专题:关联电子材料与散射谱学

镍基超导体中电荷序的实验研究进展

沈瑶1)2)†

(中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190)
2)(中国科学院大学物理科学学院,北京 100049)

(2024年6月28日收到; 2024年8月19日收到修改稿)

镍基超导体目前分为一价镍氧化物超导体和高压镍基超导体两个家族,其中电荷序的研究受到了广泛 关注.这是因为电荷序是强关联电子体系尤其是铜氧化物超导体的研究重点之一,其不仅对于理解电子关联 性有着重要意义,与非常规超导电性也有着潜在的联系,而镍基超导体的发现为电荷序与超导电性的研究提 供了新的契机.本文总结了镍基超导体电荷序的实验研究进展,讨论了镍基超导体中电荷序的存在与否、具 体构型以及微观性质等,以期为进一步深入研究该主题提供新的思路.

关键词:强关联电子体系,镍基超导体,电荷序,共振X射线散射
PACS: 71.27.+a, 74.90.+n, 71.45.Lr, 61.05.cf
CSTR: 32037.14.aps.73.20240898

DOI: 10.7498/aps.73.20240898

1 引 言

2019年无限层镍氧化物中超导电性的发现正 式揭开了镍基超导体研究的序幕¹¹,其母体相具有 名义上的 Ni¹⁺, 因此本文称其为一价镍氧化物超 导体. 一价镍氧化物超导体没有顶点氧的 NiO₄ 平面正方形组成了准二维的层状晶体结构, 化学式 为 RE_{n+1}Ni_nO_{2n+2} (RE, 稀土元素; n 为相邻 NiO₂ 面的层数). 当 $n = \infty$ 时, 便被称为无限层镍氧化 物,即RENiO2. 通过载流子掺杂可以在无限层镍 氧化物薄膜样品中实现超导,目前尚未在块材(多 晶或者单晶) 中观测到超导电性^[2]. 一价镍氧化物 中 Ni 3d 轨道电子数为 3d9-6, 与空穴掺杂的铜氧 化物超导体类似,实验上也发现其费米面主要由 Ni $3d_{x^2-y^2}$ 贡献^[3,4],因此研究者们认为它们可能 具有相似的电子结构和非常规超导机理. 2023年, La₃Ni₂O₇和La₄Ni₃O₁₀加入了镍基超导体家族^[5,6], 它们同属于层状正方格子的 Ruddlesden-Popper

(RP)相.与一价镍氧化物超导体不同,这里镍的名义价态为Ni^{5/2+}和Ni^{8/3+},且需要在高压下方能实现超导,因此本文称其为高压镍基超导体.其中La₃Ni₂O₇的超导转变温度*T*_c接近80K,引起了 广泛关注.高压镍基超导体的有效模型还在争议中,但普遍认为层间耦合对电子结构和超导电性起到了至关重要的作用^[5].

在强关联电子体系的研究中,电荷序是个非常 重要的研究内容,其中两个非常主要的研究平台为 铜氧化物超导体与二价镍氧化物如 $La_{2-x}Sr_xNiO_4$, 两者的电荷序表现出诸多不同的行为.譬如,在铜 氧化物中,掺杂的载流子为了减少对反铁磁序的破 坏,形成了平行于 Cu—O 键的条纹电荷序,对应 面内波矢在 $Q_{//} \approx (1/4,0)$ 附近 (为了行文统一,本 文中的波矢使用的都是单个 Ni/Cu 的晶胞,即分 别以两个互相垂直的最近邻 Ni—Ni/Cu—Cu 键 为 a, b轴的晶胞,实际样品晶胞可能会有所不同), 系统普遍表现出金属行为^[7]; 然而在二价镍氧化物 中,载流子形成了与 Ni—O 键呈 45°角的局域电荷

[†] 通信作者. E-mail: yshen@iphy.ac.cn

^{© 2024} 中国物理学会 Chinese Physical Society

序,导致系统呈现良好的绝缘性,面内波矢在 $Q_{//} \approx$ (1/3, 1/3) 附近^[8,9].即便如此,两者均表现出较强的电声相互作用,且数值模拟证明,电荷序是此类强关联体系天然的基态,代表了电子关联性可以导致的一种奇异电子行为^[10,11].除此之外,电荷序也和非常规超导电性有着潜在的联系.在铜氧化物超导体中,电荷序普遍存在,且主导了相图中的欠掺杂区域,甚至可以延伸到过掺杂区域,而短程关联可以在较高的温度依然存在^[12].一部分研究表明电荷序和超导电性具有竞争关系;而在另一些理论中,电荷序可以协同实现配对密度波,是非常规超导电性的重要组成部分^[13].由于电荷序的这一系列重要性,在镍基超导体发现之初研究者们便开始探索里面的电荷序.

