SrRuO₃ 薄膜中自旋轨道力矩效率和 磁矩翻转的晶向调控^{*}

赵珂楠 李晟 芦增星 劳斌 郑轩 李润伟† 汪志明‡

(中国科学院宁波材料技术与工程研究所,中国科学院磁性材料与器件重点实验室,宁波 315201)

(2024年3月15日收到; 2024年3月27日收到修改稿)

过渡金属氧化物 SrRuO₃ 薄膜因具有较大且可调的电荷流-自旋流互转换效率而成为自旋轨道力矩 (SOT) 器件中备受关注的自旋源材料. 然而,目前对 SOT 效率的调控主要集中在衬底外延应力调节. 本文研究了晶体取向对 SrRuO₃ 薄膜 SOT 性能的调控作用. 制备了 (111) 取向 SrRuO₃/CoPt 异质结构,发现其 SOT 效率高达 0.39,自旋霍尔电导达 2.19 × $10^5\hbar/(2e)$ Ω^{-1} ·m⁻¹,分别较 (001) 取向提高了 86%和 369%. 此外,在 SrRuO₃ (111) 器件中实现了低至 2.4×10¹⁰ A/m² 临界电流密度下的电流驱动的垂直磁化翻转,较 (001) 晶向降低了 37%. 这些结果表明,晶体取向是显著提升 SrRuO₃ 基 SOT 器件综合性能的有效途径,为发展高效自旋电子器件提供了新思路.

关键词:过渡金属氧化物,电荷-自旋互转换,自旋-轨道力矩,晶向调控
PACS: 77.84.Bw, 75.76.+j, 72.25.-b, 81.07.-b
DOI: 10.7498/aps.73.20240367

1 引 言

随着人工智能、物联网、云计算等新兴信息技术的高速发展,市场对于高密度、低功耗电子器件的需求正在飞速增长.然而,随着器件尺寸不断减小,现代电子器件正逼近其物理极限,芯片将面临高功耗、大发热等严峻挑战.基于电子自旋自由度的新型器件——自旋电子器件,有望突破传统电荷器件的瓶颈,实现信息的高效存储、传输和处理. 在后摩尔时代,自旋电子器件因其低功耗、非易失性等独特优势,正受到学术界和产业界的广泛关注^[1,2]. 自旋轨道力矩 (SOT)效应是自旋电子学的一个重要分支.它利用材料中的自旋轨道耦合 (SOC)效应,实现电荷流与自旋流的相互转换,进而实现对 铁磁材料磁化状态的有效调控^[3,4]. 与传统的自旋 转移力矩 (STT) 技术相比, SOT 具有更低的能 耗、更简单的器件结构等优点, 因此在高密度磁随 机存储器 (MRAM)、逻辑电路等领域展现出了广 阔的应用前景^[5].

近年来, 过渡金属氧化物 (TMO) 因其独特的 物理特性, 如新奇的量子态、强关联电子效应、多 自由度耦合等, 在 SOT 研究中备受关注^[6,7]. 具有强 SOC 的TMO, 如5d SrIrO₃(SIO)^[8–11]和4d SrRuO₃ (SRO)^[12–14], 呈现出较大的自旋霍尔角和适中的电 阻率 ($\rho \sim 10^{-1}$ m Ω ·cm). SRO 因其较高的化学稳定 性和热稳定性等, 成为 TMO 家族中的明星材料^[15,16], 已被证明可以提供较大且可调的 SOT 特性^[13,17,18]. Li 等^[19]系统测量了 SRO(001) 薄膜分别与面内磁 各向异性 (IMA) 和垂直磁各向异性 (PMA) 材料

© 2024 中国物理学会 Chinese Physical Society

^{*} 国家重点研发项目 (批准号: 2019YFA0307800, 2017YFA0303600) 和国家自然科学基金面上项目 (批准号: 12174406, 11874367, 51931011, 52127803) 资助的课题.

