喷墨打印高迁移率铟锌锡氧化物薄膜晶体管*

赵泽贤1)2) 徐萌2) 彭聪2) 张涵2) 陈龙龙2) 张建华2) 李喜峰2)†

1) (上海大学材料科学与工程学院,上海 200072)

2) (上海大学, 新型显示技术及应用集成教育部重点实验室, 上海 200072)

(2024年3月14日收到; 2024年5月4日收到修改稿)

采用喷墨打印工艺制备了铟锌锡氧化物 (indium-zinc-tin-oxide, IZTO) 半导体薄膜,并应用于底栅顶接 触结构薄膜晶体管 (thin-film transistor, TFT).研究了墨水的溶剂成分以及溶质浓度对打印薄膜图案轮廓的 影响.结果表明二元溶剂 IZTO 墨水中乙二醇溶剂可有效平衡溶质向内的马兰戈尼回流与向外的毛细管流, 避免了单一溶剂墨水下溶质流动不平衡造成 IZTO 薄膜的咖啡环状沉积轮廓图案,获得均匀平坦的薄膜图案 轮廓和良好接触特性,接触电阻为 820 Ω,优化后 IZTO TFT 器件的饱和迁移率达到 16.6 cm²/(V·s),阈值电 压为 0.84 V,开关比高达 3.74×10⁹, 亚阈值摆幅为 0.24 V/dec. 通过打印薄膜凝胶化模型解释了 IZTO 墨水溶 剂成分、溶质浓度与最终薄膜形貌的关系.

关键词:喷墨打印,金属氧化物半导体,咖啡环效应,薄膜晶体管
 PACS: 85.30.Tv, 81.05.Gc, 77.22.Ch
 DOI: 10.7498/aps.73.20240361

1 引 言

近年来,氧化物薄膜晶体管 (thin film transistor, TFT)由于具有低漏电流、高迁移率以及大 面积均匀性等特点,在平板显示产业得到了广泛的 应用^[1,2].随着印刷显示技术的发展,喷墨打印无需 真空工艺或光刻直接形成图案,可显著降低成本而 受到越来越多的关注^[3-5].然而,喷墨打印法制备的 非晶氧化物薄膜形貌不均匀,特别是咖啡环效应 (coffee ring effect)影响下^[6]导致 TFT 器件性能 的恶化,阻碍印刷显示技术的发展.此外,喷墨打 印 TFT 的研究主要集中在开发新材料,提升迁移 率等方面^[7].例如,Li等^[8]利用喷墨打印技术制备 自对准底栅氧化物 TFT,表现出 4.63 cm²/(V·s) 的 最大饱和迁移率. Ryu 等^[9]则探究了退火温度对打 印 ZTO TFT 的影响,其迁移率达 2.71 cm²/(V·s). 此外, Gillan 等^[10] 通过打印制备掺聚乙烯亚胺 In₂O₃界面电荷注入层,实现器件饱和迁移率从 0.41 cm²/(V·s) 提升至 1.30 cm²/(V·s). 但对于成 膜形貌, 尤其是消除咖啡环效应的研究相对较少. 印刷墨水表面挥发促使溶质从中心不断向边缘沉 积是造成薄膜咖啡环形貌的原因. 为了消除咖啡环 效应, 需降低墨滴内外张力不均所造成向外的毛细 管流动^[11]. 基于氧化物前驱体体系而言, 通常通过 添加大分子高黏度聚合物[12,13]、表面活性剂[14,15] 或者是使用混合溶剂[16-18]改变墨滴的表面张力抑 制咖啡环效应. 混合溶剂由于易挥发分解且有机残 留较少,成为主流改善墨水的方法. Kim 等^[19]认 为添加乙二醇用作二元溶剂和形成表面张力梯度 并促进向内的马兰戈尼回流,改善了印刷表面轮 廓. 此外, 铟锌锡氧化物 (IZTO) 本身具有很高的 载流子迁移率,作为有源层制备的 TFT 迁移率高 达 100 cm²/(V·s) ^[20,21]. 但打印制备 IZTO TFT 研

^{*} 国家重点研发计划 (批准号: 2022YFB3603805) 资助的课题.