2 无限层镍氧化物超导体中的电荷序

电荷序的产生会改变电荷分布,不可避免会引 发晶格微小的畸变,因此块材的电荷序可以通过 X射线衍射 (X-ray diffraction, XRD)进行测量^[14]. 然而对于无限层镍氧化物,目前只有在薄膜样品中 观测到超导电性,因此电荷序的研究只能通过共 振 X 射线散射^① (resonant X-ray scattering, RXS) 进行,这项技术能够直接探测电荷的周期性分布而 不是电荷序导致的晶格畸变^[15].

无限层镍氧化物超导体中的电荷序由斯坦福 大学的 Rossi 等^[16]率先报道,他们利用 RXS 在未 掺杂以及欠掺杂的 La_{1-x}Sr_xNiO₂ 薄膜中观测到了 面内波矢为 $Q_{//} \approx (1/3, 0)$ 的超结构有序峰.并且 该峰在 Ni 的 L_3 边共振加强,说明来自于电荷序. 同时,电荷序平行于 Ni—O 键的方向,类似于铜氧 化物超导体但具有不同的周期性.在 x = 0的未掺 杂样品中,电荷序转变温度在室温之上,随着掺杂 的增加,电荷序逐渐被压制,表现为转变温度逐渐 降低,而在呈现超导电性的 x = 0.15样品中电荷 序已经被完全压制.

紧随其后,该发现被另外两个课题组独立报 道^[17,18],并提供了更多有关电荷序的信息. Tam 等^[17] 对 NdNiO₂ 的测量表明, Ni *L*₃ 边的 X 射线吸收谱 (X-ray absorption spectroscopy, XAS)数据表现 为双峰的结构,其中右边的峰来自于常规 Ni L3边 的共振吸收, 而左边的峰被认为来自于 Ni 3d 轨道 和 RE 5d 轨道的杂化^[19]. 电荷序的峰不仅在 Ni L₃ 边的主吸收峰共振加强, 也在 Ni 3d-RE 5d 的杂化 峰共振加强,说明稀土元素也参与到了电荷序的形 成中. 如果用杂化峰的强度来表征 Ni 3d-RE 5d 的 杂化强度,会发现不同样品的杂化强度各不相同, 而电荷序和 Ni 3d-RE 5d 的杂化呈正相关. 在该工 作中,无限层镍氧化物的电荷序已经表现出一定的 样品依赖性,同样是 NdNiO₂ 的化学配比,其晶格 常数、Ni 3d-RE 5d 的杂化强度和电荷序特征均有 所不同,这在 Krieger 等^[18]的研究中表现得更为 明显. 他们测量了两块不同的 NdNiO₂ 样品, 其中 一块在样品表面生长了 SrTiO₃ (STO) 保护层, 而 另一块则没有. RXS 测量结果表明, 没有 STO 保 护层的样品具有强 Ni 3d-RE 5d 杂化特征峰和 $Q_{1/} \approx (1/3, 0)$ 的电荷序,但是没有清晰的自旋激 发, 而有 STO 保护层的样品 Ni 3d-RE 5d 杂化特 征峰被大幅压制,可以观测到清晰的自旋激发,但 是没有电荷序的迹象. 需要注意的是 Rossi 等^[16] 工作中的样品长有 STO 保护层, 而 Tam 等^[17] 工 作中的样品没有 STO 保护层, 无论有没有 STO 保护层,无限层镍氧化物都能实现超导电性,并且 相图高度相似^[20,21].