[†] 通信作者. E-mail: runweili@nimte.ac.cn

[‡] 通信作者. E-mail: zhiming.wang@nimte.ac.cn

构成的异质结构中的 SOT 效率 ($\theta_{sh} \approx 0.2$), 并在 SRO/PMA 异质结构中实现了由 SOT 诱导的电 控磁矩翻转. 然而, 目前对 SRO 中 SOT 调控的研 究主要集中在利用衬底应力[17,18],其他调控手段的 探索还很不足. 值得注意的是, TMO 材料中晶格、 轨道、自旋、电荷等多自由度之间存在强相互作用, 使得其拓扑电子态、晶体对称性等性质可以通过应 力、掺杂等多种方式进行调控,为增强自旋-电荷转 换提供了广阔的探索空间^[20,21]. 例如, Wei 等^[17] 通 过应变工程将 SRO/Ni₈₁Fe19 的 SOT 效率提高了 20倍(从0.04提高到0.89), 且实验表明正交相SRO 的 SOT 效率明显高于四方相; Zhou 等^[18] 系统地 研究了在 KTO, STO 和 NGO 三种不同衬底上的 外延 SRO 薄膜的 SOT 性质, 自旋转矩铁磁共振 (ST-FMR) 和平面谐波霍尔电压 (HHV) 测量结果 均表明,当应变由拉伸变为压缩时, SRO 的 SOT 效率降低. 尽管这些研究揭示了应变对 SRO 中 SOT 的调控作用, 但除了利用衬底应力, 其他调 控 SOT 的手段仍有待进一步探索. 晶体取向能够 通过影响材料对称性、电子结构等,产生许多新奇 的物理性质, 是调控 TMO 材料物性的重要手段之 一^[22-24]. 鉴于 SOT 效应与电子结构和表面态密切 相关,晶体取向有望通过调节 TMO 的电子能带结 构和轨道占据,进而影响 SOT 性质.此外,晶体取 向的改变也会影响施加电流及产生自旋流相对于 晶格的方向,从而改变自旋霍尔电导率.同时,不 同取向的 TMO 薄膜所受到的衬底应力方向不同, 也为调控 SOT 提供了另一种可能.因此,晶体取 向调控有望成为一种新颖的自旋-电荷转换操控手 段,对 SOT 器件的优化具有重要意义.

本文聚焦 (111) 取向的 SRO 薄膜, 系统探究 了晶体取向对 SRO/CoPt 异质结构 SOT 性质的 影响, 发现 (111) 取向 SRO 的 SOT 效率高达 0.39, 是 (001) 取向的近两倍, 自旋霍尔电导率则从 4.68×10^4 提高到 $2.19 \times 10^5 \hbar/(2e) \Omega^{-1} \cdot m^{-1}$. 同时, (111) SRO/CoPt 器件实现了低至 $2.4 \times 10^{10} A/m^2$ 的临界翻转电流密度. 这些结果证明了晶面取向调 控是一种行之有效的 SOT 优化策略, 为进一步提 高自旋电子器件的性能提供了新的思路.

2 实验与分析

2.1 SRO/CoPt 薄膜异质结构的生长与表征 利用脉冲激光沉积 (PLD) 方法, 在 SrTiO₃

(111) 衬底上沉积了厚度为 24 nm 的单晶 SRO 薄 膜. 沉积过程中, 衬底温度维持在 700 ℃, 氧压为 0.1 mbar (1 bar =10⁵ Pa). 激光能量密度约为 2.45 J/cm². SRO 沉积完成后, 在生长温度下保温 若干分钟后以 50 ℃/min 的速率在 1 mbar 氧气氛 中冷却至室温,使薄膜在高温高压下充分弛豫、改 善氧空位等.随后,在常温、超高真空条件下,利用 磁控溅射方法,在其上继续沉积 Co/Pt 多层膜(简 称 CoPt), 该多层的结构为 Pt(1 nm)/Co(0.5 nm)/ Pt(0.5 nm)/Co(0.5 nm)/Pt(1 nm). Co和 Pt 的厚 度采用 X 射线反射率 (XRR) 方法进行标定. 图 1(a) 展示了 (111)-SRO/CoPt 异质结构的示意图, 图 1(b) 的原位反射高能电子衍射 (RHEED) 图像中,清晰 的衍射斑点表明薄膜以二维层状方式生长. 原子力 显微镜 (AFM) 图像显示薄膜表面平整, 均方根粗 糙度 R_a 仅为 0.135 nm. 利用高分辨 X 射线衍射 (HR-XRD)对薄膜的晶体结构进行了表征,图1(c) 为 SRO 薄膜的 θ -2 θ 扫描结果. 除了 STO 衬底的 (111) 和 (222) 峰外, 图谱中只出现了 SRO 的 (111) 和 (222) 衍射峰, 表明 SRO 薄膜为 (111) 单一取 向,无其他杂相生成.SRO(222)峰位对应的面外 晶格常数为 3.947 Å, 略大于体相 SRO 的晶格常 数 (3.925 Å), 说明薄膜中存在面内压应变. 图 1(d) 为 X 射线倒易空间映射 (RSM) 结果, SRO(132) 衍射峰与 STO(132) 峰在 Q_x方向的峰位一致, 表 明 SRO 薄膜受到了 STO(111) 衬底应力的完全约 束, SRO 薄膜在 24 nm 厚度内未发生弛豫. 图 1(e) 为 CoPt 薄膜的面外磁光克尔效应 (MOKE) 测试结 果,表明 CoPt 具有良好的垂直磁各向异性 (PMA).