[†] 通信作者. E-mail: lixifeng@shu.edu.cn

^{© 2024} 中国物理学会 Chinese Physical Society

究,特别是对于 IZTO 前驱体墨水与打印法薄膜形 貌的问题较少^[22],因此研究 IZTO 墨水配制与打 印薄膜图案的关系对于打印制备高迁移率 IZTO TFT 具有较强的应用价值和理论意义.

基于此,本文对比研究了单一溶剂、二元溶剂墨水对印刷 IZTO 薄膜图案轮廓的影响,从理论上阐明墨水性能与印刷图案的关系,并研究不同沟道宽长比 (*W/L*)对 IZTO TFT 器件性能的影响,最终实现高迁移率 IZTO TFT 的喷墨打印制造.

2 实 验

2.1 溶液配制

将六水合硝酸铟 (InNO₃·6H₂O)、二水合醋酸锌 (Zn(CH₃COO)₂·2H₂O) 和五水氯化物 (SnCl₄·5H₂O) 按照一定的摩尔比 (In:Zn:Sn = 4:1:4) 溶解在不 同溶剂中配置 IZTO 前驱体墨水,采用乙二醇 甲醚 (2-MOE) 溶剂配制 0.2 mol/L 的单一溶剂 IZTO 前驱体墨水;同时采用一定体积比 (1:1) 的乙二醇 (EG) 和乙二醇甲醚分别配制 0.2 和 0.4 mol/L 的二元溶剂 IZTO 前驱体墨水.最后在 室温条件下搅拌老化 24 h,最终获得 IZTO 前驱 体打印墨水.将八水二氯化铪 (HfCl₄O·8H₂O, Alfa-Aesar, 98%) 和三仲丁醇铝 (Al(OC₄H₉)₃, Sigma Aldrich, 97%) 按照摩尔比 2:1 分别溶解在乙二 醇甲醚中,配置浓度为 0.3 mol/L 的铪铝氧化物 (HfAlO, HAO) 溶液.

2.2 薄膜及器件制备

经丙酮、酒精、和去离子水超声清洗的 4 in (1 in = 2.54 cm) 玻璃. 首先在此玻璃基板上直流 溅射 50 nm 厚的铟锡氧化物 (ITO) 并光刻形成栅 电极,接着采用 HAO 前驱体溶液经 0.22 µm 的聚 四氟乙烯过滤器过滤后,多次旋涂达到要求的厚 度,并经 270 ℃ 固化形成 HAO 栅绝缘层薄膜,光 刻后进行退火. 之后在绝缘层薄膜上打印有源层, 将 IZTO 溶液同样经过滤后注入 10 pL 的墨盒中, 打印后以 270 ℃ 退火 1 h 得到 IZTO 薄膜,作为 TFT 器件的有源层. 然后溅射 35 nm 的 ITO 导 电层,并通过光刻形成源漏电极图案,最终制备出 IZTO TFT 器件. 图 1 给出了制备 IZTO TFT 器 件的截面示意图以及光学显微镜图像.

图 1 IZTO TFT 器件的光学显微镜图像, 插图显示截面 示意图

Fig. 1. Microscope images of the IZTO TFT device, where the inset shows the schematic cross section.

2.3 IZTO 薄膜表面轮廓表征及 TFT 器件 电学性能

IZTO 薄膜打印采用压电式喷墨打印机 (Dimatix-2850), 其墨盒 (DMC-11610) 的喷口直径为 21 μm; 采用热重分析仪 (TGA, Q5000 IR) 来分析 墨水的吸热放热和失重行为; 使用表面张力仪 (KRUSS, K20) 测量墨水的物理性质 (密度、黏度 和表面张力), 采用台阶仪 (Kosaka, ET-150) 测试 打印 IZTO 的薄膜轮廓; 采用半导体特性分析系统 (4200-SCS, Keithley) 测试器件的转移、输出曲线.