无限层镍氧化物超导体中电荷序的发现也激 发了诸多理论上的关注^[22,23],但是其样品依赖性成 为它头顶上的一片乌云.对无限层镍氧化物中电荷 序样品依赖性的理解需要从样品的制备过程着手. 无限层镍氧化物的制备需要经历两个步骤,首先是 前驱体钙钛矿 RENiO₃的制备 (Ni 名义上为+3 价),它由 NiO₆ 八面体连接而成,属于 $n = \infty$ 的 RP 相 (见图 1(a) 左图).随后,通过氢气或者 CaH₂等 进行还原反应可以将 NiO₆ 八面体的顶点氧移除, 从而实现 3d^{9-δ}电子态的无限层镍氧化物 (见图 1(a) 右图)^[1].

最新结合扫描透射电子显微镜 (scanning transmission electron microscope, STEM) 和 RXS 的研究表明^[24,25],在 NdNiO₃被最终还原成无限

① 共振 X 射线散射分为弹性 (resonant elastic X-ray scattering, REXS) 和非弹性 (resonant inelastic X-ray scattering, RIXS), 其中 RIXS 测量过程中也会包含弹性部分, 从而得到静态有序的相关信息. 如果使用的是软 X 射线波段, 也被称为共振软 X 射线散射 (resonant soft X-ray scattering, RSXS). 本文介绍的几项工作包含了 RIXS, REXS 和 RSXS 的内容, 因此我们使用 RXS 作为统称.

层 NdNiO₂ 相之前, 会存在顶点氧被部分移除的中 间态, 譬如 Nd₃Ni₃O₈ 和 Nd₃Ni₃O₇ (见图 1(a) 中间 图). 在这些相中, 剩下的顶点氧会形成三倍周期的 超晶格 (见图 1(c), (d)), 傅里叶变换之后的面内波 矢 $Q_{//} \approx (1/3, 0)$ (见图 1(b)), 其各种特征都与之 前观测到的电荷序相符: RXS 在 Ni L_3 边和 Nd M_5 边都可以看到 $Q_{//} \approx (1/3, 0)$ 的超结构峰 (见 图 1(e), (f)), 且随入射 X 射线能量变化呈现出双 峰的结构 (见图 1(g), (h)). 该发现也能解释之前观 测到的样品依赖性: 不同的样品还原程度各不相 同,残留的顶点氧数目便不同,即其钙钛矿相、无限层相和具有周期性顶点氧缺位的中间相比例各不相同,导致样品具有不同的晶格常数和不同强度的 *Q*// ≈ (1/3,0)超结构峰^[17,18]; STO 保护层可以有效减少中间相的生成,但不能完全避免^[16].如果果真如该研究成果所述,由于现在普遍认为超导电性来自于没有顶点氧的无限层 RENiO₂结构,残余顶点氧形成的超结构将与超导电性没有任何关联,有关无限层镍氧化物超导体中电荷序的研究将回到起点.

图 1 NdNiO₂ 的电荷序^[24] (a) 无限层镍氧化物的还原过程示意图,从前驱体钙钛矿 NdNiO₃ 到无限层 NdNiO₂ 之间存在许多 中间态,下方小方块灰色表示钙钛矿结构,红色表示无限层结构,蓝色表示具有超结构的中间态;(b)—(d) 样品 J 的 STEM 测量 结果,可以看到周期性的顶点氧空位 (d),傅里叶变化之后对应 $Q_{//} \approx (1/3, 0)$ 的超结构 (b); (e) $Q_{//} \approx (1/3, 0)$ 附近 Ni L_3 边的弹 性 RXS 测量结果,实线和虚线分别是 σ 偏振和 π 偏振的测量曲线,样品 D 的数据强度乘了 20 倍; (f) Nd M_5 边的弹性 RXS 测量 结果; (g), (h) 样品 C 和样品 D 不同 Q 位置的 RXS 信号随入射 X 射线能量的变化, 阴影部分即电荷序信号,黑色和红色箭头分 别标识出了 Ni 3d-RE 5d 杂化峰和 Ni L_3 主峰;样品 C 比样品 D 含有更多的中间相,因此超结构峰更强

Fig. 1. Charge order in NdNiO₂^[24]: (a) Schematic of the reduction pathway from the perovskite NdNiO₃ (gray) to the infinite-layer NdNiO₂ (red) with various intermediate states (blue); (b)–(d) STEM results of sample J, apical oxygen vacancies can be distinguished in panel (d), leading to $\mathbf{Q}_{//} \approx (1/3, 0)$ superlattice peaks in the Fourier transform image (b); (e) elastic RXS measurements at Ni L_3 edge around $\mathbf{Q}_{//} \approx (1/3, 0)$, the solid and dashed lines are data with σ and π polarized incident X-ray, respectively; (f) RXS measurements at Nd M_5 edge; (g), (h) energy dependence of RXS signals with fixed wavevectors for samples C and D, the shaded region indicates the nominal charge order contributions. The black and red arrows highlight the Ni 3d-RE 5d hybridized peak and the Ni L_3 main resonance, respectively, sample C has a larger volume of intermediate states than sample D, leading to stronger superlattice peaks.

