原位加热诱导 Nb 扩散引起 Nb_{0.8}CoSb 有序度的转变^{*}

李其柱1) 范浩涵1) 高梓恒2) 南鹏飞1) 朱铁军2) 葛炳辉1)†

(安徽大学物质科学与信息技术研究院,信息材料与智能感知安徽省实验室,合肥 230601)
2)(浙江大学材料科学与工程学院,硅及先进半导体材料全国重点实验室,杭州 310027)

(2024年3月5日收到; 2024年4月7日收到修改稿)

本文以覆盖 Nb 薄膜的半赫斯勒合金 Nb_{0.8}CoSb 为研究对象, 成功利用原位加热透射电镜技术在高温下 诱导 Nb 扩散, 致使 Nb_{0.8}CoSb 转变为有序度更高的 Nb_{0.8+δ}CoSb, 即倒空间漫散带代表的短程有序结构转变 为超结构衍射点代表的长程有序结构. 进一步的分析表明, 这种超结构的调制波矢为 $q = (a^* + b^* - c^*)/3$, 其形成主要源自于 Sb 和 Nb 组分的变化. 与离位合成的 Nb_{0.84}CoSb 的微观结构进行对比, 发现二者中超结构 不同, 这种超结构的调制波矢为 $q = (2a^* - 2c^*)/3$, 主要源自于 Nb 组分的变化. 此项研究揭示了组分导致 超结构的多样性以及半赫斯勒合金结构相变的复杂性, 丰富了对半赫斯勒合金材料的理解, 对相变材料的设 计以及功能调控具有重要指导意义.

关键词: 固态相变, 原位加热, 短程有序, 半赫斯勒合金 PACS: 64.60.A-, 71.20.Be, 68.37.Lp

DOI: 10.7498/aps.73.20240325

1 引 言

随着信息技术的迅速发展和能源需求的不断 增长,能够改变材料结构且伴随能量转移的固态相 变引起了人们广泛关注,深入了解材料的固态相变 过程及其微观机理对于理解和调控材料性能至关 重要.固态相变是指材料在温度、压力或其他刺激 驱动下,从一种晶体结构转变为另一种晶体结构的 现象.这一结构转变过程往往伴随着材料性质的变 化以及能量的转移.近几十年来,人们对固态相变 的关注不断增加,其在结构材料^[1-4]、能源材料^[5-7]、 催化材料^[8,9]以及光学材料^[10,11]等领域中的作用 日益凸显.

赫斯勒合金一类是重要的三元或多元金属间 化合物,具有多种独特的相变特性,包括铁磁相 变^[12]、量子相变^[13]等.其中,Ni₂MnGa^[14],Ni₂FeGa^[15] 等赫斯勒合金具有马氏体相变特性,且在其马氏体 状态下,能够产生由磁场诱发应变的形状记忆效 应,因此这类材料成为当前国际上备受关注的新型 磁性功能材料之一.此外,通过调节 Ni-Mn-*X*(*X* = In, Sn, Sb)合金的成分,也能够引发该系列合金在 降温过程中的马氏体转变^[16],使合金处于磁性不 均匀状态,呈现出丰富的物理性质,如磁热效应^[17,18] 和交换偏置现象^[19,20]等.这些效应在室温磁致冷 以及信息存储等方面都有着广泛的应用前景.

除了马氏体相变, 在热电材料领域 Xia 等^[21,22] 在缺陷态 19 电子半赫斯勒合金 Nb_{0.8+x}CoSb 中发 现 Nb 成分变化可以导致材料空位有序度发生转 变. 在 Nb_{0.8}CoSb 样品的选区电子衍射花样中, 除 了对应于长程有序的主衍射斑点外, 还额外存在对 应于短程有序的漫散带. 这种复杂的晶体结构使 Nb_{0.8}CoSb 与 ZrCoSb 具有接近的电子有效质量和

^{*} 国家自然科学基金 (批准号: 11874394, 92163203) 资助的课题.