3 结果与讨论

图 2 所示为 3 种 IZTO 前驱体墨水 TG-DTG (热重-微分热重)曲线.可以看出,单溶剂 (single solvent)墨水在 90,330 ℃ 左右出现两处尖峰,分 别对应于乙二醇甲醚溶剂以及羟基、硝酸盐的热分 解造成的质量损失;而在二元溶剂 (binary solvents)的热重分析中的 DTG 曲线显示在 150 ℃ 附近多出了第 3 处尖峰,这里可以理解为使用二 元溶剂中添加的乙二醇挥发所造成的.此外,单位 体积下高浓度溶质相比低浓度在热分解及缩合 过程中失去更多质量,因此高浓度 (0.4 mol/L)墨 水的 TG 曲线中第 3 处 TG 下降台阶比低浓度 (0.2 mol/L) 明显;再后续的升温过程中,前驱体的 重量保持不变,表明添加的乙二醇溶剂未在前驱体 墨水体系中残留,并形成稳定的 IZTO 金属氧化物 薄膜.

图 2 IZTO 前驱体墨水的热重曲线 (实线) 和热重微分曲 线 (虚线)

Fig. 2. The TGA curve (solid lines) and DTG curve (dotted lines) of IZTO precursor ink.

为了在压电喷墨打印中实现连续稳定地喷墨, 需要特定的墨水物理特性(即密度、黏度、表面张 力). 文献 [23] 中使用 Ohnesorge 数的倒数(*Z*)来评 价压电喷墨打印的墨滴稳定性,可打印墨水的值应 在 1—10 的范围内,墨水的 *Z* 数根据以下公式计算:

$$Z = \frac{\sqrt{a\rho\gamma}}{\eta},\tag{1}$$

其中 a (喷嘴内径) 为 21 μ m, ρ 是密度, γ 是表面张 力, η 是油墨的黏度, 表 1 总结了制备的 3 种墨水 样品的物理参数. 3 种墨水样品所计算的 Z 值分别 为 6.59, 4.14 和 3.48, 所有这些都在可打印范围内.

表 1 不同浓度、溶剂下对应的 IZTO 墨水的物理参数 Table 1. Structural parameters of IZTO ink of different concentration and solvents.

IZTO墨水样品	$ ho/({ m g}{ m cm}^{-3})$	η/cP	$\gamma/({ m mN}{\cdot}{ m m}^{-1})$	Ζ
c = 0.2 mol/L, 2-MOE	1.04	4.05	34.4	6.59
c = 0.2 mol/L, 2-MOE+EG	1.07	6.90	38.1	4.14
c = 0.4 mol/L, 2-MOE+EG	1.10	8.44	39.1	3.48

为了探究溶剂的类型以及溶质的浓度对印刷 后 IZTO 薄膜沉积形态的影响,图 3显示了 3 种墨 水印刷的 IZTO 薄膜的表面轮廓图.图 3 中单一溶 剂墨水打印薄膜图案呈中间低、两边高的环状轮 廓图案;而采用二元溶剂低浓度 (binary solvents, 0.2 mol/L)墨水打印的薄膜图案则呈现平坦的 轮廓表面;采用二元溶剂高浓度 (binary solvents, 0.4 mol/L)墨水打印的薄膜图案则呈现凸起状轮 廓表面.显然当浓度提升后,在凝胶化过程中不能 维持平坦表面,即溶质进一步往中间堆积并最终形 成中间成凸面拓扑结构.

图 3 不同溶剂、不同浓度下的 IZTO 薄膜的表面轮廓图 Fig. 3. Surface profiles of IZTO films with different solvents and concentrations.

蒸发过程中向内马兰戈尼回流和向外毛细管 流之间的平衡是决定最终沉积图案的生成^[24].为 了更好地理解溶剂成分以及溶质浓度对印刷后 IZTO 薄膜沉积形态的影响, 图 4 给出了印刷薄膜 在凝胶化过程中溶质扩散的物理机制示意图.其中 横坐标 (x) 表示溶质向内的迁移, 纵坐标 (y) 表示 向外.采用单一溶剂打印时,液滴边缘(三相接触 线) 挥发相对于中间更激烈, 会促进液滴内部往外 毛细管流动 (inward capillary flow), 并伴随溶质 在液滴边缘的堆叠;进一步导致中间浓度低,边缘 浓度高,所形成的张力差促使液滴表面形成向外的 马兰戈尼流动 (outward Marangoni flow), 这导致 溶质进一步往液滴边缘堆积^[25],在凝胶后形成咖 啡环状轮廓. 而添加的 EG 用作二元溶剂时, 由于 2-MOE 的沸点与张力均比 EG 高, 因此富含 2-MOE 的溶剂优先出现在三相接触线处,而 EG 则富含在 液滴中央, 富含 2-MOE 的接触线的界面张力比墨 滴中央的界面张力低,这意味着从而沿着液滴的气 液界面产生局部界面张力梯度,并诱导出向内马兰

Fig. 4. Mechanism about gelation process of the printing film.