3 过掺杂一价镍氧化物中的电荷序

虽然无限层镍氧化物中的电荷序受到了质疑, 但其他一价镍氧化物中的电荷序会为镍基超导体 的研究带来重要启示.其中受到较多关注的是三 层构型的一价镍氧化物 RE₄Ni₃O₈,它同样具有没 有顶点氧的层状结构 (见图 2(a)),核外电子数为 3d^{9-1/3},电子结构与无限层镍氧化物的电子结构 非常类似,费米面由 Ni 3d_{x²-y²}轨道占主导^[26].然 而它处于相图中的过掺杂区域,因此不具有超导电 性.但是该材料可以实现单晶样品的制备,因此可 以深入研究其中的电荷序性质.

在镍基超导体发现之前,研究人员便观测到 La₄Ni₃O₈ 单晶中同时存在电荷序和反铁磁序^[27,28]. 电荷序面内波矢为 $Q_{//} = (1/3, 1/3)$,与二价镍氧化 物相似,但磁有序具有不同的磁矩方向 (见图 2(a)). 伴随着电荷序和反铁磁序会发生半导体-绝缘体相 变,但是在同结构的 Pr₄Ni₃O₈ 中没有发现电荷序 的迹象^[29],且系统到最低温都表现出金属行为. 值 得一提的是,La₄Ni₃O₈ 单晶的 XRD 研究没有发现 残留顶点氧的迹象,说明其电荷序完全存在于 NiO₂ 面中,是其本征的性质^[27].

后续的 RXS 实验也观测到了 $Q_{//} = (1/3, 1/3)$ 超结构峰和 100 K 附近的相变 (见图 2(b))^[30],并 且该峰在 Ni L_2 边共振加强 (见图 2(c)), 说明来自 于电荷序而不是简单的晶格畸变.对电荷序峰与入射 X 射线能量依赖关系的细致分析发现 (见图 2(c), (d)), La₄Ni₃O₈ 的电荷序具有多带特性, 主要由 Ni 3d_{x²-y²} 贡献, 其次为 NiO₂ 面内的 O 2p 轨道, Ni 3d_{3z²-r²} 轨道也部分参与到了电荷序的形成中^[30]. 该发现和铜氧化物超导体不尽相同, 在铜氧化物超导体中, 普遍认为电荷序主要由 O 2p 轨道贡献, 而 Cu 3d_{3z²-r²} 基本没有作用, 这可能和一价镍氧化物属于电荷转移绝缘体和莫特绝缘体的中间相, 而铜氧化物属于电荷转移绝缘体和莫特绝缘体有关^[31].

4 高压镍基超导体中的电荷序

高压镍基超导体 La₃Ni₂O₇ 为双层的 RP 相 (图 3(a)),这里 Ni 的名义价态为 Ni^{5/2+},即每个 Ni 有 2.5 个空穴,费米面由 Ni 3d_{x²-y²} 主导构成了 α 和 β 两个能带 (也有其他轨道贡献),而 Ni 3d_{z²} 构 成的 γ 能带在费米面以下^[32].但是根据计算,在加 压之后它会穿过费米面,对超导电性可能会起到重 要的作用,同时 d_{x²-y²} 和 d_{z²} 之间会存在较强的洪 特耦合^[33].这些都表明 La₃Ni₂O₇ 具有一定的多带 特性,可能介于铜基和铁基超导体之间.

