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Fig. 1. Schematic of molecular dynamics models for tensile deformation of single-crystal iron with different helium concentrations
and corresponding models: (a) Schematic of the model; (b) Ny, = 0.5%; (¢) Ny, = 1.5%; (d) Nyge = 3.0%; (e) Ny, = 4.5%. Fe atoms
are hidden to better observe the distribution and morphology of helium atoms.
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Fig. 2. Defect evolution processes in single-crystal iron with different helium concentrations: (a) Ny, = 0.5%; (b) Ny = 1.5%;

(¢) Nye = 3.0%; (d) Ny, = 4.5%. Red spheres represent vacancies, and blue spheres represent interstitial atoms.
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Fig. 4. Distribution maps of clusters at the final stage of defect evolution with different helium concentrations: (a) Ny, = 0.5%;
(b) Nge = 1.5%; (¢) Nye = 3.0%; (d) Ny = 4.5%.
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Fig. 8. Shear stress-strain contour plots after helium concentration effect: (a) Original single-crystal iron; (b) Ny, = 0.5%; (¢) Ny, =

1.5%; (d) Ny = 3.0%; (e) Ny, = 4.5%.
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F9 TR BN MR PR FHREEL  (a) e = 0.003; (b) £ = 0.054; (c) &€ = 0.108; (d) € = 0.12; (e) £ = 0.135;
(f) e = 0.165; (g) € = 0.189; (h) & = 0.21; K 1 LI F /R “other”, LA FTIR “foc”; LA MM L, BAF R 1/2(111) 7, HAE
7R (100) 7, BEER“(110)”

Fig. 9. Atomic configuration evolution of single-crystal iron without helium concentration effect during tensile deformation: (a) € =
0.003; (b) € = 0.054; (c¢) € = 0.108; (d) € = 0.12; (e) € = 0.135; (f) € = 0.165; (g) € = 0.189; (h) ¢ = 0.21; gray-white atoms denote
“other”, green denotes “fcc”; lines are dislocation lines, black denotes “1/2(111)”, blue denotes “(100)”, and yellow denotes
“(110) 7.
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Fig. 10. Atomic configuration evolution of single-crystal iron with 0.5% helium concentration during tensile deformation: (a) ¢ = 0;
(b) e = 0.048; (c) € = 0.075; (d) e = 0.096; (e) € = 0.126; (f) ¢ = 0.162; (g) € = 0.186; (h) £ = 0.210.
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Fig. 11. Atomic configuration evolution of single-crystal iron with 1.5% helium concentration during tensile deformation: (a) ¢ = 0;
(b) e = 0.024; (c) € = 0.060; (d) e = 0.096; (e) ¢ = 0.126; (f) ¢ = 0.150; (g) € = 0.174; (h) £ = 0.210.
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Fig. 12. Atomic configuration evolution of single-crystal iron with 3.0% helium concentration during tensile deformation: (a) &

(a) e

0; (b) € = 0.012; (¢) € = 0.030; (d) € = 0.072; (e) € = 0.120;

0;

(b) & = 0.012; (c) £ = 0.030; (d) £ = 0.072; (e) & = 0.120; (f) & = 0.135; (g) & = 0.180; (h) & = 0.210.
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Fig. 13. Atomic configuration evolution of single-crystal iron with 4.5% helium concentration during tensile deformation: (a) &
(b) e = 0.012; (c) € = 0.030; (d) e = 0.075; (e) € = 0.126; (f) ¢ = 0.144; (g) € = 0.189; (h) ¢ = 0.210.
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Fig. 14. Schematic of micro-mechanisms for helium-induced plasticity: (a) Ny, < 3.0%; (b) Ny, = 3.0%.
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Effects of helium concentration on defect evolution and
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Abstract

Understanding the intrinsic correlation between helium concentration and the evolution of defects as well as
mechanical properties in low-activation steel on an atomic scale is crucial for designing fusion materials with
excellent resistance to swelling and embrittlement. This study investigates the effect of helium concentration on
single-crystal iron through molecular dynamics simulations, thereby clarifying the mechanisms by which helium
concentration affects helium defect evolution, mechanical properties, and plastic deformation behavior of low-
activation steel on an atomic scale. Models of body-centered cubic (BCC) iron with different helium
concentrations (0.5%—4.5%) are established. Wigner-Seitz cell analysis and cluster clustering methods are
employed to track the evolution of Frenkel Pairs (FPs) and cluster defects, revealing the mechanism of helium
concentration-induced FPs and cluster formation at 500 °C. Furthermore, combined with tensile mechanical
simulations, the effects of helium behavior on the mechanical properties of single-crystal iron, such as elastic
modulus, yield strength, and toughness, are analyzed, and the correlation mechanisms between helium
concentration-induced defect evolution, mechanical properties, and plastic deformation behavior are revealed.
The results show that when Ny, < 3.0%, the number of FPs linearly reaches to a peak and then stabilizes. This
is because helium behavior causes a rapid increase in the number of FPs and a large number of interstitial
atoms are generated, some of which recombine. The annihilation rate of FPs increases with their number
increasing and eventually equals the generation rate, resulting in a stable number of FPs. When Ny, = 3.0%),
the initial increase and stabilization are the same as those for Ny, < 3.0%. However, after the formation of large
interstitial clusters, they absorb interstitial atoms and grow, hindering recombination and reducing the
annihilation rate of FPs, thus leading to a secondary increase. The large clusters are surrounded by vacancies
and no longer hinder FP recombination, and a new balance is achieved, resulting in a secondary stabilization of
the FP number. When Ny, increases to 3.0%, the elastic modulus, yield strength, and toughness of single-crystal
iron decrease by 21%, 88%, and 57%, respectively; beyond this concentration, the mechanical properties no
longer decrease. This is because when Ny, < 3.0%, as helium concentration increases, helium-induced defects

increase, leading to a decrease in toughness and promoting dislocation nucleation, thus reducing the elastic
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modulus and yield strength. When Ny, = 3.0%, dislocations exist in the initial defects, and the number of
clusters changes slightly; toughness no longer decreases, and dislocation nucleation is not affected, leading to the
stabilization of elastic modulus and yield strength. At Ny, = 3.0%, the formation of large clusters hinders the
movement of slip systems, changes the orientation of slip planes, weakens the effectiveness of the main slip
system, which leads to an increase in small slip bands and causes the plastic deformation mechanism to
transform from cross-slip to decomposition into discrete dislocations and point defects once the slip bands
intersect with each other. This study reveals the influence patterns and key mechanisms of helium concentration
on defect evolution and mechanical properties of single-crystal iron, providing a theoretical basis for designing

fusion iron-based materials.
Keywords: single-crystal iron, helium concentration, defect evolution, mechanical properties
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