[†] 通信作者. E-mail: bhge@ahu.edu.cn

^{© 2024} 中国物理学会 Chinese Physical Society

迁移率的同时,还具有了低于传统 18 电子赫斯勒 化合物的晶格热导率,可仅通过载流子浓度优 化就能获得较高的热电性能^[23,24].并且随着 Nb 空 位的减少,漫散带强度逐渐降低,在 Nb 空位浓度 降低至仅有 16% 的 Nb_{0.84}CoSb 中,选区电子衍射花 样中的漫散带完全消失,取而代之的是代表调制结 构的超结构衍射点^[21].这一发现揭示了 Nb 空位浓 度在诱导 Nb_{0.8}CoSb 发生相变过程中的重要作用.

成分导致的相变容易通过传统的化学合成实 验完成,但要探究中间的反应过程、理解反应机理 很难利用传统的表征手段实现^[25,26].本文发挥原位 球差矫正电镜 (TEM)高空间和时间分辨率的优 势,通过高温元素扩散在动态条件下对 Nb_{0.8+δ}CoSb 有序度的变化过程进行观察和分析.选区电子衍射 花样的结果显示加热过程中样品从 Nb_{0.8}CoSb 的 短程有序转变为 Nb_{0.8+δ}CoSb 的长程有序结构—— 超结构,我们借助扫描透射电子显微镜 (STEM) 技术对相变后的结构进行分析,确定超结构形成的 微观机理,并与离位合成的 Nb_{0.84}CoSb 中的超结 构进行对比,获得了关于 Nb_{0.8+δ}CoSb 有序度转变 的重要线索,为进一步了解赫斯勒合金的相变行为 从而调控其物性提供支持.

2 实验与方法

2.1 样品制备与基础表征

Nb_{0.8}CoSb, Nb_{0.84}CoSb 合金通过悬浮熔炼, 球磨和放电等离子烧结制备^[21]. 首先把 Nb(3N), Co(4N), Sb(5N) 按照一定的化学计量比称重, 并 根据熔点高低依次放到悬浮熔炼炉里进行熔炼, 以 得到铸锭. 接着, 将铸锭在坩埚里再熔炼两次确保 铸锭的均一性. 随后, 使用球磨机在氩气气氛保护 下将铸锭磨成粉末. 最后, 将粉末装入石墨模具中 进行放电等离子烧结, 制备成直径为 12.7 mm 的圆片, 如图 1(a) 所示. 利用 X 射线衍射仪 (XRD, Rikagu SmartLab 9 kW) 进行 Nb_{0.8}CoSb 合金的 离位 XRD 表征, 使用 Cu K α 1 辐射 (电压为 40 kV, 电流为 100 mA), 扫描范围 2 θ 为 10°—90°, 扫描速 度为 20 (°)/min. 图 1(b) 为 Nb_{0.8}CoSb 合金的 XRD 图谱. 结果表明, 样品的晶体结构为立方 MgAgAs 结构, 空间群为 F43m, 且无杂峰.

利用直流磁控溅射技术,在真空环境下使用带 电粒子轰击铌靶材表面,使被轰击出的铌粒子沉积 在基片 (Nb_{0.8}CoSb)上,形成厚度约为 50 nm 的铌 膜.最后,溅射厚度约为 10 nm 的碳膜作为保护 层,以避免铌膜与空气接触发生氧化.流程如图 1(c) 所示.

2.2 原位加热透射电镜样品制备以及原位 加热实验

实验采用 Carl Zeiss 公司的 Crossbeam 550L 电子束-离子束双束电镜制备原位加热透射电镜样 品.原位加热使用 DENS solutions 双倾原位热学 样品杆及相关加热芯片.样品的微观结构及原位实 时数据通过工作电压为 300 kV 的 Thermofisher 的 Titan Themis Z 电镜进行观察与记录.