诸多输运测量均表明, La₃Ni₂O₇常压下在低 温形成了某种有序, 并且在外部压力下被逐渐压 制^[5,34,35]. 更多的微观实验证据来自于 RXS 的测

图 2 $La_4Ni_3O_8$ 的电荷序^[30] (a) $La_4Ni_3O_8$ 的 3 层结构和电荷序与磁有序示意图, 红色和蓝色分别代表自旋向上和向下的 $S = 1/2 Ni^{1+}$ 离子, 紫色为 $S = 0 Ni^{2+}$ 离子; (b) 不同温度下电荷序峰的 Ni L_2 边 RXS 测量曲线; (c) 电荷序 RXS 信号强度随入射 X 射 线能量的变化, 插图是电荷序在不同原子上的分布; (d) 计算得到的电荷序能量依赖关系, 柱状图显示了不同 RXS 中间态的贡献 Fig. 2. Charge order in $La_4Ni_3O_8^{[30]}$: (a) Schematic of trilayer structure of $La_4Ni_3O_8$ and its charge and magnetic order, the red and blue spheres/arrows indicate $S = 1/2 Ni^{1+}$ ions with spin up and spin down, respectively, while the purple ones indicate $S = 0 Ni^{2+}$ ions; (b) RXS intensity at Ni L_2 edge of charge sequence peaks at different temperatures; (c) variation of the intensity of the charge sequence RXS signal with the incident X-ray energy, the inset shows the orbital distribution of the charge order modulation; (d) simulation of the energy dependence of the charge order RXS intensity, the vertical bars represent the weights of different configurations of the RXS intermediate states.

图 3 La₃Ni₂O₇的条纹序^[36] (a) La₃Ni₂O₇的双层晶体结构; (b)—(d) La₃Ni₂O₇可能的 3 种条纹序构型, 红色、蓝色、黑色圆圈分 别表示自旋向下、自旋向上和没有静态磁矩的电荷位置, 方框代表磁胞

Fig. 3. Stripe order in $La_3Ni_2O_7^{[36]}$: (a) Schematic of the bilayer structure of $La_3Ni_2O_7$; (b)–(d) different stripe order proposed for $La_3Ni_2O_7$, the red, blue and black circles represent Ni sites with spin down, spin up, and charge with no static moment, the rectangles exhibit the magnetic unit cell.

量,数据表明在低温出现了 $Q_{//} = (1/4, 1/4)$ 的磁 有序峰,并据此得到了3种可能的自旋-电荷序结 构,分别为单条纹自旋-电荷序(条纹序 I)、双条纹 自旋序 (条纹序 II) 和双条纹自旋-电荷序 (条纹序 III) (见图 3(b)-(d)), RXS 测量得到的自旋波符 合条纹序 I 或者条纹序 II^[36]. 虽然粉末中子衍射没 有观测到长程磁有序,但是非弹性中子散射得到的 磁激发与条纹序 I 或条纹序 II 相吻合^[37]. 缪子自 旋弛豫 (muon spin relaxation, µSR) 观测到了静 态磁有序,结合中子结果认为可能是一种短程序, 数据符合条纹序 I 或条纹序 III^[38]. 核磁共振 (nuclear magnetic resonance, NMR) 同样观测到了静 态磁有序,但是没有电荷序的迹象,因此更偏向于 条纹序 II^[39]. 综上所述, 目前的实验结果表明常压 La₃Ni₂O₇在低温下形成了磁有序,但是否有电荷 序还有争论.同时不同实验工作得到的常压下相变 温度分布在 120—155 K 的区间内 [5,34-41], 这可能 是因为样品质量不一或者氧空位不同[42,43],也可能 是由于同时具有自旋序和电荷序^[40],它们甚至可 以表现出不同的压力依赖关系[41]. 另外, 有实验表 明在高压下 La₃Ni₉O₇ 会形成另一个有序相^[44].

为了解决以上分歧,一方面需要更高质量的样品,另一方面需要进行全面的 X 射线散射测量,以确定有没有电荷序.值得注意的是,条纹序 II 没有电荷序,条纹序 III 会在 $Q_{//} = (1/4, 1/4)$ 的位置

引入电荷序的峰, 而从 RXS 数据来看 $Q_{//} = (1/4, 1/4)$ 主要由磁有序贡献, 排除了这种可能, 也和磁激 发测量结果吻合^[36].条纹序 I 的电荷序峰在 $Q_{//} = (1/2, 1/2)$,这个位置 Ni 的 L 边无法达到^[36], 但是 Ni 的 K 边可以覆盖, 虽然不如 Ni 的 L 边敏感. 非 共振的 XRD 也能对电荷序导致的晶格畸变进行 测量, 但是信号可能比较弱, 需要对单晶样品进 行同步辐射 XRD 的细致测量.综上所述, $Q_{//} = (1/2, 1/2)$ 电荷序峰的存在与否将帮助人们确定 La₃Ni₂O₇ 的条纹序构型.

