Al+光钟态"幻零"波长的理论计算*

魏远飞1)2)# 唐志明3)# 李承斌1)# 黄学人1)4)#

1) (中国科学院精密测量科学与技术创新研究院, 原子频标重点实验室, 武汉 430071)

2) (中国科学院大学,北京 100049)

3) (复旦大学现代物理研究所,核物理与离子束应用教育部重点实验室,上海 EBIT 实验室,上海 200433)

4) (武汉量子技术研究院, 武汉 430206)

(2024年1月26日收到; 2024年3月5日收到修改稿)

本文使用组态相互作用加多体微扰理论方法对 Al+光钟态 3s² ¹S₀ 和 3s3p ³P₀ 的 "幻零"波长进行了理论 计算.3s² ¹S₀态的 "幻零"波长为 266.994(1) nm, 3s3p ³P₀态的 "幻零"波长为 184.56(7) nm, 174.4(1) nm, 121.5(1) nm 和 119.7(2) nm.精确测量这些 "幻零"波长,有助于高精度确定光钟态相关跃迁的振子强度或者 约化矩阵元,进而降低 Al+光钟黑体辐射频移评估的不确定度.同时,对这些 "幻零"波长的精密测量,对研究 Al+原子结构具有重要意义.

关键词: Al⁺,极化率,"幻零"波长,CI+MBPT PACS: 31.15.ap, 31.15.am, 32.60.+i

DOI: 10.7498/aps.73.20240177

1 引 言

精确测量和计算原子系统的原子结构性质,如同位素位移、跃迁概率、静态极化率和动力学极化率等,对原子结构的研究具有极其重要的意义^[1-3]. IIIA族金属单价离子具有可被激光操纵的能级结构和窄线宽光钟跃迁,成为了开展量子光钟等精密测量实验的理想体系^[4-6].在这些精密测量实验中,原子体系的电偶极极化率扮演着非常重要的角色,它表征着核外电子云的电荷分布随电场的响应程度^[7]. 在一些特定频率的电场(激光)的作用下,原子能级的极化率为零,这些频率对应的波长被称为"幻零"波长^[8-12].一个能级的"幻零"波长通常出现在与该能级相关的较弱共振跃迁的激发能附近,与 "幻零"波长邻近的共振跃迁通常对该波长处的动 力学极化率具有主导贡献.因此,对"幻零"波长的 精密测量可以高精度地确定相关跃迁的约化矩阵 元 (或者振子强度)之比^[10,11].精确地测量"幻零" 波长不仅对发展高精度原子结构计算方法具有重 要的指导意义,也可以为进一步改进精密谱实验提 供重要的参数.通过精密测量"幻零"波长确定光钟 体系的钟态相关跃迁的约化矩阵元的精确数值^[13-15], 有助于光钟系统不确定度的评估,例如提高光钟黑 体辐射频移的评估精度.实验上寻找原子能级的 "幻零"波长需要有理论计算提供预测和指导;另一 方面,通过实验测量"幻零"波长来确定跃迁参数也 需要理论计算数据作为辅助分析.

作为第 IIIA 族金属单价离子的典型代表, Al+ 的原子结构性质在天体观测和量子精密测量领域

† 通信作者. E-mail: cbli@wipm.ac.cn

© 2024 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 11934014, 11904387, 11704076, U1732140) 和国家重大研究发展计划 (批准号: 2017YFA0304401, 2017YFA0304402) 资助的课题.

[#] 同等贡献作者.

[‡] 通信作者. E-mail: hxueren@wipm.ac.cn

均具有重要应用^[4,5,16-18]. Al+光钟是目前为止相对 不确定度进入 10⁻¹⁹ 量级的少数高精度光钟之一^[4], 由静态极化率的误差所主导的黑体辐射频移的不 确定度已经成为限制 Al+光钟精度继续提高的重 要因素之一^[4]. 对 Al+光钟态 3s² ¹S₀ 和 3s3p ³P₀ 的 "幻零"波长进行精确的计算和测量,可以高精度地 确定与这两个态相关跃迁的约化矩阵元之比. 这些 高精度的跃迁参数有助于降低 Al+光钟黑体辐射 频移的不确定度.

本文使用组态相互作用加多体微扰理论 (configuration interaction plus many-body perturbation theory, CI+MBPT) 方法计算了 Al+低激发 态的能级和电偶极跃迁约化矩阵元,进一步计算 了 $3s^2 \, {}^1S_0 \,$ 态和 $3s3p \, {}^3P_0 \,$ 态的动力学极化率,在波 长 $\lambda \in (100 \text{ nm}, \infty)$ 范围内找到了 5 个"幻零"波长. 第 2 节介绍理论方法和计算细节;第 3 节给出 Al+ 能级、约化矩阵元、电偶极极化率和"幻零"波长的 计算结果.如无特殊说明,本文采用原子单位制.

2 方法与理论

2.1 电偶极极化率和"幻零"波长

处于电磁场中的原子体系,核外电子云被极 化,原子能级会发生 AC Stark 移动.原子能级 AC Stark 移动大小可表示为^[9-11]

$$\Delta E = -\frac{F^2 \alpha\left(\omega\right)}{2} + o\left(F^4\right),\tag{1}$$

其中, $\alpha(\omega)$ 为原子能级的动力学极化率, ω 是电磁 场的频率, F 是电场强度, $o(F^4)$ 代表更高阶的 AC Stark 能移.在弱场条件下,高阶 Stark 能移可 以忽略不计.一个原子量子态的电偶极动力学极化 率通常由标量、矢量和张量三个分量组成^[7,19-21]. 极化率矢量和张量分量的贡献都与原子态的角 动量磁量子数有关^[7,19-21].本文所涉及的 Al+两个 钟态 3s² 1S₀ 和 3s3p ³P₀ 的总角动量量子数 J都为 0,这使得其极化率的矢量和张量分量都为 0. 因 此,本文只需考虑标量极化率.理论上通常可将电 偶极动力学极化率 $\alpha(\omega)$ 分为三个部分的贡献^[19,20]:

$$\alpha\left(\omega\right) = \alpha_{v}\left(\omega\right) + \alpha_{core}\left(\omega\right) + \alpha_{cv}\left(\omega\right), \qquad (2)$$

其中, $\alpha_v(\omega)$, $\alpha_{core}(\omega)$ 和 $\alpha_{cv}(\omega)$ 分别表示价电子、 原子实以及价电子与原子实关联项对极化率的贡 献. 价电子的贡献 $\alpha_v(\omega)$ 通常占主导, 在二阶微扰 理论下可表示为[7,19-21]

$$\alpha_{\rm v}(\omega) = \frac{2}{3(2J_{\rm g}+1)} \sum_{i} \frac{|\langle \psi_{\rm g}| |D| |\psi_{\rm i}\rangle|^2 (E_{\rm i} - E_{\rm g})}{(E_{\rm i} - E_{\rm g})^2 - \omega^2},$$
(3)

其中,下标g表示所考虑的原子态,i表示能与g态 发生电偶极跃迁的原子态, $\langle \psi_g | | D | | \psi_i \rangle$ 表示从g态 到i态跃迁的约化矩阵元, E_i 是i态的能量值, E_g 是g态的能量值, J_g 表示g态的总角动量量子数.当 $\omega \rightarrow 0$,动力学极化率 $\alpha(\omega)$ 过渡为静态极化率 $\alpha(0)$.