图 1 (a) 离位制备的 Nb_{0.8}CoSb 合金的宏观形貌; (b) 离位制备的 Nb_{0.8}CoSb 合金的 XRD 图谱; (c) 直流磁控溅射技术镀膜流程图 Fig. 1. (a) Macroscopic morphology of the *ex-situ* prepared Nb_{0.8}CoSb alloy; (b) XRD of the *ex-situ* prepared Nb_{0.8}CoSb alloy; (c) schematic diagram of the magnetron sputtering deposition process using direct current magnetron sputtering.

3 结果与讨论

为了准确地控制和分析样品的结构变化,从而 深入研究 Nb 扩散过程中的 Nb_{0.8}CoSb 结构转变 机制,在开展原位加热实验之前,我们首先对制备 的透射电镜样品进行表征. 实验中研究的样品是尺 寸在 200-500 nm 范围内的 Nb_{0.8}CoSb 晶粒. 如 图 2(a) 所示, 衬度较暗的晶粒为我们在原位加热 实验中实时观察的晶粒. 图 2(b) 为该晶粒 [110] 带 轴的选区电子衍射,可以清晰地观察到,除了代表 长程序的主衍射点之外,还存在着代表短程序的漫 散带,即自上而下的波浪衬度,与之前文献 [22] 报 道中的漫散带结构一致. 对界面区域 (黄色选框) 进行了能量色散谱 (EDS) 分析, 如图 2(c) 所示. 可知 C 保护层、Nb 膜和 Nb₀ SCoSb 样品之间形成 了清晰的层次结构,成分分布均匀,没有观察到明 显的元素的异常分布或积聚现象. 高分辨 TEM 成 像 (图 2(d)) 的结果进一步确认, Nb 膜紧密地贴合

图 2 (a), (b) 原位加热实验 Nb_{0.8}CoSb 样品大角度环形暗 场 (HAADF) 像以及相应的 [110] 带轴的选区电子衍射花样; (c) 图 (a) 中黄色选框处能量色散谱图; (d) Nb 膜与 Nb_{0.8}CoSb 的界面区域的高分辨 TEM 像

Fig. 2. (a) High-angle annular dark-field (HAADF) image of the Nb_{0.8}CoSb sample before *in-situ* heating experiments; (b) corresponding selected-area electron diffraction patterns along the [110] zone axis; (c) energy dispersive spectroscopy (EDS) map at the yellow-boxed region in Fig. (a); (d) HRTEM image of the interface region between the Nb film and Nb_{0.8}CoSb. Nb_{0.8}CoSb 样品.

经过对初始透射电镜样品进行表征确认无误 后,开始进行原位加热实验. 在室温到 400 °C 的温 度范围内,样品仍然保持着空位短程序的结构. 在 加热到 500 °C 时,我们观察到在 Nb_{0.8}CoSb 样品中 靠近 Nb 膜的部分区域发生了剧烈变化,如图 3(a) 中的橙色框区域所示,晶粒的衬度变得不再均匀. 此时,样品的选区电子衍射花样 (如图 3(b))上原 本代表空位短程序结构的漫散带消失,在透射斑 (000)和衍射点 (111)之间出现超结构衍射点. 调制 波矢为 $q = 1/3(a^* + b^* - c^*)$,说明样品中出现新 的 3 倍 (111)周期的公度调制结构,而这些衍射点 与之前文献 [27] 报道的 Nb_{0.84}CoSb 中的超结构衍 射点不同,且由于立方晶系的高对称性,与衍射点 (111)等效的衍射点均存在相同的超结构衍射点. 超结构衍射的示意图如图 3(c) 所示.