相比 La₃Ni₂O₇ 中电荷序的悬而未决,常压下 RE₄Ni₃O₁₀ 的电荷序已经有较为明确的结论^[45]. La₄Ni₃O₁₀ 属于 3 层的 RP 相 (见图 4(a)),在低温 下形成了纠缠的非公度电荷序和磁有序,即磁有序 的周期是电荷序的两倍,两者与 Ni—O 键呈 45° 角 (见图 4(b), (c)).考虑到该材料的金属性,研究 人员认为 La₄Ni₃O₁₀ 形成的是电荷密度波 (charge density wave, CDW)和自旋密度波 (spin density wave, SDW). 一般来说,相邻两层电荷序倾向于 反相位排列,从而减弱层间的库仑相互作用,但是 La₄Ni₃O₁₀ 中相邻两层的电荷序相位一致 (见图 4(b)), 这可能和层间电子跃迁有关. 而磁有序更为奇异, 上下两层反相位,中间层则没有磁有序 (见图 4(c)). 这些发现表明 RE₄Ni₃O₁₀ 的 3 层结构对其电子性 质和磁性至关重要,可能也会影响到高压下的超导

图 4 La₄Ni₃O₁₀的电荷序^[45] (a) La₄Ni₃O₁₀的 3 层晶体结构; (b), (c) La₄Ni₃O₁₀一个单独的 3 层单元内的电荷密度波和自旋密 度波示意图

Fig. 4. Charge order in $La_4Ni_3O_{10}^{[45]}$: (a) Schematic of the trilayer structure of $La_4Ni_3O_{10}$; (b), (c) model for the charge density wave and spin density wave of $La_4Ni_3O_{10}$ in a trilayer unit.

电性. 角分辨光电子能谱 (angle-resolved photoemission spectroscopy, ARPES) 测量发现它的能带和 La₃Ni₂O₇ 非常相似,同样由 α , $\beta \pi \gamma$ 能带构成, 但是因为层数不一样其劈裂情况不同^[46]. 值得注意的是 Ni $3d_{x^2-y^2}$ 轨道在电荷序/磁有序相没有打开能隙,但是 Ni $3d_{z^2}$ 打开了能隙^[46],说明了 d_{z^2} 的重要性.

5 总结与展望

虽然目前无限层镍氧化物 RENiO₂中的电荷 序受到了质疑,但残余顶点氧的超结构之下依然可 能存在本征的位于 NiO₂ 面内的电荷序^[47],解决这 个问题需要建立在更高样品质量的基础上.铜氧化 物超导体经过长时间的研究才得到了高质量的样 品,镍基超导体也将经历这个过程,尤其是目前仍 然没有一价镍氧化物的超导块材,制约了诸多测 量,普遍认为这也与样品质量息息相关.现有的一 价镍氧化物块材 RE₄Ni₃O₈处于过掺杂的区域,对 其进行电子掺杂从而实现超导也是研究的方向之 一.虽然目前的掺杂尝试都以失败告终,但依然有 可能在不远的将来成功掺杂实现超导,并观测到电 荷序在掺杂过程中的演变.

另一方面, La₃Ni₂O₇ 中是否存在电荷序以及 条纹序的具体构型需要更多的散射实验证据, 而 RE₄Ni₃O₁₀ 中电荷序的研究在过去只是零星的报 道, 在高压超导电性被发现之后无疑会受到更多的 关注. 但是这两个材料只有在高压下才能实现超导 电性, 因此对电荷序的高压研究也势在必行, 尤其 是加压之后直到超导电性出现,电荷序会如何变 化,它与超导电性又有什么关系,也是亟需解决的 问题.这方面的需求也将激发高压测量手段的发 展,比如高压 RXS 等.除此之外,如果可以通过其 他手段在常压实现超导,可以大幅扩展研究手段, 对于电荷序的研究也将更加充分.

铜氧化物超导体中电荷序的研究持续了近三 十年,仍然有许多问题没有被解决,尤其是电荷序 和超导电性的关系,虽然也诞生了配对密度波等相 关理论,但是对非常规超导机理的推进依然被质 疑.镍基超导体中初步发现的电荷序证据为该问题 的研究提供了新的材料平台,在未来几年中研究者 们将逐渐研究清楚其是否真实存在以及其与超导 有何关系.