由 (2) 式和 (3) 式可知, 存在特定的频率 ω_0 , 使 $\alpha(\omega) = 0$. 这些频率对应的波长 λ_0 被称为"幻 零"波长 ^[5-12].

2.2 CI+MBPT 方法

CI+MBPT 方法是相对论框架下的一种原子 结构计算方法^[20,22-24],它充分结合了 CI 和 MBPT 两种方法的优点. CI 方法在"冻结"原子实的近似 下,考虑了价电子 (VV) 之间的关联效应, MBPT 方法处理原子实电子间和原子实与价电子间的关 联效应.

CI 方法中价电子态的波函数 $\Psi(\gamma PJ)$ 由一组 具有特定角动量 J和宇称 P的组态波函数 $\Phi(\gamma_i PJ)$ 的线性组合构成^[22,23],即

$$\Psi(\gamma PJ) = \sum_{i=1}^{M} c_i \Phi(\gamma_i PJ), \qquad (4)$$

其中, $\Phi(\gamma_i PJ)$ 是在一个 CI 模型空间中的一个组态波函数, c_i 是线性组合系数, γ_i 是未指定的剩余量子数. CI 模型空间是通过考虑选定参考基组中价电子的单 (S)、双 (D) 激发到一定虚轨道而构成的组态波函数空间. 组态波函数由单电子狄拉克轨道给出的 Slater 行列式来定义. 单电子狄拉克轨道可表示为

$$\phi_{nkm}\left(r,\theta,\varphi\right) = \frac{1}{r} \begin{pmatrix} P_{nk}\left(r\right) \cdot \Omega_{km}(\theta,\varphi) \\ iQ_{nk}\left(r\right) \cdot \Omega_{-km}(\theta,\varphi) \end{pmatrix}, \quad (5)$$

其中, $P_{nk}(r)$ 和 $Q_{nk}(r)$ 是径向波函数, $\Omega_{km}(\theta,\varphi)$ 是角向波函数, n是主量子数, $k = \pm (j + 1/2)$ 是相 对论量子数, m是单电子总角动量的磁量子数.本 工作中, Al+的偶宇称态选取的参考组态为 3s², 3s4s 和 3s3d, 奇宇称态选取的参考组态为 3s3p, 考虑 单、双激发到最高轨道为 29s, 29p, 29d 和 29f. 计算 中, 单电子轨道包括 1s-29s, 2p-29p, 3d-29d 和 4f-29f 轨道, 其中原子实轨道 ($n \leq 2$)和 3s, 4s, 3p, 4p, 3d, 4d, 4f 轨道是通过在 V^{N-2} 近似下求解 Dirac-Hartree-Fock (DHF) 方程获得,其余虚轨道则是 由递归程序^[23]自动生成.在试验性的计算过程中, 我们对径向积分范围 (Rmax 参数) 做了严格的收 敛性检验,最终选取的径向积分范围为 Rmax = 250 a.u..

价电子态 n 的波函数 Ψ_n 是通过求解能量本征 方程来确定. 能量本征方程表示为^[22,23]

$$H\Psi_n = E_n \Psi_n. \tag{6}$$

价电子的 CI 哈密顿量具有如下形式^[22,23]:

$$H_{\rm CI} = \sum_{i=1}^{2} [c\alpha_i \cdot p_i + (\beta_i - 1)c^2 + V_{\rm nuc}(r_i) + V^{N-2}(r_i)] + \frac{1}{2} \sum_{i,j=1}^{2} V_c(r_{i,j}), \qquad (7)$$

其中, c 是真空中的光速, $\alpha \pi \beta$ 是狄拉克矩阵, p是动量算符, $V_{\text{nuc}}(r)$ 是原子核势, $V^{N-2}(r)$ 是原子 实电子的 DHF 势, $V_c(r_{1,2})$ 表示距离为 $r_{1,2}$ 的电子 间库仑势.

CI+MBPT 方法是在 CI 方法的基础上, 通过 多体微扰理论将所有的价电子-原子实 (VC) 关联、 原子实-原子实 (CC) 关联计入到有效哈密顿量 *H*_{eff} 中. 有效哈密顿量 *H*_{eff} 可表示如下^[20,24]:

$$H_{\rm eff} = H_{\rm CI} + \Sigma_1 + \Sigma_2, \qquad (8)$$

其中, Σ_1 表示单电子算符, 描述单个价电子与原子 实电子之间的关联; Σ_2 表示双电子算符, 描述了原 子实电子对两个价电子间库仑相互作用的屏蔽效 应. 通过引入算符 Σ_1 和 Σ_2 , VC 关联、CC 关联被 计入到有效哈密顿量当 H_{eff} 中. 计算中所用的多体 微扰计算只考虑至二阶微扰项.本文使用 Kozlov 等^[23] 开发的 CI+MBPT 程序包完成计算.

3 计算结果与讨论

3.1 能级和约化矩阵元

利用 CI+MBPT 方法, 计算了 Al+低激发态 的能级和电偶极跃迁约化矩阵元. 为了寻找光钟 态 3s² ¹S₀ 和 3s3p ³P₀ 的"幻零"波长, 特别关注与 这两个态相关的有电偶极跃迁通道的能级和跃迁 约化矩阵元. 表 1 给出了所涉及的最低 27 个能级 的能量值, 其中基态 3s² ¹S₀ 的能量值是指 Al+两个 价电子的束缚能, 激发态的能量值是相对于基态的 激发能.为了分析计算误差,表1同时列出了不考 虑 Breit 相互作用的 CI 和 CI+MBPT 计算结果、 考虑了 Breit 相互作用的 CI+MBPT 计算结果、 以及文献中可参考的数值,其中标识为"NIST" 的一列数据是取自美国国家标准与技术研究院 (NIST) 的原子光谱数据库^[25] 的实验值. 结果显示, 仅考虑了价电子关联的 CI 计算得到的结果与 NIST 原子光谱数据库中的实验值[25]之间有 1%—3% 的 偏差. 而通过二阶多体微扰考虑了内壳层电子关联 的 CI+MBPT 计算得到的结果明显具有更高的精 度,与 NIST 原子光谱数据库中的实验值^[25]之间 的偏差均小于 0.4%; Breit 相互作用的影响较小, 其贡献的绝对值均小于最终数值的 0.01%; 这些结 果与其他文献中的实验值或理论计算值[19,26-30]之 间的差异也都小于 3%. 这表明, 价电子关联模型 可以较好地描述 Al+的能级结构, 而充分考虑内 壳层电子关联之后可以得到非常精确的数值结果, Breit 相互作用的影响则可忽略.