图 3 (a)—(c) 原位加热实验样品 HAADF 像及橙色框区 域的 [110] 带轴选区电子衍射花样及其示意图; (d) 图 (a) 中 橙色框区域的高分辨 TEM 像

Fig. 3. (a)–(c) HAADF image of the sample during *in-situ* heating experiment, the corresponding selected-area electron diffraction patterns along the [110] zone axis, and the schematic diagram of superlattice diffraction spots; (d) HRTEM image of the orange-boxed region in Fig. (a).

众所周知,当晶体中原子的排列具有平移对称 性时,倒空间中的衍射峰之间的间距更加规则且均 匀,衍射峰特征更为清晰和尖锐.这一现象在 XRD 谱图上表现得尤为明显,完美晶体的 XRD 谱中的 衍射峰表现为一条竖线. 然而, 若晶体中存在缺陷 或晶粒尺寸分布不均, 原子的排列便会失去长程平 移对称性, XRD 谱图中的衍射峰也会相应地展宽. 同理, 在电子衍射花样中, 一旦晶体内原子排列的 长程的平移对称性被破坏, 衍射点便会出现弥散和 拉长现象. 在加热过程中, 这些原先拉长和弥散的 带状衍射点会逐渐收敛成点状, 这反映了晶体内部 结构由无序向有序的转变.

进一步,我们对衬度剧烈变化的区域进行放大 观察. 图 3(d)中可以看到在该区域中出现了两个 方向上的暗条纹,如图中蓝色箭头所示,暗条纹之 间的间距为 1.034 nm,该间距对应{111}晶面间距 的 3 倍,与图 3(b)中衍射结果一致.与此同时,在 晶粒中远离 Nb 膜一侧的区域,如图 3(a)中蓝色选 框区域,其选区电子衍射花样仍然为漫散带结构. 随着加热的持续进行,Nb 不断向晶粒的内部扩散, 衬度变化的区域也持续向晶粒内部扩展,最终覆盖 到整个晶粒.图 3(a)右下绿色插图为蓝色选区加 热结束时的形貌,对比可见,整个选区的形貌不再 均匀、平整,衬度发生剧烈改变.此前的文献 [21] 报道认为,Nb_{0.8}CoSb 样品在原位加热过程具有 良好的热稳定性,在原位加热过程中,样品的结 构和形貌并不会发生变化.因此,在本研究中导致 Nb_{0.8}CoSb 发生变化从短程有序转变为长程有序, 其主要原因应该是 Nb 原子在高温下从 Nb 膜中扩 散到 Nb_{0.8}CoSb 样品导致的成分变化.

为了探究原位加热实验获得的 Nb_{0.8+δ}CoSb 中超结构的本质,并与离位合成的 Nb_{0 84}CoSb 中 超结构进行对比,我们分别拍摄了两种样品[110] 取向的原子分辨率 HAADF 像进行分析, 如图 4 和图 5 所示. 在 [110] 取向上, 半赫斯勒合金中的 每列原子柱仅包含同一种类型的原子,且 HAADF 像是 Z 衬度像, 原子柱的衬度与原子序数 Z (原子 种类) 与每列原子的数量成线性关系, 所以可根据 HAADF 像上的不同衬度区分原子种类或推断组 分的变化^[28,29]. 其中, HAADF 像上最亮的点是 Sb (Z = 51) 原子柱, 最暗的点是 Co (Z = 27) 原子柱, 而介于两者之间的是 Nb (Z = 41) 原子柱. 图 4(a) 是原位加热得到的 Nb_{0.8+6}CoSb 的 HAADF 滤波 像,右下角插图是对应的快速傅里叶变换(FFT) 图,在 FFT 图中可以清晰地观察到超结构衍射点 的存在, 与图 3(b) 结果一致. 在图 4(a) 中, 也可以 观察到上文提及的暗条纹,如黄色箭头所示.在放 大像图 4(d) 中, 我们调节图像的衬度, 更清晰地展 示了 Sb 和 Nb 原子柱强度上的涨落, 尤其是还可 以观察到 Sb, Nb 原子柱在 [111] 晶向上存在明显

图 4 (a) Nb_{0.8+δ}CoSb [110] 取向的滤波像; (b), (c) 分别仅包含主衍射点信息和超结构衍射信息的滤波像; (d)—(f) 图 (a)—(c) 的 放大像

Fig. 4. (a) Filtered image of $Nb_{0.8+\delta}CoSb$ [110] orientation; (b), (c) filtered images containing only main diffraction spot information and superlattice diffraction information, respectively; (d)–(f) magnified views of images in (a)–(c).