戈尼回流^[26](inward Marangoni flow),将溶质有效 地从液滴边缘运输至中心;随着溶剂挥发,EG的 高黏度也会限制往外的毛细管流动,最终在凝胶后 形成平坦表面.此外,进一步提高浓度也就意味着 黏度上升,有效抑制毛细管流动^[27],同时在墨滴中 央留下了较高比例的溶质,并导致凸表面拓扑结构 的形成.

为探究二元溶剂墨水中添加了乙二醇 (EG) 对打印形成 IZTO 薄膜是否会增加氧相关缺陷问 题,对 IZTO 墨水打印薄膜进行 XPS 测试. 图 5(a), (b) 分别显示了单溶剂、二元溶剂下两种 IZTO 墨水印刷薄膜的 O 1s 光谱.光谱的结合能由 C 1s(284.8 eV) 进行校准, O 1s 峰在 (530.0±0.2) eV, (530.8±0.2) eV 和 (531.7±0.2) eV 结合能上的 3 个 子峰分别对应金属-氧化物键 (O_I, M—O)、氧空位 (O_I, OV) 与金属-氢氧化物键 (O_{II}, M—OH). 根 据 XPS 的结果推测出,当在原有单一溶剂 2ME 的基础上添加 EG 溶剂时, O_I, O_{II}, O_{III} 键的百分 比值无明显变化,表明 EG 溶剂的添加在金属氧化 物成键后不会引入额外的氧相关缺陷.

图 5 (a) 单溶剂和 (b) 二元溶剂制备 IZTO 薄膜的 O 1s 峰的 XPS 光谱

Fig. 5. XPS spectra of O 1s peaks of IZTO films prepared with (a) single solvent and (b) binary solvents.

图 6 是采用 3 种 IZTO 墨水打印并制备出的 TFT 三组转移特性曲线.其中漏极电压 (V_{DS}) 恒 定在 1 V, 栅极电压 (V_{GS}) 设定范围从-2-5 V. 薄 膜轮廓形貌对半导体内载流子传输影响是造成电 学特性的差异的原因.

图 6 IZTO TFT 器件转移特性曲线 Fig. 6. Transfer characteristic curves of IZTO TFT devices.

咖啡环状轮廓对应器件中,边缘厚度高于有效 沟道厚度,造成电子注入后,在源漏电极附近需要 穿过更厚的高电阻半导体层,导致源漏电极接触电 阻 R_c较大;此外有源层中间厚度过薄,造成沟道 电阻 R_{ch} 过大,并在施加电压下抑制了开态电流, 使得最终 TFT 器件表现出纯电阻特性^[12]. 凸状轮 廓图案薄膜边缘同样由于厚度过高,并造成高接触 电阻, 如图 7(a) 所示表现出的饱和电流仅为 1.5 μA, 此外沟道中间厚度增大导致导电路径增加,使得载 流子输运过程受到散射作用的影响,造成器件迁移 率减小 (μ_{sat} = 2.3 cm²/(V·s)). 均匀平坦轮廓图案 IZTO 薄膜能够为载流子提供充足的传输路径, 且 均匀薄膜厚度能有效减少接触电阻带来的影响; 图 7(b) 输出曲线显示出在线性区没有电流拥挤, 且表现出夹断和饱和行为,表明形成良好欧姆接触 特性,并实现低接触电阻,饱和电流提升到 110 µA, 器件开关比从 2.8×107 提升至 1.21×109, 饱和迁移 率提升至 16 cm²/(V·s). 从表 2 可以看出, 与以往 的喷墨打印法制备 TFT 有源层薄膜相比, 本实验 制备的 TFT 器件具有高迁移率、高开关比和低阈 值电压的优点, 喷墨打印法制备 IZTO 有源层的 TFT 器件具有在平板显示产业中应用的潜力.

