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Fig. 1. Schematic diagram of TaN/TiN diffusion barrier lay-
ers and NiSi contact layer in semiconductor chips!™.
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Fig. 2. Aluminum crossover bridge structure for CPW
transmission line and ground interconnects in quantum

chips.
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Table 1.  Comparison of process characteristics between conventional semiconductor chips and superconducting quantum chips.
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Table 2.  Comparison of physical characteristics between

metal bulk diffusion and surface migration!!s],
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Abstract

The manufacturing process of superconducting quantum processor chips faces special challenges of metal
contamination, and their material system and process characteristics are significantly different from those of
traditional semiconductor chips. This study focuses on the issue of metal contamination in the fabrication
process of quantum chips, systematically analyzing the sources, diffusion mechanisms, and prevention strategies
of metal contamination in quantum chips, where the bulk diffusion and surface migration behaviors of
superconducting materials (such as Ta, Nb, Al, TiN) on sapphire and silicon substrates are particularly
emphasized, aiming to provide theoretical basis and technical references for process optimization and to promote
the industrialization process of quantum computing technology.

The metal contamination in the fabrication of quantum chips is mainly caused by the metal film materials
used in the process, the external environment, or the unintended metal impurity atoms introduced in the
manufacturing process. Among them, some quantum chip components directly use superconducting metal
materials. Unlike semiconductor chips, they cannot achieve front and back stage isolation, resulting in the
continuous presence of metal surface migration channels, and the exposed metal structures on the chip surface.
Metal contamination often leads to two basic failure problems: short circuits and leakage currents. These
problems mainly result from the bulk diffusion of metal impurities in the dielectric layer and the migration
behavior on the sample surface. The diffusion and migration rates of metals are affected by temperature,
interface reactions, defects, and grain boundaries. The results show that the sapphire substrate, due to its dense
lattice structure, exhibits excellent anti-diffusion performance, reducing the risk of contamination and providing
a stable interface environment for superconducting quantum chips. For silicon substrates, special attention must
be paid to the contamination risks from high-mobility metals such as Au, In, and Sn. Experimental verification
shows that Ti/Au under bump metallization structures on silicon substrates are prone to Au penetration
diffusion, and increasing Ti thickness does not significantly improve the blocking effect. The low-temperature
process (< 250 °C) and ultra-low-temperature operating environment (mK level) of quantum chips effectively
suppress metal diffusion, but the exposed metal surfaces and material diversity still pose unique challenges.

The study recommends establishing a dedicated metal contamination prevention system for quantum chips
and proposes future research directions, including the evaluations of novel materials, surface state regulation,
and long-term reliability studies. This work provides important theoretical support and technical guidance for
optimizing the process and enhancing the performance of superconducting quantum chips.

Keywords: superconducting quantum processor chip, process line metal contamination, bulk diffusion, surface

migration
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