图 5 (a) Nb_{0.84}CoSb [110] 取向的选区电子衍射花样; (b) Nb_{0.84}CoSb [110] 取向的滤波像; (c), (d) 分别仅包含主衍射点信息和超 结构衍射信息的滤波像; (e) Nb_{0.84}CoSb 超结构衍射点示意图; (f)—(h) 图 (b)—(d) 的放大像

Fig. 5. (a) Selected area electron diffraction pattern of Nb_{0.84}CoSb [110] orientation; (b) filtered image of Nb_{0.84}CoSb [110] orientation; (c), (d) filtered images containing only main diffraction spot information and superlattice diffraction information, respectively; (e) schematic diagram of superlattice diffraction spots in Nb_{0.84}CoSb; (f)–(h) magnified views of images in Figs. (b)–(d).

的强度周期,分别用黄色虚线、绿色虚线标记 Sb, Nb 原子列,周期为 1.034 nm.

基于这一发现,可以推测倒空间的超结构衍射 点应该与这种原子柱强度涨落有关.为了进一步验 证该假设,我们分别采用主衍射点和一个方向上的 超结构衍射点进行反傅里叶变换处理.图 4(b), (e)展示了仅包含主衍射点信息的图像,反映平均 结构的信息,可以观察到同一原子柱的强度基本相 同,没有明显的周期性的强度涨落.Sb,Nb原子柱 在 [111]晶向上仅存在对应着(111)的0.344 nm 周期,而无更长的强度周期.相反,图 4(c),(f)展 示了包含超结构衍射点信息的图像,可以观察到和 图 4(d)一样的周期为1.034 nm的强度变化.这一 分析结果证实倒空间的超结构衍射点来自于正空 间中 Sb 和 Nb 原子柱像强度的有序涨落,而强度 的变化应该来自于占有率或者空位的变化.

此前的研究已经报道,在离位合成的 Nb_{0.84} CoSb 样品中,随着 Nb 含量的增大漫散带消失, 取而代之的为收敛的超结构衍射点^[21],如图 5(a) 所示.在透射斑和主衍射点之间分布着强度较弱衍 射点,不同于图 3(b) 的是,这组超结构衍射点分布 在透射斑和 (202) 衍射点之间,调制波矢确定为 $q = (2a^* - 2c^*)/3$.图 5(b) 展示了 Nb_{0.84}CoSb 样品 的原子级分辨率的 HAADF 图像, 与 Nb_{0.8+δ}CoSb 类似,可以观察到不同类型原子柱强度的涨落. 但 与图 4 不同的是, Sb 原子柱强度没有明显周期性 变化,而在 Nb 原子柱位置上强度呈现周期性变化, 如在图 5(f)所示. 这些空位在 [202] 晶向上形成了 新的强度周期,为 0.63 nm,是 (202) 晶面间距的 3 倍,用蓝色圆圈标记. 同样,借助图 4 的方法,用 主衍射点以及超结构衍射点分别进行反傅里叶变 换处理,如图 5(c), (d)所示. 在平均结构图 5(c) 的 放大图图 5(g)中,可以发现同一种元素的原子柱 强度基本相同,无明显涨落. 而在超结构衍射点所 对应的滤波像 (图 5(h))中, Nb 位置上出现了规则 排列的空位,在图中用黄色圆圈标记.