为验证喷墨打印 IZTO TFT 阵列中器件性 能的均匀性.采用优选的 IZTO 墨水制备 TFT 阵 列并测试其中的 10 个器件,转移特性曲线如图 8

图 7 IZTO TFT 器件的 (a), (b) 输出与 (c), (d) 转移曲线 (a), (c) 凸状轮廓; (b), (d) 平坦轮廓 Fig. 7. (a), (b) Output and (c), (d) transfer curves of IZTO TFT device: (a), (c) Convex profile and (b), (d) uniform flat profile.

表 2 喷墨打印法制备 TFT 器件的性能对比 Table 2. Performance comparison of TFT devices prepared by inkjet printing method.

成膜方式	$\mu_{ m sat}/(m cm^2{\cdot}V^{-1}{\cdot} m s^{-1})$	$V_{\rm TH}/{\rm V}$	${ m S.S/(V \cdot dec^{-1})}$	$I_{ m on}/I_{ m off}$	关态电流/A	文献
喷墨打印	4.63	-1.44	0.18	$> 10^{7}$	$<\!10^{\!-\!12}$	[8]
喷墨打印	1.3	0.14	0.44	2.3×104	$<\! 10^{-9}$	[10]
喷墨打印	4.6	0.9	_	$> 10^{5}$	$1\! imes\!10^{-\!10}$	[28]
喷墨打印	3.0	-0.51	0.21	$1.59{ imes}10^7$	5×10^{-13}	[29]
磁控溅射	13.6	1.04	0.18	$5.65{ imes}10^6$	2×10^{-12}	[30]
喷墨打印	16.6	0.84	0.24	$1.21{ imes}10^9$	$\leq 10^{-13}$	本文

所示, 被测 TFT 器件沟道的宽长比 (W/L) 为 50 μm/10 μm. 阈值电压 V_{TH}、迁移率μ、亚阈值摆 幅 S.S的平均值汇总于表 3 中. 结果表明, 在优选 印刷工艺下, 可在大面积制备下实现均匀性良好 的 IZTO TFT 阵列.

表 3 喷墨打印 IZTO TFT 的电性能参数平均值 Table 3. Average electrical performance parameters of inkjet printed IZTO TFT.

	$\mu/(\mathrm{cm}^2\cdot\mathrm{V}^{-1}\cdot\mathrm{s}^{-1})$	$V_{\rm TH}/{\rm V}$	${ m S.S/(mV \cdot dec^{-1})}$
Average value	11 ± 2	0.6 ± 0.15	90 ± 15

图 9 所示是沟道宽长比 (W/L) 分别为 50/30, 50/20, 50/10 时的打印 IZTO TFT 器件的转移特性曲线.其中,沟道宽度 W均为 50 μm, V_{DS} 恒定

图 8 喷墨打印 10 个 IZTO TFT 器件的转移特性曲线汇 总图

Fig. 8. Summary of transfer characteristic curves of 10 IZTO TFT devices fabricated by inkjet printing. 在 1 V, 通过计算并提取器件电学参数列于表 4 中, 结合饱和迁移率

$$\mu_{\rm sat} = \frac{2L}{C_{\rm i}W} \left(\frac{\partial \sqrt{I_{\rm DS}}}{\partial V_{\rm DS}}\right)^2,\tag{2}$$

其中 *I*_{DS} 为漏电流, *C*_i 为单位电容, 如图 9 可知, 器件的性能与器件宽长比有紧密关系, 即随沟道宽 长比增大, 开关比在增加; 此外, 固定的沟道宽度 下, 沟道长度变化也会影响到沟道电阻大小, 从而 器件的传输性能, 即饱和迁移率、亚阈值摆幅以及 阈值电压在降低.

图 9 不同沟道宽长比的 IZTO TFT 器件的转移特性曲线 Fig. 9. Transfer characteristic curves of IZTO TFT devices with different aspect ratios.

表 4 不同沟道宽长比的 IZTO 为有源层 TFT 器 件性能对比

Table 4.Structural parameters of IZTO TFTdevices with different aspect ratios.