表 2 给出了 3s² ¹S₀ 态和 3s3p ³P₀ 态相关电偶 极跃迁的约化矩阵元的计算结果和文献中可参考 的数值.由于 Al+体系中的 Breit 相互作用较小, 此处不再赘述 Breit 相互作用对最后计算结果的影 响,之后的计算结果均默认包含了 Breit 相互作用. 电偶极跃迁的约化矩阵元具有长度规范和速度规 范两种处理方案,表2给出两套计算结果.结果表 明,不同方法或不同规范下计算的结果之间的绝对 差异通常在 0.1 a.u.或 0.01 a.u.数量级. 因此, 对于 较强的跃迁, 如 3s² ¹S₀-3s3p ¹P₁ 跃迁 (具有最大的 约化矩阵元,约 3.1 a.u.),矩阵元的相对误差在 1% 数量级;而对于较弱的跃迁,矩阵元的相对误差通 常在 10% 数量级. 从与文献 [19, 26] 中其他参考值 的比较来看,长度规范得到的值和其他方法得到的 值更加接近.同时,由于 CI+MBPT 方法比 CI 方法考虑了更完整的电子关联效应,从而得到的结 果与文献 [19, 26] 中的数值符合得更好. 许多研究 表明,对于电偶极跃迁的约化矩阵元,长度规范通 常能给出相对更准确的计算结果, 而长度规范和速 度规范之间的差异通常可以作为评估计算误差的 重要依据^[31,32].本文以 CI+MBPT 在长度规范下 得到的数值作为推荐值,以 CI 和 CI+MBPT 两种 方法在两种规范下得到的4个值中的最大值与最 小值之间的差作为不确定度,并在表2中给出.

表 1	Al+基态和激发态能级	的能量值 (单位: cm⁻	⁻¹), Diff.是	CI+MBPT+B	reit 得到的值	[与 NIST	值的相对	偏差
Table 1.	Energies of 27 low-lying	energy levels of Al ⁺	$({ m in} \ { m cm}^{-1}),$	Diff. represents	the relative	deviation	between	the value
obtained fr	om CI+MBPT+Breit an	d the NIST value.						

State	CI	CI+MBPT	+Breit	NIST	$\mathrm{Diff.}/\%$	Refs.
$3s^2 {}^1S_0$	376617	381043	380973	381308	-0.088	$381332^{[19]}, 379582^{[26]}, 381287^{[27]}, 382024^{[28]}$
$3s3p \ ^{3}P_{0}$	36256	37342	37344	37393.03	-0.13	$37396 \ {}^{[19]}, \ 37395 \ {}^{[26]}, \ 37374 \ {}^{[27]}, \ 37191 \ {}^{[28]}$
$3s3p \ ^{3}P_{1}$	36318	37407	37405	37453.91	-0.13	37457 ^[19] , 37452 ^[26] , 37457 ^[28] , 36705 ^[29]
$3p^2 \ ^1P_1$	59538	59905	59893	59852.02	0.069	59768 ^[19] , 60111 ^[26] , 60723 ^[27] , 54410 ^[28] , 63000 ^[30]
3s4s $^3\mathrm{S}_1$	90008	91254	91233	91274.50	-0.045	91279 $^{[19]}$, 91043 $^{[26]}$, 91262 $^{[27]}$, 91274 $^{[28]}$
$3p^2 \ ^3P_1$	92660	94107	94097	94147.46	-0.053	$94151 \ {}^{[19]}, \ 93380 \ {}^{[26]}, \ 93735 \ {}^{[28]}$
3s3d $^3\mathrm{D}_1$	94171	95490	95462	95551.44	-0.093	95527 $^{[19]}, 95253$ $^{[26]}, 95695$ $^{[28]}$
$3s4p \ ^{3}P_{1}$	103975	105387	105366	105441.50	-0.071	
$3s4p \ ^1P_1$	105574	106880	106858	106920.56	-0.058	
$3p^2 \ ^1S_0$	110488	111779	111779	111637.33	0.11	
3s5 s $^3\mathrm{S}_1$	118590	120047	120022	120092.919	-0.059	
3s4d $^3\mathrm{D}_1$	119971	121422	121395	121484.252	-0.073	
$3s5p\ ^3P_1$	124142	125648	125624	125708.828	-0.068	
3s5p $^1\mathrm{P}_1$	124322	125814	125790	125869.015	-0.063	
3s6s $^3\mathrm{S}_1$	130638	132160	132134	132215.52	-0.061	
3s5d $^3\mathrm{D}_1$	131247	132761	132734	132822.95	-0.067	
3s6p 1P_1	133307	134861	134835	134919.40	-0.062	
3s6p $^3\mathrm{P}_1$	133409	134954	134928	135015.70	-0.065	
3s6d $^3\mathrm{D}_1$	137210	138754	138727	138814.87	-0.064	
3s7p $^1\mathrm{P}_1$	138244	139828	139802	139918.98	-0.084	
$3s7p \ ^{3}P_{1}$	138422	139987	139960	140091.9	-0.094	
$3s8p~^1P_1$	140927	142519	142493	142961.20	-0.33	
$3s8p~^3P_1$	141127	142711	142685	143166.76	0.34	
3s7d $^3\mathrm{D}_1$	140741	142300	142274	142365.54	-0.065	
$3s9p~^1P_1$	143591	145260	145233	144941.10	0.20	
3s9 s $^3\mathrm{S}_1$	142835	144377	144350	144644.14	-0.20	
3s8d $^3\mathrm{D}_1$	143118	144686	144658	144642.0	0.012	