综合图 4 和图 5 可知, 在利用原位加热实验合 成的新结构 Nb_{0.8+δ}CoSb 和离位化学实验制备 Nb_{0.84}CoSb 的样品中, 都出现了不同于 Nb_{0.8}CoSb 短程有序的超结构, 说明样品具有长程的平移对称 性. 但是有以下几点不同, 首先调制波矢不同, 对 于 Nb_{0.8+δ}CoSb 调制波矢为 $q = (a^* + b^* - c^*)/3$; 而对于 Nb_{0.84}CoSb, 调制波矢为 $q = (2a^* - 2c^*)/3$; 其次, 原位加热实验形成的超结构主要来自 Sb 和 Nb 组分的有序变化, 而离位合成实验得到的样品 里的超结构主要以 Nb 的组分变化为主; 另外, Nb_{0.8+δ}CoSb 中的超结构衍射点仅存在于高温中, 实验中,当温度降低时,Nb_{0.8+b}CoSb中的超结构 衍射点会逐渐变弱. 上述对比说明 Nb_{0.8+δ}CoSb 样 品的超结构可能是一种亚稳态的热激活结构或者 过渡态,在高温下存在;而离位化学实验制备的 Nb_{0.84}CoSb 样品经过长时间的退火保温,应该对 应稳定态的超结构.其超结构衍射峰强度在高温 下仍然保持稳定也支持这个观点. 由于实验以及 设备的局限性,我们并不能准确测量出新结构 Nb_{0.8+δ}CoSb 的具体化学组成, 仅根据实验结果 推测出新结构 Nb₀₈₊₆CoSb 中的 Nb 含量高于 Nb_{0.8}CoSb. 并且可能是加热时间或者其他实验条 件的关系, $Nb_{0.8+\delta}$ CoSb 的样品中的超结构没有转 换成 Nb_{0.84}CoSb 中的超结构的迹象. 更深层次的 原因还需要进一步研究. 总之, 实验结果表明原位 实验得到的 Nb_{0.8+ δ}CoSb 样品处于亚稳态,相对于 离位合成样品中的稳态超结构, Nb_{0.8+δ}CoSb 中出 现超结构是一种中间相,该超结构相对稳态的超结 构在调制波矢以及微观本质上均不相同.

4 结 论

本研究通过原位透射电镜加热实验,深入研究 了高温下 Nb_{0.8}CoSb 合金样品中由于 Nb 组分变 化导致的有序度转变的机制.此转变过程伴随着短 程序结构的消失,出现了{111}面上3倍周期对应 的超结构衍射点, 调制波矢为 $q = (a^* + b^* - c^*)/3$. 进一步的原子级分辨率成像和分析表明,转变后样 品中存在的超结构主要来源于 Sb 和 Nb 组分的变 化. 而与之不同的是, 在离位合成的 Nb_{0.84}CoSb 样 品中调制波矢为 $q = (2a^* - 2c^*)/3$,并且超结构主 要来自于 Nb 组分的变化. 考虑到二者结构及微观 机制的不同,我们推测原位加热样品中的超结构可 能是从短程有序到长程有序转变过程中的中间态. 更具体的有序度转变的过程目前仍不清楚, 需要进 一步研究.这些研究结果对于深入理解 Nb 扩散过 程中的结构性转变机制具有重要意义,并为该合金 材料的进一步应用提供了参考和指导.