2.2 SRO/CoPt 器件 SOT 效率的表征

采用标准的紫外光刻和氩离子刻蚀方法,将上述 SRO/CoPt 薄膜样品制成霍尔条 (Hall bar) 以备进行后续的磁电性质测试. Hall bar 的电流端宽度为 10 μm,电压端宽度为 5 μm. 随后,利用电子束蒸发在 Hall bar 上依次沉积 10 nm Ti 和 50 nm Au 作为电极.采用谐波霍尔电压 (HHV)测量方法,对 (111)-SRO/CoPt 器件的 SOT 相关特性进行测试. SOT 效率测量原理如图 2(a) 和图 3(a) 所示.首先测量了器件的反常霍尔效应 (AHE),如图 2(b) 所示, AHE 回线呈现出明显的方形特征,矫顽场约为 30 Oe,反常霍尔电阻 *R*_{AHE}=0.45 Ω,表明 CoPt 具有良好的 PMA. 在 HHV 测量中,沿 *x* 方向施加

图 1 (111)-SRO/CoPt 异质结构的表征结果 (a) SRO/CoPt 薄膜异质结构示意图; (b) SRO 薄膜表面的原位反射高能电子衍射 (RHEED) 图像及原子力显微镜 (AFM) 图像, 均方根粗糙度约为 0.135 nm; (c) 在 STO (111) 衬底上生长的 SRO 薄膜的 XRD θ-2θ 扫描结果, 插图为 SRO 和 STO 的 (222) 峰附近范围的放大图; (d) SRO 薄膜 (132) 峰附近的倒易空间映射结果; (e) CoPt 的面外 MOKE 表征

Fig. 1. SRO/CoPt heterostructure: (a) Schematic diagram of the SRO/CoPt thin film heterostructure; (b) *in-situ* reflection high-energy electron diffraction (RHEED) image and atomic force microscopy (AFM) image of the SRO surface, the root-mean-square roughness is about 0.135 nm; (c) XRD θ -2 θ scan results of the SRO film grown on the STO (111) substrate, the inset is an enlarged view of the region near the (222) peaks of SRO and STO; (d) X-ray reciprocal space mapping (RSM) results of the SRO film; (e) out-of-plane MOKE characterization of CoPt.

交流电流 I (电流密度为 J_{e}),同时沿 x方向 (纵 向)或 y方向 (横向) 施加外加磁场 H. 通过测量扫 场过程中的一次谐波霍尔电压 $V_{xy}^{1\omega}$ 和二次谐波霍 尔电压 $V_{xy}^{2\omega}$,利用如下公式可以计算出类阻尼矩 (damping-like)等效场 H_{DL} 和类场矩 (field-like) 等效场 H_{FL} ^[25]:

$$H_{\rm DL(FL)} = -2 \frac{B_{\rm DL(FL)} \pm 2\eta B_{\rm DL(FL)}}{1 - 4\eta^2},$$
$$B_{\rm DL(FL)} = \left\{ \frac{\partial V_{xy}^{2\omega}}{\partial H} \middle/ \frac{\partial^2 V_{xy}^{1\omega}}{\partial H^2} \right\}_{H_{\rm DL(FL)}}$$