3.2 3s² ¹S₀ 态和 3s3p ³P₀ 态的"幻零"波长

根据 (2) 式和 (3) 式, 结合表 2 给出的约化矩 阵元的推荐值和从 NIST 数据库中提取的能量的 实验值, 计算了两个钟态的静态极化率.表 3 给出 了相关跃迁对两个光钟态 $3s^2$ ${}^{1}S_0$ 和 3s3p ${}^{3}P_0$ 的静 态极化率 $\alpha(0)$ 的贡献.表中两个态的静态极化率 各给出了 13 条跃迁的贡献值, 以及其余的高激发 态 (others)的贡献.表中的 others 是由文献 [19] 中计算的 others 值减去重复的贡献项后得到的. 可以看出, 对于态 $3s^2$ ${}^{1}S_0$ 而言, 仅有 $3s^2$ ${}^{1}S_0$ -3s3p ${}^{3}P_1$ 一条跃迁占主导贡献, 占比 98% 以上. 而态 3s3p ${}^{3}P_0$ 的静态极化率,则有三条跃迁占主导贡献, 它们 分别是 3s3p ${}^{3}P_0$ -3s4s ${}^{3}S_1$, 3s3p ${}^{3}P_0$ - $3p^2$ ${}^{3}P_1$ 和 3s3p ${}^{3}P_0$ -3s3d ${}^{3}D_1$, 贡献占比分别为 8.9%, 33%和 51%. 主量子数 n > 5 的态到 $3s3p {}^{3}P_{0}$ 态的跃迁对 $3s3p {}^{3}P_{0}$ 静态极化率的贡献总计小于 1.5%. 图 1 为两个态的静态极化贡献随着所考虑的跃迁中最高激发态的主量子数 n 的变化图. 结果显示, $n \ge 9$ 的跃迁对两个态的静态极化率的贡献均在 0.9% 以下.

根据 (2) 式和 (3) 式, 结合表 2 给出的约化矩 阵元的推荐值和从 NIST 数据库中提取的能量的 实验值, 计算了波长 $\lambda \in (100 \text{ nm}, \infty)$ 内 Al⁺两个钟态 3s² ¹S₀ 和 3s3p ³P₀ 的动力学极化率. 计算中, 极化 率的原子实贡献部分为 $\alpha_{core}(0)=0.265$ a.u.^[19]. 考虑 到 Al³⁺最低电子态跃迁的共振能量 (2.809638 a.u.) 远高于本文的计算范围 (< 0.5 a.u.), $\alpha_{core}(\omega)$ 的值 在本文计算的范围内随频率变化量可以忽略, 可以 认为近似等于 $\alpha_{core}(0)$. 由于两个态的动力学极化 表 2 使用 CI+MBPT 方法得到的 Al⁺光钟态 $3s^2 {}^{1}S_0$ 和 $3s3p {}^{3}P_0$ 的电偶极跃迁约化矩阵元 (单位: a.u.) Table 2. Reduced matrix elements of the E1 transitions for the $3s^2 {}^{1}S_0$ and $3s3p {}^{3}P_0$ clock states of Al⁺, obtained by using the CI+MBPT method (in a.u.).

Method	(CI	CI+1	MBPT		Dí
Gauge	Length	Velocity	Length	Velocity	Recommend	Keis.
$3s^2 {}^1S_0 - 3s3p {}^3P_1$	0.0092	0.0101	0.0098	0.0105	0.0098(13)	0.01513 ^[26]
$3s^2 \ ^1S_0 3s3p \ ^1P_1$	3.1830	3.1572	3.1156	3.1156	3.116(67)	$3.112^{[19]} 2.840^{[26]}$
$3s^2 \ ^1S_0 3s4p \ ^3P_1$	0.0018	0.0017	0.0022	0.0018	0.002(1)	—
$3s^2 \ ^1S_0 3s4p \ ^1P_1$	0.0844	0.0781	0.0460	0.0737	0.046(38)	$0.045^{\ [19]}$
$3s^2 \ ^1S_0 3s5p \ ^3P_1$	0.0037	0.0038	0.0051	0.0043	0.005(2)	—
$3s^2 \ ^1S_0 3s5p \ ^1P_1$	0.0474	0.0502	0.0662	0.0491	0.066(19)	—
$3s^2 \ ^1S_0 3s6p \ ^1P_1$	0.0595	0.0610	0.0704	0.0586	0.070(12)	—
$3s^2 {}^1S_0 - 3s6p {}^3P_1$	0.0013	0.0014	0.0023	0.0017	0.002(1)	—
$3s^2 \ ^1S_0 3s7p \ ^1P_1$	0.0575	0.0582	0.0638	0.0551	0.064(9)	—
$3s^2 \ ^1S_0 3s7p \ ^3P_1$	0.0015	0.0015	0.0022	0.0019	0.002(1)	—
$3s^2 \ ^1S_0 3s8p \ ^1P_1$	0.0493	0.0496	0.0505	0.0448	0.051(6)	—
$3s^2 {}^1S_0 - 3s8p {}^3P_1$	0.0199	0.0200	0.0250	0.0220	0.025(5)	—
$3s^2 \ ^1S_0 3s9p \ ^1P_1$	0.0759	0.0758	0.0784	0.0718	0.078(7)	—
3s3p $^3\mathrm{P}_0\text{-}3s4s$ $^3\mathrm{S}_1$	0.8936	0.8888	0.8979	0.8926	0.898(10)	0.900 ^[19]
$3s3p \ ^3P_0\text{-}3p^2 \ ^3P_1$	1.8870	1.8737	1.8394	1.8789	1.839(48)	1.836 ^[19]
3s3p $^3\mathrm{P}_0\text{-}3s3d$ $^3\mathrm{D}_1$	2.2623	2.2820	2.2350	2.2626	2.235(47)	2.236 ^[19]
3s3p $^3\mathrm{P}_0\text{-}3\mathrm{s5s}$ $^3\mathrm{S}_1$	0.2671	0.2652	0.2690	0.2661	0.269(4)	—
3s3p $^3\mathrm{P}_0\text{-}3\mathrm{s4d}$ $^3\mathrm{D}_1$	0.4651	0.4746	0.4456	0.4612	0.446(28)	—
3s3p $^3\mathrm{P}_0\text{-}3s6s$ $^3\mathrm{S}_1$	0.1492	0.1481	0.1505	0.1486	0.151(2)	—
3s3p $^3\mathrm{P}_0\text{-}3\mathrm{s5d}$ $^3\mathrm{D}_1$	0.2058	0.2118	0.1921	0.2029	0.192(20)	—
3s3p $^3\mathrm{P}_0\text{-}3s7s$ $^3\mathrm{S}_1$	0.0421	0.0418	0.0414	0.0422	0.041(1)	—
3s3p $^3\mathrm{P}_0\text{-}3\mathrm{s}6\mathrm{d}$ $^3\mathrm{D}_1$	0.1199	0.1242	0.1097	0.1178	0.110(13)	—
3s3p ${}^3\mathrm{P}_0\text{-}3\mathrm{s8s}$ ${}^3\mathrm{S}_1$	0.1012	0.1004	0.1027	0.1005	0.103(2)	—
3s3p $^3\mathrm{P}_0\text{-}3\mathrm{s7d}~^3\mathrm{D}_1$	0.0802	0.0836	0.0722	0.0787	0.072(12)	—
3s3p ${}^3\mathrm{P}_0\text{-}3\mathrm{s}9\mathrm{s}$ ${}^3\mathrm{S}_1$	0.0990	0.0983	0.0991	0.0986	0.099(1)	—
$3s3p \ ^3P_0 \text{-} 3s8d \ ^3D_1$	0.0642	0.0673	0.0571	0.0630	0.057(10)	—

率中原子实和价电子相互作用贡献部分α_{cv}(ω)较小,本文引用参考文献 [19] 中给出的计算值,并忽略其随频率的变化.