W/L	$\mu_{\mathrm{sat}}/(\mathrm{cm}^2{\cdot}\mathrm{V}^{-1}{\cdot}\mathrm{s}^{-1})$	$V_{\rm TH}/{\rm V}$	$\mathrm{S.S}/(\mathrm{V}{\cdot}\mathrm{dec}^{-1})$	$I_{\rm on}/I_{\rm off}$
50/30	16.6	0.84	0.24	$1.21{ imes}10^9$
50/20	14.9	0.73	0.15	$2.79{ imes}10^9$
50/10	11.5	0.57	0.10	$3.74{ imes}10^9$

为了进一步评估印刷制备 IZTO TFT 中有源 层/电极间接触电阻对器件性能的影响.这里采用 传输线方法 (transmission line method, TLM) 来 评估喷墨印刷制备的 IZTO TFT 中有源层/电极 接触特性.在 TFT 的导电路径中,除了沟道电阻 *R*_{ch} 外还存在源漏极接触电阻 *R*_C,因此总电阻 *R*_T 可以表示为

$$R_{\rm T} = \frac{V_{\rm DS}}{I_{\rm DS}} = R_{\rm ch} + 2R_{\rm C}$$
$$= R_{\rm ch} + \frac{L + 2\Delta L}{\mu_{\rm FE} C_{\rm OX} (V_{\rm GS} - V_{\rm TH})}, \qquad (3)$$

其中, µFE 表示本征场效应迁移率, Cox 是单位电

容, ΔL 表示沟道长度的调变值^[31], 根据 3 组不同 沟道长度 L 的器件, 通过计算得到如图 10 所示的 $R_{\rm T}$ -L 关系图. 根据 (3) 式所有拟合的直线汇聚于 一点 (-2 ΔL , 2 $R_{\rm C}$), 并通过交点, 结合沟道宽度 (W) 提取出接触电阻 ($R_{\rm C}$) 约为 820 Ω. 因此, 较 低的接触电阻是实现高开态电流 (>10⁴) 的原因之 —^[32]. 此外, 由于本实验采用菲林版光刻的源漏电 极存在一定的光刻偏差, 即实际光刻电极沟道长度 相较于理想沟道长度短 2—3 μm(如图 1 所示), 这 也是导致 $\Delta L \neq 0$ 的原因.

图 10 沟道长度为 10—30 μm 时 IZTO TFT 获得的总电阻 与沟道长度 (*R*_T-*L*) 图

Fig. 10. Total resistance vs. channel length $(R_{\rm T}-L)$ plots obtained from IZTO TFTs with a channel length of 10–30 μ m.

4 结 论

本文采用喷墨打印法打印 IZTO 有源层薄膜 并制备了 IZTO TFT,研究了溶剂种类以及溶质 浓度对于薄膜沉积形态的影响,相较于单一溶剂, 二元溶剂印刷的 IZTO 薄膜表面平坦是由于添加 乙二醇有效抑制向外溶质堆积以及促进往内的马 兰戈尼回流,进而完全消除咖啡环效应;此外进一 步提高溶质浓度也会造成薄膜凸状表面轮廓的形 成.平坦的 IZTO 薄膜可有效降低与电极间接触电 阻,提高电荷载流子在电极与有源层之间输运效 率,实现迁移率提升.得到的 IZTO TFT 具有更佳 的性能,饱和迁移率为 16.6 cm²/(V·s)、电流开关比 高达 1.21×10⁹、阈值电压为 0.84 V、亚阈值摆幅为 0.24 V/dec.因此,优化墨水溶剂的配比来改善打 印薄膜图案是实现高性能打印薄膜晶体管的关键.

参考文献

[1] Jing B, Xu M, Peng C, Chen L L, Zhang J H, Li X F 2022

Acta Phys. Sin. 71 138502 (in Chinese) [荆斌, 徐萌, 彭聪, 陈 龙龙, 张建华, 李喜峰 2022 物理学报 71 138502]