参考文献

 Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 *Nature* **546** 124

- [2] Yun H, Zhang D L, Birol T, Wang J P, Mkhoyan K A 2023 Nano Lett. 23 7576
- [3] Tracy C L, Park S, Rittman D R, Zinkle S J, Bei H, Lang M, Ewing R C, Mao W L 2017 Nat. Commun. 8 15634
- [4] Liu T, Dou X Y, Xu Y H, Chen Y J, Han Y S 2020 Research 2020 4370817
- [5] Sato T, Yoshikawa K, Zhao W, Kobayashi T, Rajendra H B, Yonemura M, Yabuuchi N 2021 Energy Mater. Adv. 2021 9857563
- [6] He R J, Lei S, Liu M C, Qin M S, Zhong W, Cheng S J, Xie J 2022 Energy Mater. Adv. 2022 0003
- [7] Zhu W, Ren L, Li Y H, Lu C, Lin X, Zhang Q Y, Yang X, Hu Z G, Cheng T, Zhao Y Y, Zou J X 2023 Energy Mater. Adv. 4 0069
- [8] Kozlovskiy A L, Kenzhina I E, Zdorovets M V 2020 Ceram. Int. 46 10262
- [9] Yu C L, Li G, Kumar S, Yang K, Jin R C 2014 Adv. Mater. 26 892
- [10] Wu L Z, Hu H C, Xu Y, Jiang S, Chen M, Zhong Q X, Yang D, Liu Q P, Zhao Y, Sun B Q, Zhang Q, Yin Y D 2017 Nano Lett. 17 5799
- [11] Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T 2013 Nat. Commun. 4 2009
- [12] Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K 2006 Appl. Phys. Lett. 89 112514
- [13] Goll G, Marz M, Hamann A, Tomanic T, Grube K, Yoshino T, Takabatake T 2008 *Physica B* 403 1065
- [14] Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 *Phys. Rev. Lett.* **100** 165703
- [15] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424
- [16] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358
- [17] Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412
- [18] Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460
- [19] Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505
- [20] Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510
- [21] Xia K Y, Nan P F, Tan S H, Wang Y M, Ge B H, Zhang W Q, Anand S, Zhao X B, Snyder G J, Zhu T J 2019 *Energy Environ. Sci.* 12 1568
- [22] Nan P F, Wu K P, Liu Y M, Xia K Y, Zhu T J, Lin F, He J, Ge B H 2020 Nanoscale 12 21624
- [23] Liu Y, Fu C, Xia K Y, Yu J, Zhao X, Pan H F, Felser C, Zhu T J 2018 Adv. Mater. 30 1800881
- [24] Xia K Y, Liu Y, Anand S, Snyder G J, Xin J, Yu J, Zhao X, Zhu T 2018 Adv. Funct. Mater. 28 1705845
- [25] Pu Y H, He B W, Niu Y M, Liu X, Zhang B S 2023 Research 6 0043
- [26] Zhang H T, Wang W, Sun J, Zhong L, He L B, Sun L T 2022 Research 2022 9834636
- [27] Nan P F, Yang L X, Wang Y M, Xia K Y, Zhu T J, Ge B H 2019 J. Chin. Electron Microsc. Soc. 38 477 (in Chinese) [南 鹏飞,杨丽霞,王玉梅,夏凯阳,朱铁军,葛炳辉 2019 电子显微 学报 38 477]
- [28] Pennycook S J, Boatner L A 1988 Nature 336 565
- [29] Pennycook S J 1989 Ultramicroscopy 30 58

$Nb_{0.8}CoSb$ ordering transformation caused by *in situ* heating-induced Nb diffusion^{*}

Li Qi-Zhu¹⁾ Fan Hao-Han¹⁾ Gao Zi-Heng²⁾ Nan Peng-Fei¹⁾ Zhu Tie-Jun²⁾ Ge Bing-Hui^{1)†}

1) (Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China)

2) (State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering,

Zhejiang University, Hangzhou 310027, China)

(Received 5 March 2024; revised manuscript received 7 April 2024)

Abstract

This study focuses on the investigation of Nb_{0.8}CoSb half-Heusler alloy covered with Nb films. By employing *in-situ* heating transmission electron microscopy (TEM) technique, diffusion of Nb is observed at high temperature, showing the ordering transformation from Nb_{0.8}CoSb to Nb_{0.8+ δ}CoSb. Through observations of high-angle annular dark-field (HAADF) images and selected-area electron diffraction (SAED) patterns, it is found that under elevated temperatures, the diffuse streaks representing short-range disorder in Nb_{0.8}CoSb sample transform into superlattice diffraction spots representing long-range order. The modulation wave vector of this superstructure is determined to be $q = 1/3(a^* + b^* - c^*)$. This structural evolution primarily arises from the diffusion of Nb atoms from the Nb film into the Nb_{0.8}CoSb sample at high temperature, leading to compositional changes in Sb and Nb.