图 2 绘出了 Al+的 3s² ¹S₀ 态和 3s3p ³P₀ 态的 动力学极化率曲线,其中图 2(a) 是 3s² ¹S₀ 态在 0— 0.42 a.u.范围内的动力学极化率曲线图;图 2(b) 是 图 2(a) 在波长 267.02—266.98 nm 范围的细节放 大图;图 2(c) 是 3s3p ³P₀ 态在 0—0.42 a.u.范围内 的动力学极化率曲线图.从图 2(a),(b) 可以看出, 3s² ¹S₀ 态的动力学极化率曲线在展示的频率范围 内 (0—0.42 a.u.) 仅有一个零点,即在此范围内仅 有一个"幻零"波长,位于 266.994(1) nm. 3s3p ³P₀ 态的动力学极化率曲线在该范围内有 4 个"幻零" 波长,分别为 184.56(7) nm, 174.4(1) nm, 121.5(1) nm 和 119.7(2) nm. "幻零"波长的不确定度是通 过分析相关跃迁的约化矩阵元的不确定度 (见 表 2) 以及表 3 中"other", "core"和"VC"项的不确 定度对"幻零"波长的影响来评估的. 通过逐个改变 矩阵元的数值为其在误差范围内的最大值,得到每 一项的不确定度对"幻零"波长的不确定度的贡献. 结果表明,邻近"幻零"波长位置 (对动力学极化率 占主导)的共振,对"幻零"波长位置 (对动力学极化率 占主导)的共振,对"幻零"波长的不确定度的贡献远 大于其他项 (包括其余贡献较小的共振、"others"、 "core"和"VC")的贡献. 将各项不确定度的贡献的 绝对值之和作为"幻零"波长的不确定度. 计算的两 个态的 5 个"幻零"波长均处在紫外波段. 表 3 相关跃迁对两个光钟态 $3s^2 {}^{1}S_0$ 和 $3s3p {}^{3}P_0$ 的静态极化率 $\alpha(0)$ 的贡献 Table 3. Contributions of individual transitions to the static polarizabilities $\alpha(0)$ for $3s^2 {}^{1}S_0$ and $3s3p {}^{3}P_0$.

Transition	Contributions	Ref.	
$lpha\left(0 ight)\left(3\mathrm{s}^{2}\ {}^{1}\!\mathrm{S}_{0} ight)$			
$3s^2 {}^{1}S_0$ - $3s3p {}^{3}P_1$	0.003	_	
$3s^2 \ ^1S_0 3s3p \ ^1P_1$	23.73	23.661 ^[19] 23.7294 ^[27]	
$3s^2 {}^1S_0 - 3s4p {}^3P_1$	$6.5{ imes}10^{-6}$	—	
$3s^2 \ ^1S_0 3s4p \ ^1P_1$	0.0029	0.003 ^[19]	
$3s^2 {}^1S_0 - 3s5p {}^3P_1$	$3.0{ imes}10^{-5}$		
$3s^2 \ ^1S_0 3s5p \ ^1P_1$	0.0051	—	
$3{\rm s}^{2}\ {}^{1}\!{\rm S}_{0}\!\!-\!\!3{\rm s}n{\rm p}\ {}^{3}\!{\rm P}_{1},n=6\!-\!\!-\!\!8$	0.0006	—	
$3s^2 {}^{1}S_0 - 3snp {}^{1}P_1, n = 6 - 9$	0.0184		
Others	0.1135		
Core	0.265 ^[19]	0.268 ^[27]	
VC	-0.019 ^[19]	_	
Total	24.1169	24.048 ^[19] 24.1396 ^[27]	
$lpha\left(0 ight)\left(3\mathrm{s}^{2}\ {}^{1}\!\mathrm{S}_{0} ight)$			
3s3p $^{3}\mathrm{P}_{0}\text{-}3s4s$ $^{3}\mathrm{S}_{1}$	2.1886	$\begin{array}{c} 2.197 \ ^{[19]}\\ 2.1860 \ ^{[27]}\end{array}$	
3s3p ${}^{3}P_{0}$ -3p 2 ${}^{3}P_{1}$	8.7226	8.687 ^[19] 8.6830 ^[27]	
$3s3p \ ^3P_0\text{-}3s3d \ ^3D_1$	12.5817	12.568 ^[19] 12.6533 ^[27]	
3s3p ${}^{3}\mathrm{P}_{0}\text{-}3\mathrm{s5s}$ ${}^{3}\mathrm{S}_{1}$	0.1281	_	
3s3p $^3\mathrm{P}_0\text{-}3s4d$ $^3\mathrm{D}_1$	0.3451	_	
3s3p ³ P ₁ -3sns ³ S ₁ , $n=6-9$	0.0656	_	
3s3p ³ P ₁ -3snd ³ D ₁ , $n=5$ –-8	0.0855	—	
Others	0.2117	_	
Core	0.256 ^[19]	0.268 ^[27]	
VC	-0.010 ^[19]	_	
Total	24.5840	24.543 [19]	
$\Delta lpha \left(0 ight)$	0.467	$\begin{matrix} 0.495 & {}^{[19]} \\ 0.482 & {}^{[27]} \\ 0.426^{\mathrm{Expt.}[4]} \end{matrix}$	

图 1 3s² ¹S₀态和 3s3p ³P₀态的静态极化率随态求和计算 中所考虑激发态最高主量子数 n 的收敛趋势

Fig. 1. Trend of change of the static polarizabilities for the $3s^2 \ ^1S_0$ and $3s3p \ ^3P_0$ states with the respect to the highest principle quantum number n of the excited states included in the sum-over-states calculations.