参考文献

- Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 *Nature* 572 624
- [2] Wang B Y, Lee K, Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305
- [3] Sun W J, Jiang Z C, Xia C L, Hao B, Li Y Y, Yan S J, Wang M S, Liu H Q, Ding J Y, Liu J Y, Liu Z Y, Liu J S, Chen H H, Shen D W, Nie Y F 2024 arXiv. 2403.07344v1 [cond-mat]
- [4] Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194
- [5] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 *Nature* 621 493
- [6] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han

J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 *Nature* **631** 531

- [7] Hayden S M, Tranquada J M 2024 Annu. Rev. Condens. Matter Phys. 15 215
- [8] Hotta T, Dagotto E 2004 Phys. Rev. Lett. 92 227201
- [9] Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone D G, Assefa T, Chen X M, Kisslinger K, Prabhakaran D, Boothroyd A T, Tranquada J M, Hu W, Barbour A M, Wilkins S B, Mazzoli C, Robinson I K, Dean M P M 2021 *Phys. Rev. Lett.* **126** 177601
- [10] Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 *Science* 358 1155
- [11] Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161
- [12] Arpaia R, Ghiringhelli G 2021 J. Phys. Soc. Jpn. 90 111005
- [13] Agterberg D F, Davis J C S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231
- [14] Sears J, Shen Y, Krogstad M J, Miao H, Bozin E S, Robinson I K, Gu G D, Osborn R, Rosenkranz S, Tranquada J M, Dean M P M 2023 *Phys. Rev. B* 107 115125
- [15] Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705
- [16] Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869
- [17] Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116
- [18] Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 *Phys. Rev. Lett.* 129 027002
- [19] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381
- [20] Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001
- [21] Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801.
- [22] Peng C, Jiang H C, Moritz B, Devereaux T P, Jia C J 2023 *Phys. Rev. B* 108 245115
- [23] Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477
- [24] Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486
- [25] Raji A, Krieger G, Viart N, Preziosi D, Rueff J P, Gloter A 2023 Small 19 2304872
- [26] Li H, Hao P, Zhang J, Gordon K, Garrison Linn A, Chen X, Zheng H, Zhou X, Mitchell J. F, Dessau D S 2023 Sci. Adv. 9 eade4418
- [27] Zhang J J, Chen Y S, Phelan D, Zheng H, Norman M R, Mitchell J F 2016 Proc. Natl. Acad. Sci. 113 8945

- [28] Zhang J J, Pajerowski D M, Botana A S, Zheng H, Harriger L, Rodriguez-Rivera J, Ruff J P C, Schreiber N J, Wang B, Chen Y S, Chen W C, Norman M R, Rosenkranz S, Mitchell J F, Phelan D 2019 *Phys. Rev. Lett.* **122** 247201
- [29] Zhang J, Botana A S, Freeland J W, Phelan D, Zheng H, Pardo V, Norman M R, Mitchell J F 2017 Nat. Phys. 13 864
- [30] Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Mitrano M, He W, Zhang J, Mitchell J F, Bisogni V, Norman M R, Johnston S, Dean M P M 2023 *Phys. Rev. X* 13 011021
- [31] Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Jarrige I, He X, Božović I, Mitrano M, Zhang J, Mitchell J F, Botana A S, Bisogni V, Norman M R, Johnston S, Dean M P M 2022 *Phys. Rev. X* 12 011055
- [32] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373
- [33] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
- [34] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040
- [35] Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
- [36] Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 arXiv: 2401.12657v1 [cond-mat]
- [37] Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 arXiv: 2401.12635v1 [cond-mat]
- [38] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503
- [39] Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, Chen X H 2024 arXiv: 2402.03952v1 [cond-mat]
- [40] Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411
- [41] Khasanov R, Hicken T J, Gawryluk D J, Pierre Sorel L, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2024 arXiv: 2402.10485v1 [cond-mat]
- [42] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 *Nature* 630 847
- [43] Wang N N, Wang G, Shen X L, et al. 2024 arXiv: 2407.05681v1 [cond-mat]
- [44] Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Wang M, Hong F, Wang X B, Yu X H 2024 arXiv: 2404.19678v1 [condmat]
- [45] Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 *Nat. Commun.* 11 6003
- [46] Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704
- [47] Ren X L, Sutarto R, Gao Q, Wang Q S, Li J R, Wang Y, Xiang T, Hu J P, Chang J, Comin R, Zhou X J, Zhu Z H 2023 arXiv: 2303.02865v2 [cond-mat]