其中, η 是平面霍尔效应与反常霍尔效应的比值, 为一个较小的值^[19].为计算 H_{DL} ,我们沿 x方向施 加外加磁场 H_L ,同时测量 $V_{xy}^{1\omega}$ 和 $V_{xy}^{2\omega}$.如图 2(c) 所示, $V_{xy}^{1\omega}$ 显示出典型的抛物线的特征,往返扫场 时二次项系数的符号相反;而 $V_{xy}^{2\omega}$ 则呈现出明显的 线性特征,往返扫场时斜率大小及符号保持不变, 如图 2(d) 所示.通过对 $V_{xy}^{1\omega}$ 进行抛物线拟合,可 得到不同电流密度 J_e 下的二次项系数; 对 $V_{xy}^{2\omega}$ 进 行线性拟合,则可得到不同 J。下的斜率.将不 同 J。下的拟合结果代入上述公式,即可计算得 到相应的 H_{DL}. 图 2(e) 给出了 H_{DL} 与注入到 SRO 层中的电流密度 J_{SRO}之间的关系, 拟合得到 $H_{\rm DL}/J_{\rm SRO} = (85.39 \pm 2.63) \text{ Oe}/(10^{11} \text{ A/m}^2).$ 利用 $J_{\rm s}/J_{\rm e} = 2 \frac{e\mu_0 M_s t_{\rm FM}}{\hbar} \beta_{\rm L}$ 可以计算电荷-自旋转换效 率,其中, $t_{\rm FM}$ 是铁磁层 CoPt 的厚度, $M_{\rm s}$ 是 SRO 层的饱和磁化强度. CoPt 的 $t_{\rm FM}$ 约为 3.5 nm, $M_{\rm s}$ 通过 SQUID 测量得到, 如图 2(f) 所示, M。约为 429 emu/cm³. 基于以上测量结果, 计算了 (111)-SRO/CoPt 异质结构中的 SOT 效率和自旋霍尔电导 率. 在 CoPt 层饱和磁化强度 M。约为 429 emu/cm³ 的条件下,该器件的 SOT 效率 ξ_{DL} 和自旋霍尔电 导率 σ_{SH} 分别为 0.39 和 2.19×10⁵ $\hbar/(2e)$ Ω^{-1} ·m⁻¹. 作为对比, 文献 [19] 报道的 (001)-SRO/CoPt 器件的 $\xi_{\rm DL}$ 和 $\sigma_{\rm SH}$ 分别为 0.21 和 4.68×10⁴ $\hbar/(2e) \Omega^{-1} \cdot {\rm m}^{-1}$. 与 (001) 取向相比, (111) 取向的 SRO/CoPt 器件 的 SOT 效率提高了 86%, 自旋霍尔电导率则提高

图 2 SRO/CoPt 样品在纵向场 H_L 下的谐波霍尔电压测量 (a) 样品测量的示意图, 交流电流 I 沿 x 方向施加, 外加磁场 H_L 沿 x (纵向) 方向施加; (b) 施加垂直于平面的变化磁场 H_Z 测得的反常霍尔电阻 R_{AHE} ; (c) I = 1.5 mA 下, 一次和 (d) 二次谐波霍尔电 压信号随纵向场 H_L 变化的情况; (e) SOT 有效场 H_{DL} 随电流密度 J_{SRO} (分流至 SRO 的电流密度)的变化; (f) 室温下 SRO/CoPt 的面外 SQUID 测量, 由此得出饱和磁化强度 M_s

Fig. 2. Harmonic Hall voltage measurements of the SRO/CoPt sample under a longitudinal field $H_{\rm L}$. (a) Schematic diagram of the sample measurement. The AC current I is applied along the x-direction. The external magnetic field $H_{\rm L}$ is applied along the x (lon-gitudinal) direction. (b) Anomalous Hall resistance $R_{\rm AHE}$ measured by applying a magnetic field H_Z perpendicular to the plane. (c) First and (d) second harmonic Hall voltage signals as a function of the longitudinal field HL at I = 1.5 mA. (e) Variation of the SOT effective field $H_{\rm DL}$ with the current density $J_{\rm SRO}$ (current density shunted to SRO). (f) Out-of-plane SQUID measurement of SRO/CoPt at room temperature, from which the saturation magnetization $M_{\rm s}$ is obtained.

图 3 SRO/CoPt 样品在横向场 $H_{\rm T}$ 下的谐波霍尔电压测量 (a) 样品测量的示意图, 交流电流 I沿 x 方向施加, 外加磁场 H沿 y (横向) 方向施加; (b) I = 2.5 mA下, 在横向磁场 $H_{\rm T}$ 下测得的二次谐波霍尔电压信号; (c) SOT 有效场 $H_{\rm FL}$ 随电流密度 $J_{\rm SRO}$ (分 流至 SRO 的电流密度) 的变化

Fig. 3. Harmonic Hall voltage measurements of the SRO/CoPt sample under a transverse field $H_{\rm T}$: (a) Schematic diagram of the sample measurement, the AC current I is applied along the *x*-direction, the external magnetic field H is applied along the *y* (transverse) direction; (b) second harmonic Hall voltage signal measured under the transverse magnetic field $H_{\rm T}$ at I = 2.5 mA; (c) variation of the SOT effective field $H_{\rm FL}$ with the current density $J_{\rm SRO}$ (current density shunted to SRO).