图 2 Al⁺的光钟态的动力学极化率 (a) 3s² ¹S₀态的动力 学极化率; (b) 3s² ¹S₀态在波长 267.02—266.98 nm 范围内 的动力学极化率; (c) 3s3p ³P₀态的动力学极化率

Fig. 2. Dynamic polarizabilities $\alpha(\omega)$ of the clock states in Al⁺: (a) Dynamic polarizabilities $\alpha(\omega)$ of the $3s^2$ $^{1}S_0$ state in Al⁺; (b) dynamic polarizabilities $\alpha(\omega)$ of the $3s^2$ $^{1}S_0$ state in Al⁺ in the wavelength range between 267.02-266.98 nm; (c) dynamic polarizabilities $\alpha(\omega)$ of the $3s^3 P_0$ state in Al⁺.

表4给出了在"幻零"波长处各相关跃迁对两 个态的动力学极化率的贡献结果表明,在 $3s^2 \, {}^{1}S_0$ 态的"幻零"波长 266.994(1)处, $3s^2 \, {}^{1}S_0$ - $3s3p \, {}^{3}P_1$ 和 $3s^2 \, {}^{1}S_0$ - $3s3p \, {}^{1}P_1$ 跃迁对其动力学极化率占主导 贡献;在 $3s3p \, {}^{3}P_0$ 态的"幻零"波长 184.56(7) nm 和174.4(1) nm 处,均由 $3s3p \, {}^{3}P_0$ - $3s4s \, {}^{3}S_1$, $3s3p \, {}^{3}P_0$ - $3p^2 \, {}^{3}P_1$ 和 $3s3p \, {}^{3}P_0$ - $3s3d \, {}^{3}D_1$ 三条跃迁对其动力学 极化率占主导贡献;在 $3s3p {}^{3}P_{0}$ 态的"幻零"波长 121.5(1) nm 和 119.7(2) nm 处,均有 5条跃迁对 其动力学极化率贡献较大,分别是 $3s3p {}^{3}P_{0}$ -3s4s ${}^{3}S_{1}, 3s3p {}^{3}P_{0}$ - $3p^{2} {}^{3}P_{1}, 3s3p {}^{3}P_{0}$ - $3s3d {}^{3}D_{1}, 3s3p {}^{3}P_{0}$ - $3s5s {}^{3}S_{1}$ 和 $3s3p {}^{3}P_{0}$ - $3s4d {}^{3}D_{1}$ 跃迁.可以看出,"幻 零"波长均处在跃迁强度较弱的共振波长附近, $3s^{2}$ ${}^{1}S_{0}$ 态的"幻零"波长在跃迁 $3s^{2} {}^{1}S_{0}$ - $3s3p {}^{3}P_{1}$ 的共 振波长附近, $3s3p {}^{3}P_{0}$ 态的 $4 \uparrow$ "幻零"波长分别在 跃迁 $3s3p {}^{3}P_{0}$ - $3s4s {}^{3}S_{1}, 3s3p {}^{3}P_{0}$ - $3s2a {}^{3}P_{1}, 3s3p {}^{3}P_{0}$ - $3s3d {}^{3}D_{1}$ 和 $3s3p {}^{3}P_{0}$ - $3s5s {}^{3}S_{1}$ 的共振波长附近.这 些跃迁虽然只有较小的约化矩阵元,但在"幻零"波 长位置附近对相关钟态的动力学极化率产生了主 导性的贡献. Safronova 等^[13]和 Holmgren 等^[14]研究表明, 精密测量"幻零"波长可以用于高精度地确定相关 跃迁的约化矩阵元.利用"幻零"波长的精确测量值 去高精度地确定相关跃迁的约化矩阵元主要有两 种方法.一种如文献 [14, 15]的实验方案,测量"幻 零"波长附近的动力学极化率曲线,通过拟合得到 相应的约化矩阵元之比.采用这种方案的实验得到 的矩阵元精度可达到 0.3%^[15]. Safronova 等^[13]提 出另一种方案,将 (3)式中对"幻零"波长处的动力 学极化率占主导贡献的跃迁约化矩阵元设为函数 可变量,利用"幻零"波长的精确测量值,通过求解 在不同"幻零"波长下动力学极化率等于零的条件 下所构成的方程组来确定作为可变量的约化矩阵

表 4 在"幻零"波长 λ_0 处相关跃迁对两个光钟态 $3s^2 {}^{1}S_0$ 和 $3s3p {}^{3}P_0$ 的动力学极化率 $\alpha(\lambda_0)$ 的贡献 Table 4. Breakdown of the contributions of individual transitions to the dynamic polarizabilities $\alpha(\lambda_0)$ at the "tune-out" wavelengths λ_0 , for the $3s^2 {}^{1}S_0$ and $3s3p {}^{3}P_0$ clock states of Al⁺.