- [2] Chu S, Hollberg L, Bjorkholm J E, Bolot S, Fuchs P, Knobelspies S, Temel O, Sevilla G T, Gilshtein E, Andres C, Shorubalko I, Liu Y, Troester G, Tiwari A A N, Romanyuk Y E 2019 Adv. Electron. Mater. 5 1800843
- [3] Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon Y A, Cho J H, Kim Y H, Kang J, Sofer Z 2022 npj 2D Mater. Appl. 6 64
- [4] Liang K, Li D W, Ren H H, Zhao M M, Wang H, Ding M F, Xu G W, Zhao X L, Long S B, Zhu S Y, Sheng P, Li W B, Lin X, Zhu B W 2021 Nano-Micro Lett. 13 164
- [5] Kwon J, Baek S, Lee Y, Tokito S, Jung S 2021 Langmuir 37 10692
- [6] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827
- [7] Lan L F, Chen B Z, Peng J B, Cao Y 2021 Polym. Mater. Sci. Eng. 37 150 (in Chinese) [兰林峰, 陈宝中, 彭俊彪, 曹镛 2021 高分子材料科学与工程 37 150]
- [8] Li Y Z, Lan L F, Gao P, He P H, Dai X, Cao H, Liang L, Peng J B 2019 IEEE Electron Device Lett. 40 228
- [9] Ryu S O, Ha C H, Jun H Y, Ryu S O 2020 J. Electron. Mater. 49 2003
- [10] Gillan L, Li S, Lahtinen J, Chang C H, Alastalo A, Leppäniemi J 2021 Adv. Mater. Interfaces 8 2100728
- [11] Matavz A, Ursic U, Mocivnik J, Richter D, Humar M, Copar S, Malic B, Bobnar V 2022 J. Colloid Interface Sci. 608 1718
- [12] Sun D W, Chen C H, Zhang J, Wu X M, Chen H P, Guo T L 2018 Appl. Phys. Lett. **112** 012102
- [13] Zhu Z N, Zhang J H, Zhou Z W, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Peng J B A 2019 ACS Appl. Mater. Interfaces 11 5193
- [14] Zhu Z N, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Zhang J H, Zhou Z W, Peng J B A 2018 Langmuir 34 6413
- [15] Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984

- [16] Hu H L, Zhu J G, Chen M S, Guo T L, Li F S 2018 Appl. Surf. Sci. 441 295
- [17] Zhong X, Duan F 2016 Eur. Phys. J. B 39 18
- [18] Oh G, Jeong W, Jung N, Kang S H, Weon B M 2022 Phys. Rev. Appl. 17 024010
- [19] Kim D, Jeong S, Park B K, Moon J 2006 Appl. Phys. Lett. 89 264101
- [20] Kim M G, Kim H S, Ha Y G, He J Q, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352
- [21] Zhu L Y, Gao Y N, Zhang J H, Li X F 2015 Acta Phys. Sin.
 64 168501 (in Chinese) [朱乐永, 高娅娜, 李喜峰, 张建华 2015 物理学报 64 168501]
- [22] Choi S, Kim K T, Park S K, Kim Y H 2019 Materials 12 852
- [23] Friederich A, Binder J R, Bauer W 2013 J. Am. Ceram. Soc. 96 2093
- [24] Ishizuka H, Fukai J 2018 Exp. Fluids 59 4
- [25] Li Y Z, He P H, Chen S T, Lan L F, Dai X Q, Peng J B 2019 ACS Appl. Mater. Interfaces 11 28052
- [26] Park J, Moon J 2006 Langmuir 22 3506
- [27] Huang H, Hu H L, Zhu J G, Guo T L 2017 J. Electron. Mater. 46 4497
- [28] Tao H, Luo H D, Ning H L, Yao R H, Cai W, Zheng X F, Wang Y, Wang B, Cao H, Peng, J B 2021 *Chin. J. Liq. Cryst. Disp.* **36** 663 (in Chinese) [陶洪, 罗浩德, 宁洪龙, 姚日 晖, 蔡炜, 郑喜凤, 汪洋, 王铂, 曹慧, 彭俊彪 2021 液晶与显示 **36** 663]
- [29] Chen S T, Li Y Z, Lin Y L, He P H, Long T, Deng C H, Chen Z, Chen G S, Tao H, Lan L F, Peng J B 2020 Coatings 10 425
- [30] Fan C L, Hsin T C, Yu X W, Lin Z C 2024 Mater. Sci. Semicond. Process. 172 1396
- [31] Weber C, Oberberg M, Weber D, Bock C, Pham D V, Kunze U 2014 Adv. Mater. Interfaces 1 1400137
- [32] Lin Y L, Chen S T, Wu Y B, Lan L F, Peng J B A 2021 *Chin. J. Liq. Cryst. Disp.* **36** 1239 (in Chinese) [林奕龙, 陈思 婷, 吴永波, 兰林锋, 彭俊彪 2021 液晶与显示 **36** 1239]