Further comparative analysis reveals significant differences between *in-situ* synthesized Nb_{0.8+ δ}CoSb samples and *ex-situ* synthesized Nb_{0.84}CoSb samples despite both exhibiting superstructures. In the *ex-situ* synthesized Nb_{0.84}CoSb, the modulation wave vector of the superstructure is $q = 1/3(2a^* - 2c^*)$, which is mainly

attributed to Nb compositional variations. Moreover, the superstructure in Nb_{0.84}CoSb sample can remain stable from room temperature to high temperature, whereas in Nb_{0.8+ δ}CoSb samples, it only exists at elevated temperatures and gradually weakens as the temperature decreases, suggesting that it may be a metastable structure between Nb_{0.8}CoSb and Nb_{0.84}CoSb.

This study reveals the diversity of superstructures induced by compositional variations and the complexity of structural phase transitions in half-Heusler alloys, enriching the understanding of these materials and providing important guidance for the design and functional control of phase-change materials.

Keywords: solid-state phase transition, in-situ heating, short-range ordering, half-Heusler alloyPACS: 64.60.A-, 71.20.Be, 68.37.LpDOI: 10.7498/aps.73.20240325

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11874394, 92163203).

[†] Corresponding author. E-mail: bhge@ahu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

原位加热诱导Nb扩散引起Nb₀₈CoSb有序度的转变

李其柱 范浩涵 高梓恒 南鹏飞 朱铁军 葛炳辉

Nb_{0.8}CoSb ordering transformation caused by in situ heating-induced Nb diffusion

Li Qi-Zhu Fan Hao-Han Gao Zi-Heng Nan Peng-Fei Zhu Tie-Jun Ge Bing-Hui

引用信息 Citation: Acta Physica Sinica, 73, 116401 (2024) DOI: 10.7498/aps.73.20240325 在线阅读 View online: https://doi.org/10.7498/aps.73.20240325

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

原位表征技术在全固态锂电池中的应用

Application of *in-situ* characterization techniques in all-solid-state lithium batteries 物理学报. 2021, 70(19): 198102 https://doi.org/10.7498/aps.70.20210531

高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响 Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties 物理学报. 2020, 69(4): 046102 https://doi.org/10.7498/aps.69.20191671

Sc掺杂Ti_{1v}NiSb半哈斯勒合金的制备与热电性能

Preparation and thermoelectric properties of Sc-doped Ti_{1x} NiSb half-Heusler alloys

物理学报. 2023, 72(8): 087201 https://doi.org/10.7498/aps.72.20230035

 $Sc_x Y_{1x}Fe_2$ 合金固溶和 $V_{2x}Fe_{2(1x)}$ Zr有序-无序转变的理论预测 Theoretical prediction of solution in $Sc_x Y_{1x}Fe_2$ and order-disorder transitions in $V_{2x}Fe_{2(1x)}$ Zr 物理学报. 2021, 70(21): 213601 https://doi.org/10.7498/aps.70.20210998

有序--无序二维耦合系统的电子输运性质

Electron transport properties of order-disorder separated two-dimensional bilayer systems 物理学报. 2022, 71(24): 240301 https://doi.org/10.7498/aps.71.20221055

利用特殊函数和类比法有序化排列正负指数幂算符

Ordering positive and negative exponential power operators by virtue of special functions and analogy method 物理学报. 2021, 70(4): 040302 https://doi.org/10.7498/aps.70.20201652