	$3s^2 {}^1S_0$		3s3p	³ P ₀	
$\lambda_0/{ m nm}$	266.994(1)	184.56(7)	174.4(1)	121.5(1)	119.7(2)
ω_0 /a.u.	0.170653(2)	0.24688(7)	0.26171(15)	0.3750(3)	0.3806(6)
$lpha_{0}\left(\lambda_{0} ight)\left(3\mathrm{s}^{2}\ ^{1}\mathrm{S}_{0} ight)$					
$3s^2 \ ^1S_0\text{-}3s3p \ ^3P_1$	-39.3927	-0.0003	0.0003	$-9.1 imes 10^{-5}$	$-8.7{ imes}10^{-5}$
$3s^2 \ ^1S_0\text{-}3s3p \ ^1P_1$	39.0038	131.4864	287.4679	-26.6523	-25.0333
$3s^2 \ ^1S_0 3s4p \ ^3P_1$	$7.5{ imes}10^{-6}$	$8.9 imes 10^{-6}$	$9.3{ imes}10^{-6}$	$1.7{ imes}10^{-5}$	$1.8{ imes}10^{-5}$
$3s^2 \ ^1S_0\text{-}3s4p \ ^1P_1$	0.0033	0.0039	0.0041	0.0071	0.0074
$3 {\rm s}^2 \ {}^1{\rm S}_0\text{-} 3 {\rm s}5 {\rm p} \ {}^3{\rm P}_1$	$3.3{ imes}10^{-5}$	$3.7{ imes}10^{-5}$	$3.8{ imes}10^{-5}$	$5.3{ imes}10^{-5}$	$5.4{ imes}10^{-5}$
$3 {\rm s}^2 \ {}^1\!{\rm S}_0\text{-} 3 {\rm s}5 {\rm p} \ {}^1\!{\rm P}_1$	0.0056	0.0062	0.0064	0.0089	0.0091
$3{\rm s}^{2}\ {}^{1}\!{\rm S}_{0}\!\!-\!\!3{\rm s}n{\rm p}\ {}^{3}\!{\rm P}_{1},n=6\!\!-\!\!8$	0.0007	0.0008	0.0008	0.0010	0.0010
$3{\rm s}^{2}\ {}^{1}\!{\rm S}_{0}\!\!-\!\!3{\rm s}n{\rm p}\ {}^{1}\!{\rm P}_{1},n=6\!-\!\!-\!\!9$	0.0198	0.0216	0.0221	0.0281	0.0285
Others	0.1135	0.1135	0.1135	0.1135	0.1135
Core	0.265	0.265	0.265	0.265	0.265
VC	-0.019	-0.019	-0.019	-0.019	-0.019
Total	0	131.8781	287.8605	-26.2478	-24.6278
$lpha_{0}\left(\lambda_{0} ight)\left(3\mathrm{s}3\mathrm{p}\ {}^{3}\mathrm{P}_{0} ight)$					
3s3p ${}^3\mathrm{P}_0\text{-}3s4s$ ${}^3\mathrm{S}_1$	4.2349	-195.2541	-16.5755	-1.6425	-1.5594
$3s3p \ ^3P_0 3p^2 \ ^3P_1$	15.4522	98.4756	-429.0192	-7.9128	7.4784
3s3p $^3\mathrm{P}_0\text{-}3s3d\ ^3\mathrm{D}_1$	21.4976	95.2803	444.0076	-12.5559	-11.8356
3s3p ${}^3\mathrm{P}_0\text{-}3\mathrm{s5s}$ ${}^3\mathrm{S}_1$	0.1612	0.2245	0.2466	12.9773	-6.3146
3s3p $^3\mathrm{P}_0\text{-}3s4d$ $^3\mathrm{D}_1$	0.4305	0.5901	0.6448	8.1466	26.1561
3s3p ³ P ₁ -3sns ³ S ₁ , $n=6-9$	0.0765	0.0936	0.0987	0.2203	0.2388
3s3p ³ P ₁ -3snd ³ D ₁ , $n = 5$ —8	0.1001	0.1234	0.1303	0.3005	0.3264
Others	0.2117	0.2117	0.2117	0.2117	0.2117
Core	0.265	0.265	0.265	0.265	0.265
VC	-0.010	-0.010	-0.010	-0.010	-0.010
Total	42.4197	0	0	0	0

元的数值. 通过这种方法确定约化矩阵元具有更高 的精度.不论采用哪一种方案,原则上测量一个原 子态的 N个"幻零"波长的数量可以确定 N+1条 共振跃迁的约化矩阵元之比. 当选定的每一条跃迁 对动力学极化率均有较大贡献, 而其余跃迁的贡献 之和非常小时,所确定的相关约化矩阵元方可确保 较高的精度. 对于 Al+, 在 3s² 1S₀ 态唯一的"幻零" 波长 266.994(1) nm 附近, 3s² ¹S₀-3s3p ³P₁和 3s² ¹S₀-3s3p ¹P₁ 跃迁对其动力学极化率的贡献均比其 余项贡献之和大两个数量级.因此,精确测量该 "幻零"波长,可以精确地确定这两条共振跃迁的约 化矩阵元之比. 同理, 精确测量 3s3p ³P₀态位于 184.56(7) nm 和 174.4(1) nm 的两个"幻零"波长, 可以精确地确定 3s3p 3P0-3s4s 3S1, 3s3p 3P0-3p2 ³P₁和 3s3p ³P₀-3s3d ³D₁ 这三条共振跃迁的约化矩 阵元之比. 结合这些已确定的数据, 进一步测量 3s3p ³P₀态位于 121.5(1) nm 和 119.7(2) nm 的两个"幻 零"波长, 就可以精确地确定 3s3p ³P₀-3s4s ³S₁, $3s3p {}^{3}P_{0}-3p^{2} {}^{3}P_{1}, 3s3p {}^{3}P_{0}-3s3d {}^{3}D_{1}, 3s3p {}^{3}P_{0}-3s5s {}^{3}$ S₁和 3s3p ³P₀-3s4d ³D₁ 这 5 条共振跃迁的约化矩 阵元之比.

目前 Al+光钟的黑体辐射频移的误差由光钟 态 3s² ¹S₀ 和 3s3p ³P₀ 的静态极化率的误差所主导, 而这些约化矩阵元的不确定度直接影响着静态极 化率的不确定度.因此,通过精确地测量 Al+的 5 个"幻零"波长去提高上述 7 条跃迁的约化矩阵 元的数值精度,对进一步降低 Al+光钟的黑体辐射 频移评估的不确定度有非常重要的意义.值得注意 的是, 3s² ¹S₀态的"幻零"波长 (266.994 nm)离 Al+ 光钟的钟跃迁共振波长 (267.4 nm) 和逻辑跃迁的 共振波长 (267.0 nm)都较近,目前已有该波长段 的发展成熟的稳频激光器^[4,5],这为精确测量这个 "幻零"波长提供了重要的硬件基础.

4 结 论

本文利用 CI+MBPT 方法对 Al⁺光钟态 $3s^2$ ¹S₀和 3s3p ³P₀的"幻零"波长进行了理论计算.在 波长 $\lambda \in (100 \text{ nm}, \infty)$ 内找到了 5个"幻零"波长.对 于 $3s^2$ ¹S₀态,找到了一个的"幻零"波长,位于 266.994(1) nm;对于 3s3p ³P₀态,找到了 4个"幻 零"波长,分别位于 184.56(7) nm, 174.4(1) nm, 121.5(1) nm 和 119.7(2) nm.与这些"幻零"波长较 近的共振线对"幻零"波长处的动力学极化率占有 主导的贡献.数据分析表明,精密测量这些"幻零" 波长,有利于精确地确定7条相关跃迁的约化矩阵 元.这对进一步降低 Al+光钟的黑体辐射频移评估 的不确定度具有非常重要作用.同时,这些"幻零" 波长的精密测量,对研究 Al+的原子结构具有重要 意义.