Inkjet printing high mobility indium-zinc-tin oxide thin film transistor^{*}

Zhao Ze-Xian¹⁾²⁾ Xu Meng²⁾ Peng Cong²⁾ Zhang Han²⁾ Chen Long-Long²⁾ Zhang Jian-Hua²⁾ Li Xi-Feng^{2)†}

1) (School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)

 (Key Laboratory of Advanced Display and System Application of Ministry of Education, Shanghai University, Shanghai 200072, China)

(Received 14 March 2024; revised manuscript received 4 May 2024)

Abstract

Metal oxide thin film transistor has been widely used in flat panel display industry because of its low leakage current, high mobility and large area uniformity. Besides, with the development of printed display technology, inkjet printing process can fabricate the customizable patterns on diverse substrates with no need of vacuum or lithography to be used, thus significantly reducing cost and receiving more and more attention. In this paper, we use inkjet printing technology to prepare a bottom gate bottom contact thin film transistor (TFT) by using indium-zinc-tin-oxide (IZTO) semiconductor. The surface morphology of the printed IZTO film is modified by adjusting the solvent composition and solute concentration of the printing precursor ink. The experimental result show that the use of binary solvents can effectively overcome the coffee ring shape caused by the accumulation of solute edge in the volatilization process of a single solvent, ultimately presenting a uniform and flat contour surface. Further increase in solute concentration is in favor of formation of convex surface topology. The reason for the formation of the flat surface of the oxide film is the balance between the inward Marangoni reflux of the solute and the outward capillary flow during volatilization. In addition, IZTO thin film transistor printed with binary solvents exhibits excellent electrical properties. The ratio of width/length = 50/30 exhibits a high on-off ratio of 1.21×10^9 , a high saturation field-effect mobility is 16.6 $\text{cm}^2/(\text{V}\cdot\text{s})$, a low threshold voltage is 0.84 V, and subthreshold swing is 0.24 V/dec. The uniform and flat active layer thin film pattern can form good contact with the source leakage electrode, and the contact resistances of TFT devices with different width-to-length ratios are less than 1000 Ω , which can reach the basic conditions of high mobility thin film transistors prepared by inkjet printing. Therefore, using solvent mixture provides a universal and simple way to print oxide films with required surface topology, and present a visible path for inkjet printing of high-mobility thin film transistors.

Keywords: inkjet printing, metal oxide semiconductor, coffee ring effect, thin film transistor

PACS: 85.30.Tv, 81.05.Gc, 77.22.Ch

DOI: 10.7498/aps.73.20240361

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3603805).

[†] Corresponding author. E-mail: lixifeng@shu.edu.cn

Institute of Physics, CAS

喷墨打印高迁移率铟锌锡氧化物薄膜晶体管

赵泽贤 徐萌 彭聪 张涵 陈龙龙 张建华 李喜峰

Inkjet printing high mobility indium-zinc-tin oxide thin film transistor Zhao Ze-Xian Xu Meng Peng Cong Zhang Han Chen Long-Long Zhang Jian-Hua Li Xi-Feng 引用信息 Citation: Acta Physica Sinica, 73, 128501 (2024) DOI: 10.7498/aps.73.20240361 在线阅读 View online: https://doi.org/10.7498/aps.73.20240361 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

N₂O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响

Effect of N 2O treatment on performance of back channel etched metal oxide thin film transistors

物理学报. 2022, 71(5): 058503 https://doi.org/10.7498/aps.71.20211350

镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析
Analysis of low frequency noise characteristics of praseodymium doped indium gallium oxide thin film transistor
物理学报. 2021, 70(16): 168501 https://doi.org/10.7498/aps.70.20210368

溶胶--凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展

Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method 物理学报. 2020, 69(22): 228102 https://doi.org/10.7498/aps.69.20200653

适用于喷墨打印制备发光二极管的ZnO量子点配体研究 Study on ZnO quantum dot ligands for inkjet printing of light-emitting diodes 物理学报. 2023, 72(13): 137301 https://doi.org/10.7498/aps.72.20230312

低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管

Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology 物理学报. 2024, 73(9): 096802 https://doi.org/10.7498/aps.73.20240082

短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型 Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor 物理学报. 2020, 69(17): 177102 https://doi.org/10.7498/aps.69.20200497