了 369%, 说明晶面取向对于 SRO 基异质结构的 SOT 性能有显著的调控作用.

类似地, 沿 y 方向施加外加磁场 $H_{\rm T}$, 测量 $V_{xy}^{2\omega}$ 并计算类场矩等效场 $H_{\rm FL}$. 如图 3(b) 所示, 当 $H_{\rm T}$ 扫场时, $V_{xy}^{2\omega}$ 也呈现出明显的线性特征, 但往返扫 场时斜率符号相反,这与类场矩的对称性一致^[26]. 图 3(c) 给出了扣除奥斯特场 H_{Oe} 的贡献后的不同 电流密度 J_e 下的 H_{FL} 大小,拟合得到 $H_{FL}/J_{SRO} =$ (1.48±0.39) Oe/(10¹¹ A/m²). 基于以上测量结果, 我们计算得到 (111)-SRO/CoPt 异质结构中的 ξ_{FL} 为 0.0068, 该值非常小, 与文献 [19] 报道的 (001)-SRO/CoPt 器件结果一致 ($\xi_{FL} = 0.013$). 这表明 SRO 中的 SOT 主要产生类阻尼矩有效场 H_{DL} , 而 类场矩等效场 H_{FL} 很小, 几乎不存在表面态诱导 的 Rashba 效应, 其 SOT 效应主要来源于体效应 自旋霍尔效应 (SHE) ^[27].

2.3 SOT 诱导的磁矩翻转测试

为了更直观地呈现 SOT 对磁化翻转的作用, 我们在 (111)-SRO/CoPt 样品中进行了电流诱导 的磁化翻转测试. 图 4(a) 测试装置的示意图和制 备好的 Hall bar 器件的光学显微镜照片. 如图所 示,在 Hall bar 器件的两端分别接入两个电流源: Keithley 6221 提供脉冲写入电流 *I*_{write} 以驱动磁 化翻转, Keithley 6220 提供微小的直流读出电路 *I*_{read}(200 μA) 用以监测霍尔电阻的变化. 同时, Hall bar 器件的两个电压端接入 Keithley 2182A 纳伏表, 用于测量霍尔电压随外加磁场和写入电流 的变化.

图 4(a) 展示了典型的磁矩翻转测试流程. 实验中,固定脉冲写入电流 I_{write} 的脉宽为 200 µs,幅值在±12 mA 范围内扫描. 在扫描电流的同时,施加一个面内辅助外磁场 H_x . 如图 4(b) 所示,当 $H_x = 0$ 时,器件的霍尔电阻在正负向电流下均无明显变化,表明磁化未能实现确定性翻转. 这是由于 SOT 对面外磁化具有镜面对称性,在零外场下

无法克服磁各向异性能垒. 当施加 $H_x = \pm 100$ Oe 时,器件的霍尔电阻在 $I_{write} \approx \pm 10$ mA 处出现明 显的突变,呈现出典型的磁滞回线特征,表明磁化 已经实现了确定性的翻转. 当改变 H_x 的符号, 磁 滞回线的极性会发生反转.这一现象清楚地表明, CoPt 层的磁化翻转由 SRO 层中的 SOT 驱动, 而 非单纯源自焦耳热效应. 值得注意的是, 图 4(b) 中 SOT 驱动的磁化翻转引起的霍尔电阻变化量 $\Delta R_{\rm H}$ 约为 0.45 Ω , 与图 2(b) 测得的器件反常霍尔 电阻 RAHE 基本相当, 表明 CoPt 层的磁化已经实 现了接近180°的完全翻转.基于SRO层的面内电 流密度 J_{SBO}和 CoPt 层的面积 S, 我们估算出 (111)-SRO/CoPt 器件的翻转阈值电流密度 J。仅 为 2.4×10¹⁰ A/m². 这一数值略低于之前报道的 (001)-SRO/CoPt 器件的翻转阈值电流密度 (3.8× 10¹⁰ A/m²)^[19], 且比大多数重金属 SOT 材料的 J_c 低了约1个数量级^[28-30].上述结果表明, (111) 取 向有助于降低 SRO 基 SOT 器件的翻转临界电流, 对于实现低功耗磁化控制具有重要意义.