参考文献

- [1] Chaudhuri R K, Das B P, Freed K F 1998 J. Chem. Phys. 108 2556
- [2] Dong H, Jiang J, Wu Z W, Dong C Z, Gaigalas G 2021 Chin. Phys. B 30 043103
- [3] Zhang T X, Li J G, Liu J P 2018 Acta Phys. Sin. 67 053101 (in Chinese) [张婷贤, 李冀光, 刘建鹏 2018 物理学报 67 053101]
- [4] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
- [5] Cui K F, Chao S J, Sun C L, et al. 2022 Eur. Phys. J. D 76 140
- [6] Keller J, Burgermeister T, Kalincev D, et al. 2019 Phys. Rev. A 99 013405
- [7] Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
- [8] Kar S, Wang Y S, Wang Y, Ho Y K 2018 Can. J. Phys. 96 633
- [9] Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511
- [10] Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518
- [11] Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102
- [12] Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101
- [13] Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 *Phys. Rev. A* 92 040501(R)
- [14] Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. lett. 109 243004
- [15] Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003
- [16] Reader J, Acquista N, Sansonetti C J, Sansonetti J E 1990 Astrophys. J. Suppl. Ser. 72 831
- [17] Samain D 1995 Astron. Astrophys. Suppl. Ser. 113 237
- [18] Morton D C 1991 Astrophys. J. Suppl. Ser. 77 119
- [19] Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006
- [20] Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002
- [21] Wu L, Wang Xia, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011
- [22] Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948
- [23] Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199
- [24] Tang Z M, Yu Y M, Dong C Z 2018 Chin. Phys. B 27 063101
- [25] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

- [26] Kumar R, Chattopadhyay S, Angom D, Mani B K 2021 *Phys. Rev. A* 103 022801
- [27] Mitroy J, Zhang J Y, Bromley M W J, Rollin R G 2009 Eur. Phys. J. D 53 15
- [28] Johnson W R, Safronova M S, Safronova U I 1997 Phys. Scr. 56 252
- [29] Stanek M, Glowacki L, Migdalek J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2985
- [30] Das B P, Idrees M 1990 Phys. Rev. A 42 6900
- [31] Fischer C F 2009 Phys. Scr. **T134** 014019
- [32] Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215

Theoretical calculation of "tune-out" wavelengths for clock states of Al^{+*}

Wei Yuan-Fei^{1)2)#} Tang Zhi-Ming^{3)#} Li Cheng-Bin^{1)†} Huang Xue-Ren^{1)4)‡}

1) (Key Laboratory of Atom Frequency Standards, Innovation Academy for Precision Measurement Science and Technology of

Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

3) (Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE),

Institute of Modern Physics, Fudan University, Shanghai 200433, China)

 $\label{eq:constraint} 4) \ (\ Wuhan \ Institute \ of \ Quantum \ Technology, \ Wuhan \ 430206, \ China)$

(Received 26 January 2024; revised manuscript received 5 March 2024)

Abstract

In quantum optical experiments, the polarizabilities of atomic systems play a very important role, which can be used to describe the interactions of atomic systems with external electromagnetic fields. When subjected to a specific electric field such as a laser field with a particular frequency, the frequency-dependent electricdipole (E1) dynamic polarizability of an atomic state can reach zero. The wavelength corresponding to such a frequency is referred to as the "turn-out" wavelength. In this work, the "turn-out" wavelengths for the $3s^2$ $^{1}S_0$ and 3s3p $^{3}P_{0}$ clock states of Al⁺ are calculated by using the configuration interaction plus many-body perturbation theory (CI+MBPT) method. The values of energy and E1 reduced matrix elements of low-lying states of Al⁺ are calculated. By combining these E1 reduced matrix elements with the experimental energy values, the E1 dynamic polarizabilities of the $3s^2 {}^{1}S_0$ and $3s3p {}^{3}P_0$ clock states are determined in the angular frequency range of (0, 0.42 a.u.). The "turn-out" wavelengths are found at the zero-crossing points of the frequency-dependent dynamic polarizability curves for both the $3s^2$ 1S_0 and 3s3p 3P_0 states. For the ground state $3s^2$ $^{1}S_0$, a single "turn-out" wavelength at 266.994(1) nm is observed. On the other hand, the excited state $3s^3$ 3 P_0 exhibits four distinct "turn-out" wavelengths, namely 184.56(1) nm, 174.433(1) nm, 121.52(2) nm, and 119.71(2) nm. The contributions of individual resonant transitions to the dynamic polarizabilities at the "turnout" wavelengths are examined. It is observed that the resonant lines situated near a certain "turn-out" wavelength can provide dominant contributions to the polarizability, while the remaining resonant lines generally contribute minimally. When analyzing these data, we recommend accurately measuring these "turnout" wavelengths to accurately determine the oscillator strengths or reduced matrix elements of the relevant transitions. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Al⁺ optical clock and suppressing the systematic uncertainty. Meanwhile, precisely measuring these "turn-out" wavelengths is also helpful for further exploring the atomic structure of Al⁺.

Keywords: Al⁺, polarizability, "tune-out" wavelengths, CI+MBPT

PACS: 31.15.ap, 31.15.am, 32.60.+i

DOI: 10.7498/aps.73.20240177

* Project supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, U1732140) and the National High Technology Research and Development Program of China (Grant Nos. 2017YFA0304401, 2017YFA0304402).

 $^{^{\#}\,}$ These authors contributed equally.

[†] Corresponding author. E-mail: cbli@wipm.ac.cn

[‡] Corresponding author. E-mail: hxueren@wipm.ac.cn

Institute of Physics, CAS

A1⁺光钟态"幻零"波长的理论计算

魏远飞 唐志明 李承斌 黄学人

Theoretical calculation of "tune-out" wavelengths for clock states of Al⁺ Wei Yuan-Fei Tang Zhi-Ming Li Cheng-Bin Huang Xue-Ren 引用信息 Citation: Acta Physica Sinica, 73, 103103 (2024) DOI: 10.7498/aps.73.20240177 在线阅读 View online: https://doi.org/10.7498/aps.73.20240177 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

InCn+(n=110)团簇的密度泛函理论研究

Density functional theory of InCn+(n=110) clusters 物理学报. 2018, 67(11): 113101 https://doi.org/10.7498/aps.67.20172662

Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究 Theoretical study on the isotope shift factors for the 3s2 1S0 → 3s3p 3,1P1o transitions in Al+ ion 物理学报. 2018, 67(5): 053101 https://doi.org/10.7498/aps.67.20172261

利用钟跃迁谱线测量超稳光学参考腔的零温漂点 Zero-crossing temperature of ultra-stable optical reference cavity measured by optical transition spectrum 物理学报. 2021, 70(7): 073701 https://doi.org/10.7498/aps.70.20201721

AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究 Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation 物理学报. 2018, 67(19): 193101 https://doi.org/10.7498/aps.67.20180926

锶原子光晶格钟自旋极化谱线的探测

Interrogation of spin polarized clock transition in strontium optical lattice clock 物理学报. 2018, 67(7): 070601 https://doi.org/10.7498/aps.67.20172759

Be⁺离子和Li原子极化率和超极化率的理论研究

Theoretical study of polarizabilities and hyperpolarizabilities of Be⁺ ions and Li atoms 物理学报. 2021, 70(4): 043101 https://doi.org/10.7498/aps.70.20201386