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Fig. 1. Parameter settings in the FAR3D code: (a) Plasma density; (b) plasma temperature; (c) electron temperature profile.
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Fig. 2. Plasma cwrrent profile parameter design in
STELLGAP code.
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Fig. 4. (a) Eigenfunction of the dominant mode of n/m =
2/4 and n/m = 2/3 mode; (b) radial profiles of mode relat-

ive intensities from experiments.
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Fig. 5. Shear Alfvén continuum structure in MHD equilibri-
um at I, = 0 (a) and I, = 2.0 kA (b) in Heliotron J.

ZE | B, Heliotron J 2% & AW 2| 7 —Ff
&S5 n/m = 2/4 5 n/m = 2/3 BIFIRISANARL. 7E
Heliotron J & & H1, ZHi AIWF 5T 2 28 Uk 5538 1
TR LK n/m = 1/2 MIERERI AR 23], 2Tk
W i — 2D 58 IR M (1) 55 25 F 205 Heliotron
J B E AR E PRI, IRFCAH DY) L R Y
FHE.

010501-6


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 Z 3R Acta Phys. Sin. Vol.75,No. 1 (2026) 010501

2 P RS OGS B TR SRR

Table 2. Critical plasma parameters modified during heating.
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Fig. 6. Time evolution of the power spectral density at different electron densities (a)—(d) and the variation of instability intensity

with electron density (e) at high ECH situation.
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Fig. 7. Under three magnetic field configurations, with the change of the fast particle beta (Gy): (a), (d) Growth rate and the fre-

quency of the n/m = 1/2; (b), (e) growth rate and the frequency of the n/m = 2/3; (c), (f) growth rate and the frequency of the

n/m = 2/4 mode.
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Energetic-particle-driven MHD instability in Heliotron J
adjusted via key plasma parameter”
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Abstract

A large number of energetic particles (EPs) are generated in the heating process to obtain the high
temperature plasma for fusion research. These EPs can resonantly excite various magnetohydrodynamic (MHD)
instabilities, including the Alfvén eigenmodes (AEs) and the energetic particle modes (EPMs). The excitation of
such MHD instabilities can lead to significant EP losses, which not only degrades the plasma confinement and
heating efficiency, but also results in excessive heat loads and damage to plasma-facing components. In this
work, the influences of key plasma parameters on the excitation and damping effect of EP-driven MHD
instabilities in Heliotron J device are investigated for better understanding of the excitation and transport
mechanism of EPs driven MHD in specific device, which is meaningful for achieving stable plasma operation in
future fusion devices with different heating methods. In this work, the typical EPs driven MHD instabilities are
observed using various diagnostic methods, such as magnetic probes, beam emission spectroscopy (BES),
electron cyclotron resonance (ECE) radiometers, and interferometers. Combined with the simulation results
from STELLGAP and FAR3D programs, the modulus, radial distribution, and spectral characteristics of
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different instabilities are analyzed in depth, revealing the evolutions of AEs and EPMs in the Heliotron J device
under typical heating conditions. This study quantitatively reveals the driving and suppressing mechanisms of
EP-driven instabilities by the electron density (n,), the electron temperature (7,), and the energetic/thermal
particle specific pressure (0G¢/0;,) in Heliotron J device, under the conditions of different electron cyclotron
resonance heating (ECH) and neutral beam injection (NBI). The results show that different characteristics are
obtained under the different magnetic field geometry conditions. The results show that an increase in electron
density can reduce the instability intensity by about 40%—60%, and an increase in the specific pressure of
energetic particles can double the modal growth rate, while an increase in the specific pressure of hot particles
has an inhibitory effect of 20%-50% on the growth rate of the low order modes. These findings are useful for
understanding the different effects of ECH and NBI on the EPs driven MHD instabilities, and they are also
helpful for achieving stable operation by adjusting the heating system parameters in the stellarator-like devices

in the future.
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