2.4 分析与讨论

根据以上测试结果,我们在 (111) 晶体取向 SRO 薄膜中观察到了相对于 (001) 取向显著增强的 类阻尼矩等效场 *H*_{DL}, 而类场矩等效场 *H*_{FL} 很小, 这与 (001) 取向 SRO 中的结果一致^[19],表明 SRO 薄膜中的 SOT 主要源自体相的 SHE. 对于 (111)

图 4 (111)-SRO/CoPt 异质结构由自旋轨道力矩 (SOT) 驱动的垂直磁化翻转 (a) 生长了电极的 Hall bar 的显微镜图像及磁矩 翻转测量的几何图示,脉冲电流 I_{write} 用于翻转磁化状态,而直流恒定电流 I_{DC} 用于读取 (上图), $I_{write}(\pm 12 \text{ mA})$ 和 $I_{read}(200 \mu \text{A})$ 的 序列图 (下); (b) 样品在不同外加磁场 H_x 下, I_{write} 驱动的磁化翻转, R_{H} 表示霍尔电阻的变化

Fig. 4. Perpendicular magnetization switching driven by spin-orbit torque (SOT) in the [111]-SRO/CoPt sample: (a) Microscope image of the Hall bar with electrodes and a schematic diagram of the magnetization switching measurement geometry. Pulsed current $I_{\rm write}$ is used to switch the magnetization state, while DC constant current $I_{\rm DC}$ is used to read (Top), sequence diagram of $I_{\rm write}$ (±12 mA) and $I_{\rm read}$ (200 µA) (Below); (b) the magnetization of the sample driven by $I_{\rm write}$ switching under different applied magnetic fields H_x , $R_{\rm H}$ indicates the change in Hall resistance. 取向 SRO 薄膜产生更强的 ξ_{DL} 的成因, 综合多方 面影响因素进行了分析. 首先, 不同晶向的 SRO 薄膜受到的衬底应力不同,由此引起的应变调控效 应可能对 SRO(111) 的 SOT 增强有所贡献. Wei 等[17] 通过实验和理论计算表明, SRO 的本征贝里曲率 可以通过衬底压缩/拉伸应变进行调控,从而产生 较大的自旋霍尔电导率. Zhou 等[18]系统地研究了 不同衬底上外延 SRO 薄膜的 SOT 效率,并结合 X射线衍射测试和理论计算,发现SOT效率与 SRO 的氧八面体旋转密切相关. 其次, 晶向调控可 能会额外带来各向异性的应力效应. Jin 等^[31]发现 在 (100) 或 (001) 取向的 LCMO 薄膜中的反铁磁 电荷有序绝缘 (COI) 相, 可以通过沿面内 [010] 方 向的单轴弯曲应力显著调控,而在其他横向面内方 向上几乎不受影响,表明晶向与应力的耦合作用对 材料物性有重要影响.

除了应力因素外,晶体取向还能够通过影响 SRO的对称性及电子结构等,使之产生新奇的物 理性质.Lu等^[22]通过晶体取向调控,在(110)取 向SRO薄膜中获得了完美的PMA,其PMA能量 较(001)取向提高了约1倍.Peng等^[24]在(111) 取向SRO中观察到了由梯度应变产生的赝电场效 应,并通过原子尺度成像表明该赝电场可以使SRO 发生极化,产生明显的Ru偏心位移,从而导致SRO (111)中铁电的产生.Wang等^[32]报道了(111)取 向SRO薄膜中氧八面体倾斜程度的显著抑制等特 殊晶体结构效应.考虑到SOT效应与材料的电子 结构密切相关,我们认为晶体取向通过调节SRO 的对称性和电子能带结构等,有望对SOT性质产 生显著影响,从而实现对SOT的有效调控和增强.

综上所述,可认为 (111) 取向 SRO 薄膜中更 强的 SOT 效应可能源于多种因素的协同作用,包 括应变调控、各向异性应力效应、晶体对称性变化 以及电子结构的调节等.这些机制共同为 (111)SRO 薄膜中 SOT 效应的增强提供了有利条件.当然, 为了更全面地理解晶向调控对 SRO 中 SOT 的影 响机制,还需要开展更深入系统的实验和理论研究 工作.

3 总结与展望

本文聚焦 (111) 取向 SRO 薄膜与 CoPt 铁磁 层构成的异质结构,系统研究了晶面取向对 SRO 中 SOT 效应的调控作用.实验结果表明,(111)-SRO/CoPt 器件展现出高达 0.39 的 SOT 效率和 2.19×10⁵ ħ/(2e) Ω⁻¹·m⁻¹ 的自旋霍尔电导率,分别 比 (001) 取向器件提高了 86% 和 369%.此外,该 器件实现了低至 2.4×10¹⁰ A/m² 的临界磁化翻转 电流密度,较 (001) 器件降低了 37%.这些结果清 楚地表明,晶面取向对 SRO 基 SOT 器件的性能 具有显著的调控效果.本研究结果为后续开发高 效、低功耗的自旋轨道力矩磁随机存储器 (SOT-MRAM) 提供了新的思路,晶面工程有望成为自旋 轨道电子学领域的重要手段,并在信息存储、能源 转换等关键技术领域获得广泛应用.

