的第一性原理研究

First-principle study of new phase of layered $\mathrm{Bi}_2\mathrm{Se}_3$

物理学报. 2021, 70(2): 027102 https://doi.org/10.7498/aps.70.20201434

太阳能电池材料缺陷的理论与计算研究

Theoretical and computational study on defects of solar cell materials 物理学报. 2020, 69(17): 177101 https://doi.org/10.7498/aps.69.20200656