SPECIAL TOPIC—Correlated electron materials and scattering spectroscopy

Experimental research progress of charge order of nickelate based superconductors

Shen $\operatorname{Yao}^{(1)2)\dagger}$

 (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
(School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 28 June 2024; revised manuscript received 19 August 2024)

Abstract

Ever since the discovery, nickelate superconductors have attracted great attention, declaring a "nickel age" of superconductivity. Currently, there are two types of nickelate superconductors: low-valence nickelate superconductors $RE_{n+1}Ni_nO_{2n+2}$ (RE, rare earth; n, number of adjacent NiO₂ layers) and high-pressure nickelate superconductors $La_3Ni_2O_7$ and $La_4Ni_3O_{10}$. Charge order plays a crucial role in studying the strongly correlated systems, especially the cuprate superconductors, in which potential correlation between charge order and superconductivity has been indicated. Thus, great efforts have been made to explore the charge order in nickelate superconductors. In the infinite-layer nickelate RENiO₂, the evidence of charge order with in-plane wavevector of $Q_{//} \approx (1/3, 0)$ has been found in the undoped and underdoped regime but not in the superconducting samples. However, subsequent studies have indicated that this is not the true charge order inherent in the NiO₂ plane, which carries unconventional superconductivity, but rather originates from the ordered excess apical oxygen in the partially reduced impurity phases. On the other hand, the overdoped lowvalence nickelate $La_4Ni_3O_8$ shows well-defined intertwined charge and magnetic order, with an in-plane wavevector of $Q_{//} = (1/3, 1/3)$. Resonant X-ray scattering study has found that nickel orbitals play the most important role in the multi-orbital contribution of charge order formation in this material, which is significantly different from the cuprates with oxygen orbitals dominating the charge modulation. Although the spin order in $La_3Ni_2O_7$ has been well established, there is still controversy over its spin structure and the existence of coexisting charge order. In $La_4Ni_3O_{10}$, intertwined charge and spin density waves have been reported, the origin and characteristics of which remain unknown. Owing to the research on the nickelate superconductors just starting, many questions have not yet been answered, and the exploration of charge order in nickelate superconductors will still be the center of superconductor research.

Keywords: strongly correlated systems, nickelate superconductors, charge order, resonant X-ray scattering

PACS: 71.27.+a, 74.90.+n, 71.45.Lr, 61.05.cf

DOI: 10.7498/aps.73.20240898

CSTR: 32037.14.aps.73.20240898

[†] Corresponding author. E-mail: yshen@iphy.ac.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

镍基超导体中电荷序的实验研究进展

沈瑶

Experimental research progress of charge order of nickelate based superconductors Shen Yao

引用信息 Citation: Acta Physica Sinica, 73, 197104 (2024) DOI: 10.7498/aps.73.20240898 在线阅读 View online: https://doi.org/10.7498/aps.73.20240898 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

铁基超导体的输运性质 The transport properties of iron-based superconductors 物理学报. 2021, 70(1): 017404 https://doi.org/10.7498/aps.70.20201836

电荷媒介的磁电耦合:从铁电场效应到电荷序铁电体 Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics 物理学报. 2020, 69(21): 217502 https://doi.org/10.7498/aps.69.20201193

钒基笼目超导体 Kagome superconductors 物理学报. 2022, 71(11): 118103 https://doi.org/10.7498/aps.71.20220891

高压下富氢高温超导体的研究进展

Progress on hydrogen-rich superconductors under high pressure 物理学报. 2021, 70(1): 017407 https://doi.org/10.7498/aps.70.20202189

铁基超导体中的马约拉纳零能模及其阵列构筑

Majorana zero mode and its lattice construction in iron-based superconductors 物理学报. 2024, 73(3): 030302 https://doi.org/10.7498/aps.73.20232022

芳香超导体: 电-声耦合与电子关联

Aromatic superconductors: Electron-phonon coupling and electronic correlations 物理学报. 2023, 72(23): 237403 https://doi.org/10.7498/aps.72.20231751