参考文献

- [1] Sasikanth M, Dmitri E N, Ian A Y 2018 Nat. Phys. 14 338
- [2] Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Cengiz Onbaşlı M, d'Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446
- Manchon A, Železný J, M. Miron I, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 *Rev. Mod. Phys.* 91 035004
- [4] Miron I M, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189
- [5] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J, Yang S, Garello K, Zhang W 2021 *IEEE T. Magn.* 57 800439
- [6] Chen H, Yi D 2021 APL Mater. 9 060908
- [7] Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702 (in Chinese) [劳斌, 郑轩, 李晟, 汪志明 2023 物理学报 72 097702]
- [8] Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski, Kim Y B, Ralph D C, Eom C B 2018 Proc. Natl. Acad. Sci. 33 16186
- [9] Everhardt A S, DC M, Huang X, Sayed S, Gosavi T A, Tang Y, Lin C, Manipatruni S, Young I A, Datta S, Wang J, and Ramesh R 2019 *Phys. Rev. Mater.* **3** 051201
- [10] Wang H L, Meng K Y, Zhang P X, Hou J T, Finley J, Han J H, Yang F Y, Liu L Q 2019 Appl. Phys. Lett. 114 232406
- [11] Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939
- [12] Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727
- [13] Ou Y X, Wang Z, Chang C S, Nair H P, Paik H J, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 *Nano Lett.* 19 3663
- [14] Emori S, Alaan U S, Gray M T, Sluka V, Chen Y, Kent A,

Suzuki Y 2016 Phys. Rev. B 94 224423

- [15] Eom C B, Cava R J, Fleming R M, Phillips J M, Vandover R B, Marshall J H, Hsu J W P, Krajewski J J, Peck W F 1992 *Science* 258 1766
- [16] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A, Beasley M R, 2012 *Rev. Mod. Phys.* 84 253
- [17] Wei J W, Zhong H, Liu J Z, Wang X, Meng F Q, Xu H J, Liu Y Z, Luo X, Zhang Q H, Guang Y, Feng J F, Zhang J, Yang L H, Ge C, Gu L, Jin K J, Yu G Q, Han X F 2021 Adv. Funct. Mater. 31 2100380
- [18] Zhou J, Shu X Y, Lin W N, Shao D F, Chen S H, Liu L, Yang P, Tsymbal E Y, Chen J S 2021 Adv. Mater. 33 2007114
- [19] Li S, Lao B, Lu Z X, Zheng X, Zhao K N, Gong L G, Tang T, Wu K Y, Li R W, Wang Z M 2023 Phys. Rev. Mater. 7 024418
- [20] Dagotto E 2005 Science **309** 257
- [21] Ahn C, Cavalleri A, Georges A, Ismail-Beigi S, Millis A J, Triscone J-M 2021 Nat. Mater. 20 1462
- [22] Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H F, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 NPJ Flex. Electron. 6 9
- [23] Wang Z M, Zhong Z C, MckeownWalker S, Ristic Z, Ma J Z, Bruno F Y, Ricco S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F, Radovic M 2017

Nano Lett. 17 2561

- [24] Peng W, Park S Y, Roh C J, Mun J, Ju H, Kim J, Ko E K, Liang Z G, Hahn S, Zhang J F, Sanchez A M, Walker D, Hindmarsh S, Si L, Jo Y J, Jo Y, Kim T H, Kim C, Wang L F, Kim M Y, Lee J S, Noh T W, Lee D 2024 Nat. Phys. 20 450
- [25] Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425
- [26] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240
- [27] Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 *Sci. Rep.* 6 20778
- [28] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
- [29] Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308
- [30] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 *Nat. Nanotechnol.* 8 587
- [31] Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131
- [32] Wang Z Z, Qi W H, Bi J C, Li X Y, Chen Y, Yang F, Cao Y W, Gu L, Zhang Q H, Wang H H, Zhang J D, Guo J D, Liu X R 2022 Chin. Phys. B 31 126801

Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in $SrRuO_3$ thin films^{*}

Zhao Ke-Nan Li Sheng Lu Zeng-Xing Lao Bin

Zheng Xuan Li Run-Wei[†] Wang Zhi-Ming[‡]

(Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering,

Chinese Acedemy of Sciences, Ningbo 315201, China)

(Received 15 March 2024; revised manuscript received 27 March 2024)

Abstract

Spintronic devices utilize the spin property of electrons for the storage, transmission, and processing of information, and they possess inherent advantages such as low power consumption and non-volatility, thus attracting widespread attention from both academia and industry. Spin-orbit torque (SOT) is an efficient method of manipulating magnetic moments through using electric current for writing, controlling the spin-orbit coupling (SOC) effect within materials to achieve the mutual conversion between charge current and spin current. Enhancing the efficiency of charge-spin conversion is a critical issue in the field of spintronics. Strontium ruthenate (SRO) in transition metal oxides (TMO) has attracted significant attention as a spin

^{*} Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307800, 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 12174406, 11874367, 51931011, 52127803).

[†] Corresponding author. E-mail: runweili@nimte.ac.cn

[‡] Corresponding author. E-mail: zhiming.wang@nimte.ac.cn

source material in SOT devices due to its large and tunable charge-to-spin conversion efficiency. However, current research on SOT control in SRO primarily focuses on utilizing substrate strain, with limited exploration of other control methods. Crystal orientation can produce various novel physical properties by affecting material symmetry and electronic structure, which is one of the important means to control the properties of TMO materials. Considering the close correlation between the SOT effect and electronic structure as well as surface states, crystal orientation is expected to affect SOT properties by adjusting the electronic band structure of TMO. This work investigates the effect of crystal orientation on the SOT performance of $SrRuO_3$ film and develops a novel approach for SOT control. The (111)-oriented SRO/CoPt heterostructures and SOT devices are prepared by using pulse laser deposition, magnetron sputtering, and micro-nano processing techniques. Through harmonic Hall voltage(HHV) measurements, we find that the SOT efficiency reaches 0.39, and the spin Hall conductivity attains $2.19 \times 10^5 \hbar/2e \ \Omega^{-1} \cdot m^{-1}$, which are 86% and 369% higher than those of the (001) orientation, respectively. Furthermore, current-driven perpendicular magnetization switching is achieved in $SrRuO_3(111)$ device at a low critical current density of 2.4×10^{10} A/m², which is 37% lower than that of the (001) orientation. These results demonstrate that the crystal orientation can serve as an effective approach to significantly enhancing the comprehensive performance of SrRuO₃-based SOT devices, thus providing a new idea for developing high-efficiency spintronic devices.

Keywords: transition metal oxide, charge-spin interconversion, spin-orbit torque, crystal orientation controlPACS: 77.84.Bw, 75.76.+j, 72.25.-b, 81.07.-bDOI: 10.7498/aps.73.20240367

Institute of Physics, CAS

SrRu0₃薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控 赵珂楠 李晟 芦增星 劳斌 郑轩 李润伟 汪志明 Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO₃ thin films Zhao Ke-Nan Li Sheng Lu Zeng-Xing Lao Bin Zheng Xuan Li Run-Wei Wang Zhi-Ming 引用信息 Citation: Acta Physica Sinica, 73, 117701 (2024) DOI: 10.7498/aps.73.20240367 在线阅读 View online: https://doi.org/10.7498/aps.73.20240367 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

过渡金属氧化物中新奇量子态与电荷--自旋互转换研究进展

Research progress of novel quantum states and charge-spin interconversion in transition metal oxides 物理学报. 2023, 72(9): 097702 https://doi.org/10.7498/aps.72.20222219

基于外尔半金属WTe,的自旋-轨道矩驱动磁矩翻转

Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2

物理学报. 2024, 73(1): 018501 https://doi.org/10.7498/aps.73.20231836

自旋轨道矩协助自旋转移矩驱动磁化强度翻转

The magnetization reversal driven by spin-orbit-assisted spin-transfer torque 物理学报. 2023, 72(8): 087202 https://doi.org/10.7498/aps.72.20222433

用BiSePt合金提高自旋轨道转矩效率

Spin-orbit torque efficiency improved by BiSePt alloy 物理学报. 2023, 72(13): 137201 https://doi.org/10.7498/aps.72.20230285

基于二维材料的自旋-轨道矩研究进展

Research progress of spin-orbit torques based on two-dimensional materials 物理学报. 2021, 70(12): 127501 https://doi.org/10.7498/aps.70.20210004

CrO,单层:一种兼具高居里温度和半金属特性的二维铁磁体

CrO₂ monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity 物理学报. 2024, 73(10): 106102 https://doi.org/10.7498/aps.73.20240246